JP6760795B2 - Hydrogen generation system - Google Patents

Hydrogen generation system Download PDF

Info

Publication number
JP6760795B2
JP6760795B2 JP2016157662A JP2016157662A JP6760795B2 JP 6760795 B2 JP6760795 B2 JP 6760795B2 JP 2016157662 A JP2016157662 A JP 2016157662A JP 2016157662 A JP2016157662 A JP 2016157662A JP 6760795 B2 JP6760795 B2 JP 6760795B2
Authority
JP
Japan
Prior art keywords
water
unit
counter electrode
chamber
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016157662A
Other languages
Japanese (ja)
Other versions
JP2018023937A (en
Inventor
昌幸 長野
昌幸 長野
久保 晃一
晃一 久保
慎之介 吉本
慎之介 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Maxell Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd filed Critical Maxell Holdings Ltd
Priority to JP2016157662A priority Critical patent/JP6760795B2/en
Publication of JP2018023937A publication Critical patent/JP2018023937A/en
Application granted granted Critical
Publication of JP6760795B2 publication Critical patent/JP6760795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、浴槽などの水を保持する貯水部で水を電気分解して水素を生成し、水素を貯水部の水中に導入可能とする水素生成システムに関する。 The present invention relates to a hydrogen generation system in which water is electrolyzed in a water storage unit that holds water such as a bathtub to generate hydrogen, and hydrogen can be introduced into the water of the water storage unit.

供給された水道水や井戸水等を浄水処理した後、これらの水を電気分解して電解水、すなわち飲用水として利用可能なアルカリ性電解水を生成する電解水生成器(イオン整水器)はよく知られているが、こうした飲用用途以外に水の電気分解を利用するものとして、近年、浴槽の水に電気分解で得られた水素ガスや電解水を導入して、浴槽の水の還元力を高め、入浴した使用者の肌に対し、酸化抑制等の効果を生じさせることを目的とした装置が提案されている。こうした従来の電解水生成装置の例として、特開2006−122750号公報や特許第4497558号公報に開示されるものがある。 After purifying the supplied tap water, well water, etc., the electrolyzed water generator (ion water conditioner) that electrolyzes these water to generate electrolyzed water, that is, alkaline electrolyzed water that can be used as drinking water, is often used. Although it is known, in recent years, hydrogen gas or electrolyzed water obtained by electrolysis has been introduced into the water of the bathtub to improve the reducing power of the water in the bathtub as a means of utilizing the electrolysis of water other than such drinking purposes. A device has been proposed for the purpose of enhancing and producing an effect such as suppressing oxidation on the skin of a user who has taken a bath. Examples of such a conventional electrolyzed water generator include those disclosed in Japanese Patent Application Laid-Open No. 2006-122750 and Japanese Patent No. 4497558.

特開2006−122750号公報Japanese Unexamined Patent Publication No. 2006-122750 特許第4497558号公報Japanese Patent No. 4497558

従来の電解水生成装置は、前記特許文献に示される構成とされており、浴槽からいったん取り出した水を電解槽に投入して電気分解を行い、生じた電解水を含む水を浴槽に循環させるものとなっていたことから、電解槽から浴槽までの経路を流通する間に水素や電解水の効果が失われやすく、十分に効果を発揮させられないという課題を有していた。 The conventional electrolyzed water generator has the configuration shown in the above patent document, and the water once taken out from the bathtub is put into the electrolytic cell to perform electrolysis, and the water containing the generated electrolyzed water is circulated in the bathtub. Therefore, there was a problem that the effects of hydrogen and electrolyzed water were easily lost during the circulation from the electrolytic cell to the tub, and the effects could not be sufficiently exerted.

また、こうした従来の装置は、浴槽の外に電解槽や水を流通させるための配管等が必要となり、複雑な構造となることで、設置に手間やコストがかかるものとなっており、容易に導入できないという課題を有していた。 In addition, such a conventional device requires an electrolytic cell, piping for circulating water, etc. outside the bathtub, and has a complicated structure, which makes installation laborious and costly, and is easy. There was a problem that it could not be introduced.

本発明は前記課題を解消するためになされたもので、水のある貯水部の直近で水素を発生させることで、発生した水素を消失させることなく貯水部の水中に導入できると共に、構造も簡略化可能な、水素生成システムを提供することを目的とする。 The present invention has been made to solve the above-mentioned problems. By generating hydrogen in the immediate vicinity of a water storage section with water, the generated hydrogen can be introduced into the water of the water storage section without being lost, and the structure is simplified. The purpose is to provide a hydrogen generation system that can be converted.

