JP6763624B1 - Pipe network analysis device, pipe network analysis method, and pipe network analysis program - Google Patents

Pipe network analysis device, pipe network analysis method, and pipe network analysis program Download PDF

Info

Publication number
JP6763624B1
JP6763624B1 JP2019237052A JP2019237052A JP6763624B1 JP 6763624 B1 JP6763624 B1 JP 6763624B1 JP 2019237052 A JP2019237052 A JP 2019237052A JP 2019237052 A JP2019237052 A JP 2019237052A JP 6763624 B1 JP6763624 B1 JP 6763624B1
Authority
JP
Japan
Prior art keywords
node
pressure
branch
head
pipe network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019237052A
Other languages
Japanese (ja)
Other versions
JP2021105295A (en
Inventor
顕彦 宇土
顕彦 宇土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI SUBSURFACE INFORMATION LTD.
Original Assignee
FUJI SUBSURFACE INFORMATION LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI SUBSURFACE INFORMATION LTD. filed Critical FUJI SUBSURFACE INFORMATION LTD.
Priority to JP2019237052A priority Critical patent/JP6763624B1/en
Application granted granted Critical
Publication of JP6763624B1 publication Critical patent/JP6763624B1/en
Publication of JP2021105295A publication Critical patent/JP2021105295A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】流出量の圧力依存性を考慮し、管網解析をメッシュ流量法で実現する為の新規な手法を提供する。【解決手段】管路枝と、管路枝の両端に管路枝同士の節点又は管路枝と配水池R1,R2の接続点を示す水頭既知節点を配置した解析グラフと、節点の水頭及び節点又は管路流出量を圧力依存量として算出する管網解析装置であり、解析グラフの全節点を結びループ非構成の枝集合の木及びメッシュ群決定手段と、木枝固定流量とメッシュ流量で非圧力依存管網解析処理を行う各節点有効水頭算出手段と、圧力不足節点を仮想接続枝で基準節点と接続する手段と、圧力不足節点の流出量を配水管網の圧力依存量を更新し、圧力不足節点が仮想接続枝で基準節点と接続された新解析グラフに対し、新メッシュ流量を変数とし、圧力依存管網解析処理を行う各節点有効水頭算出手段と、有効水頭が閾値未満の場合圧力不足節点として、新仮想接続枝で基準節点との接続手段とを備える。【選択図】図2PROBLEM TO BE SOLVED: To provide a novel method for realizing a pipe network analysis by a mesh flow method in consideration of the pressure dependence of an outflow amount. SOLUTION: An analysis graph in which a conduit branch and a node known to a water head indicating a connection point between the pipeline branch and a distribution reservoir R1 and R2 are arranged at both ends of the pipeline branch, a head of the node, and a node. It is a pipeline analyzer that calculates the amount of nodal or pipeline outflow as a pressure-dependent amount, and connects all the nodes of the analysis graph with a tree and mesh group determination means of a non-looped branch set, and a fixed flow rate and mesh flow rate of the tree branch. The effective head calculation means for each node that performs non-pressure-dependent pipe network analysis processing, the means for connecting the pressure-deficient node to the reference node with a virtual connection branch, and the outflow amount of the pressure-deficient node are updated with the pressure-dependent amount of the distribution pipe network. , For the new analysis graph in which the insufficient pressure node is connected to the reference node by the virtual connection branch, each node effective head calculation means that performs pressure-dependent tube network analysis processing with the new mesh flow rate as a variable, and the effective head is less than the threshold. In the case of insufficient pressure, a new virtual connection branch is provided with a means for connecting to the reference node. [Selection diagram] Fig. 2

Description

本発明は、流出量の圧力依存性を考慮した管網解析装置、管網解析方法及び、管網解析プログラムに関する。 The present invention relates to a pipe network analysis device, a pipe network analysis method, and a pipe network analysis program in consideration of the pressure dependence of the outflow amount.

管網解析は配水池の水位と各需要箇所での需要量、配水池と需要箇所を結ぶ管路要素(管路、ポンプ、バルブ)の特性がすべて与えられた時に、管網各部の圧力と流量を求める定常流解析問題である。従来、上水道の配水管網については各管路要素を線(枝)、それらの繋がりを点(節点)で表す解析グラフで扱って、管網解析を行う為の技術が提案されている。 Pipeline analysis is based on the pressure of each part of the pipeline when the water level of the distribution reservoir, the amount of demand at each demand point, and the characteristics of the pipeline elements (pipelines, pumps, valves) connecting the distribution reservoir and the demand point are all given. This is a steady flow analysis problem for finding the flow rate. Conventionally, for the distribution pipe network of waterworks, a technique for performing pipe network analysis has been proposed by treating each pipeline element with a line (branch) and an analysis graph showing the connection between them with a point (node).

初期の管網解析では、管網からの流出量(需要量、流出水量)をすべて与件として、圧力に係わらず一定の非圧力依存量とするものであった。解析手法は、主要変数の取り方によって大きく節点水頭法とメッシュ流量法に分けられる。 In the initial pipe network analysis, the amount of runoff from the pipe network (demand amount, runoff water amount) was taken as a condition, and it was a constant non-pressure dependent amount regardless of the pressure. The analysis method can be roughly divided into the nodal head method and the mesh flow method depending on how the main variables are taken.

非特許文献1には、メッシュ流量法による配水管網の解析に係る技術が開示されている。ここでのメッシュは、解析グラフにおいて「構成枝の枝数ができるだけ小さくなるように順次選ばれたループ(閉路)の組」と定義されている。非特許文献2には、流向変化や閉止弁の開閉の変更に際して計算精度の向上を図る為の管路取り出しモデルに係る技術が開示されている。 Non-Patent Document 1 discloses a technique relating to analysis of a water pipe network by a mesh flow method. The mesh here is defined in the analysis graph as "a set of loops (cycles) sequentially selected so that the number of constituent branches is as small as possible". Non-Patent Document 2 discloses a technique related to a pipeline take-out model for improving calculation accuracy when a change in flow direction or a change in opening / closing of a shutoff valve is performed.

更に近年、流出量が圧力に依存するという現実に即した解析の性質が明らかにされた。非特許文献3−5には、流出量の圧力依存性を考慮した管網解析を実現する為の手法が開示されている。また、特許文献1、2にも、圧力依存性を考慮した管網解析手法が開示されている。 Furthermore, in recent years, the nature of the realistic analysis that the outflow amount depends on the pressure has been clarified. Non-Patent Document 3-5 discloses a method for realizing a pipe network analysis in consideration of the pressure dependence of the outflow amount. Further, Patent Documents 1 and 2 also disclose a tube network analysis method in consideration of pressure dependence.

非特許文献6には、管路に沿って多くの需要点で水が取り出されるという現実を直接的に扱った離散型取り出しモデルが開示されている。これにより管路取り出しモデルで圧力依存性を扱うことが可能となった。 Non-Patent Document 6 discloses a discrete extraction model that directly deals with the reality that water is extracted at many demand points along a pipeline. This made it possible to handle pressure dependence in the pipeline take-out model.

非特許文献7には、2次側圧力を一定に保つ働きをする各種配水機器・設備(2次圧固定要素)を含む管網を対象とした管網解析の手法が開示されている。 Non-Patent Document 7 discloses a method of pipe network analysis for a pipe network including various water distribution equipment / equipment (secondary pressure fixing element) that functions to keep the secondary pressure constant.

宇土 顕彦、西川よし一、泉 秦一郎「メッシュ流量法による配水管網の解析と設計」,計測と制御,Vol.28, No.8,pp.45〜58(1989年8月)Akihiko Uto, Yoshikazu Nishikawa, Ichiro Izumi "Analysis and Design of Water Pipe Network by Mesh Flow Method", Measurement and Control, Vol.28, No.8, pp.45-58 (August 1989) 西川 よし一、宇土 顕彦「大規模管網計算の高速化と管路取出しモデルによる高精度化」,水道協会雑誌,第53巻第12号,pp2〜16(1984年12月)Yoshikazu Nishikawa, Akihiko Udo, "High-speed large-scale pipeline calculation and high accuracy by pipeline extraction model", Waterworks Association Magazine, Vol. 53, No. 12, pp2-16 (December 1984) 宇土 顕彦、小澤 孝夫「流出量の圧力依存性を考慮した配水管網の定常流解析」,システム制御情報学会論文誌,Vol.16, No.1,pp.54〜59(2003年1月)Akihiko Uto, Takao Ozawa "Constant Flow Analysis of Water Pipe Network Considering Pressure Dependence of Outflow", Journal of the Society of Systems and Control Information, Vol.16, No.1, pp.54-59 (January 2003) 宇土 顕彦「流出水量の圧力依存性を考慮した管網解析」,水道協会雑誌,第72巻第11号,pp.2〜8(2003年11月)Akihiko Uto, "Pipe network analysis considering pressure dependence of runoff water volume", Journal of Waterworks Association, Vol. 72, No. 11, pp.2-8 (November 2003) 宇土 顕彦、山下 彰「流出水量の圧力依存性を考慮した管網計算の精密化―節点水頭法における離散型取出しモデルの導入」,システム制御情報学会論文誌,Vol.17,No.12,pp.561〜563(2004年12月)Akihiko Uto, Akira Yamashita "Refining Pipe Network Calculation Considering Pressure Dependence of Outflow Water-Introduction of Discrete Extraction Model in Node Head Method", Journal of the Society of Systems and Control Information, Vol.17, No.12, pp .561-563 (December 2004) 宇土 顕彦、小口 晃司「離散取り出しモデルによる高精度管網計算の改良」,システム制御情報学会論文誌,Vol.21,No.3,pp.69〜74(2008年3月)Akihiko Uto, Koji Oguchi "Improvement of High-Precision Pipe Network Calculation by Discrete Extraction Model", Journal of the Society of Systems and Control Engineers, Vol.21, No.3, pp.69-74 (March 2008) 宇土 顕彦「2次圧固定要素を含む管網計算のためのデータ構造とアルゴリズム」,水道協会雑誌,第83巻第12号,pp.14〜24(2014年12月)Akihiko Uto "Data Structures and Algorithms for Pipe Network Calculations Including Secondary Pressure Fixing Elements", Journal of the Waterworks Association, Vol. 83, No. 12, pp.14-24 (December 2014)

特開2001−160043号公報Japanese Unexamined Patent Publication No. 2001-160043 特開2006−057407号公報Japanese Unexamined Patent Publication No. 2006-057407

一般には、節点水頭法における変数の数に比べて、メッシュ流量法における変数の数が大幅に少なく、後者でコンパクトな定式化が可能である。また、節点水頭法では、変数に対して管路の特性式の傾きが無限大となる箇所を含むため、定式化される非線形連立代数方程式の求解計算の収束性に問題が生じる場合があるが、メッシュ流量法での収束性は良好である。 In general, the number of variables in the mesh flow method is significantly smaller than the number of variables in the nodal head method, and the latter allows a compact formulation. In addition, in the nodal water head method, since the slope of the characteristic equation of the pipeline is infinite with respect to the variable, there may be a problem in the convergence of the solution calculation of the nonlinear simultaneous algebraic equations to be formulated. , The convergence by the mesh flow method is good.

そのため、実在管網についての計算時間を比較すると、メッシュ流量法が節点水頭法の1/10〜1/100となる場合が多いことが知られている。一方で、圧力依存性を考慮したメッシュ流量法による求解手法は、従来存在しなかった。 Therefore, when comparing the calculation time for the existing pipe network, it is known that the mesh flow method is often 1/10 to 1/100 of the nodal head method. On the other hand, there has been no conventional solution method by the mesh flow rate method in consideration of pressure dependence.

本発明は、上記のような実情に鑑みてなされたものであり、流出量の圧力依存性を考慮し、管網解析をメッシュ流量法で実現する為の新規な手法を提供することを解決すべき課題とする。 The present invention has been made in view of the above circumstances, and solves the problem of providing a novel method for realizing the pipe network analysis by the mesh flow method in consideration of the pressure dependence of the outflow amount. It should be an issue.

