JP6763123B2 - Microalgae culture method - Google Patents

Microalgae culture method Download PDF

Info

Publication number
JP6763123B2
JP6763123B2 JP2015171671A JP2015171671A JP6763123B2 JP 6763123 B2 JP6763123 B2 JP 6763123B2 JP 2015171671 A JP2015171671 A JP 2015171671A JP 2015171671 A JP2015171671 A JP 2015171671A JP 6763123 B2 JP6763123 B2 JP 6763123B2
Authority
JP
Japan
Prior art keywords
microalgae
algae
activated sludge
culture
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015171671A
Other languages
Japanese (ja)
Other versions
JP2016195586A (en
Inventor
文隆 加藤
文隆 加藤
加藤 敏朗
敏朗 加藤
三木 理
理 三木
貴丈 平田
貴丈 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2016195586A publication Critical patent/JP2016195586A/en
Application granted granted Critical
Publication of JP6763123B2 publication Critical patent/JP6763123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Cultivation Of Plants (AREA)

Description

本発明は、工場排水や循環水等の排水を用いて微細藻類を培養する微細藻類の培養方法に関する。
The present invention relates to a method for culturing microalgae, which cultivates microalgae using wastewater such as factory wastewater and circulating water.

近年、下水を用いた藻類培養技術として、特許文献3、非特許文献1、非特許文献2の報告がある。藻類の増殖には光合成に必要な二酸化炭素、水、窒素、リン、光が必要であるが、下水中には水、窒素、リン、炭酸イオンが含まれており、そこに光を供給し、さらに空気中の二酸化炭素を利用させることで、藻類培養ができるとされている。また、藻類培養の際に窒素を消費することから、下水中の窒素が藻類増殖に利用され、固液分離により藻類と処理水を分離することで窒素除去が可能と考えられる。 In recent years, there have been reports of Patent Document 3, Non-Patent Document 1 and Non-Patent Document 2 as algae culture techniques using sewage. The growth of algae requires carbon dioxide, water, nitrogen, phosphorus, and light, which are necessary for photosynthesis, but sewage contains water, nitrogen, phosphorus, and carbonate ions, which supply light. Furthermore, it is said that algae can be cultivated by using carbon dioxide in the air. In addition, since nitrogen is consumed during algae culture, it is considered that nitrogen in sewage is used for algae growth, and nitrogen can be removed by separating the algae and treated water by solid-liquid separation.

また、特許文献4では少なくとも窒素分またはリン分のいずれか一方を含む排水を膜ろ過した透過水による藻類培養方法が提案されている。これは微細藻類の増殖の際に、排水に含まれる細菌類、原生動物、後生動物等の微生物によって微細藻類の増殖が阻害されるという、いわゆるコンタミネーションを抑制することを課題としており、排水をろ過して微生物を除去することを目的としている。また、藻類培養の際に窒素を消費することから、排水中の窒素が藻類増殖に利用され、固液分離により藻類と処理水を分離することで窒素除去が可能と考えられる。 Further, Patent Document 4 proposes a method for culturing algae using permeated water obtained by membrane-filtering wastewater containing at least one of nitrogen and phosphorus. The problem is to suppress so-called contamination, in which the growth of microalgae is inhibited by microorganisms such as bacteria, protozoa, and metazoans contained in the wastewater during the growth of microalgae. The purpose is to filter to remove microorganisms. In addition, since nitrogen is consumed during algae culture, it is considered that nitrogen in wastewater is used for algae growth, and nitrogen can be removed by separating the algae and treated water by solid-liquid separation.

特開2009−142787号公報JP-A-2009-142787 特開2004−230338号公報Japanese Unexamined Patent Publication No. 2004-230338 特開平8−107782号公報Japanese Unexamined Patent Publication No. 8-107782 特開2014−60967号公報Japanese Unexamined Patent Publication No. 2014-60967 国際公開第2014/103930号公報International Publication No. 2014/1093930 特開平5−285491公報JP-A-5-285491 特開2012−175964号公報Japanese Unexamined Patent Publication No. 2012-175964

Y.S.Yun,S.B.Lee,J.M.Park,C−I.Lee,J.W.Yang(1997),Carbon Dioxide Fixation by Algal Cultivation Using Wastewater Nutrients,J.Chem Tech. Biotechnol.,Vol.69,pp.451−455Y. S. Yun, S.M. B. Lee, J.M. M. Park, CI. Lee, J.M. W. Yang (1997), Carbon Dioxide Fixation by Algae Cultivation Using Wastewater Nutrients, J. Mol. Chem Tech. Biotechnol. , Vol. 69, pp. 451-455 本多了,J.Boonnorat,C.Chiemchaisri,山本和夫(2011),膜分離フォトバイオリアクターを用いた藻類濃縮培養による下水処理水からのバイオマス生産・二酸化炭素固定プロセスの開発,第45回日本水環境学会年会講演集,p.233Ryo Honda, J.M. Boonnorat, C.I. Chiemchaisri, Kazuo Yamamoto (2011), Development of biomass production and carbon dioxide fixation process from treated sewage water by concentrated culture of algae using a membrane separation photobioreactor, Proceedings of the 45th Annual Meeting of the Japan Society on Water Environment, p. 233 平田貴丈,三木 理,奥村真子,中山裕隆,海産性微細藻類Nannochloropsis sp. の培養条件の検討,第48回日本水環境学会年会,p.148Takatake Hirata, Osamu Miki, Mako Okumura, Hirotaka Nakayama, Marine microalgae Nannochloropsis sp. Examination of culture conditions, 48th Annual Meeting of the Japan Society for Water Environment, p. 148 竹山春子、微細藻類によるエネルギー生産と事業展望、p.1(2012)Haruko Takeyama, Energy Production and Business Outlook by Microalgae, p. 1 (2012) 渡邉信、藻類ハンドブック、pp.160−162(2012)Makoto Watanabe, Algae Handbook, pp. 160-162 (2012) Collos, Y., & Harrison, P. J. (2014), Acclimation and toxicity of high ammonium concentrations to unicellular algae. Marine pollution bulletin, 80(1), pp.8−23.Collos, Y. , & Harrison, P.M. J. (2014), Acclimation and toxicity of high ammonium concentrations to unicellular algae. Marine pollution bulletin, 80 (1), pp. 8-23. 中山 有ら、都市人工排水系における水・熱輸送に関する観測研究、水工学論文集、第50巻(2006)Yu Nakayama et al., Observational research on water and heat transport in urban artificial drainage systems, Proceedings of Hydroengineering, Vol. 50 (2006) 渡邉信、藻類ハンドブック、pp.351(2012)Makoto Watanabe, Algae Handbook, pp. 351 (2012) 渡邉信、藻類ハンドブック、pp.345−347(2012)Makoto Watanabe, Algae Handbook, pp. 345-347 (2012) 東京都下水道局、芝浦水再生センターにおける全窒素流入負荷に関する一考察(2008)、[online]、[2014年10月23日検索]、インターネット<URL:http://www.gesui.metro.tokyo.jp/gijyutou/gn20/nenpou2008/5−1−8.pdf>A Study on Total Nitrogen Inflow Load at Shibaura Water Reclamation Center, Tokyo Metropolitan Government Bureau of Sewerage (2008), [online], [Search on October 23, 2014], Internet <URL: http: // www. gesui. metro. tokyo. jp / gijiutou / gn20 / nenpou 2008 / 5-1-8. pdf> 三井物産戦略研究所、バイオマス資源としての微細藻類(2011)、[online]、[2014年10月29日検索]、インターネット<URL:http://mitsui.mgssi.com/issues/report/r1112j_uno.pdf>Mitsui Bussan Strategic Research Institute, Microalgae as Biomass Resources (2011), [online], [Searched on October 29, 2014], Internet <URL: http: // mitsui. mgssi. com / issues / reports / r1112j_uno. pdf> Szabo Milan et al.(2014),Photosynthetic acclimation of Nannochloropsis oculata investigated by multi−wavelength chlorophyll fluorescence analysis,Bioresource technology,167,pp.521−529.Szabo Milan et al. (2014), Photosynthetic acceleration of Nannochloropsis oculata investified by multi-wavelength fluorescence analysis analysis, Bioresours. 521-529. 渡邉信、新しいエネルギー藻類バイオマス、p.150(2010)Makoto Watanabe, New Energy Algae Biomass, p. 150 (2010)

従来の下水を用いた微細藻類の増殖方法において、下水に含まれる窒素濃度は、非特許文献10によれば全窒素で30mg−N/L程度、そのうちアンモニア態窒素は20mg−N/L程度である。一方で、例えば、コークス炉を用いたコークスの製造工程において排出される排水の窒素濃度は、100mg−N/L以上あり、そのほとんどがアンモニア態窒素(アンモニア分子を構成する窒素原子)である。 In the conventional method for growing microalgae using sewage, the concentration of nitrogen contained in sewage is about 30 mg-N / L in total nitrogen, of which ammonia nitrogen is about 20 mg-N / L, according to Non-Patent Document 10. is there. On the other hand, for example, the nitrogen concentration of wastewater discharged in the coke manufacturing process using a coke oven is 100 mg-N / L or more, and most of them are ammonia nitrogen (nitrogen atoms constituting ammonia molecules).