本発明の開示に係る水素生成システムは、水又は湯が所定量保持される貯水部における水面位置より下側の壁又は底に当該壁又は底から外側に突出する配置として配設され、貯水部の壁又は底の開口部分を通じて貯水部の内側領域に連通する空隙部分を内部に設けられ、当該空隙部分に貯水部内の水又は湯を流通可能とされるチャンバー部と、水の電気分解用の陽極部と陰極部を対向状態としつつ交互に一又は複数並べて一体化して形成され、前記チャンバー部内に着脱可能に配設される対向電極部と、前記対向電極部の陽極部と陰極部間に水又は湯の流通状態を生じさせる水流発生手段とを備え、前記対向電極部に所定の給電手段より電力を供給して、少なくとも水素の気泡を発生させ、当該水素気泡をチャンバー部から貯水部内の水又は湯に導入するものである。 The hydrogen generation system according to the disclosure of the present invention is arranged on a wall or bottom below the water surface position in a water storage portion where a predetermined amount of water or hot water is held, and is arranged so as to project outward from the wall or bottom. A chamber portion is provided inside which communicates with the inner region of the water storage portion through the opening portion of the wall or the bottom of the water storage portion, and the water or hot water in the water storage portion can be circulated in the void portion, and for electrolysis of water. Between the counter electrode portion, which is formed by alternately arranging one or more of the anode portion and the cathode portion in a facing state and integrally arranged, and is detachably arranged in the chamber portion, and between the anode portion and the cathode portion of the counter electrode portion. A water flow generating means for generating a flow state of water or hot water is provided, and power is supplied to the counter electrode portion from a predetermined power feeding means to generate at least hydrogen bubbles, and the hydrogen bubbles are generated from the chamber portion to the water storage portion. It is introduced into water or hot water.

このように本発明の開示によれば、貯水部の水のある内側領域に面して設けられるチャンバー部内に電気分解用の対向電極部を設け、チャンバー部内に貯水部内の水を流通させて対向電極部各表面に電気分解に伴う気泡を発生させると共に、水流発生手段で対向電極部間に水流を積極的に生じさせ、対向電極部の表面から水素の気泡を離脱させてチャンバー部から貯水部内に進行させることにより、貯水部と一続きのチャンバー部から貯水部内の水に水素の気泡を直接導入する簡略な構造として、容易に設置することができ、導入のためのコストを抑えられると共に、貯水部内に水素が水中から失われることなく到達でき、水素を貯水部の水中に最大限保持させられる。また、対向電極部の陰極部の表面に発生した水素の気泡を、水流発生手段による水流が対向電極部から速やかに離脱させて貯水部の水中に導入でき、気泡発生直後で気泡の大きさが小さく浮力も小さい水素気泡を、早期に浮上させることなく水中により長く保持可能となり、電気分解で生成した水素をできるだけ貯水部内の水中に残存させて、貯水部内の水の水素濃度を高め、貯水部内で水素による酸化防止効果を効率よく発揮させることができる。さらに、貯水部の壁又は底に対しより外側に位置するチャンバー部内に対向電極部を配置して、貯水部内に人が入る場合にチャンバー部内には手足が届きにくいことで、貯水部内で人が誤って対向電極部に接触するような事態も起こりにくく、信頼性や安全性を確保できる。 As described above, according to the disclosure of the present invention, a counter electrode portion for electrolysis is provided in the chamber portion provided facing the inner region of the water storage portion, and the water in the water storage portion is circulated and opposed in the chamber portion. In addition to generating bubbles due to electrolysis on each surface of the electrode section, a water flow generating means actively generates a water flow between the counter electrode sections, and hydrogen bubbles are separated from the surface of the counter electrode section to separate the hydrogen bubbles from the chamber section into the water storage section. By advancing to, it can be easily installed as a simple structure that directly introduces hydrogen bubbles into the water in the water storage part from the water storage part and the continuous chamber part, and the cost for introduction can be suppressed. Hydrogen can reach the water storage section without being lost from the water, and hydrogen can be retained in the water storage section as much as possible. Further, hydrogen bubbles generated on the surface of the cathode portion of the counter electrode portion can be quickly separated from the counter electrode portion by the water flow generating means and introduced into the water of the water storage portion, and the size of the bubbles can be increased immediately after the bubbles are generated. Hydrogen bubbles, which are small and have a small buoyancy, can be retained in water for a longer period of time without being levitated early, and hydrogen generated by electrolysis remains in the water in the water storage as much as possible to increase the hydrogen concentration in the water in the water storage. The antioxidant effect of hydrogen can be efficiently exerted. Further, by arranging the counter electrode portion in the chamber portion located on the outer side of the wall or bottom of the water storage portion, when a person enters the water storage portion, it is difficult for the limbs to reach the chamber portion, so that the person can reach the inside of the water storage portion. It is unlikely that the counter electrode portion will be in contact with the counter electrode portion by mistake, and reliability and safety can be ensured.