上記課題を解決するために、本発明は、管路要素を示す「管路枝」と、管路枝の一端および他端に前記管路枝同士の接続点である「節点」又は、前記管路枝と配水池の接続点を示す「水頭既知節点」を配置した解析グラフに対して、前記節点における水圧である「有効水頭」を地盤高とともに扱う「水頭」及び節点あるいは管路からの流出量を圧力依存量として算出する管網解析装置であって、
水頭を0とする基準節点並びに、前記基準節点及び水頭既知節点を接続する基準節点接続枝を付加して、前記水頭既知節点の前記水頭及び流入量を、前記基準節点接続枝における両端の水頭の差である「水頭差」及び流量として扱い、前記解析グラフにおいて、すべての前記節点を結び、ループは構成しない枝集合である木及びメッシュ群を決定する手段と、
前記木に含まれる枝の木枝固定流量及び前記メッシュ群のメッシュ流量を用いて反復計算による非圧力依存管網解析処理を行って、各節点の有効水頭を算出する手段と、
管網解析処理に基づいて得られる前記有効水頭を閾値と比較して、前記有効水頭が前記閾値に満たない圧力不足節点を、仮想接続枝により前記基準節点と接続する手段と、
前記圧力不足節点における流出量を、上水道配水管網における流出量の圧力依存性を示す特性式に基づいて得られる圧力依存量として更新して、前記圧力不足節点が仮想接続枝により基準節点と接続された新たな解析グラフに対して、前記仮想接続枝によって追加された新たなメッシュを含むメッシュ群のメッシュ流量を変数として、反復計算による圧力依存管網解析処理を行い、各節点の前記有効水頭を算出する手段と、
前記圧力依存管網解析処理に基づいて得られる前記仮想接続枝が接続された節点における有効水頭が前記閾値以上又は0以下の場合、前記仮想接続枝を除去し、前記仮想接続枝が接続されていない節点における有効水頭が前記閾値に満たない場合、圧力不足節点として、新たな前記仮想接続枝により前記基準節点と接続する手段と、を備え、
前記仮想接続枝の追加及び削除がなくなるまで圧力依存管網解析処理を繰り返し、前記追加及び削除がなくなった際の各節点における有効水頭を、圧力依存量としての流出量を与える有効水頭として出力する。
In order to solve the above problems, the present invention presents a "pipeline branch" indicating a pipeline element, a "node" at one end and the other end of the pipeline branch, or a "node" which is a connection point between the pipeline branches, or the pipe. For the analysis graph in which "head known nodes" indicating the connection points between the road branch and the distribution reservoir are arranged, the "head" that treats the "effective head", which is the water pressure at the node, together with the ground height, and the outflow from the node or pipeline. A pipe network analyzer that calculates the amount as a pressure-dependent amount.
A reference node with the head set to 0 and a reference node connecting branch connecting the reference node and the known head node are added, and the head and the inflow amount of the known head node are set to the water heads at both ends of the reference node connecting branch. A means for determining a tree and a mesh group, which are a set of branches that connect all the nodes and do not form a loop in the analysis graph, which is treated as a difference "head difference" and a flow rate.
A means for calculating the effective head of each node by performing a non-pressure-dependent pipe network analysis process by iterative calculation using the fixed flow rate of the branches contained in the tree and the mesh flow rate of the mesh group.
A means for comparing the effective head obtained based on the pipe network analysis process with a threshold value and connecting a pressure-deficient node in which the effective head is less than the threshold value to the reference node by a virtual connecting branch.
The outflow amount at the underpressure node is updated as a pressure-dependent amount obtained based on the characteristic formula showing the pressure dependence of the outflow amount in the water supply distribution pipe network, and the underpressure node is connected to the reference node by a virtual connecting branch. For the new analysis graph, the pressure-dependent pipe network analysis process by iterative calculation was performed using the mesh flow rate of the mesh group including the new mesh added by the virtual connection branch as a variable, and the effective head at each node. And the means to calculate
When the effective head at the node to which the virtual connection branch is connected obtained based on the pressure-dependent tube network analysis process is equal to or more than the threshold value or 0 or less, the virtual connection branch is removed and the virtual connection branch is connected. When the effective head at no node is less than the threshold, a means for connecting to the reference node by a new virtual connection branch is provided as a pressure shortage node.
The pressure-dependent tube network analysis process is repeated until the addition and deletion of the virtual connection branch are eliminated, and the effective head at each node when the addition and deletion are eliminated is output as an effective head that gives an outflow amount as a pressure-dependent amount. ..

また、本発明は、管路要素を示す管路枝と、管路枝の一端および他端に前記管路枝同士の接続点である節点又は、前記管路枝と配水池の接続点を示す水頭既知節点を配置した解析グラフに対して、前記節点における水圧である有効水頭を地盤高とともに扱う水頭及び節点あるいは管路からの流出量を圧力依存量として算出する管網解析プログラムであって、コンピュータを、
水頭を0とする基準節点並びに、前記基準節点及び水頭既知節点を接続する基準節点接続枝を付加して、前記水頭既知節点の前記水頭及び流入量を、前記基準節点接続枝における両端の水頭の差である水頭差及び流量として扱い、前記解析グラフにおいて、すべての前記節点を結び、ループは構成しない枝集合である木及びメッシュ群を決定する手段と、
前記木に含まれる枝の木枝固定流量及び前記メッシュ群のメッシュ流量を用いて反復計算による非圧力依存管網解析処理を行って、各節点の有効水頭を算出する手段と、
管網解析処理に基づいて得られる前記有効水頭を閾値と比較して、前記有効水頭が前記閾値に満たない圧力不足節点を、仮想接続枝により前記基準節点と接続する手段と、
前記圧力不足節点における流出量を、上水道配水管網における流出量の圧力依存性を示す特性式に基づいて得られる圧力依存量として更新して、前記圧力不足節点が仮想接続枝により基準節点と接続された新たな解析グラフに対して、前記仮想接続枝によって追加された新たなメッシュを含むメッシュ群のメッシュ流量を変数として、反復計算による圧力依存管網解析処理を行い、各節点の前記有効水頭を算出する手段と、
前記圧力依存管網解析処理に基づいて得られる前記仮想接続枝が接続された節点における有効水頭が前記閾値以上又は0以下の場合、前記仮想接続枝を除去し、前記仮想接続枝が接続されていない節点における有効水頭が前記閾値に満たない場合、圧力不足節点として、新たな前記仮想接続枝により前記基準節点と接続する手段として機能させ、
前記仮想接続枝の追加及び削除がなくなるまで圧力依存管網解析処理を繰り返し、前記追加及び削除がなくなった際の各節点における有効水頭を、圧力依存量としての流出量を与える有効水頭として出力する。
Further, the present invention indicates a pipeline branch indicating a pipeline element, a node which is a connection point between the pipeline branches at one end and the other end of the pipeline branch, or a connection point between the pipeline branch and a distribution reservoir. This is a pipe network analysis program that calculates the amount of outflow from the head and the node or pipeline, which treats the effective head, which is the water pressure at the node, together with the ground height, with respect to the analysis graph in which the known head nodes are arranged. Computer,
A reference node with the head set to 0 and a reference node connecting branch connecting the reference node and the known head node are added, and the head and the inflow amount of the known head node are set to the water heads at both ends of the reference node connecting branch. A means for determining a tree and a mesh group which are branch sets that connect all the nodes and do not form a loop in the analysis graph, which are treated as the difference head difference and the flow rate.
A means for calculating the effective head of each node by performing a non-pressure-dependent pipe network analysis process by iterative calculation using the fixed flow rate of the branches contained in the tree and the mesh flow rate of the mesh group.
A means for comparing the effective head obtained based on the pipe network analysis process with a threshold value and connecting a pressure-deficient node in which the effective head is less than the threshold value to the reference node by a virtual connecting branch.
The outflow amount at the underpressure node is updated as a pressure-dependent amount obtained based on the characteristic formula showing the pressure dependence of the outflow amount in the water supply distribution pipe network, and the underpressure node is connected to the reference node by a virtual connecting branch. For the new analysis graph, the pressure-dependent pipe network analysis process by iterative calculation was performed using the mesh flow rate of the mesh group including the new mesh added by the virtual connection branch as a variable, and the effective head at each node. And the means to calculate
When the effective head at the node to which the virtual connection branch is connected obtained based on the pressure-dependent tube network analysis process is equal to or more than the threshold value or 0 or less, the virtual connection branch is removed and the virtual connection branch is connected. When the effective head at no node is less than the threshold, it is made to function as a pressure shortage node as a means for connecting to the reference node by the new virtual connection branch.
The pressure-dependent tube network analysis process is repeated until the addition and deletion of the virtual connection branch are eliminated, and the effective head at each node when the addition and deletion are eliminated is output as an effective head that gives an outflow amount as a pressure-dependent amount. ..

また、本発明は、管路要素を示す管路枝と、管路枝の一端および他端に前記管路枝同士の接続点である節点又は、前記管路枝と配水池の接続点を示す水頭既知節点を配置した解析グラフに対して、前記節点における水圧である有効水頭を地盤高とともに扱う水頭及び節点あるいは管路からの流出量を圧力依存量として算出する管網解析方法であって、コンピュータが、
水頭を0とする基準節点並びに、前記基準節点及び水頭既知節点を接続する基準節点接続枝を付加して、前記水頭既知節点の前記水頭及び流入量を、前記基準節点接続枝における両端の水頭の差である水頭差及び流量として扱い、前記解析グラフにおいて、すべての前記節点を結び、ループは構成しない枝集合である木及びメッシュ群を決定するステップと、
前記木に含まれる枝の木枝固定流量及び前記メッシュ群のメッシュ流量を用いて反復計算による非圧力依存管網解析処理を行って、各節点の有効水頭を算出するステップと、
管網解析処理に基づいて得られる前記有効水頭を閾値と比較して、前記有効水頭が前記閾値に満たない圧力不足節点を、仮想接続枝により前記基準節点と接続するステップと、
前記圧力不足節点における流出量を、上水道配水管網における流出量の圧力依存性を示す特性式に基づいて得られる圧力依存量として更新して、前記圧力不足節点が仮想接続枝により基準節点と接続された新たな解析グラフに対して、前記仮想接続枝によって追加された新たなメッシュを含むメッシュ群のメッシュ流量を変数として、反復計算による圧力依存管網解析処理を行い、各節点の前記有効水頭を算出するステップと、
前記圧力依存管網解析処理に基づいて得られる前記仮想接続枝が接続された節点における有効水頭が前記閾値以上又は0以下の場合、前記仮想接続枝を除去し、前記仮想接続枝が接続されていない節点における有効水頭が前記閾値に満たない場合、圧力不足節点として、新たな前記仮想接続枝により前記基準節点と接続するステップと、を備え、
前記仮想接続枝の追加及び削除がなくなるまで圧力依存管網解析処理を繰り返し、前記追加及び削除がなくなった際の各節点における有効水頭を、圧力依存量としての流出量を与える有効水頭として出力する。
Further, the present invention indicates a pipeline branch indicating a pipeline element, a node which is a connection point between the pipeline branches at one end and the other end of the pipeline branch, or a connection point between the pipeline branch and a distribution reservoir. This is a pipe network analysis method that calculates the amount of outflow from the head and the node or pipeline, which treats the effective head, which is the water pressure at the node, together with the ground height, with respect to the analysis graph in which the known head nodes are arranged. The computer
A reference node with the head set to 0 and a reference node connecting branch connecting the reference node and the known head node are added, and the head and the inflow amount of the known head node are set to the water heads at both ends of the reference node connecting branch. The step of determining the tree and mesh group, which is a branch set that connects all the nodes and does not form a loop, is treated as the difference head difference and flow rate.
A step of calculating the effective head of each node by performing a non-pressure dependent pipe network analysis process by iterative calculation using the fixed flow rate of the branches contained in the tree and the mesh flow rate of the mesh group.
A step of comparing the effective head obtained based on the pipe network analysis process with a threshold value and connecting a pressure-deficient node in which the effective head is less than the threshold value to the reference node by a virtual connecting branch.
The outflow amount at the underpressure node is updated as a pressure-dependent amount obtained based on the characteristic formula showing the pressure dependence of the outflow amount in the water supply distribution pipe network, and the underpressure node is connected to the reference node by a virtual connecting branch. For the new analysis graph, the pressure-dependent pipe network analysis process by iterative calculation was performed using the mesh flow rate of the mesh group including the new mesh added by the virtual connection branch as a variable, and the effective head at each node. And the steps to calculate
When the effective head at the node to which the virtual connection branch is connected obtained based on the pressure-dependent tube network analysis process is equal to or more than the threshold value or 0 or less, the virtual connection branch is removed and the virtual connection branch is connected. If the effective head at no node is less than the threshold, the pressure-deficient node is provided with a step of connecting to the reference node by the new virtual connection branch.
The pressure-dependent tube network analysis process is repeated until the addition and deletion of the virtual connection branch are eliminated, and the effective head at each node when the addition and deletion are eliminated is output as an effective head that gives an outflow amount as a pressure-dependent amount. ..