ここで、コークスの製造工程では、以下の工程により排水が生成、排出される。すなわち、コークス炉から発生したCOG(コークス炉ガス)を安水で洗浄、冷却する。COGを洗浄、冷却した安水は、アンモニア態窒素、タール、スラッジ、及びCOD(化学的酸素要求量)成分等を含む。COGを洗浄、冷却した後の安水は、タールデカンタ、アンモニアストリッピング装置に順次導入される。タールデカンタでは、安水からタール及びスラッジが除去され、アンモニアストリッピング装置では、安水からアンモニア態窒素の大半が除去される。しかし、アンモニアストリッピング装置から排出された安水には、依然として多くの(すなわち少なくとも100mg−N/L以上の)アンモニア態窒素が残っている。アンモニアストリッピング装置から排出された安水は、海水で希釈された後、活性汚泥処理に供される。活性汚泥処理では、主に安水からCOD成分が除去される。活性汚泥処理後の安水、すなわち活性汚泥処理水は、排水として排出される。このように、コークスの製造工程において排出される排水は、高濃度のアンモニア態窒素を含む。 Here, in the coke manufacturing process, wastewater is generated and discharged by the following process. That is, the COG (coke oven gas) generated from the coke oven is washed and cooled with cheap water. Ammonia water that has been washed and cooled by COG contains ammonia nitrogen, tar, sludge, COD (Chemical Oxygen Demand) components, and the like. After washing and cooling the COG, the ammonia water is sequentially introduced into the tar decanter and the ammonia stripping device. The tar decanter removes tar and sludge from the aqueous solution, and the ammonia stripping device removes most of the ammonia nitrogen from the aqueous solution. However, a large amount of ammonia nitrogen (that is, at least 100 mg-N / L or more) still remains in the ammonia discharged from the ammonia stripping device. The aqueous solution discharged from the ammonia stripping device is diluted with seawater and then subjected to activated sludge treatment. In activated sludge treatment, COD components are mainly removed from cheap water. The cheap water after the activated sludge treatment, that is, the activated sludge treated water is discharged as wastewater. As described above, the wastewater discharged in the coke manufacturing process contains a high concentration of ammonia nitrogen.

非特許文献6にはアンモニアによる藻類の生長阻害EC50値が整理されている。非特許文献6には、全アンモニア濃度が数千μM、すなわちアンモニア態窒素濃度が数十mg/L程度となる場合、多くの緑藻類、及び、藍藻類、計藻類、渦鞭毛藻、ラフィド藻類で生長阻害が認められることが示されている。したがって、従来、藻類の培養条件としてのアンモニア態窒素濃度は、数十mg/L程度以下にすることが一般的とされている。即ち、活性汚泥処理水を用いる微細藻類の増殖は困難と考えられていた。 Non-Patent Document 6 summarizes the EC50 value of algae growth inhibition by ammonia. Non-Patent Document 6 states that when the total ammonia concentration is several thousand μM, that is, the ammonia nitrogen concentration is several tens of mg / L, many green algae, blue algae, algae, dinophyceae, and raphidophytes are used. It has been shown that growth inhibition is observed. Therefore, conventionally, the ammonia nitrogen concentration as a culture condition for algae is generally set to about several tens of mg / L or less. That is, it was considered difficult to grow microalgae using activated sludge treated water.

また、下水に用いられる微細藻類は淡水系であるが、安水は活性汚泥処理の前に海水で希釈されるため、淡水性藻類ではなく海産性藻類に限定されることから、下水に用いられた微細藻類を活性汚泥処理水で増殖させるのは困難であった。 In addition, the microalgae used for sewage are freshwater, but since cheap water is diluted with seawater before activated sludge treatment, it is limited to marine algae, not freshwater algae, so it is used for sewage. It was difficult to grow fine algae in activated sludge treated water.

さらに、下水の水温は外気温の影響を受けやすく、非特許文献7によれば年中を通して16〜28℃程度の変動があることが読み取れる。一方、特許文献6によれば安水の活性汚泥処理においては水温を30℃程度にするとされている。微生物は一般的に至適温度を有しており、培養可能な温度域が異なる。よって、下水で培養可能な微細藻類をそのまま活性汚泥処理水で培養することは困難である可能性がある。 Further, the water temperature of sewage is easily affected by the outside air temperature, and according to Non-Patent Document 7, it can be read that there is a fluctuation of about 16 to 28 ° C. throughout the year. On the other hand, according to Patent Document 6, the water temperature is set to about 30 ° C. in the activated sludge treatment of cheap water. Microorganisms generally have an optimum temperature, and the temperature range in which they can be cultivated is different. Therefore, it may be difficult to cultivate microalgae that can be cultivated in sewage as they are in activated sludge-treated water.

さらに、活性汚泥処理水中にはフェノール系難分解COD成分が残留しており、それらが微細藻類に与える影響が不明である。 Furthermore, phenolic persistent COD components remain in the activated sludge-treated water, and their effects on microalgae are unknown.

上記をまとめると、以下の点において従来技術をそのまま流用することは不可能である。
1)安水は活性汚泥処理される前に海水で希釈されるため、淡水系の微細藻類では海水を含む安水を処理することが困難である。
2)活性汚泥処理水に含まれる窒素成分は下水に比べるとほとんどがアンモニア性窒素であり、またその濃度レベルは活性汚泥処理水の方が淡水より非常に高い。
3)下水と比べて活性汚泥処理水は水温が30℃程度の活性汚泥処理槽から発生するため、下水に適用される微細藻類では温度条件が合わない、
4)活性汚泥処理水は淡水よりpHが高い。(遊離アンモニアが多い)
5)活性汚泥処理水中にはフェノール系難分解COD成分が残留しており、それらが微細藻類に与える影響が不明である。
また、特許文献4では排水を膜ろ過した透過水による微細藻類の増殖が提案されているものの、排水の窒素濃度等に関する記載が無く、さらに、藻類種類が複数例示されているものの、それらが実施可能であることは何ら示されていない。
To summarize the above, it is impossible to divert the prior art as it is in the following points.
1) Since freshwater is diluted with seawater before being treated with activated sludge, it is difficult for freshwater microalgae to treat freshwater containing seawater.
2) Most of the nitrogen components contained in activated sludge treated water are ammoniacal nitrogen compared to sewage, and the concentration level of activated sludge treated water is much higher in activated sludge treated water than in fresh water.
3) Compared to sewage, activated sludge treated water is generated from an activated sludge treatment tank with a water temperature of about 30 ° C, so the temperature conditions are not suitable for microalgae applied to sewage.
4) Activated sludge treated water has a higher pH than fresh water. (A lot of free ammonia)
5) Phenolic persistent COD components remain in the activated sludge-treated water, and their effects on microalgae are unknown.
Further, although Patent Document 4 proposes the growth of microalgae by permeated water obtained by membrane-filtering wastewater, there is no description regarding the nitrogen concentration of wastewater and the like, and although a plurality of algae types are exemplified, they are carried out. Nothing has been shown to be possible.

以上のことから、アンモニア態窒素を高濃度に含んでいる活性汚泥処理水を用いた微細藻類の培養を行うことは困難であった。 From the above, it was difficult to culture microalgae using activated sludge-treated water containing a high concentration of ammonia nitrogen.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、アンモニア態窒素を高濃度に含む排水、例えば活性汚泥処理水を用いて微細藻類を培養することが可能な、新規かつ改良された微細藻類の培養方法及び培養装置を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to cultivate microalgae using wastewater containing a high concentration of ammonia nitrogen, for example, activated sludge treated water. It is an object of the present invention to provide a new and improved method for culturing microalgae and an apparatus for culturing microalgae.

上記課題を解決するために、本発明のある観点によれば、コークスの製造工程において排出される排水を含む安水を活性汚泥処理することで得られる活性汚泥処理水から分取され、活性汚泥処理水を培地として増殖させた微細藻類であるChlorella sp.、及びアンモニア態窒素を100mg−N/L以上含む活性汚泥処理水を藻類培養槽に投入し、且つ微細藻類に光を照射することを特徴とする微細藻類の培養方法が提供される
In order to solve the above problems, according to a certain viewpoint of the present invention , activated sludge is separated from activated sludge treated water obtained by treating cheap water including wastewater discharged in the coke manufacturing process with activated sludge. Chlorella sp. Is a microalga grown using treated water as a medium . A method for culturing microalgae, which comprises putting activated sludge-treated water containing 100 mg-N / L or more of ammonia nitrogen into an algae culture tank and irradiating the microalgae with light .

また、藻類培養槽のN/P質量比が16〜300であってもよい。 Further, the N / P mass ratio of the algae culture tank may be 16 to 300.

また、藻類培養槽に、溶存無機炭素源を添加してもよい。
In addition, a dissolved inorganic carbon source may be added to the algae culture tank.

また、光の光量子密度が60μmol/m/秒以上であってもよい。 Further, the photon density of light may be 60 μmol / m 2 / sec or more.

また、藻類培養槽に、リン酸塩を添加してもよい。 In addition, phosphate may be added to the algae culture tank.

以上説明したように本発明によれば、アンモニア態窒素を高濃度に含む排水を用いて微細藻類を培養することが可能である。微細藻類の増殖には窒素を必要とするため、栄養源である窒素を多く含んだ排水を利用できる微細藻類を培養することで、窒素資源を有効利用することができる。さらに、排水が活性汚泥処理水となる場合、活性汚泥処理水は下水と比べて水温が高いため、微細藻類の増殖速度がより高くなることが期待できる。 As described above, according to the present invention, it is possible to cultivate microalgae using wastewater containing a high concentration of ammonia nitrogen. Since nitrogen is required for the growth of microalgae, nitrogen resources can be effectively utilized by culturing microalgae that can utilize wastewater containing a large amount of nitrogen, which is a nutrient source. Further, when the wastewater becomes activated sludge treated water, the activated sludge treated water has a higher water temperature than sewage, so that it can be expected that the growth rate of microalgae will be higher.