このような構成とすることで、メッシュ流量法を用いて流出量の圧力依存性を考慮した管網解析を実行することができる。 With such a configuration, it is possible to perform a pipe network analysis considering the pressure dependence of the outflow amount by using the mesh flow rate method.

本発明の好ましい形態では、前記圧力依存管網解析処理は、前記仮想接続枝における流量を前記木枝固定流量に加入しない。 In a preferred embodiment of the present invention, the pressure-dependent tube network analysis process does not add the flow rate at the virtual connecting branch to the fixed flow rate at the tree branch.

本発明の好ましい形態では、前記特性式は、各需要箇所での流出量について、圧力が0であれば0であり、圧力が増加するにつれて増加し、圧力が所定の値(閾値)に到達すれば需要量に等しくなり、その増加の割合は圧力が0と閾値の近傍で小さく、両者の中間付近で最大となる曲線であって、圧力が0を下回る場合及び、閾値を上回る場合の前記流出量を与える傾きが小さな正の直線が外挿されており、
前記圧力依存管網解析処理において反復計算を行う中で、前記圧力不足節点からの流出量(仮想接続枝の流量)が負又は需要量を超える場合、前記外挿された直線によって与えられる有効水頭から計算される水頭差が、前記反復計算中における前記仮想接続枝の水頭差として決定される。
In a preferred embodiment of the present invention, the characteristic formula is 0 for the outflow amount at each demand point if the pressure is 0, increases as the pressure increases, and the pressure reaches a predetermined value (threshold value). For example, the rate of increase is equal to the demand amount, the rate of increase is small near 0 and the threshold value, and is the maximum curve near the middle of the two, and the outflow when the pressure is below 0 and above the threshold value. A positive straight line with a small slope that gives the amount is extrapolated,
When the outflow amount (flow rate of the virtual connecting branch) from the pressure shortage node exceeds the negative or demand amount during the iterative calculation in the pressure-dependent tube network analysis process, the effective head given by the extrapolated straight line is given. The head difference calculated from is determined as the head difference of the virtual connecting branch during the iterative calculation.

このような構成とすることで、非線形連立方程式の求解反復計算中に、負の流出量又は需要量を超えた流出量が計算された場合に、圧力依存性を考慮した流出量を与えながら収束性を良好に、管網解析処理を行うことができる。 With such a configuration, when a negative outflow amount or an outflow amount exceeding the demand amount is calculated during the iterative calculation of solving the nonlinear simultaneous equations, the outflow amount is converged while giving the outflow amount in consideration of the pressure dependence. The tube network analysis process can be performed with good properties.

本発明の好ましい形態では、前記管網解析処理は、各管路枝において取り出される合計流出量を一定として実行され、
管路に対応した前記管路枝の一部又は全部に対して、管網解析処理結果に基づいて得られる前記管路枝の起点流量及び水頭差を与えるような点を決定し、前記点に合計流出量を集約した節点を含む解析グラフに対して、前記圧力依存管網解析処理を実行する。
In a preferred embodiment of the present invention, the pipeline analysis process is performed with the total outflow amount taken out in each pipeline branch being constant.
A point is determined so as to give the starting point flow rate and the head difference of the pipeline branch obtained based on the result of the pipeline analysis processing to a part or all of the pipeline branch corresponding to the pipeline, and the point is determined. The pressure-dependent pipe network analysis process is executed on the analysis graph including the nodes at which the total outflow is aggregated.

このような構成とすることで、水が管路に沿って一様に取り出されると仮定した管路取り出しモデルを、圧力依存性を考慮した管網解析処理に適用することができる。 With such a configuration, a pipeline extraction model assuming that water is uniformly extracted along the pipeline can be applied to a pipeline analysis process in consideration of pressure dependence.

本発明の好ましい形態では、ポンプ車による消火栓取水時を含む第1の特定取水時の計算を実施する為に、取水節点に対して、ポンプ車による消火栓取水時の流出量を付加し、前記木枝固定流量に加入して、前記圧力依存管網解析処理を行う。 In a preferred embodiment of the present invention, in order to carry out the calculation at the time of the first specific water intake including the time of water intake of the fire hydrant by the pump car, the outflow amount at the time of water intake of the fire hydrant by the pump car is added to the intake node, and the above tree. The pressure-dependent pipe network analysis process is performed by joining the branch fixed flow rate.

このような構成とすることで、第1の特定取水時において、圧力依存性を考慮した管網解析処理を行うことができる。 With such a configuration, it is possible to perform a pipe network analysis process in consideration of pressure dependence at the time of the first specific water intake.

本発明の好ましい形態では、ホース直結による消火栓取水時又は、放水銃による取水を含む第2の特定取水時の計算を実施する為に、取水節点における前記流出量を、ホース直結による消火栓取水時又は、放水銃による取水についての流出量の圧力依存性を示す特性式に基づいて決定される圧力依存量として更新して、当該流出量を前記木枝固定流量に加入せずに、前記圧力依存管網解析処理を行う。 In a preferred embodiment of the present invention, in order to carry out the calculation at the time of water intake of the fire hydrant directly connected to the hose or at the time of the second specific water intake including water intake by the water discharge gun, the outflow amount at the intake node is measured at the time of water intake of the fire hydrant directly connected to the hose. , The pressure-dependent pipe is updated as a pressure-dependent amount determined based on a characteristic formula showing the pressure dependence of the outflow amount for water intake by the water discharge gun, and the outflow amount is not added to the fixed flow rate of the tree branch. Performs network analysis processing.

本発明の好ましい形態では、前記第2の特定取水時における流出量の圧力依存性を示す特性式は、少なくとも、流出量が負の場合の圧力を与える式が外挿されている。 In a preferred embodiment of the present invention, the characteristic formula showing the pressure dependence of the outflow amount at the time of the second specific water intake is extrapolated by at least an equation that gives pressure when the outflow amount is negative.

このような構成とすることで、ホース直結による消火栓取水時や、放水銃の使用時といった第2の特定取水時において、圧力依存性を考慮した管網解析処理を行うことができる。 With such a configuration, it is possible to perform a pipe network analysis process in consideration of pressure dependence at the time of water intake of a fire hydrant directly connected to a hose or at the time of a second specific water intake such as when a water discharge gun is used.

本発明によれば、流出量の圧力依存性を考慮し、管網解析をメッシュ流量法で実現する為の新規な手法を提供することができる。 According to the present invention, it is possible to provide a novel method for realizing the pipe network analysis by the mesh flow method in consideration of the pressure dependence of the outflow amount.

本発明の実施形態に係る管網解析装置のハードウェア構成図である。It is a hardware block diagram of the tube network analysis apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る配水系及び解析グラフの一例を示す図である。It is a figure which shows an example of the water distribution system and the analysis graph which concerns on embodiment of this invention. 本発明の実施形態に係る解析グラフの一例を示す図である。It is a figure which shows an example of the analysis graph which concerns on embodiment of this invention. 本発明の実施形態に係る圧力依存性を考慮した管網解析処理の処理フローチャートである。It is a processing flowchart of the pipe network analysis processing which considered the pressure dependence which concerns on embodiment of this invention. 本発明の実施形態に係る上水道配水管網における流出量の圧力依存性を扱う場合の給水管接続点における流出量・圧力特性式である。It is an outflow amount / pressure characteristic formula at a water supply pipe connection point when dealing with the pressure dependence of the outflow amount in the water supply distribution pipe network which concerns on embodiment of this invention. 本発明の実施形態に係る仮想接続枝を付加した解析グラフの一例を示す図である。It is a figure which shows an example of the analysis graph which added the virtual connection branch which concerns on embodiment of this invention. 本発明の実施形態に係る放水銃の流出量・圧力特性式である。It is the outflow amount / pressure characteristic formula of the water discharge gun which concerns on embodiment of this invention.

以下、図面を用いて、本発明の実施形態に係る管網解析装置について説明する。なお、以下に示す実施形態は本発明の一例であり、本発明を以下の実施形態に限定するものではなく、様々な構成を採用することもできる。 Hereinafter, the tube network analysis apparatus according to the embodiment of the present invention will be described with reference to the drawings. The embodiments shown below are examples of the present invention, and the present invention is not limited to the following embodiments, and various configurations can be adopted.

例えば、本実施形態では管網解析装置の構成、動作などについて説明するが、同様の構成の方法、コンピュータプログラム、記録媒体、システムなども、同様の作用効果を奏することができる。プログラムは、記録媒体に記憶させてもよい。この記録媒体を用いれば、例えばコンピュータに前記プログラムをインストールすることができる。前記プログラムを記憶した記録媒体は、例えばCD−ROM等の非一過性の記録媒体であっても良い。システムは、例えば管網解析装置をサーバ、利用者端末をクライアントとするサーバクライアント型の管網解析システムの態様であってもよい。 For example, in the present embodiment, the configuration, operation, and the like of the tube network analysis apparatus will be described, but a method of the same configuration, a computer program, a recording medium, a system, and the like can also exhibit the same effects. The program may be stored in a recording medium. Using this recording medium, for example, the program can be installed on a computer. The recording medium in which the program is stored may be a non-transient recording medium such as a CD-ROM. The system may be, for example, a form of a server-client type network analysis system in which a network analysis device is a server and a user terminal is a client.

図1は、本発明の実施形態に係る管網解析装置のハードウェア構成図である。管網解析装置1は、管網解析プログラムを記憶した情報処理装置である。管網解析装置1として具体的には、パーソナルコンピュータなどを用いることができる。 FIG. 1 is a hardware configuration diagram of a tube network analysis device according to an embodiment of the present invention. The pipe network analysis device 1 is an information processing device that stores a pipe network analysis program. Specifically, a personal computer or the like can be used as the tube network analysis device 1.

つまり、管網解析装置1は、ハードウェア構成要素として、演算装置(CPU(Central Processing Unit))11と、作業用メモリとしての主記憶装置(RAM(Random Access Memory))12とを備える。また、管網解析装置1は、OS(Operating System)、アプリケーションプログラム、および各種情報(データを含む)を書換え可能に格納するHDDやSSD、フラッシュメモリ等の補助記憶装置13と、通信制御部14と、NIC(Network Interface Card)などの通信インタフェース(IF)部15と、表示制御部16と、表示部17と、情報入力・指定部18と、を備える。 That is, the tube network analysis device 1 includes a computing device (CPU (Central Processing Unit) 11) and a main storage device (RAM (Random Access Memory)) 12 as a working memory as hardware components. Further, the network analysis device 1 includes an auxiliary storage device 13 such as an HDD, SSD, and flash memory that rewritably stores an OS (Operating System), an application program, and various information (including data), and a communication control unit 14. A communication interface (IF) unit 15 such as a NIC (Network Interface Card), a display control unit 16, a display unit 17, and an information input / designation unit 18 are provided.

管網解析装置1において、後に詳述する処理手段を論理的に実現するには、補助記憶装置13に、管網解析プログラムなどをアプリケーションプログラムとしてインストールしておく。そして、管網解析装置1においては、電源投入またはユーザによる指示を契機に、演算装置(CPU)11がアプリケーションプログラムを主記憶装置(RAM)12に展開して実行する。 In order to logically realize the processing means described in detail later in the tube network analysis device 1, a tube network analysis program or the like is installed as an application program in the auxiliary storage device 13. Then, in the tube network analysis device 1, the arithmetic unit (CPU) 11 expands and executes the application program in the main storage device (RAM) 12 when the power is turned on or an instruction is given by the user.

次に、図1および関連図(図2〜図7)を参照して、管網解析装置1における処理について更に詳述する。 Next, with reference to FIG. 1 and related diagrams (FIGS. 2 to 7), the processing in the tube network analyzer 1 will be described in more detail.

図2(a)は、配水系の例を示す図である。配水系は、配水池R1、R2や複数の管路要素j(管路、バルブ、ポンプ等)同士の接続点i(i=3〜9)を有する。各接続点から伸びる矢印に付されたcは、需要者に取り出される水の流出量(需要量)を示す。図示例の2配水池、7接続点によって表される配水系を例として、本実施形態において管網解析装置が実行する管網解析処理について説明する。 FIG. 2A is a diagram showing an example of a water distribution system. The water distribution system has connection points i (i = 3 to 9) between distribution reservoirs R1 and R2 and a plurality of pipeline elements j (pipes, valves, pumps, etc.). C i attached to an arrow extending from each connection point represents runoff water taken in consumers (the demand). The pipe network analysis process executed by the pipe network analysis device in the present embodiment will be described by taking as an example the water distribution system represented by the two distribution reservoirs and the seven connection points in the illustrated example.

図2(b)は、図2(a)で示す配水系についての解析グラフである。解析グラフにおいて、管路要素jを示す枝Bとしての管路枝B(図示例では、B〜B11)と、それらの一端および他端には、管路枝B同士の接続点iである節点N(図示例では、N〜N)又は、管路枝Bと配水池の接続点iを示す節点Nである水頭既知節点N(図示例では、N、N)が接続される。なお、管路枝Bには任意に決定した向きが設定されるが、実際の流向と異なったものであってもよい。 FIG. 2B is an analysis graph for the water distribution system shown in FIG. 2A. In the analysis graph (in the illustrated example, B 1 .about.B 11) conduit branch B j as branch B j indicating the line elements j and, in their one end and the other end, connected between Kanroeda B j (in the illustrated example, N 3 to N 9) node N i is a point i or, in the hydraulic head known node N i (example shown is a node N i which indicates a connection point i of Kanroeda B j and distributing reservoir, N 1 , N 2 ) are connected. Although arbitrarily determined orientation is set to Kanroeda B j, or may be different from the actual flow direction.

更に、解析グラフには、水頭がゼロの節点Nである基準節点Nを与える。また、基準節点N並びに、水頭既知節点N及び水頭既知節点Nを接続する枝Bとして基準節点接続枝B(図示例では、B12及びB13)を定義して、水頭既知節点N、Nの水頭を基準節点接続枝の水頭差として与える。N、Nからの流入量はB12、B13の流量として求められる。 Furthermore, the analysis graph, water head provides a reference node N 0 is a zero at node N i. Further, the reference node connecting branch B j (B 12 and B 13 in the illustrated example) is defined as the branch B j connecting the reference node N 0 , the known head node N 1 and the known head node N 2 , and the head is known. The heads of nodes N 1 and N 2 are given as the head difference of the reference node connecting branch. The inflow amount from N 1 and N 2 is obtained as the flow rate of B 12 and B 13 .

は、節点Nの水頭(節点水頭)を示し、水頭pから地盤高を引いた値を有効水頭eとする。水頭差h(損失水頭)は、(1)式により表される。(1)式においてpjo及びpjdは、それぞれBの起点と終点の節点における水頭を示す。また、枝Bの流量を枝流量qとする。 p i denotes the water head of the node N i (node hydrocephalus), a value obtained by subtracting the ground elevation from water head p i valid hydrocephalus e i. The head difference h j (head loss) is expressed by Eq. (1). In Eq. (1), p jo and p jd indicate the heads at the start and end nodes of B j , respectively. Further, the flow rate of the branch B j is defined as the branch flow rate q j .

<管路特性式>
ここで、管路枝Bで表される管路要素jのうち、管路の特性は、Hazen-Williamsの実験式に従うものとして、(2)式により表される管路特性式を用いる。ここで、rは管路の性状に応じて決定される管路の抵抗係数であり、(3)式に示すように、流速係数CH、管口径d及び管路長lにより決定される。
<Pipeline characteristic formula>
Here, among the pipeline elements j represented by the pipeline branch B j , the characteristics of the pipeline are based on the experimental formula of Hazen-Williams, and the pipeline characteristic formula represented by the equation (2) is used. Here, r j is a resistance coefficient of the pipeline determined according to the properties of the pipeline, and is determined by the flow velocity coefficient CH j , the pipe diameter d j, and the pipeline length l j as shown in equation (3). Will be done.

一方、バルブの特性は、(4)式により表される。ここで、rvjはバルブの性状に応じて決定されるバルブの抵抗係数であり、損失係数及び口径により決定される。 On the other hand, the characteristics of the valve are expressed by the equation (4). Here, r vj is a valve resistance coefficient determined according to the valve properties, and is determined by a loss coefficient and a diameter.

また、管路及びバルブの変分抵抗(損失偏微分係数)を(5)式により定義する。 Further, the variational resistance (loss partial differential coefficient) of the pipeline and the valve is defined by the equation (5).

<流量連続条件式>
各節点iにおいて流入量の総和と流出量の総和が等しくなる、とする流量連続条件式を用いる。メッシュ流量を変数とする場合にはこの条件は自動的に満たされる。
<Flow rate continuous condition formula>
A continuous flow rate conditional expression is used in which the sum of the inflow and the sum of the outflow are equal at each node i. This condition is automatically satisfied when the mesh flow rate is used as a variable.

<水頭閉合条件式>
また、2点間の水頭差hの総和は、いずれの経路を通っても等しくなる、あるいは、メッシュ(ループ)を構成する管路の水頭差hの総和はゼロになる、とする水頭閉合条件式を用いる。
<Hydro head closure conditional expression>
Further, the total head difference h j between two points is equal regardless of the route, or the total head difference h j of the pipelines constituting the mesh (loop) is zero. Use the closure conditional expression.

既述の管路特性式、流量連続条件式及び水頭閉合条件式を連立させて、各管路要素j(枝B)の枝流量qと水頭差h、各節点Nの水頭p(有効水頭e)を求める問題が管網解析である。本実施形態では、更にメッシュ流量を定義し、非線形連立代数方程式として定式化して、Newton-Raphson法(NR法)により求解計算を行うものとする。 Aforementioned conduit characteristic equation, by simultaneous flow continuous condition and hydrocephalus closing condition, the branch flow q j and a water head difference h j of each line element j (branch B j), hydrocephalus p of each node N i The problem of finding i (effective head e i ) is pipe network analysis. In this embodiment, the mesh flow rate is further defined, formulated as a nonlinear simultaneous algebraic equation, and the solution calculation is performed by the Newton-Raphson method (NR method).

<木枝固定流量>
解析グラフにおいて、すべての節点Nを結ぶがループは構成しない枝集合を木という。木の探索を開始する節点を根、根からできるだけ枝分かれするように探索した木を広さ優先木という。図2(b)において、木に含まれる枝Bを実線の矢印で示し(管路枝B〜B4、B7〜B及び基準節点接続枝B12、B13)、木に含まれない枝B(補木枝:管路枝B、B、B10及びB11)を破線の矢印で示す。
<Fixed flow rate of tree branches>
In the analysis graph, but connecting all nodes N i loop branches set not constituting of wood. The node that starts the search for a tree is called the root, and the tree that is searched so as to branch from the root as much as possible is called a size priority tree. In FIG. 2 (b), the branches B j contained in the tree are indicated by solid arrows (pipeline branches B 1 to B 4 , B 7 to B 9 and reference node connecting branches B 12 and B 13 ), and are included in the tree. The unsuccessful branches B j (supplementary tree branches: pipeline branches B 5 , B 6 , B 10 and B 11 ) are indicated by broken arrows.

基準節点Nを根とした広さ優先木を張り、各需要節点N〜Nからの流出量がすべて木を通って基準節点Nから供給されるものとしたときの各枝Bの流量を固定流量aと呼ぶ。ここで、補木枝の固定流量はゼロとする。 Each branch B j when a size priority tree rooted at the reference node N 0 is laid and all the outflow from each demand node N 3 to N 9 is supplied from the reference node N 0 through the tree. The flow rate of is called a fixed flow rate a j . Here, the fixed flow rate of the supplementary tree branch is set to zero.

図2(b)の解析グラフにおいて、広さ優先木が実線のように張られたとき、各枝Bの固定流量aは(6)式のように、各節点Nからの流出量cにより表される。 In the analysis graph of FIG. 2 (b), when the breadth-first tree is stretched as shown by a solid line, fixed flow a j of each branch B j is as shown in (6), outflow from each node N i represented by c i.

<メッシュ流量法による定式化>
メッシュMは一般に、平面グラフにおいて、枝で囲まれ、内部に他の枝を含まない領域、あるいはその領域を囲む枝集合と定義される。本実施形態では、メッシュMを構成する枝Bの数ができるだけ少なくなるように、順次選ばれたループのそれぞれとして、メッシュMを立体グラフにも適用可能となるように拡張する。これによりメッシュ群が定義される。また、それぞれのメッシュMには、任意の基準方向を定義する。メッシュMを構成する枝Bには、枝の方向を任意に定義したメッシュMの基準方向と同方向なら正、逆方向なら負の符号を付ける。図3のようにメッシュが探索された場合、各メッシュMを構成する枝Bは以下のようになる。
<Formulation by mesh flow method>
A mesh M k is generally defined in a planar graph as a region surrounded by branches and containing no other branches inside, or a set of branches surrounding the region. In the present embodiment, as the number of branches B j constituting the mesh M k is as small as possible, as each successively selected loop to extend the mesh M k so it becomes applicable to a stereoscopic graph. This defines a mesh group. Further, an arbitrary reference direction is defined for each mesh Mk . The branches B j constituting the mesh M k are given a positive sign if the direction is the same as the reference direction of the mesh M k in which the direction of the branch is arbitrarily defined, and a negative sign is given if the direction is opposite to the reference direction. When the mesh is searched as shown in FIG. 3, the branches B j constituting each mesh M k are as follows.

メッシュM: B13, −B12, B, B, B, −B
メッシュM: B, B, −B, −B
メッシュM: B, B, −B10, −B
メッシュM: B, B11, −B, −B
Mesh M 1 : B 13 , −B 12 , B 1 , B 3 , B 6 , −B 4
Mesh M 2 : B 2 , B 5 , -B 3 , -B 1
Mesh M 3 : B 5 , B 8 , -B 10 , -B 7
Mesh M 4 : B 8 , B 11 , -B 9 , -B 6

図3は、解析グラフで探索されたメッシュの一例を示す図である。各メッシュMを構成するすべての枝Bに共通な流量成分(循環流量)を考え、メッシュ流量mと呼ぶ。枝Bの枝流量qは、各枝の固定流量aにその枝を同方向に含むメッシュ流量mをすべて加え、逆方向に含むメッシュ流量mをすべて引いた値である。図3の例において、枝流量qを固定流量a及びメッシュ流量mで示すと、(7)式のようになる。 FIG. 3 is a diagram showing an example of the mesh searched by the analysis graph. Considering the flow rate component (circulation flow rate) common to all the branches B j constituting each mesh M k , it is called the mesh flow rate m k . Branch flow q j of the branch B j is added all meshes flow m k including its branches in the same direction on the fixed rate a j of each branch, a value obtained by subtracting all the meshes flow m k including in the opposite direction. In the example of FIG. 3, when the branch flow rate q j is indicated by the fixed flow rate a j and the mesh flow rate m k , it becomes the equation (7).

ここで、各メッシュMについての水頭閉合条件式は、(8)式のようになる。 Here, the hydraulic head closure conditional equation for each mesh M k is as in equation (8).

、pはそれぞれ節点NとNの既知水頭であり、基準節点接続枝B12、B13の水頭差として扱われる。 p 1 and p 2 are known heads of nodes N 1 and N 2 , respectively, and are treated as head differences between reference node connecting branches B 12 and B 13 .