本発明の実施形態に係る微細藻類の培養装置の概要を示す説明図である。It is explanatory drawing which shows the outline of the culture apparatus of microalgae which concerns on embodiment of this invention. 実施例1の測定結果を示すグラフである。It is a graph which shows the measurement result of Example 1. FIG. 実施例2の測定結果を示すグラフである。It is a graph which shows the measurement result of Example 2. 実施例3の測定結果を示すグラフである。It is a graph which shows the measurement result of Example 3. 実施例4の測定結果(ナンノクロロプシス)を示すグラフである。It is a graph which shows the measurement result (nannochloropsis) of Example 4. 実施例4の測定結果(Chlorococcales)を示すグラフである。It is a graph which shows the measurement result (Chlorococcales) of Example 4. 藻類培養槽中のN/P質量比と藻類濃度及び比増殖速度との対応関係を藻類の種類ごとに示すグラフである。It is a graph which shows the correspondence relationship between the N / P mass ratio in the algae culture tank, the algae concentration and the specific growth rate for each type of algae.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.

<1.微細藻類の培養装置の構成>
まず、図1に基づいて、本実施形態に係る微細藻類の培養装置の構成について説明する。微細藻類の培養装置は、藻類培養槽3と、光源4と、固液分離層5とを備える。藻類培養槽3は、微細藻類2を培養するための培養槽である。藻類培養槽3には、少なくとも、排水1、及び微細藻類2が投入される。
<1. Configuration of microalgae culture device>
First, the configuration of the microalgae culture apparatus according to the present embodiment will be described with reference to FIG. The microalgae culture apparatus includes an algae culture tank 3, a light source 4, and a solid-liquid separation layer 5. The algae culture tank 3 is a culture tank for culturing microalgae 2. At least drainage 1 and microalgae 2 are charged into the algae culture tank 3.

排水1は、少なくともアンモニア態窒素を100mg−N/L以上含む排水である。このような排水1の例としては、上述した活性汚泥処理水等が挙げられる。ここで、安水を活性汚泥処理する際の活性汚泥処理法は特に制限されず、コークス炉から発生する安水を処理可能なものであればどのようなものであってもよい。活性汚泥処理法の種類としては、標準活性汚泥法、硝化脱窒法等が挙げられる。標準活性汚泥法では、汚泥槽に安水が流入された後、活性汚泥が空気で曝気される。これにより、汚泥槽中の汚泥は、COD成分を酸化分解する。硝化脱窒法では、硝化槽と無酸素槽とからなる汚泥槽を用いて安水中のCOD成分及びアンモニア態窒素を低減する。硝化脱窒法の詳細は特許文献1、2に開示されている。 Wastewater 1 is wastewater containing at least 100 mg-N / L of ammonia nitrogen. Examples of such wastewater 1 include the above-mentioned activated sludge treated water and the like. Here, the activated sludge treatment method for treating the activated sludge of the cheap water is not particularly limited, and any method may be used as long as the cheap water generated from the coke oven can be treated. Examples of the type of activated sludge treatment method include a standard activated sludge method and a nitrification denitrification method. In the standard activated sludge method, after the cheap water flows into the sludge tank, the activated sludge is aerated with air. As a result, the sludge in the sludge tank oxidatively decomposes the COD component. In the nitrification denitrification method, a sludge tank consisting of a nitrification tank and an oxygen-free tank is used to reduce COD components and ammonia nitrogen in cheap water. Details of the nitrification denitrification method are disclosed in Patent Documents 1 and 2.

微細藻類2は、アンモニア態窒素を100mg−N/L以上含む排水1中でも培養可能な微細藻類である。微細藻類2は、例えば、ナンノクロロプシス属の微細藻類、活性汚泥処理水中に生息可能な微細藻類である。 The microalgae 2 are microalgae that can be cultivated even in waste water 1 containing 100 mg-N / L or more of ammonia nitrogen. The microalgae 2 are, for example, microalgae of the genus Nannochloropsis and microalgae that can live in activated sludge-treated water.

ナンノクロロプシス属の微細藻類は、例えば、特許文献5に記載されているNannochloropsis sp.(Nannochloropsis oculata、Nannochloropsis gaditana、Nannochloropsis salina、Nannochloropsis oceanica、Nannochloropsis atomus、Nannochloropsis maculata、Nannochloropsis granulata、Nannochloropsis maritima等)であってもよい。市販されている製品としては、マリンテック株式会社のマリーンフレッシュ(Nannochloropsis maritimaを含む)などが知られている。このようなマリーンフレッシュも本実施形態で使用可能である。活性汚泥処理水中に生息可能な微細藻類は、例えばChlorococcalesである。これらの微細藻類は、単独で培養しても、混合して培養してもよい。さらに、発明者らが活性汚泥処理水中に生息可能な微細藻類について検討した結果、特にChlorella sp.が増殖性に優れることが分かった。Chlorella sp.は非特許文献13によれば、従来は形態観察を主な基礎として、Chlorococcalesに分類されていたと記載されている。よって、上述のChlorococcalesにはChlorella sp.が含まれる。 The microalgae of the genus Nannochloropsis are described in, for example, Nannochloropsis sp. (Nannochloropsis oculata, Nannochloropsis gaditana, Nannochloropsis salina, Nannochloropsis oceanica, Nannochloropsis atomus, Nannochloropsis atomus, Nannochloropsis masuna, Nanochloropsis macrona, Nanochloropsis As commercially available products, Marine Fresh (including Nannochloropsis maritima) manufactured by Marine Tech Co., Ltd. is known. Such marine fresh can also be used in this embodiment. Microalgae that can live in activated sludge-treated water are, for example, Chlorococcales. These microalgae may be cultured alone or mixed. Furthermore, as a result of the inventor's study on microalgae that can live in activated sludge-treated water, in particular, Chlorella sp. Was found to be excellent in proliferation. Chlorella sp. According to Non-Patent Document 13, it is described that conventionally, it was classified into Chlorococcales based mainly on morphological observation. Therefore, the above-mentioned Chlorella cales includes Chlorella sp. Is included.

本発明者は、微細藻類について鋭意研究を重ねたところ、アンモニア態窒素を100mg−N/L以上含む排水1中でも培養可能な微細藻類が存在することを見出した。以下、本発明者が行った検討について説明する。 As a result of diligent research on microalgae, the present inventor has found that microalgae that can be cultivated exist even in waste water 1 containing 100 mg-N / L or more of ammonia nitrogen. Hereinafter, the studies conducted by the present inventor will be described.

微細藻類とは、非特許文献4に記載されている藻類(酸素を発生するタイプの光合成をする生物のうち、いわゆる陸上植物(コケ、シダ、種子植物)を除いたもの)のうち、非特許文献11に記載されている海洋や淡水中に生息する数十ミクロンの微生物を指す。微細藻類は窒素およびリンを摂取することにより増殖する。 Microalgae are non-patents among the algae described in Non-Patent Document 4 (organisms that generate oxygen, excluding so-called land plants (moss, fern, seed plants)). It refers to the microorganisms of several tens of microns that live in the ocean and fresh water described in Document 11. Microalgae grow by ingesting nitrogen and phosphorus.

ここで、排水1として活性汚泥処理水を使用する場合、排水1は、海水によって希釈される。そこで、本発明者は、海産性の微細藻類に着目した。海産性の微細藻類としては、ナンノクロロプシス、キートセラスカルシトランス、キートセラスグラシリス、テトラセルミス、パブロバルセリ等が知られている。 Here, when activated sludge treated water is used as the wastewater 1, the wastewater 1 is diluted with seawater. Therefore, the present inventor focused on marine microalgae. As marine microalgae, Nannochloropsis, Quitoceras calcitrans, Quitoceras glacilis, Tetracermis, Pablo balseri and the like are known.

そして、発明者らは、ナンノクロロプシスに着目し、アンモニア態窒素を高濃度で含む活性汚泥処理水中でナンノクロロプシス属の微細藻類を培養することを試みた。この結果、本発明者は、アンモニア態窒素濃度が300mg−N/Lとなる活性汚泥処理水中であっても、ナンノクロロプシス属の微細藻類が培養可能であることを見出した。なお、非特許文献3には、ナンノクロロプシスの培養に関する記載があるが、培養液のアンモニア態窒素濃度は明記されていなかった。すなわち、非特許文献3には、アンモニア態窒素濃度が300mg−N/Lとなる活性汚泥処理水中であっても、ナンノクロロプシス属の微細藻類が培養可能であるという知見は何ら開示されておらず、示唆もされていなかった。 Then, the inventors focused on Nannochloropsis and attempted to culture microalgae of the genus Nannochloropsis in activated sludge-treated water containing a high concentration of ammonia nitrogen. As a result, the present inventor has found that microalgae of the genus Nannochloropsis can be cultivated even in activated sludge-treated water having an ammonia nitrogen concentration of 300 mg-N / L. Although Non-Patent Document 3 describes the culture of Nannochloropsis, the ammonia nitrogen concentration in the culture solution was not specified. That is, Non-Patent Document 3 does not disclose any knowledge that microalgae of the genus Nannochloropsis can be cultivated even in activated sludge-treated water having an ammonia nitrogen concentration of 300 mg-N / L. No suggestion was given.