各枝の水頭差hを枝流量qで表し、更に、枝流量qをメッシュ流量mで表すと、(9)式として、メッシュ流量mを変数とする非線形連立代数方程式が導かれる。
(9)式は、(10)式を変数とする4次元方程式(11)式と把握される。
Represents the water head difference h j of each branch in the branch flow rate q j, further, the branch flow Expressing q j mesh flow rate m k, as (9), nonlinear simultaneous algebraic equations as variables mesh flow m k is electrically Be taken.
Equation (9) is understood as equation (11), which is a four-dimensional equation with equation (10) as a variable.

Tはベクトルの転置を表す。
T represents the transpose of the vector.

それを所定の求解アルゴリズムによって解くことでMが求められ、その値から各枝Bの枝流量qと水頭差h、各節点Nの水頭p(有効水頭e)を求めることができる。本実施形態では、この非線形連立代数方程式を、一例として、ニュートン法(NR法:Newton-Raphson法)によって解くこととする。任意に仮定したMνの初期値Mから出発して(12)式及び(13)式からなる修正方程式によりMの値を逐次計算し、Z(Mν+1)の値が0に十分近づいたと判断したとき、計算を終了する。Jνは以下で述べるヤコビ行列、上添え字νは反復回数である。 It M is obtained by solving the predetermined solving algorithm, determining that branch flow q j and a water head difference h j from the values each branch B j, hydrocephalus p i (effective hydrocephalus e i) of each node N i Can be done. In the present embodiment, this nonlinear simultaneous algebraic equation is solved by Newton's method (NR method: Newton-Raphson's method) as an example. Starting from the initial value M 0 of the arbitrarily assumed M ν, the value of M is sequentially calculated by the modified equations consisting of equations (12) and (13), and the value of Z (M ν + 1 ) is sufficient to be 0. When it is determined that it is approaching, the calculation is terminated. J ν is the Jacobian matrix described below, and the superscript ν is the number of repetitions.

M=Mνの時の管路要素jの変分抵抗の値rを(14)式で表すとする。このとき、ヤコビ行列Jνは(15)式で与えられる。ここで、対角成分Cllは、メッシュMに含まれる各枝の変分抵抗(基準節点接続枝の変分抵抗は0)の総和である。また、非対角成分Cmnは、メッシュMとメッシュM(mは行、nは列番号と対応)の両方に含まれる枝の変分抵抗の和に、それらの枝が両メッシュに同方向に含まれるときは正、逆方向に含まれるときは負の符号をつけたものである。 It is assumed that the value r of the variational resistance of the pipeline element j when M = M ν is expressed by the equation (14). At this time, the Jacobian matrix J ν is given by Eq. (15). Here, the diagonal component Cll is the sum of the variational resistances of each branch included in the mesh Mk (the variational resistances of the reference node connecting branches are 0). In addition, the off-diagonal component C mn is the sum of the variational resistances of the branches contained in both the mesh M m and the mesh M n (m corresponds to the row and n corresponds to the column number), and those branches are added to both meshes. When they are included in the same direction, they are marked with a positive sign, and when they are included in the opposite direction, they are marked with a negative sign.

<流出量の圧力依存性を考慮した管網解析処理>
図4は、本実施形態における流出量の圧力依存性を考慮した管網解析処理の処理フローチャートである。
<Pipe network analysis processing considering the pressure dependence of the outflow amount>
FIG. 4 is a processing flowchart of the pipe network analysis processing in consideration of the pressure dependence of the outflow amount in the present embodiment.

ステップS1において、管網解析装置1を用いて、メッシュ流量法によって圧力依存性を考慮しない従前の管網解析処理(非圧力依存管網解析処理)を行う。管網解析装置1のプロセッサは、配水池や領域等の指定を受け付けることで、データベースに格納された管路要素及び、接続点に関する情報を用いて、解析グラフを生成する。データベースに格納された情報とは、例えば、管路要素の性状に関する情報(長さ、口径、使用年数、材質、等)、接続点の位置(緯度、経度、地盤高(標高)、等)に関する情報等である。管網解析装置1のプロセッサは、探索を行って木を張るとともにメッシュを求め、各節点Nの流出量cが、事前に定義された需要量に等しく一定として、メッシュ流量法による管網解析処理を行う。それにより、非圧力依存量としての各枝Bの枝流量qと水頭差h、各節点Nの水頭pを求める。 In step S1, the pipe network analysis device 1 is used to perform a conventional pipe network analysis process (non-pressure dependent pipe network analysis process) without considering the pressure dependence by the mesh flow method. The processor of the pipeline analysis device 1 receives the designation of the distribution reservoir, the area, and the like, and generates an analysis graph using the information about the pipeline elements and the connection points stored in the database. The information stored in the database is, for example, information on the properties of pipeline elements (length, diameter, years of use, material, etc.), and the position of connection points (latitude, longitude, ground height (elevation), etc.). Information etc. Processor tube network analyzer 1 performs a search seek mesh with tension the tree, outflow c i of each node N i is as equally constant demand pre-defined, the tube network by mesh flow method Perform analysis processing. Thereby, the branch flow q j and a water head difference h j of each branch B j as a non-pressure-dependent quantity, obtains a water head p i of each node N i.

ここで、管網解析装置1のプロセッサは、各節点Nの有効水頭eを閾値eと比較する。一般に、節点Nにおいて、有効水頭eが19mあれば、需要量c に対してその値に等しい流出量cが得られると言われている。需要量c に対してその値に等しい流出量cが得られる有効水頭eを閾値eとする。0<有効水頭e<閾値eとなる節点Nを、圧力不足節点に決定する。また、本実施形態では、有効水頭e≦0となる節点Nでは、流出量c=0の一定量として、閾値e≦有効水頭eとなる節点Nでは、流出量c=需要量c の一定量として扱う。 Here, the processor of the tube network analyzer 1 compares the effectiveness hydrocephalus e i of each node N i and the threshold value e d. In general, the node N i, are said to if effective hydrocephalus e i is 19 m, is equal outflow c i to the value for demand c i d is obtained. Effective hydrocephalus e i that demand c i d equal outflow c i to the value for is obtained as a threshold e d. 0 <a node N i which is valid hydrocephalus e i <threshold e d, is determined as insufficient pressure nodes. Further, in the present embodiment, the node N i is valid hydrocephalus e i ≦ 0, a constant amount of runoff c i = 0, the node N i a threshold e d ≦ effective hydrocephalus e i, runoff c i = treated as a certain amount of demand c i d.

図5は、上水道配水管網における流出量の圧力依存性を扱う場合の給水管接続点における有効水頭eと流出量cの関係を示す特性式(以下、e-c特性式と呼ぶ)である。本実施形態におけるe-c特性式は、各需要箇所での流出量について、圧力が0であれば0であり、圧力が増加するにつれて増加し、圧力が所定の値(閾値e)に到達すれば需要量c に等しくなり、その増加の割合は圧力が0と閾値の近傍で小さく、両者の中間付近で最大となる曲線である。このe-c特性式の妥当性は非特許文献4などに示されている。本実施形態では、後述する管網解析処理の反復計算時の流出量cに基づいて有効水頭から水頭差を決定するため、圧力が0を下回る場合及び、閾値を上回る場合の前記流出量を与える傾きが小さな正の値の直線が外挿されている。圧力依存管網解析処理において反復計算を行う中で、圧力不足節点からの流出量(仮想接続枝の流量)が負又は需要量を超える場合、外挿された直線によって与えられる有効水頭から計算される水頭差が、反復計算中における仮想接続枝の水頭差として決定される。 Figure 5 is a characteristic showing the relationship between the effective hydrocephalus e i and the outflow amount c i in the water supply pipe connection point when dealing with pressure dependence of the outflow of water supply distribution network type (hereinafter, referred to as e-c characteristic expression) Is. The ec characteristic formula in the present embodiment is 0 for the outflow amount at each demand point if the pressure is 0, increases as the pressure increases, and the pressure reaches a predetermined value (threshold value ed ). equals demand c i d if a proportion of the increase is small in the vicinity of zero pressure and the threshold is a curve which becomes maximum near both intermediate. The validity of this e-c characteristic formula is shown in Non-Patent Document 4 and the like. In the present embodiment, in order to determine the water head difference from the effective water head on the basis of the outflow c i at iteration of the tube network analysis process to be described later, and when the pressure is below 0, the outflow amount when above the threshold A straight line with a small positive value is extrapolated. When the outflow from the pressure-deficient node (flow rate of the virtual connecting branch) exceeds the negative or demand during the iterative calculation in the pressure-dependent tube network analysis process, it is calculated from the effective head given by the extrapolated straight line. The head difference is determined as the head difference of the virtual connection branch during the iterative calculation.

<管路取り出しモデルへの応用>
ステップS2では、水が管路に沿って一様に取り出されると仮定した管路取り出しモデルを考慮する。管網解析装置1のプロセッサは、各管路jに沿っての合計流出量cおよびステップS1で計算された起点流量q と水頭差hから、同じ起点流量q と水頭差hを与えるように管路j内の1点Pに流出量cを集約する集約点決定処理を、各管路jに対して行う。管路jの起点からPまでの流量がq 、Pから終点までの流量が(q −c)となる。
管路取り出しモデルを考慮に入れる場合、各枝Bに流出量cが集約された節点Pを配置した解析グラフに対して管網解析処理を実行する。後述の数式では、説明の簡略化のため、節点Pを考えずに、図3に示す解析グラフに基づいた計算例を示すこととする。なお、管路取り出しモデルを扱う場合は、節点Pが増加するが、メッシュ数には影響がないため、メッシュ流量法の計算時間には影響しない。
<Application to pipeline take-out model>
In step S2, consider a pipeline withdrawal model assuming that water is taken out uniformly along the conduit. The processor of the pipeline analyzer 1 has the same starting flow rate q j * and head difference from the total outflow amount c j along each pipeline j and the starting flow rate q j * and the head difference h j calculated in step S1. An aggregation point determination process for aggregating the outflow amount c j at one point P in the pipeline j so as to give h j is performed for each pipeline j. The flow rate from the start point to P of the pipeline j is q j * , and the flow rate from P to the end point is (q j * −c j ).
When the pipeline take-out model is taken into consideration, the pipeline analysis process is executed on the analysis graph in which the node P j in which the outflow amount c j is aggregated is arranged in each branch B j . The formula below, for simplification of explanation, without considering the nodes P j, and that showing a calculation example based on the analysis graph of FIG. 3. In the case of handling conduit extraction model, nodes P j is increased, since there is no effect on the number of meshes, it does not affect the computation time of the mesh flow method.

ステップS3では、圧力不足節点Nと基準節点Nを結ぶ仮想接続枝Aを付加する。この時、仮想接続枝Aの流量として扱われる節点Nからの流出量cは、木枝固定流量aに加算しない。 In step S3, the addition of virtual connection branch A j connecting underpressure node N i and the reference node N 0. At this time, the outflow quantity c j from the node N i which is treated as the flow rate of a virtual connection branch A j is not added to the Kieda fixed flow a j.

図6は、仮想接続枝Aを付加した解析グラフの一例を示す図である。例えば、ステップS1の処理結果から、節点N及びNが圧力不足節点と決定された場合、図示するように、解析グラフに対して、節点Nから伸びる仮想接続枝A14及び、節点Nから伸びる仮想接続枝A15を付加する。 FIG. 6 is a diagram showing an example of an analysis graph to which a virtual connection branch Aj is added. For example, from the processing result of step S1, if the nodes N 8 and N 9 is determined to underpressure nodes, as shown, with respect to the analysis graph, the virtual connection branch A 14 and extending from the node N 8, node N adding virtual connection branch a 15 extending from the 9.

管網解析装置1のプロセッサは、仮想接続枝Aが付加された新たな解析グラフに対してメッシュの探索を実施し、メッシュを取り直す。それにより、新たなメッシュMが追加される。図示例では、仮想接続枝A14及びA15により、新たなメッシュM及びMが追加される。 The processor of the network analysis device 1 searches for a mesh for a new analysis graph to which the virtual connection branch Aj is added, and retakes the mesh. As a result, a new mesh Mk is added. In the illustrated example, the virtual connecting branches A 14 and A 15 add new meshes M 5 and M 6 .