さらに、これまで、高濃度のアンモニア態窒素は藻類にとって生長阻害があると報告されている。例えば非特許文献6には藻類の生長阻害EC50値が整理されている。非特許文献6には、全アンモニア濃度が数千μM、すなわちアンモニア態窒素濃度が数十mg/L程度となる場合に、多くの緑藻類、藍藻類、計藻類、渦鞭毛藻、ラフィド藻類が生長阻害を示すことが記載されている。したがって、従来、藻類を培養するためには、アンモニア態窒素濃度を数十mg/L以下とすることが必要であると認識されていた。よって、アンモニア態窒素濃度が100mg−N/L以上となる活性汚泥処理水中でナンノクロロプシス属の微細藻類を培養可能であることは知られていなかった。 Furthermore, it has been reported that high concentrations of ammonia nitrogen have growth inhibition for algae. For example, Non-Patent Document 6 lists EC50 values for algae growth inhibition. In Non-Patent Document 6, many green algae, blue algae, dinophyceae, dinophyceae, and raphidophytes grow when the total ammonia concentration is several thousand μM, that is, the ammonia nitrogen concentration is about several tens of mg / L. It has been described to show inhibition. Therefore, conventionally, it has been recognized that it is necessary to keep the ammonia nitrogen concentration to several tens of mg / L or less in order to culture algae. Therefore, it was not known that microalgae of the genus Nannochloropsis could be cultivated in activated sludge-treated water having an ammonia nitrogen concentration of 100 mg-N / L or more.

これに対し、本発明者は、従来よりもアンモニア態窒素濃度がワンオーダー高い活性汚泥処理水中であってもナンノクロロプシス属の微細藻類を培養可能であることを見出した。さらに、本発明者は、固液分離層(活性汚泥処理水中の固体分(汚泥)を活性汚泥処理水から分離する槽)内の活性汚泥処理水を観察したところ、固液分離層内で微細藻類が生長していることを見出した。そして、本発明者は、この微細藻類を採取し、アンモニア態窒素を高濃度で含む活性汚泥処理水中での培養を試みた。この結果、本発明者は、アンモニア態窒素濃度が1,000mg−N/Lとなる活性汚泥処理水中であっても当該微細藻類が培養可能であることを見出した。そして、本発明者は、培養後の微細藻類をデジタルピペットで分取し、罫線入りスライドガラスに滴下し、カバーガラスをかけて生物顕微鏡(オリンパス株式会社製BX43)により倍率200〜400倍で顕微鏡観察を行ったところ、その藻類がChlorococcalesであることを見出した。さらに、Applied Biosystems社製3130 Genetic AnalyzerのDNAシーケンサーを用いて遺伝子解析を行った結果、その藻類の主要な種がChlorella sp.であることを見出した。 On the other hand, the present inventor has found that microalgae of the genus Nannochloropsis can be cultivated even in activated sludge-treated water having a concentration of ammonia nitrogen one order higher than before. Furthermore, the present inventor observed the activated sludge-treated water in the solid-liquid separation layer (the tank that separates the solid content (sludge) in the activated sludge-treated water from the activated sludge-treated water), and found that it was fine in the solid-liquid separation layer. We found that algae are growing. Then, the present inventor collected these microalgae and tried to culture them in activated sludge-treated water containing a high concentration of ammonia nitrogen. As a result, the present inventor has found that the microalgae can be cultivated even in activated sludge-treated water having an ammonia nitrogen concentration of 1,000 mg-N / L. Then, the present inventor separates the cultured microalgae with a digital pipette, drops them on a lined slide glass, covers the glass, and uses a biological microscope (BX43 manufactured by Olympus Corporation) to perform a microscope at a magnification of 200 to 400 times. Upon observation, it was found that the algae were Chlorococcales. Furthermore, as a result of genetic analysis using a DNA sequencer of 3130 Genetic Analyzer manufactured by Applied Biosystems, the main species of the algae was Chlorella sp. I found that.

固液分離層内で生長している微細藻類からChlorella sp.を単離するには、顕微鏡で観察しながらピペットで目的藻類だけを吸い上げるマイクロピペット法などを用いることができる。単離した微細藻類は、培地にて一定の藻類濃度になるまで増殖させる前培養を経た後、目的とする増殖方法に用いることが多い。または、活性汚泥処理水中に生息可能な微細藻類の中で、Chlorella sp.と同等の増殖性を持ち、同等のアンモニア耐性を持つ微生物が存在しない場合には、固液分離層内で生長している微細藻類を、活性汚泥処理水を培地として培養してもよい。この場合、Chlorella sp.を優占化させることができる。この場合の培養は、優占化を進めるために、複数回の継代培養(目的藻類の一部を新しい培地に移し、増殖する培養)を行うことが望ましい。これらの方法によりChlorella sp.を単離または優占化することで、珪藻、糸状菌、原生動物などを含まない純度の高い藻類を得ることができ、コンタミネーションを排除できる。すなわち、より高い増殖量および増殖速度が得られる。 Chlorella sp. From microalgae growing in the solid-liquid separation layer. In order to isolate the algae, a micropipette method or the like in which only the target algae are sucked up with a pipette while observing with a microscope can be used. The isolated microalgae are often used in the desired growth method after undergoing pre-culture in which the algae are grown to a certain concentration in the medium. Alternatively, among the microalgae that can live in activated sludge-treated water, Chlorella sp. When there is no microorganism having the same proliferative property as the above and the same ammonia resistance, the microalgae growing in the solid-liquid separation layer may be cultured using activated sludge-treated water as a medium. In this case, Chlorella sp. Can be dominant. In this case, it is desirable to carry out a plurality of subcultures (culture in which a part of the target algae is transferred to a new medium and proliferates) in order to promote dominance. By these methods, Chlorella sp. By isolating or dominating the algae, high-purity algae containing no diatoms, filamentous fungi, protozoa, etc. can be obtained, and contamination can be eliminated. That is, a higher growth rate and growth rate can be obtained.

このように、本発明者は、アンモニア態窒素を100mg−N/L以上含む活性汚泥処理水中で培養可能な微細藻類が存在することを見出し、このような知見の下で、本実施形態に係る培養装置及び培養方法に想到した。 As described above, the present inventor has found that there are microalgae that can be cultivated in activated sludge-treated water containing 100 mg-N / L or more of ammonia nitrogen, and based on such knowledge, the present embodiment relates to the present embodiment. I came up with a culture device and a culture method.

一方、微細藻類2の培養には溶存無機炭素も必要である。溶存無機炭素は、例えば二酸化炭素(CO)、炭酸(HCO)、炭酸水素イオン(HCO )、炭酸イオン(CO 2−)等であり、排水1中に通常含まれている。ただし、微細藻類2をより増殖させるには、溶存無機炭素源、すなわち排水1中で溶存無機炭素となりうる材料を排水1に投入してもよい。溶存無機炭素源としては、例えば炭酸ガス、各種炭酸塩等が挙げられる。炭酸塩は、例えばナトリウム塩、カリウム塩、カルシウム塩などであってもよい。なお、非特許文献5では、藻類の培養に炭酸塩を使用できることが開示されている。そこで、本発明者は、微細藻類2を炭酸塩で培養可能か検証したところ、特に問題なく培養できた。したがって、溶存無機炭素源として炭酸塩を使用可能である。 On the other hand, dissolved inorganic carbon is also required for culturing microalgae 2. Dissolved inorganic carbon, for example carbon dioxide (CO 2), and carbonate (H 2 CO 3), bicarbonate ions (HCO 3 -), a carbonate ion (CO 3 2-), etc., is usually included in the waste water 1 There is. However, in order to grow the microalgae 2 more, a dissolved inorganic carbon source, that is, a material that can become dissolved inorganic carbon in the wastewater 1, may be added to the wastewater 1. Examples of the dissolved inorganic carbon source include carbon dioxide gas and various carbonates. The carbonate may be, for example, a sodium salt, a potassium salt, a calcium salt, or the like. In addition, Non-Patent Document 5 discloses that carbonate can be used for culturing algae. Therefore, the present inventor verified whether the microalgae 2 could be cultivated with carbonate, and was able to cultivate without any particular problem. Therefore, carbonate can be used as a dissolved inorganic carbon source.

溶存無機炭素源の投入量、投入方法は特に制限されず、公知の藻類培養方法で採用されている投入量、投入方法を本実施形態でも適用可能である。例えば、溶存無機炭素源として炭酸ガスを排水1中に投入する場合、藻類培養槽3の底部に散気管を配置し、この散気管から炭酸ガスを排水1中に投入(供給)してもよい。また、炭酸ガスのガス流量は、例えば0.25vvm(volume gas per volume broth per min)程度であってもよい(非特許文献8参照)。 The introduced amount and method of adding the dissolved inorganic carbon source are not particularly limited, and the added amount and method adopted in the known algae culture method can also be applied to this embodiment. For example, when carbon dioxide gas is introduced into the drainage 1 as a dissolved inorganic carbon source, an air diffuser may be arranged at the bottom of the algae culture tank 3 and carbon dioxide gas may be introduced (supplied) into the drainage 1 from the air diffuser. .. Further, the gas flow rate of carbon dioxide gas may be, for example, about 0.25 vvm (volume gas per volume birth per min) (see Non-Patent Document 8).

また、藻類培養槽3には、微細藻類の呼吸に必要な酸素が投入される。酸素の投入方法は特に制限されない。例えば、上述した散気管から空気を排水1中に投入することで、空気中の酸素を藻類培養槽3に投入してもよい。ここで、溶存無機炭素源として炭酸ガスを使用する場合、炭酸ガス及び空気の混合ガス中に占める炭酸ガスの体積比は、例えば、0.2〜5体積%であってもよい(非特許文献8参照)。 Further, oxygen necessary for respiration of microalgae is input to the algae culture tank 3. The method of adding oxygen is not particularly limited. For example, oxygen in the air may be introduced into the algae culture tank 3 by introducing air into the drainage 1 from the above-mentioned air diffuser pipe. Here, when carbon dioxide gas is used as the dissolved inorganic carbon source, the volume ratio of carbon dioxide gas to the mixed gas of carbon dioxide gas and air may be, for example, 0.2 to 5% by volume (Non-Patent Document). 8).