メッシュM: B13, −B12, B, B, B,−B
メッシュM: B, B, −B, −B
メッシュM: B, B, −B10, −B
メッシュM: B, B11, −B, −B
メッシュM: A14, −A15, −B11
メッシュM: A15, −B13, B, B
Mesh M 1 : B 13 , -B 12 , B 1 , B 3 , B 6 , -B 4
Mesh M 2 : B 2 , B 5 , -B 3 , -B 1
Mesh M 3 : B 5 , B 8 , -B 10 , -B 7
Mesh M 4 : B 8 , B 11 , -B 9 , -B 6
Mesh M 5 : A 14 , -A 15 , -B 11
Mesh M 6 : A 15 , -B 13 , B 4 , B 9

ステップS4において、圧力不足節点に対して所定の処理を行い、圧力依存性を考慮したメッシュ流量法による管網解析処理を行う。管網解析装置1のプロセッサは、圧力不足節点に対して、図5のe-c特性式に基づいて、NR反復により新たな流出量を決定する。圧力不足節点N及びNに対しては、その有効水頭eに応じて、e-c特性式より求められる流出量を付与する。また、本実施形態では、有効水頭e≦0となる節点Nには流出量c=0を付与し、閾値e≦有効水頭eとなる節点Nには流出量c=需要量c を付与する。 In step S4, a predetermined process is performed on the pressure shortage node, and a pipe network analysis process is performed by the mesh flow method in consideration of the pressure dependence. The processor of the tube network analyzer 1 determines a new outflow amount by NR repetition based on the ec characteristic formula of FIG. 5 for the pressure shortage node. For underpressure nodes N 8 and N 9, depending on their effectiveness hydrocephalus e i, imparts runoff obtained from e-c characteristic equation. Further, in the present embodiment, the effective hydrocephalus e i ≦ 0 and becomes the node N i grant outflow c i = 0, the threshold value e d ≦ effective hydrocephalus e i become node N in i runoff c i = imparting demand c i d.

仮想接続枝Aが追加されることで、仮想接続枝Aについての枝流量qが定義されると共に、既定義の枝流量qが、追加されたメッシュMによって再定義される。ただし、仮想接続枝Aからの流出量cは、木枝固定流量aに加算されず、各枝Bの固定流量aは(16)式のように変化しない。図6の例において、枝流量qを固定流量a及びメッシュ流量mで示すと、(17)式のようになる。ここで、各メッシュMについての水頭閉合条件式は、(18)式のようになる。 By virtual connection branch A j is added, along with the branch flow rate q j of the virtual connection branch A j is defined, the branch flow rate q j already definitions are redefined by additional mesh M k. However, runoff c j from the virtual connection branch A j is not added to the Kieda fixed flow a j, fixed flow a j of each branch B j does not change as shown in (16). In the example of FIG. 6, when the branch flow rate q j is indicated by the fixed flow rate a j and the mesh flow rate m k , it becomes the equation (17). Here, the hydraulic head closure conditional equation for each mesh M k is as in equation (18).

以上から、(19)式として、メッシュ流量mを変数とする非線形連立代数方程式が導かれる。(19)式は、(20)式を変数とする6次元方程式(21)式と把握される。これをステップS1と同様、所定の求解アルゴリズムによって求解する。この場合のヤコビ行列Jνは(22)式で与えられる。 From the above, a nonlinear simultaneous algebraic equation with the mesh flow rate m k as a variable is derived as equation (19). Equation (19) is understood as equation (21), which is a six-dimensional equation with equation (20) as a variable. This is solved by a predetermined solution algorithm as in step S1. The Jacobian matrix J ν in this case is given by Eq. (22).

求解アルゴリズムによる反復計算時に、節点Nからの流出量である枝Aの流量が負あるいは需要量を超えた場合は、その枝の水頭差を、有効水頭e≦0、閾値e≦有効水頭eの場合にe-c特性式において外挿された、傾きが極めて小さな正の値の直線から求めた値を使用する。管網解析装置1は、メッシュ流量法による管網解析処理を行い、圧力依存量としての各枝Ajの枝流量qと水頭差h、各節点Nの水頭pを求める。 During iteration by solving algorithm, if the flow rate of the branch A j is the outflow from the node N i exceeds the negative or demand, the water head difference of its branches, the effective hydrocephalus e i ≦ 0, the threshold value e d ≦ It extrapolated in e-c characteristic equation when the effective hydrocephalus e i, using a gradient was determined from a very straight small positive value value. Pipe network analysis device 1 performs the pipe network analysis processing by the mesh flow method calculates the branch flow q j and a water head difference h j of each branch Aj as a pressure-dependent quantity, the water head p i of each node N i.

ステップS5において、仮想接続枝Aが接続されている節点Nについて:
・ステップS4で得られた有効水頭eが閾値eを超える場合(閾値e≦有効水頭e)、仮想接続枝Aを除去し、一定流出量(需要量c )として木枝固定流量aに加入して扱う。
・ステップS4で得られた有効水頭eが0以下の場合(有効水頭e≦0)、仮想接続枝Aを除去し、流出量cを0で扱う。
・圧力不足節点として判断された場合(0<有効水頭e<閾値e)、仮想接続枝Aの接続を維持する。
In step S5, the node N i which virtual connection branch A j is connected:
· If a valid hydrocephalus e i obtained in step S4 exceeds the threshold value e d (threshold e d ≦ effective hydrocephalus e i), to remove the virtual connection branch A j, a constant outflow (demand c i d) as a tree Handle by subscribing to the branch fixed flow rate aj .
When the effective head e i obtained in step S4 is 0 or less (effective head e i ≤ 0), the virtual connection branch A j is removed and the outflow amount c i is treated as 0.
-If it is determined as a pressure shortage node (0 <effective head e i <threshold value ed ), the connection of the virtual connection branch Aj is maintained.

一方、ステップS5において、仮想接続枝Aが接続されていない節点Nについて:
・ステップS4で得られた有効水頭eが0以下又は、閾値eを超える場合(有効水頭e≦0、閾値e≦有効水頭e)、そのまま、流出量一定(流出量=0、もしくは、需要量c )として扱う。
・圧力不足節点として判断された場合(0<有効水頭e<閾値e)、新たな仮想接続枝Aを接続する。
On the other hand, in step S5, the node N i which virtual connection branch A j is not connected:
- Enable hydrocephalus e i obtained at step S4 is 0 or less or, if it exceeds the threshold value e d (effective hydrocephalus e i ≦ 0, the threshold value e d ≦ effective hydrocephalus e i), as is outflow constant (outflow = 0 or treated as demand c i d).
-If it is determined as a pressure shortage node (0 <effective head e i <threshold value ed ), a new virtual connection branch Aj is connected.

ステップS6では、ステップS5において仮想接続枝Aの追加及び削除がなかった場合(ステップS6でYES)、圧力依存性を考慮した管網解析処理が完了したと判断して、枝流量q、水頭差h、水頭pを出力する(ステップS7)。ステップS5において仮想接続枝Aの追加及び/又は削除があった場合(ステップS6でNO)、ステップS4に戻り、新たな仮想接続枝Aが接続されたグラフに対して、圧力依存性を考慮した管網解析処理を行う。 In step S6, if the virtual connection branch A j is not added or deleted in step S5 (YES in step S6), it is determined that the pipe network analysis process considering the pressure dependence is completed, and the branch flow rate q j , water head difference h j, and outputs the water head p i (step S7). If the virtual connection branch Aj is added and / or deleted in step S5 (NO in step S6), the process returns to step S4, and the pressure dependence is added to the graph to which the new virtual connection branch Aj is connected. Perform the pipe network analysis process in consideration.

本実施形態では、まず、需要量として一般の家庭や事務所における平常時の使用を想定し、給水管接続点における有効水頭と流出量を図5の特性式で扱う場合について説明したが、圧力依存性を考慮した管網解析処理を行うことにより、種々の利用形態における流出量の高精度な算出が可能となる。 In this embodiment, first, assuming normal use in a general household or office as the demand amount, the case where the effective head and the outflow amount at the water supply pipe connection point are treated by the characteristic formula of FIG. 5 has been described. By performing the pipe network analysis process in consideration of the dependency, it is possible to calculate the outflow amount with high accuracy in various usage forms.

<ポンプ車による消火栓取水時の解析>
以上の拡張として、ポンプ車による消火栓取水時といった第1の特定取水時における圧力依存性を考慮した管網解析処理を行うことができる。ポンプ車で消火用水を消火栓から取水する場合、通常1台のポンプで毎分1トン程度の取水量となる。ポンプ車による消火栓からの取水量については、圧力に係わらず一定の流出量として考えることができるため、一定流出量として木枝固定流量aに算入する。ポンプ車による消火栓からの取水量は大きな値となる為、周辺地区における圧力は大幅に低下する。そのため、ポンプ車による消火栓からの取水量を一定流出量c、一般家庭等における取出し量を圧力依存量として扱うことで、周辺の一般家庭等での流出量が減少するという現実の状況に即した計算結果が得られる。
<Analysis of fire hydrant water intake by pump truck>
As an extension of the above, it is possible to perform a pipe network analysis process in consideration of the pressure dependence at the time of the first specific water intake such as the time of water intake of the fire hydrant by the pump truck. When water for fire extinguishing water is taken from a fire hydrant with a pump truck, the amount of water taken from one pump is usually about 1 ton per minute. Since the amount of water taken from the fire hydrant by the pump truck can be considered as a constant outflow amount regardless of the pressure, it is included in the tree branch fixed flow rate aj as a constant outflow amount. Since the amount of water taken from the fire hydrant by the pump truck is large, the pressure in the surrounding area will drop significantly. Therefore, a certain runoff water intake from a fire hydrant by the pump wheel c j, the extraction amount in general household by treating as a pressure-dependent quantity, immediately the real situation runoff at home or the like near to decrease The calculated result is obtained.

<ホース直結による消火栓取水時の解析>
消火栓、消火栓に直結するホースと放水ノズルの流出量・圧力特性式(圧力損失の式)を仮想接続枝Aとして加えて、ホース直結による消火栓取水時や、放水銃による取水時といった第2の特定取水時における圧力依存性を考量した管網解析処理を行うことができる。放水量cと放水圧が仮想接続枝Aの流量及び水頭差(放水圧+地盤高)として求められる。
<Analysis of fire hydrant water intake by direct connection to hose>
Add the outflow amount / pressure characteristic formula (pressure loss formula) of the fire hydrant, the hose directly connected to the fire hydrant and the water discharge nozzle as a virtual connection branch Aj , and add the second fire hydrant water intake by the hose direct connection or the water intake by the water discharge gun. It is possible to perform a pipe network analysis process that considers the pressure dependence at the time of specific water intake. Pressure release and discharged water c i is calculated as a flow rate and water head difference of the virtual connection branch A j (release water pressure + ground elevation).

<放水銃による消火のための管網の解析>
図7は、放水銃の流出量・圧力特性式を示す。図7に示すように、放水量が放水銃の元圧pの平方根√pの関数となる。使用される放水銃について、放水銃が接続される節点に仮想接続枝Aを加え、特性式に基づいて圧力依存量としての流出量を与えることで、圧力依存性を考慮した管網解析処理を行うことができる。
<Analysis of pipe network for extinguishing fire with a water gun>
FIG. 7 shows the outflow amount / pressure characteristic formula of the water discharge gun. As shown in FIG. 7, the amount of water discharged is a function of the square root √p of the original pressure p of the water discharge gun. For water cannon used, a virtual connection branch A j addition to nodes water cannon is connected, by giving outflow as a pressure-dependent quantity on the basis of the characteristic equation, the tube network analysis processing in consideration of pressure-dependent It can be performed.