また、微細藻類2の培養にはリンも必要である。排水1として活性汚泥処理水を使用する場合、活性汚泥処理水には、通常0〜1mg−P/L程度のリンが含まれるものの、活性汚泥槽の活性汚泥の状態によっては、ほとんどリンが残っていない可能性もある。したがって、排水1中のリンが不足している場合、排水1にリン源(例えばリン酸)を投入してもよい。後述する実施例4に示されるように、藻類培養槽3中のリン濃度は、1mg−P/L以上であることが好ましい。なお、藻類培養槽3中のリン濃度は、JIS K1020 46.1.1 モリブデン青吸光光度法等によって測定可能である。 Phosphorus is also required for culturing microalgae 2. When activated sludge treated water is used as wastewater 1, the activated sludge treated water usually contains about 0 to 1 mg-P / L of phosphorus, but most of the phosphorus remains depending on the state of the activated sludge in the activated sludge tank. It may not be. Therefore, when the phosphorus in the wastewater 1 is insufficient, a phosphorus source (for example, phosphoric acid) may be added to the wastewater 1. As shown in Example 4 described later, the phosphorus concentration in the algae culture tank 3 is preferably 1 mg-P / L or more. The phosphorus concentration in the algae culture tank 3 can be measured by JIS K1020 46.1.1 molybdenum blue absorptiometry or the like.

また、後述する実施例6に示されるように、藻類培養槽3中のアンモニア態窒素濃度とリン濃度の質量比(以下、「N/P質量比」とも称する)は16.7〜300であることが望ましい。一般にレッドフィールド比においてN/P質量比は16とされている。これよりリン濃度が高すぎると、すなわちN/P質量比が低すぎると、安水処理水のようなカルシウム塩を多く含む処理水を使用して微細藻類2を培養する場合に、リン酸カルシウム塩による白濁が発生する場合がある。そして、藻類培養槽3中に白濁が発生した場合、これらの白濁によって光が遮蔽されることから、微細藻類の増殖が抑制される。よって、N/P質量比は一定値以上であることが好ましい。さらに、リン濃度は最低限必要な量を添加して調整すれば良く、添加するリンが多すぎると、コストが高くなる。よって、リン濃度は少ない方が、すなわち、N/P質量比は高い方がコスト的に好ましい。さらに、後述する実施例6に示されるように、リン濃度が1mg−P/L以上であっても、N/P比が300より高くなると藻類濃度または比増殖速度に影響を与えることから、N/P質量比には一定の好ましい上限値が存在する。そのため、N/P質量比は上述の一定の範囲内に調整されることが望ましい。具体的には、上述したように、N/P質量比は16.7〜300であることが望ましい。なお、藻類培養槽3には、アンモニア態窒素濃度が非常に高い排水1(例えば活性汚泥処理水)が投入される。したがって、藻類培養槽3中のアンモニア態窒素濃度は非常に高いので、N/P質量比の調整は藻類培養槽3にリン源(例えばリン酸)を投入することで行われればよい。また、例えばリン源を投入しすぎた場合等のように、N/P質量比を増大させたい場合もある。この場合、藻類培養槽3にアンモニア源(例えば塩化アンモニウム、硫酸アンモニウム等の固体または溶液)を投入してもよい。 Further, as shown in Example 6 described later, the mass ratio of the ammonia nitrogen concentration to the phosphorus concentration (hereinafter, also referred to as “N / P mass ratio”) in the algae culture tank 3 is 16.7 to 300. Is desirable. Generally, the N / P mass ratio is 16 in the Redfield ratio. If the phosphorus concentration is too high, that is, the N / P mass ratio is too low, the calcium phosphate salt is used when culturing the microalgae 2 using treated water containing a large amount of calcium salt such as cheap water treated water. White turbidity may occur. When white turbidity occurs in the algae culture tank 3, the light is blocked by these white turbidity, so that the growth of microalgae is suppressed. Therefore, the N / P mass ratio is preferably a certain value or more. Further, the phosphorus concentration may be adjusted by adding a minimum required amount, and if too much phosphorus is added, the cost increases. Therefore, it is preferable in terms of cost that the phosphorus concentration is low, that is, the N / P mass ratio is high. Further, as shown in Example 6 described later, even if the phosphorus concentration is 1 mg-P / L or more, if the N / P ratio is higher than 300, the algae concentration or the specific growth rate is affected. There is a certain preferred upper limit for the / P mass ratio. Therefore, it is desirable that the N / P mass ratio be adjusted within the above-mentioned constant range. Specifically, as described above, the N / P mass ratio is preferably 16.7 to 300. In addition, wastewater 1 (for example, activated sludge treated water) having a very high ammonia nitrogen concentration is put into the algae culture tank 3. Therefore, since the concentration of ammonia nitrogen in the algae culture tank 3 is very high, the N / P mass ratio may be adjusted by charging a phosphorus source (for example, phosphoric acid) into the algae culture tank 3. In addition, there are cases where it is desired to increase the N / P mass ratio, for example, when a phosphorus source is added too much. In this case, an ammonia source (for example, a solid or solution of ammonium chloride, ammonium sulfate, etc.) may be charged into the algae culture tank 3.

藻類培養槽3自体の形状は特に制限されない。例えば、藻類培養槽3は、下水処理場、工場排水処理場で設計されている直方体型または円筒形のものが望ましいが、これらに限定されない。また、藻類培養槽3内の微細藻類が増大してくると、微細藻類全体に溶存無機炭素が行き渡りにくくなる。そこで、藻類培養槽3には、撹拌装置が設けられてもよい。また、藻類培養槽3が大容量であっても、水、窒素、光、リン、溶存無機炭素源が適切に微細藻類2に供給されれば微細藻類2の培養は可能である。しかし、特に光については藻類培養槽3の底部まで届きにくくなることが考えられる。その場合は、非特許文献9に記載のある開放系ポンドシステムのうち、水深が0.3m程度のループ循環式水路を設けたレースウェイ式培養池を藻類培養槽3とすることで、太陽光を十分に底部まで届かせることができる。 The shape of the algae culture tank 3 itself is not particularly limited. For example, the algae culture tank 3 is preferably, but is not limited to, a rectangular parallelepiped type or a cylindrical one designed in a sewage treatment plant or a factory wastewater treatment plant. Further, as the number of microalgae in the algae culture tank 3 increases, it becomes difficult for dissolved inorganic carbon to spread throughout the microalgae. Therefore, the algae culture tank 3 may be provided with a stirring device. Further, even if the algae culture tank 3 has a large capacity, the microalgae 2 can be cultured if water, nitrogen, light, phosphorus, and a dissolved inorganic carbon source are appropriately supplied to the microalgae 2. However, it is considered that it is difficult for light to reach the bottom of the algae culture tank 3. In that case, among the open pond systems described in Non-Patent Document 9, the raceway type culture pond provided with the loop circulation type water channel having a water depth of about 0.3 m is used as the algae culture tank 3 to generate sunlight. Can reach the bottom sufficiently.

光源4は、藻類培養槽3中の微細藻類に光を供給するものである。ここで、光源4から放射される光の波長は、微細藻類が光合成するのに必要な波長を含むことが望ましい。光源4としては、例えば、白熱灯、蛍光灯、LED(発光ダイオード)などが望ましいが、これらに制限されるものではない。なお、光源4から光を照射する代わりに、太陽光を微細藻類2に照射してもよい。この場合、光源4は必ずしも培養装置に設けなくても良い。 The light source 4 supplies light to the microalgae in the algae culture tank 3. Here, it is desirable that the wavelength of the light emitted from the light source 4 includes the wavelength required for photosynthesis by microalgae. As the light source 4, for example, an incandescent lamp, a fluorescent lamp, an LED (light emitting diode), or the like is desirable, but the light source 4 is not limited thereto. Instead of irradiating the light from the light source 4, the fine algae 2 may be irradiated with sunlight. In this case, the light source 4 does not necessarily have to be provided in the culture apparatus.

なお、後述する実施例2に示されるように、本発明者は、光の光量子密度は60μmol/m/秒以上で藻類が大きく増加したことを見出した。よって、光の光量子密度は60μmol/m/秒以上が望ましい。また、光量子密度の上限値は特に指定しないが、非特許文献12には太陽光の日中ピークが2,000μmol/m/秒と記載されており、特許文献7には日光が当たりすぎの部位は強光阻害により増殖が停滞することが記載されていることから、およそ2,000μmol/m/秒程度が強行阻害を起こさない上限の目安と言える。ただし、この光量子密度は藻類直近におけるものである。なお、光量子密度は、例えば藤原製作所社製光量子計MQ−200を用いて測定を行うことができる。 As shown in Example 2 described later, the present inventor found that the photon density of light was 60 μmol / m 2 / sec or more and the algae increased significantly. Therefore, the photon density of light is preferably 60 μmol / m 2 / sec or more. Further, although the upper limit of the photon density is not particularly specified, Non-Patent Document 12 describes that the daytime peak of sunlight is 2,000 μmol / m 2 / sec, and Patent Document 7 is exposed to excessive sunlight. Since it is described that the site is stagnant due to strong light inhibition, it can be said that about 2,000 μmol / m 2 / sec is an upper limit that does not cause forced inhibition. However, this photon density is the latest in algae. The photon density can be measured using, for example, a photon meter MQ-200 manufactured by Fujiwara Seisakusho Co., Ltd.