なお、消火栓、ホースと放水ノズルの流出量・圧力特性式、放水銃の流出量・圧力特性式については、解析途中の反復計算時に流量が実用上考えにくい値となることがあるので、図5のe-c特性式で有効水頭が0以下、閾値e以上の場合に、傾きの極めて小さい正の直線で外挿したように、想定外の流量に対しても、所定の式で外挿しておく。 Regarding the outflow amount / pressure characteristic formula of the fire hydrant, hose and water discharge nozzle, and the outflow amount / pressure characteristic formula of the water discharge gun, the flow rate may be a value that is practically unthinkable during repeated calculations during the analysis. When the effective head is 0 or less and the threshold value ed or more in the e-c characteristic formula, it is extrapolated by the predetermined formula even for an unexpected flow rate, just as it was extrapolated with a positive straight line with an extremely small slope. Keep it.

<2次圧一定要素を含む管網の解析>
配水管網における配水圧の制御を容易にするために、2次圧を一定に保つ減圧弁や調圧槽が多く用いられる。これら2次圧固定要素を含む管網を対象とする場合であっても、流出量の圧力依存性を考慮した管網解析処理を行うことができる。
<Analysis of pipe network including constant secondary pressure element>
In order to facilitate the control of the water distribution pressure in the water distribution pipe network, a pressure reducing valve or a pressure regulating tank that keeps the secondary pressure constant is often used. Even when the pipe network including these secondary pressure fixing elements is targeted, the pipe network analysis process can be performed in consideration of the pressure dependence of the outflow amount.

1 :管網解析装置
13 :補助記憶装置
14 :通信制御部
15 :通信インタフェース(IF)部
16 :表示制御部
17 :表示部
18 :情報入力・指定部
、B:枝
CH :流速係数
ν :ヤコビ行列
:メッシュ
:節点
R1、R2:配水池
:固定流量
:流出量
:需要量
:流出量
:有効水頭の閾値
:有効水頭
:水頭差
i :節点
j :管路要素
:メッシュ流量
:節点水頭
:枝流量
1: Pipe network analysis device 13: Auxiliary storage device 14: Communication control unit 15: Communication interface (IF) unit 16: Display control unit 17: Display unit 18: Information input / designation unit A j , B j : Branch CH j : flow rate coefficient J [nu: Jacobian M k: mesh N i: node R1, R2: distributing reservoir a j: fixed flow c i: outflow c i d: demand c j: outflow e d: effective hydrocephalus threshold e i : Effective head h j : Head difference i: Nodal point j: Pipeline element m k : Mesh flow rate pi : Nodal head q j : Branch flow rate

Claims (9)

管路要素を示す管路枝と、管路枝の一端および他端に前記管路枝同士の接続点である節点又は、前記管路枝と配水池の接続点を示す水頭既知節点を配置した解析グラフに対して、前記節点における水圧である有効水頭を地盤高とともに扱う水頭及び節点あるいは管路からの流出量を圧力依存量として算出する管網解析装置であって、
水頭を0とする基準節点並びに、前記基準節点及び水頭既知節点を接続する基準節点接続枝を付加して、前記水頭既知節点の前記水頭及び流入量を、前記基準節点接続枝における両端の水頭の差である水頭差及び流量として扱い、前記解析グラフにおいて、すべての前記節点を結び、ループは構成しない枝集合である木及びメッシュ群を決定する手段と、
前記木に含まれる枝の木枝固定流量及び前記メッシュ群のメッシュ流量を用いて反復計算による非圧力依存管網解析処理を行って、各節点の有効水頭を算出する手段と、
管網解析処理に基づいて得られる前記有効水頭を閾値と比較して、前記有効水頭が前記閾値に満たない圧力不足節点を、仮想接続枝により前記基準節点と接続する手段と、
前記圧力不足節点における流出量を、上水道配水管網における流出量の圧力依存性を示す特性式に基づいて得られる圧力依存量として更新して、前記圧力不足節点が仮想接続枝により基準節点と接続された新たな解析グラフに対して、前記仮想接続枝によって追加された新たなメッシュを含むメッシュ群のメッシュ流量を変数として、反復計算による圧力依存管網解析処理を行い、各節点の前記有効水頭を算出する手段と、
前記圧力依存管網解析処理に基づいて得られる前記仮想接続枝が接続された節点における有効水頭が前記閾値以上又は0以下の場合、前記仮想接続枝を除去し、前記仮想接続枝が接続されていない節点における有効水頭が前記閾値に満たない場合、圧力不足節点として、新たな前記仮想接続枝により前記基準節点と接続する手段と、を備え、
前記仮想接続枝の追加及び削除がなくなるまで圧力依存管網解析処理を繰り返し、前記追加及び削除がなくなった際の各節点における有効水頭を、圧力依存量としての流出量を与える有効水頭として出力する管網解析装置。
A pipeline branch indicating a pipeline element and a node indicating a connection point between the pipeline branches or a head known node indicating a connection point between the pipeline branch and a distribution reservoir are arranged at one end and the other end of the pipeline branch. It is a pipe network analysis device that calculates the amount of outflow from the head and the node or the pipeline that treats the effective head, which is the water pressure at the node, together with the ground height, as the pressure-dependent amount with respect to the analysis graph.
A reference node with the head set to 0 and a reference node connecting branch connecting the reference node and the known head node are added, and the head and the inflow amount of the known head node are set to the water heads at both ends of the reference node connecting branch. A means for determining a tree and a mesh group which are branch sets that connect all the nodes and do not form a loop in the analysis graph, which are treated as the head difference and the flow rate, which are the differences.
A means for calculating the effective head of each node by performing a non-pressure-dependent pipe network analysis process by iterative calculation using the fixed flow rate of the branches contained in the tree and the mesh flow rate of the mesh group.
A means for comparing the effective head obtained based on the pipe network analysis process with a threshold value and connecting a pressure-deficient node in which the effective head is less than the threshold value to the reference node by a virtual connecting branch.
The outflow amount at the underpressure node is updated as a pressure-dependent amount obtained based on the characteristic formula showing the pressure dependence of the outflow amount in the water supply distribution pipe network, and the underpressure node is connected to the reference node by a virtual connecting branch. For the new analysis graph, the pressure-dependent pipe network analysis process by iterative calculation was performed using the mesh flow rate of the mesh group including the new mesh added by the virtual connection branch as a variable, and the effective head at each node. And the means to calculate
When the effective head at the node to which the virtual connection branch is connected obtained based on the pressure-dependent tube network analysis process is equal to or more than the threshold value or 0 or less, the virtual connection branch is removed and the virtual connection branch is connected. When the effective head at no node is less than the threshold, a means for connecting to the reference node by a new virtual connection branch is provided as a pressure shortage node.
The pressure-dependent pipe network analysis process is repeated until the addition and deletion of the virtual connection branch are eliminated, and the effective head at each node when the addition and deletion are eliminated is output as an effective head that gives an outflow amount as a pressure-dependent amount. Pipe network analyzer.
前記圧力依存管網解析処理は、前記仮想接続枝における流量を前記木枝固定流量に加入しない、請求項1に記載の管網解析装置。 The pipe network analysis apparatus according to claim 1, wherein the pressure-dependent pipe network analysis process does not add the flow rate in the virtual connection branch to the tree branch fixed flow rate. 前記特性式は、各需要箇所での流出量について、圧力が0であれば0であり、圧力が増加するにつれて増加し、圧力が閾値に到達すれば需要量に等しくなり、その増加の割合は圧力が0と閾値の近傍で小さく、両者の中間付近で最大となる曲線であって、圧力が0を下回る場合及び、閾値を上回る場合の前記流出量を与える傾きが小さな正の直線が外挿されており、
前記圧力依存管網解析処理において反復計算を行う中で、前記圧力不足節点からの流出量が負又は需要量を超える場合、前記外挿された直線によって与えられる有効水頭から計算される水頭差が、前記反復計算中における前記仮想接続枝の水頭差として決定される請求項1又は請求項2に記載の管網解析装置。
The characteristic formula is 0 for the outflow amount at each demand point when the pressure is 0, increases as the pressure increases, becomes equal to the demand amount when the pressure reaches the threshold value, and the rate of increase is equal to the demand amount. Extrapolation is a positive straight line with a small slope near 0 and the threshold, and a maximum curve near the middle of the two, with a small slope giving the outflow when the pressure is below 0 and above the threshold. Has been
When the outflow from the pressure shortage node exceeds the negative or demand during the iterative calculation in the pressure-dependent tube network analysis process, the head difference calculated from the effective head given by the extrapolated straight line is calculated. The tube network analyzer according to claim 1 or 2, which is determined as the head difference of the virtual connection branch during the iterative calculation.
前記管網解析処理は、各管路枝において取り出される合計流出量を一定として実行され、
管路に対応した前記管路枝の一部又は全部に対して、管網解析処理結果に基づいて得られる前記管路枝の起点流量及び水頭差を与えるような点を決定し、前記点に合計流出量を集約した節点を含む解析グラフに対して、前記圧力依存管網解析処理を実行する請求項1〜3の何れかに記載の管網解析装置。
The pipe network analysis process is executed with the total outflow amount taken out in each pipe branch as a constant.
A point is determined so as to give the starting point flow rate and the head difference of the pipeline branch obtained based on the result of the pipeline analysis processing to a part or all of the pipeline branch corresponding to the pipeline, and the point is determined. The pipe network analysis apparatus according to any one of claims 1 to 3, wherein the pressure-dependent pipe network analysis process is executed on an analysis graph including nodes in which the total outflow amount is aggregated.
ポンプ車による消火栓取水時を含む第1の特定取水時の計算を実施する為に、取水節点に対して、ポンプ車による消火栓取水時の流出量を付加し、前記木枝固定流量に加入して、前記圧力依存管網解析処理を行う請求項1〜4の何れかに記載の管網解析装置。 In order to carry out the calculation at the time of the first specific water intake including the time of water intake of the fire hydrant by the pump car, the outflow amount at the time of water intake of the fire hydrant by the pump car is added to the intake node, and the tree branch fixed flow rate is added. The pipe network analysis apparatus according to any one of claims 1 to 4, wherein the pressure-dependent pipe network analysis process is performed. ホース直結による消火栓取水時又は、放水銃による取水を含む第2の特定取水時の計算を実施する為に、取水節点における前記流出量を、ホース直結による消火栓取水時又は、放水銃による取水についての流出量の圧力依存性を示す特性式に基づいて決定される圧力依存量として更新して、当該流出量を前記木枝固定流量に加入せずに、前記圧力依存管網解析処理を行う請求項1〜5の何れかに記載の管網解析装置。 In order to carry out the calculation at the time of water intake of the fire hydrant directly connected to the hose or at the time of the second specific water intake including the water intake by the water discharge gun, the amount of the outflow at the intake node is calculated for the time of water intake of the fire hydrant directly connected to the hose or the water intake by the water discharge gun. A claim that updates the outflow amount as a pressure-dependent amount determined based on a characteristic formula indicating the pressure dependence of the outflow amount, and performs the pressure-dependent tube network analysis process without adding the outflow amount to the tree branch fixed flow rate. The tube network analyzer according to any one of 1 to 5. 前記第2の特定取水時における流出量の圧力依存性を示す特性式は、少なくとも、流出量が負の場合の圧力を与える式が外挿されている請求項6に記載の管網解析装置。 The tube network analyzer according to claim 6, wherein the characteristic formula showing the pressure dependence of the outflow amount at the time of the second specific water intake is at least an extrapolated formula for giving pressure when the outflow amount is negative. 管路要素を示す管路枝と、管路枝の一端および他端に前記管路枝同士の接続点である節点又は、前記管路枝と配水池の接続点を示す水頭既知節点を配置した解析グラフに対して、前記節点における水圧である有効水頭を地盤高とともに扱う水頭及び節点あるいは管路からの流出量を圧力依存量として算出する管網解析プログラムであって、コンピュータを、
水頭を0とする基準節点並びに、前記基準節点及び水頭既知節点を接続する基準節点接続枝を付加して、前記水頭既知節点の前記水頭及び流入量を、前記基準節点接続枝における両端の水頭の差である水頭差及び流量として扱い、前記解析グラフにおいて、すべての前記節点を結び、ループは構成しない枝集合である木及びメッシュ群を決定する手段と、
前記木に含まれる枝の木枝固定流量及び前記メッシュ群のメッシュ流量を用いて反復計算による非圧力依存管網解析処理を行って、各節点の有効水頭を算出する手段と、
管網解析処理に基づいて得られる前記有効水頭を閾値と比較して、前記有効水頭が前記閾値に満たない圧力不足節点を、仮想接続枝により前記基準節点と接続する手段と、
前記圧力不足節点における流出量を、上水道配水管網における流出量の圧力依存性を示す特性式に基づいて得られる圧力依存量として更新して、前記圧力不足節点が仮想接続枝により基準節点と接続された新たな解析グラフに対して、前記仮想接続枝によって追加された新たなメッシュを含むメッシュ群のメッシュ流量を変数として、反復計算による圧力依存管網解析処理を行い、各節点の前記有効水頭を算出する手段と、
前記圧力依存管網解析処理に基づいて得られる前記仮想接続枝が接続された節点における有効水頭が前記閾値以上又は0以下の場合、前記仮想接続枝を除去し、前記仮想接続枝が接続されていない節点における有効水頭が前記閾値に満たない場合、圧力不足節点として、新たな前記仮想接続枝により前記基準節点と接続する手段として機能させ、
前記仮想接続枝の追加及び削除がなくなるまで圧力依存管網解析処理を繰り返し、前記追加及び削除がなくなった際の各節点における有効水頭を、圧力依存量としての流出量を与える有効水頭として出力する管網解析プログラム。
A pipeline branch indicating a pipeline element and a node indicating a connection point between the pipeline branches or a head known node indicating a connection point between the pipeline branch and a distribution reservoir are arranged at one end and the other end of the pipeline branch. This is a pipe network analysis program that calculates the amount of outflow from the head and the node or pipeline, which treats the effective head, which is the water pressure at the node, together with the ground height, as the pressure-dependent amount.
A reference node with the head set to 0 and a reference node connecting branch connecting the reference node and the known head node are added, and the head and the inflow amount of the known head node are set to the water heads at both ends of the reference node connecting branch. A means for determining a tree and a mesh group which are branch sets that connect all the nodes and do not form a loop in the analysis graph, which are treated as the head difference and the flow rate, which are the differences.
A means for calculating the effective head of each node by performing a non-pressure dependent pipe network analysis process by iterative calculation using the fixed flow rate of the branches contained in the tree and the mesh flow rate of the mesh group.
A means for comparing the effective head obtained based on the pipe network analysis process with a threshold value and connecting a pressure-deficient node in which the effective head is less than the threshold value to the reference node by a virtual connecting branch.
The outflow amount at the underpressure node is updated as a pressure-dependent amount obtained based on the characteristic formula showing the pressure dependence of the outflow amount in the water supply distribution pipe network, and the underpressure node is connected to the reference node by a virtual connecting branch. For the new analysis graph, the pressure-dependent pipe network analysis process by iterative calculation was performed using the mesh flow rate of the mesh group including the new mesh added by the virtual connection branch as a variable, and the effective head at each node. And the means to calculate
When the effective head at the node to which the virtual connection branch is connected obtained based on the pressure-dependent tube network analysis process is equal to or more than the threshold value or 0 or less, the virtual connection branch is removed and the virtual connection branch is connected. When the effective head at no node is less than the threshold, it is made to function as a pressure shortage node as a means for connecting to the reference node by the new virtual connection branch.
The pressure-dependent pipe network analysis process is repeated until the addition and deletion of the virtual connection branch are eliminated, and the effective head at each node when the addition and deletion are eliminated is output as an effective head that gives an outflow amount as a pressure-dependent amount. Pipe network analysis program.
管路要素を示す管路枝と、管路枝の一端および他端に前記管路枝同士の接続点である節点又は、前記管路枝と配水池の接続点を示す水頭既知節点を配置した解析グラフに対して、前記節点における水圧である有効水頭を地盤高とともに扱う水頭及び節点あるいは管路からの流出量を圧力依存量として算出する管網解析方法であって、コンピュータが、
水頭を0とする基準節点並びに、前記基準節点及び水頭既知節点を接続する基準節点接続枝を付加して、前記水頭既知節点の前記水頭及び流入量を、前記基準節点接続枝における両端の水頭の差である水頭差及び流量として扱い、前記解析グラフにおいて、すべての前記節点を結び、ループは構成しない枝集合である木及びメッシュ群を決定するステップと、
前記木に含まれる枝の木枝固定流量及び前記メッシュ群のメッシュ流量を用いて反復計算による非圧力依存管網解析処理を行って、各節点の有効水頭を算出するステップと、
管網解析処理に基づいて得られる前記有効水頭を閾値と比較して、前記有効水頭が前記閾値に満たない圧力不足節点を、仮想接続枝により前記基準節点と接続するステップと、
前記圧力不足節点における流出量を、上水道配水管網における流出量の圧力依存性を示す特性式に基づいて得られる圧力依存量として更新して、前記圧力不足節点が仮想接続枝により基準節点と接続された新たな解析グラフに対して、前記仮想接続枝によって追加された新たなメッシュを含むメッシュ群のメッシュ流量を変数として、反復計算による圧力依存管網解析処理を行い、各節点の前記有効水頭を算出するステップと、
前記圧力依存管網解析処理に基づいて得られる前記仮想接続枝が接続された節点における有効水頭が前記閾値以上又は0以下の場合、前記仮想接続枝を除去し、前記仮想接続枝が接続されていない節点における有効水頭が前記閾値に満たない場合、圧力不足節点として、新たな前記仮想接続枝により前記基準節点と接続するステップと、を備え、
前記仮想接続枝の追加及び削除がなくなるまで圧力依存管網解析処理を繰り返し、前記追加及び削除がなくなった際の各節点における有効水頭を、圧力依存量としての流出量を与える有効水頭として出力する管網解析方法。
A pipeline branch indicating a pipeline element and a node indicating a connection point between the pipeline branches or a head known node indicating a connection point between the pipeline branch and a distribution reservoir are arranged at one end and the other end of the pipeline branch. This is a pipe network analysis method in which the effective head, which is the water pressure at the node, is treated together with the ground height, and the outflow amount from the head and the node or the pipeline is calculated as a pressure-dependent amount with respect to the analysis graph.
A reference node with the head set to 0 and a reference node connecting branch connecting the reference node and the known head node are added, and the head and the inflow amount of the known head node are set to the water heads at both ends of the reference node connecting branch. The step of determining the tree and mesh group, which is a branch set that connects all the nodes and does not form a loop, is treated as the difference head difference and flow rate.
A step of calculating the effective head of each node by performing a non-pressure dependent pipe network analysis process by iterative calculation using the fixed flow rate of the branches contained in the tree and the mesh flow rate of the mesh group.
A step of comparing the effective head obtained based on the pipe network analysis process with a threshold value and connecting a pressure-deficient node in which the effective head is less than the threshold value to the reference node by a virtual connecting branch.
The outflow amount at the underpressure node is updated as a pressure-dependent amount obtained based on the characteristic formula showing the pressure dependence of the outflow amount in the water supply distribution pipe network, and the underpressure node is connected to the reference node by a virtual connecting branch. For the new analysis graph, the pressure-dependent pipe network analysis process by iterative calculation was performed using the mesh flow rate of the mesh group including the new mesh added by the virtual connection branch as a variable, and the effective head at each node. And the steps to calculate
When the effective head at the node to which the virtual connection branch is connected obtained based on the pressure-dependent tube network analysis process is equal to or more than the threshold value or 0 or less, the virtual connection branch is removed and the virtual connection branch is connected. If the effective head at no node is less than the threshold, the pressure-deficient node is provided with a step of connecting to the reference node by the new virtual connection branch.
The pressure-dependent pipe network analysis process is repeated until the addition and deletion of the virtual connection branch are eliminated, and the effective head at each node when the addition and deletion are eliminated is output as an effective head that gives an outflow amount as a pressure-dependent amount. Pipe network analysis method.
JP2019237052A 2019-12-26 2019-12-26 Pipe network analysis device, pipe network analysis method, and pipe network analysis program Active JP6763624B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019237052A JP6763624B1 (en) 2019-12-26 2019-12-26 Pipe network analysis device, pipe network analysis method, and pipe network analysis program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019237052A JP6763624B1 (en) 2019-12-26 2019-12-26 Pipe network analysis device, pipe network analysis method, and pipe network analysis program

Publications (2)

Publication Number Publication Date
JP6763624B1 true JP6763624B1 (en) 2020-09-30
JP2021105295A JP2021105295A (en) 2021-07-26

Family

ID=72614567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019237052A Active JP6763624B1 (en) 2019-12-26 2019-12-26 Pipe network analysis device, pipe network analysis method, and pipe network analysis program

Country Status (1)

Country Link
JP (1) JP6763624B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112446075A (en) * 2020-11-13 2021-03-05 西安建筑科技大学 Multi-level line laying route optimization method and system based on mileage limitation
CN113836780A (en) * 2021-05-28 2021-12-24 重庆大学 Water distribution network hydraulic calculation method based on improved cow pulling method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4088008B2 (en) * 1999-12-02 2008-05-21 晃 林 Distribution network simulation equipment
JP4716738B2 (en) * 2005-01-06 2011-07-06 株式会社管総研 Pipeline evaluation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112446075A (en) * 2020-11-13 2021-03-05 西安建筑科技大学 Multi-level line laying route optimization method and system based on mileage limitation
CN112446075B (en) * 2020-11-13 2024-03-08 西安建筑科技大学 Multi-level line laying route optimization method and system based on mileage limitation
CN113836780A (en) * 2021-05-28 2021-12-24 重庆大学 Water distribution network hydraulic calculation method based on improved cow pulling method
CN113836780B (en) * 2021-05-28 2024-06-07 重庆大学 Water distribution network hydraulic calculation method based on improved bovine method

Also Published As

Publication number Publication date
JP2021105295A (en) 2021-07-26

Similar Documents

Publication Publication Date Title
JP6763624B1 (en) Pipe network analysis device, pipe network analysis method, and pipe network analysis program
Mu et al. Weak Galerkin finite element methods on polytopal meshes
Shamir et al. Engineering analysis of water-distribution systems
MX2013008812A (en) System and method for using an artificial neural network to simulate pipe hydraulics in a reservoir simulator.
Moosavian et al. Hydraulic analysis of water supply networks using a modified Hardy Cross method
CN111626003B (en) Heating system heat load layered prediction method, storage medium and prediction equipment
Deuerlein et al. Fast graph matrix partitioning algorithm for solving the water distribution system equations
CN109840305A (en) A kind of steam pipe network waterpower-thermal calculation method and system
Creaco et al. High-order global algorithm for the pressure-driven modeling of water distribution networks
Martínez-Solano et al. Exact skeletonization method in water distribution systems for hydraulic and quality models
CN106650028A (en) Optimization method and system based on agile satellite design parameters
CN112113146A (en) Synchronous self-adaptive check method for roughness coefficient and node water demand of water supply pipe network pipeline
Moghaddam et al. Optimal design of water distribution networks using simple modifed particle swarm optimization approach
CN104915557A (en) Cloud task allocation method based on double-objective ant colony algorithm
CN107133274A (en) A kind of distributed information retrieval set option method based on figure knowledge base
Moosavian Multilinear method for hydraulic analysis of pipe networks
Latifi et al. Upgrading the reliability of water distribution networks through optimal use of pressure-reducing valves
Savorgnan et al. Discrete-time stochastic optimal control via occupation measures and moment relaxations
JP4716738B2 (en) Pipeline evaluation method
Sun et al. Optimal operation of Danjiangkou reservoir using improved hedging model and considering the effects of historical decisions
Baños et al. A memetic algorithm for water distribution network design
CN112035991B (en) Steam optimization calculation method and system based on pipe network conveying path
Giustolisi et al. Testing linear solvers for global gradient algorithm
Bautista et al. Numerical calculation of infiltration in furrow irrigation simulation models
JPH10320444A (en) Method and device for analyzing city water pipe net by circuit simulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200318

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200318

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200907

R150 Certificate of patent or registration of utility model

Ref document number: 6763624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350