藻類培養槽3内で微細藻類2が培養された後、排水1は、微細藻類2とともに固液分離層5に投入される。固液分離層5では、排水1及び微細藻類2の混合物が排水1と微細藻類2とに分離される。分離後の排水1は、処理完了水6として装置外に排出される。なお、固液分離層5は、培養装置が連続処理(微細藻類2を連続的に培養する処理)を行う場合に、培養装置に備えられる。したがって、培養装置がバッヂ処理を行う場合、固液分離層5は培養装置に備えられなくても良い。 After the microalgae 2 are cultivated in the algae culture tank 3, the waste water 1 is charged into the solid-liquid separation layer 5 together with the microalgae 2. In the solid-liquid separation layer 5, the mixture of wastewater 1 and microalgae 2 is separated into wastewater 1 and microalgae 2. The wastewater 1 after separation is discharged to the outside of the apparatus as the treatment completed water 6. The solid-liquid separation layer 5 is provided in the culture device when the culture device performs continuous treatment (treatment for continuously culturing the microalgae 2). Therefore, when the culture device performs the badge treatment, the solid-liquid separation layer 5 does not have to be provided in the culture device.

<2.微細藻類の培養方法>
つぎに、図1に示す培養装置を用いた微細藻類の培養方法を説明する。まず、藻類培養槽3に、排水1、及び微細藻類2を投入する。ついで、微細藻類2に光源4から光を照射する。これにより、藻類培養槽3中で微細藻類2が培養される。微細藻類2の生育状況に応じて、光源4からの光量を適宜調整してもよい。ついで、排水1は、微細藻類2とともに固液分離層5に投入される。固液分離層5では、排水1及び微細藻類2の混合物が排水1と微細藻類2とに分離される。分離後の排水1は、処理完了水6として装置外に排出される。
<2. Microalgae culture method>
Next, a method for culturing microalgae using the culturing apparatus shown in FIG. 1 will be described. First, the drainage 1 and the microalgae 2 are put into the algae culture tank 3. Then, the microalgae 2 are irradiated with light from the light source 4. As a result, the microalgae 2 are cultured in the algae culture tank 3. The amount of light from the light source 4 may be appropriately adjusted according to the growth condition of the microalgae 2. Then, the waste water 1 is charged into the solid-liquid separation layer 5 together with the fine algae 2. In the solid-liquid separation layer 5, the mixture of wastewater 1 and microalgae 2 is separated into wastewater 1 and microalgae 2. The wastewater 1 after separation is discharged to the outside of the apparatus as the treatment completed water 6.

このように、本実施形態によれば、アンモニア態窒素を100mg−N/L以上で含む排水1を用いて微細藻類2を培養することができる。 As described above, according to the present embodiment, the microalgae 2 can be cultured using the waste water 1 containing ammonia nitrogen at 100 mg-N / L or more.

(実施例1:活性汚泥処理水を用いたナンノクロロプシスの増殖)
つぎに、本発明の実施例を説明する。実施例1では、微細藻類2としてナンノクロロプシス属の微細藻類(マリンテック社のマリーンフレッシュ)を培養した。具体的には、培養チューブ容器に微細藻類2を1.0×10cell/mL程度となるよう添加した後、培養チューブ容器に活性汚泥処理水を10mL入れた。ここで、微細藻類2の濃度(cell/mL)は、培養液を希釈したものを、生物顕微鏡(オリンパス株式会社製BX43)で血球計算盤を用いて直接計数を行うことで測定した。また、活性汚泥処理水中のアンモニア態窒素濃度をインドフェノール青吸光光度法により測定したところ、アンモニア態窒素濃度は188mg−N/Lであった。また、活性汚泥処理水中のリン濃度をモリブデン青吸光光度法により測定したところ、リン濃度は0.18mg/Lであった。ついで、培養チューブ内の光量子密度を60μmol/m/秒、光照射周期を12時間明期/12時間暗期、水温を30℃として微細藻類2の培養を行った。これらの培養条件は培養中で一定とした。光量子密度の測定は藤原製作所社製光量子計MQ−200を用いて行った。その結果、培養開始から2週間で、藻類濃度は1.0×10cell/mLから7.0×10cell/mLに増加した。測定結果を図2に示す。このことから、ナンノクロロプシスを活性汚泥処理水で培養させることが可能であることがわかった。
(Example 1: Propagation of nannochloropsis using activated sludge treated water)
Next, examples of the present invention will be described. In Example 1, microalgae of the genus Nannochloropsis (Marine Fresh of Marine Tech Co., Ltd.) were cultivated as microalgae 2. Specifically, after adding microalgae 2 to the culture tube container so as to have a concentration of about 1.0 × 10 4 cell / mL, 10 mL of activated sludge-treated water was placed in the culture tube container. Here, the concentration (cell / mL) of the microalgae 2 was measured by directly counting the diluted culture solution with a biological microscope (BX43 manufactured by Olympus Corporation) using a hemocytometer. Moreover, when the ammonia nitrogen concentration in the activated sludge treated water was measured by the indophenol blue absorptiometry, the ammonia nitrogen concentration was 188 mg-N / L. Moreover, when the phosphorus concentration in the activated sludge-treated water was measured by the molybdenum blue absorptiometry, the phosphorus concentration was 0.18 mg / L. Then, the microalgae 2 was cultured with the photon density in the culture tube set to 60 μmol / m 2 / sec, the light irradiation cycle set to 12 hours light period / 12 hours dark period, and the water temperature set to 30 ° C. These culture conditions were constant during the culture. The photon density was measured using a photon meter MQ-200 manufactured by Fujiwara Seisakusho. As a result, the algae concentration increased from 1.0 × 10 4 cell / mL to 7.0 × 10 4 cell / mL within 2 weeks from the start of the culture. The measurement results are shown in FIG. From this, it was found that Nannochloropsis can be cultured in activated sludge-treated water.

(実施例2:活性汚泥処理水中に生息する微細藻類の活性汚泥処理水を用いた増殖)
実施例2では、微細藻類2としてChlorococcalesを培養した。具体的には、培養チューブ容器に微細藻類2を2.2×10cell/mL程度となるよう添加した後、培養チューブ容器に活性汚泥処理水10mLを入れた。活性汚泥処理水のアンモニア態窒素濃度は188mg−N/L、リン濃度は0.18mg/Lであった。ついで、培養チューブ内の光量子密度を60μmol/m/秒、光照射周期を12時間明期/12時間暗期、水温を30℃として培養を行った。これらの培養条件は培養中で一定とした。その結果、培養開始から2週間で、藻類濃度は2.2×10cell/mLから4.4×10cell/mL程度に増加した。測定結果を図3に示す。このことから、Chlorococcalesを活性汚泥処理水で培養させることが可能であることがわかった。
(Example 2: Propagation of microalgae living in activated sludge treated water using activated sludge treated water)
In Example 2, Chlorococcales were cultured as microalgae 2. Specifically, after adding microalgae 2 to the culture tube container so as to have a concentration of about 2.2 × 10 4 cells / mL, 10 mL of activated sludge-treated water was placed in the culture tube container. The ammonia nitrogen concentration of the activated sludge treated water was 188 mg-N / L, and the phosphorus concentration was 0.18 mg / L. Then, the culture was carried out with the photon density in the culture tube set to 60 μmol / m 2 / sec, the light irradiation cycle set to 12 hours light period / 12 hours dark period, and the water temperature set to 30 ° C. These culture conditions were constant during the culture. As a result, the algae concentration increased from 2.2 × 10 4 cell / mL to about 4.4 × 10 4 cell / mL within 2 weeks from the start of the culture. The measurement results are shown in FIG. From this, it was found that Chlorococcales can be cultured in activated sludge-treated water.

(実施例3:活性汚泥処理水を用いたナンノクロロプシスの増殖における光量子密度検討)
実施例3では、培養チューブ容器内の光量子密度のみを段階的に変化させた他は、実施例1と同様の試験を行った。すなわち、実施例3では、光量子密度のナンノクロロプシスの増殖への影響を検討した。光量子密度は42、52、60、74、85μmol/m/秒とし、各光量子密度の条件下で2週間培養を行った。その結果、藻類濃度は2.5×10cell/mLから最大で4.8×10cell/mLに増加し、光量子密度に応じて藻類が増加した。測定結果を図4に示す。また、光量子密度52μmol/m/秒と60μmol/m/秒の間において、藻類が大きく増加した。このことから、ナンノクロロプシスを培養するための光量子密度は、60μmol/m/秒以上が好ましいことが分かった。
(Example 3: Examination of photon density in growth of nannochloropsis using activated sludge treated water)
In Example 3, the same test as in Example 1 was carried out except that only the photon density in the culture tube container was changed stepwise. That is, in Example 3, the effect of photon density on the growth of nannochloropsis was examined. The photon densities were 42, 52, 60, 74 and 85 μmol / m 2 / sec, and the cells were cultured for 2 weeks under the conditions of each photon density. As a result, the algae concentration increased from 2.5 × 10 4 cell / mL to a maximum of 4.8 × 10 5 cell / mL, and the algae increased according to the photon density. The measurement results are shown in FIG. In addition, algae increased significantly between the photon densities of 52 μmol / m 2 / sec and 60 μmol / m 2 / sec. From this, it was found that the photon density for culturing Nannochloropsis is preferably 60 μmol / m 2 / sec or more.

(実施例4:活性汚泥処理水を用いたナンノクロロプシス及びChlorococcalesの増殖におけるリン酸添加検討)
つぎに、ナンノクロロプシス及びChlorococcalesの培養量とリン濃度との相関について検討した。具体的には、ナンノクロロプシス及びChlorococcalesをそれぞれ別々の培養チューブ容器に投入した。ナンノクロロプシスの投入量は、1.0×10cell/mL程度、Chlorococcalesの投入量は2.1×10cell/mL程度とした。次に、各培養チューブ容器に活性汚泥処理水10mLを入れた。活性汚泥処理水のアンモニア態窒素濃度は188mg−N/L、リン濃度は0.18mg/Lであった。さらに、各培養チューブ容器に1mg−P/L相当量のリン酸を添加した。そして、培養チューブ内の光量子密度を60μmol/m/秒、光照射周期を12時間明期/12時間暗期、水温を30℃として培養を2週間行った。これらの培養条件は培養中で一定とした。また、リン酸の添加量を0(添加なし)、2、5、10mg−P/Lに変更して同様の試験を行った。ナンノクロロプシスに関する測定結果を図5に、Chlorococcalesに関する測定結果を図6に示す。
(Example 4: Examination of addition of phosphoric acid in the growth of nannochloropsis and Chlorococcales using activated sludge treated water)
Next, the correlation between the culture amount of nannochloropsis and Chlorococcales and the phosphorus concentration was examined. Specifically, Nannochloropsis and Chlorococcales were placed in separate culture tube containers. The input amount of nannochloropsis was about 1.0 × 10 4 cells / mL, and the input amount of Chlorococcales was about 2.1 × 10 4 cells / mL. Next, 10 mL of activated sludge-treated water was placed in each culture tube container. The ammonia nitrogen concentration of the activated sludge treated water was 188 mg-N / L, and the phosphorus concentration was 0.18 mg / L. Further, 1 mg-P / L equivalent of phosphoric acid was added to each culture tube container. Then, the culture was carried out for 2 weeks with the photon density in the culture tube being 60 μmol / m 2 / sec, the light irradiation cycle being 12 hours light period / 12 hours dark period, and the water temperature being 30 ° C. These culture conditions were constant during the culture. Further, the same test was conducted by changing the addition amount of phosphoric acid to 0 (without addition), 2, 5, and 10 mg-P / L. The measurement result for nannochloropsis is shown in FIG. 5, and the measurement result for Chlorococcales is shown in FIG.

その結果、リン酸濃度が1mg−P/L以上となる培養条件化では、リン酸添加量に関わらず、培養開始から2週間後のナンノクロロプシス濃度は1.0×10cell/mLから3.4×10cell/mL以上まで増加した。また、Chlorococcales濃度は、2.1×10cell/mLから2.4×10cell/mL程度に増加した。なお、リン酸添加量がゼロとなる場合にも微細藻類は培養されている。この場合、微細藻類は、活性汚泥処理水中に含まれていたリンによって培養されたと推定される。これらのことから、ナンノクロロプシス及びChlorococcalesを培養するための培養液(実施形態中の排水1に相当)中のリン濃度は、1mg−P/L以上であることが好ましいことが分かった。 As a result, under the culture conditions where the phosphoric acid concentration was 1 mg-P / L or more, the nannochloropsis concentration 2 weeks after the start of the culture was 1.0 × 10 4 cell / mL regardless of the amount of phosphoric acid added. It increased to 3.4 × 10 5 cell / mL or more. In addition, the Chlorococcales concentration increased from 2.1 × 10 4 cell / mL to about 2.4 × 10 5 cell / mL. Even when the amount of phosphoric acid added is zero, microalgae are cultivated. In this case, it is presumed that the microalgae were cultivated by phosphorus contained in the activated sludge-treated water. From these facts, it was found that the phosphorus concentration in the culture medium (corresponding to the waste water 1 in the embodiment) for culturing Nannochloropsis and Chlorococcales is preferably 1 mg-P / L or more.

(実施例5:活性汚泥処理水を用いたChlorella sp.の増殖)
実施例5では、微細藻類2として活性汚泥処理水中に生息する微細藻類を分取し、分取した微細藻類を、活性汚泥処理水を培地として複数回継代した。これにより、Chlorella sp.を優占化させた。具体的には、活性汚泥処理水中に生息する微細藻類を数mL分取した。そして、1Lの培養容器に培地となる活性汚泥処理水800mlと、分取した微細藻類を投入した。そして、活性汚泥処理水800mL、光量子密度60μmol/m/秒、光照射周期12時間明期/12時間暗期、水温30℃の培養条件で微細藻類2を培養した。微細藻類2の培養は、微細藻類2の濃度が十分な藻類濃度になるまで行った。さらに、培養容器から微細藻類を数mL分取し、同様の培養条件で培養を行った。このような培養処理を複数回実施し、継代を行った。継代後の微細藻類2、すなわちChlorella sp.を1Lの培養容器に投入した。その後、培養容器に活性汚泥処理水を投入し、Chlorella sp.の濃度を1.0×10cell/mL程度とした。活性汚泥処理水のアンモニア態窒素濃度は188mg−N/L、リン濃度は0.18mg−P/Lであった。さらに、培養容器に1mg−P/L相当量のリン酸を添加した。そして、培養容器内の光量子密度60μmol/m/秒、光照射周期12時間明期/12時間暗期、水温30℃とした培養条件でChlorella sp.の培養を2週間行った。これらの培養条件は培養中で一定とした。その結果、培養開始から2週間で、藻類濃度は1.0×10cell/mLから4.3×10cell/mL程度に増加した。このことから、優占化したChlorella sp.を用いて活性汚泥処理水で培養させることにより、珪藻、糸状菌、原生動物などを含まない純度の高い藻類を得ることができ、コンタミネーションを排除できることがわかった。すなわち、より高い増殖量および増殖速度が得られた。
(Example 5: Propagation of Chlorella sp. Using activated sludge treated water)
In Example 5, microalgae living in the activated sludge-treated water were separated as microalgae 2, and the separated microalgae were subcultured a plurality of times using the activated sludge-treated water as a medium. As a result, Chlorella sp. Was made dominant. Specifically, several mL of microalgae living in activated sludge-treated water were collected. Then, 800 ml of activated sludge-treated water as a medium and the separated microalgae were put into a 1 L culture container. Then, the microalgae 2 was cultured under the culture conditions of 800 mL of activated sludge-treated water, a photon density of 60 μmol / m 2 / sec, a light irradiation cycle of 12 hours in the light period / 12 hours in the dark period, and a water temperature of 30 ° C. The culture of microalgae 2 was carried out until the concentration of microalgae 2 became a sufficient concentration of algae. Furthermore, several mL of microalgae were taken from the culture vessel and cultured under the same culture conditions. Such a culture treatment was carried out a plurality of times, and subculture was performed. Subcultured microalgae 2, ie Chlorella sp. Was put into a 1 L culture vessel. Then, the activated sludge-treated water was put into the culture vessel, and Chlorella sp. The concentration of was about 1.0 × 10 4 cell / mL. The ammonia nitrogen concentration of the activated sludge treated water was 188 mg-N / L, and the phosphorus concentration was 0.18 mg-P / L. Further, 1 mg-P / L equivalent of phosphoric acid was added to the culture vessel. Then, under the culture conditions that the photon density in the culture vessel was 60 μmol / m 2 / sec, the light irradiation cycle was 12 hours light period / 12 hours dark period, and the water temperature was 30 ° C., Chlorella sp. Was cultured for 2 weeks. These culture conditions were constant during the culture. As a result, the algae concentration increased from 1.0 × 10 4 cell / mL to about 4.3 × 10 6 cell / mL within 2 weeks from the start of the culture. From this, the dominant Chlorella sp. It was found that high-purity algae containing no diatoms, filamentous fungi, protozoa, etc. can be obtained and contamination can be eliminated by culturing in activated sludge-treated water. That is, a higher growth rate and growth rate were obtained.

(実施例6:活性汚泥処理水を用いたナンノクロロプシスおよびChlorella sp.の増殖におけるN/P質量比検討)
実施例6では、微細藻類2としてナンノクロロプシスおよびChlorella sp.をそれぞれ別々の1Lの培養容器に投入した。Chlorella sp.は実施例5と同様の方法で得たものを用いた。ナンノクロロプシスの投入量は、1.0×10cell/mL程度、Chlorella sp.の投入量は2.1×10cell/mL程度とした。次に、各培養容器に活性汚泥処理水を入れ、アンモニア態窒素濃度を100〜1000mg−N/L、リン濃度を1〜6mg−P/L、すなわちN/P質量比を16.7〜1000に調整した。ここで、アンモニア態窒素の濃度は塩化アンモニウム溶液によって調整した。リン濃度は、リン酸の培養容器への投入量を調整することで調整した。
(Example 6: N / P mass ratio examination in the growth of nannochloropsis and Chlorella sp. Using activated sludge treated water)
In Example 6, as microalgae 2, Nannochloropsis and Chlorella sp. Was placed in separate 1 L culture containers. Chlorella sp. Was obtained by the same method as in Example 5. The input amount of nannochloropsis was about 1.0 × 10 4 cell / mL, Chlorella sp. The input amount of was about 2.1 × 10 4 cell / mL. Next, activated sludge-treated water was placed in each culture vessel, and the ammonia nitrogen concentration was 100 to 1000 mg-N / L, the phosphorus concentration was 1 to 6 mg-P / L, that is, the N / P mass ratio was 16.7 to 1000. Adjusted to. Here, the concentration of ammonia nitrogen was adjusted with an ammonium chloride solution. The phosphorus concentration was adjusted by adjusting the amount of phosphoric acid charged into the culture vessel.

そして、各培養容器内の光量子密度60μmol/m/秒、光照射周期12時間明期/12時間暗期、水温30℃として微細藻類2の培養を2週間行った。これらの培養条件は培養中で一定とした。培養開始から2週間経過した後、藻類濃度および比増殖速度を比較した。この結果を図7に示す。図7(a)に示すように、ナンノクロロプシスの濃度は1.0×10cell/mLから最大1.2×10cell/mL程度に増加した。一方、図7(b)に示すように、Chlorella sp.の濃度は2.1×10cell/mLから最大7.3×10cell/mL程度に増加した。N/P質量比と藻類濃度及び比増殖速度との対応関係をみると、N/P質量比が16.7〜300となる場合にナンノクロロプシスの濃度は平均(算術平均)で9×10cell/mL程度、比増殖速度は平均(算術平均)で0.5(1/d)程度であった。一方、N/P質量比16.7〜300がとなる場合にChlorella sp.の濃度は3.3×10cell/mL〜7.3×10cell/mLと開きがあるものの濃度としては十分であり、かつ、比増殖速度は平均1.0(1/d)程度であった。一方、N/P質量比が500〜1,000の条件では、いずれの藻類においても藻類濃度および比増殖速度が低下する傾向が見られた。このことから、良好な藻類濃度及び/または比増殖速度が得られるN/P質量比は16.7〜300であることがわかった。 Then, the microalgae 2 was cultured for 2 weeks at a photon density of 60 μmol / m 2 / sec in each culture vessel, a light irradiation cycle of 12 hours in a light period / 12 hours in a dark period, and a water temperature of 30 ° C. These culture conditions were constant during the culture. Two weeks after the start of culturing, the algae concentration and specific growth rate were compared. The result is shown in FIG. As shown in FIG. 7A, the concentration of nannochloropsis increased from 1.0 × 10 4 cell / mL to a maximum of about 1.2 × 10 6 cell / mL. On the other hand, as shown in FIG. 7 (b), Chlorella sp. The concentration of was increased from 2.1 × 10 4 cell / mL to a maximum of about 7.3 × 10 6 cell / mL. Looking at the correspondence between the N / P mass ratio and the algae concentration and specific growth rate, when the N / P mass ratio is 16.7 to 300, the average concentration of nannochloropsis is 9 × 10 (arithmetic mean). The specific growth rate was about 5 cell / mL, and the average (arithmetic mean) was about 0.5 (1 / d). On the other hand, when the N / P mass ratio is 16.7 to 300, Chlorella sp. The concentration of is 3.3 × 10 6 cell / mL to 7.3 × 10 6 cell / mL, which is sufficient as a concentration, and the specific growth rate is about 1.0 (1 / d) on average. Met. On the other hand, under the condition that the N / P mass ratio was 500 to 1,000, the algae concentration and the specific growth rate tended to decrease in all the algae. From this, it was found that the N / P mass ratio at which a good algae concentration and / or specific growth rate was obtained was 16.7 to 300.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person having ordinary knowledge in the field of technology to which the present invention belongs can come up with various modifications or modifications within the scope of the technical ideas described in the claims. , These are also naturally understood to belong to the technical scope of the present invention.

1 排水
2 微細藻類
3 藻類培養槽
4 光源
5 固液分離槽
6 処理完了水

1 Drainage 2 Fine algae 3 Algae culture tank 4 Light source 5 Solid-liquid separation tank 6 Treatment completed water

Claims (5)

コークスの製造工程において排出される排水を含む安水を活性汚泥処理することで得られる活性汚泥処理水から分取され、前記活性汚泥処理水を培地として増殖させた微細藻類であるChlorella sp.、及びアンモニア態窒素を100mg−N/L以上含む前記活性汚泥処理水を藻類培養槽に投入し、且つ前記微細藻類に光を照射することを特徴とする微細藻類の培養方法。 Chlorella sp. Is a microalga that is separated from activated sludge-treated water obtained by treating cheap water containing wastewater discharged in the coke manufacturing process with activated sludge and grown using the activated sludge-treated water as a medium . A method for culturing microalgae, which comprises putting the activated sludge-treated water containing 100 mg-N / L or more of ammonia nitrogen into an algae culture tank and irradiating the microalgae with light. 前記藻類培養槽のN/P質量比が16〜300であることを特徴とする、請求項に記載の微細藻類の培養方法。 The method for culturing microalgae according to claim 1 , wherein the N / P mass ratio of the algae culture tank is 16 to 300. 前記藻類培養槽に、溶存無機炭素源を添加することを特徴とする、請求項1または2に記載の微細藻類の培養方法。 The method for culturing microalgae according to claim 1 or 2 , wherein a dissolved inorganic carbon source is added to the algae culture tank. 前記光の光量子密度が60μmol/m/秒以上であることを特徴とする、請求項1〜のいずれか1項に記載の微細藻類の培養方法。 The method for culturing microalgae according to any one of claims 1 to 3 , wherein the photon density of the light is 60 μmol / m 2 / sec or more. 前記藻類培養槽に、リン酸塩を添加することを特徴とする、請求項1〜のいずれか1項に記載の微細藻類の培養方法。 The method for culturing microalgae according to any one of claims 1 to 4 , wherein a phosphate is added to the algae culture tank.
JP2015171671A 2015-04-02 2015-09-01 Microalgae culture method Active JP6763123B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015075964 2015-04-02
JP2015075964 2015-04-02

Publications (2)

Publication Number Publication Date
JP2016195586A JP2016195586A (en) 2016-11-24
JP6763123B2 true JP6763123B2 (en) 2020-09-30

Family

ID=57357111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015171671A Active JP6763123B2 (en) 2015-04-02 2015-09-01 Microalgae culture method

Country Status (1)

Country Link
JP (1) JP6763123B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6218096B1 (en) * 2016-12-31 2017-10-25 甲斐水産有限会社 Nannochloropsis and its production method.
US11219218B2 (en) * 2018-05-07 2022-01-11 Boise State University Methods of enhancing algae production
CN109355278B (en) * 2018-10-31 2022-03-25 浙江海洋大学 Preparation method of immobilized phycomycete pellet material for degrading PAHs in seawater

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113160A (en) * 1974-07-23 1976-02-02 Asahi Chemical Ind Soruinyoruhaisuino shorihoho
JPH10155478A (en) * 1996-11-27 1998-06-16 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Optimum composition culture medium for algae of chlorophyceae
JP4570069B2 (en) * 2004-01-30 2010-10-27 新日本製鐵株式会社 Method for removing ammonia nitrogen from wastewater

Also Published As

Publication number Publication date
JP2016195586A (en) 2016-11-24

Similar Documents

Publication Publication Date Title
Xie et al. Biodiesel production with the simultaneous removal of nitrogen, phosphorus and COD in microalgal-bacterial communities for the treatment of anaerobic digestion effluent in photobioreactors
Blair et al. Light and growth medium effect on Chlorella vulgaris biomass production
Kang et al. Nutrient removal and community structure of wastewater-borne algal-bacterial consortia grown in raw wastewater with various wavelengths of light
Aravantinou et al. Selection of microalgae for wastewater treatment and potential lipids production
Massa et al. Evaluation of anaerobic digestates from different feedstocks as growth media for Tetradesmus obliquus, Botryococcus braunii, Phaeodactylum tricornutum and Arthrospira maxima
Salgueiro et al. Bioremediation of wastewater using Chlorella vulgaris microalgae: Phosphorus and organic matter
JP2009536830A (en) New Chlorella species and their use
US20150329395A1 (en) Photobioreactor
Rezvani et al. Hydrogen producer microalgae in interaction with hydrogen consumer denitrifiers as a novel strategy for nitrate removal from groundwater and biomass production
JP6763123B2 (en) Microalgae culture method
Minggat et al. Nutrient absorption and biomass production by the marine diatom Chaetoceros muelleri: effects of temperature, salinity, photoperiod, and light intensity
KR101256773B1 (en) Purification of wastewater and increment of microalgae biomass by microalgae using wavelength selective irradiation of led
Garbowski et al. Algae proliferation on substrates immersed in biologically treated sewage
Amiri et al. Treatment of wastewater in sewer by Spirogyra sp. green algae: effects of light and carbon sources
Moreno Osorio et al. Nutrient removal from high strength nitrate containing industrial wastewater using Chlorella sp. strain ACUF_802
Randrianarison et al. Microalgae plant (Chlorella sp.) for wastewater treatment and energy production
Velichkova et al. Biomass production and wastewater treatment from aquaculture with Chlorella vulgaris under different carbon sources.
JP7020229B2 (en) Microalgae culture method and microalgae
Sirakov et al. The influence of organic carbon on bioremediation process of wastewater originate from aquaculture with use of microalgae from genera Botryococcus and Scenedesmus.
Nivetha et al. Utilization of sugarcane industry effluent for high value biomass and photosynthetic pigments production of Chlorella vulgaris (PSBDU06)
Tao et al. Microalgae production in human urine: Fundamentals, opportunities, and perspectives
Sohail et al. Microalgal treatment of high-nutrient wastewater using twin layer cultivation system
Plengsakul et al. Plastic media reduced algal wall-growth of Chlorococcum humicola for the cultivation in internal-loop airlift photobioreactor
Farahdiba et al. The feasibility of algae treatment treating fecal sludge wastewater at Surabaya, Indonesia
CN101835887A (en) Novel Chlorococcum (Pseudochlorococcum) species and uses thereof of intending

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180509

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190419

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200824

R151 Written notification of patent or utility model registration

Ref document number: 6763123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151