また、本発明の開示に係る水素生成システムは必要に応じて、前記給電手段が、前記チャンバー部の外側にチャンバー部と隣接させて配置される非接触電力伝送用の給電部と、前記チャンバー部内の前記給電部と対向する位置関係となる所定箇所に配設され、少なくとも前記対向電極部に電力供給可能とされる、前記給電部と対をなす非接触電力伝送用の受電部とを備えるものである。 Further, in the hydrogen generation system according to the disclosure of the present invention, if necessary, the power feeding means is arranged outside the chamber part so as to be adjacent to the chamber part, and the power feeding part for non-contact power transmission and the inside of the chamber part. A power receiving unit for non-contact power transmission paired with the power feeding unit, which is arranged at a predetermined position facing the power feeding unit and is capable of supplying power to at least the counter electrode unit. Is.

このように本発明の開示によれば、貯水部の外側の給電部とチャンバー部内の受電部との間で、非接触で電力伝送を行うようにして、チャンバー部内の各部への電力供給に際し、外部からチャンバー部内に通じる電力供給用の導線を不要とすることにより、貯水部の外殻部分やチャンバー部に導線の通る貫通部を設けずに済み、チャンバー部周囲の防水状態を確保しつつの電力線端子接続等の複雑な構造が不要となり、部品点数を減らして電気的接続構造を簡略化できると共に、チャンバー部の防水に係る構造も簡略化でき、コストダウンが図れる。 As described above, according to the disclosure of the present invention, power is transmitted in a non-contact manner between the power supply unit outside the water storage unit and the power receiving unit in the chamber unit, and power is supplied to each unit in the chamber unit. By eliminating the need for a power supply lead wire that leads from the outside to the inside of the chamber, it is not necessary to provide a penetration part through which the lead wire passes in the outer shell part of the water storage part or the chamber part, while ensuring the waterproof state around the chamber part. A complicated structure such as power line terminal connection is not required, the number of parts can be reduced and the electrical connection structure can be simplified, and the structure related to the waterproofing of the chamber can be simplified, and the cost can be reduced.

また、本発明の開示に係る水素生成システムは必要に応じて、前記水流発生手段が、前記給電手段より電力を供給されて作動し、前記貯水部の水又は湯を取り入れて前記対向電極部の各陽極部と陰極部間に送り出すポンプ部とされるものである。 Further, in the hydrogen generation system according to the disclosure of the present invention, if necessary, the water flow generating means operates by being supplied with electric power from the power feeding means, and takes in water or hot water of the water storage part to take in water or hot water of the water storage part to form the counter electrode part. It is a pump part that sends out between each anode part and the cathode part.

このように本発明の開示によれば、水流発生手段として、給電されて作動するポンプ部を設けて、対向電極部の陽極部と陰極部間にポンプ部で水を送給して水流を生じさせることにより、ポンプ部の作動状態を変えて所望の流速の水流を得やすく、水流の流速に基づいて気泡の大きさを変化させ、水中での気泡の上昇の度合いを適宜設定でき、水流の流速を大きくして水素気泡の大きさが小さい時期での離脱を促し、水中で浮上しにくい小さな水素気泡として水素気泡の水中濃度を多くしたり、水流の流速を小さくして水素気泡を大きく成長させ、水中で浮上しやすい大きさの水素気泡を得て、水素気泡の水中への速やかな放出を可能とすることができる。 As described above, according to the disclosure of the present invention, as a means for generating a water flow, a pump unit that is fed and operates is provided, and water is supplied by the pump unit between the anode portion and the cathode portion of the counter electrode portion to generate a water flow. By changing the operating state of the pump unit, it is easy to obtain a water flow having a desired flow velocity, the size of bubbles can be changed based on the flow velocity of the water flow, and the degree of rise of bubbles in water can be appropriately set. Increase the flow velocity to promote separation when the size of hydrogen bubbles is small, increase the concentration of hydrogen bubbles in water as small hydrogen bubbles that are difficult to float in water, or reduce the flow velocity of water flow to grow large hydrogen bubbles. It is possible to obtain hydrogen bubbles having a size that allows them to easily float in water, and to enable rapid release of hydrogen bubbles into water.

また、本発明の開示に係る水素生成システムは必要に応じて、前記チャンバー部内に防水状態として配設され、前記受電部と電気的に接続されて、少なくとも前記対向電極部への前記受電部からの電力供給を制御する制御回路部と、前記貯水部の外に配設され、使用者の入力操作を受けて前記制御回路部に対する制御指示を発する操作制御部とを備え、前記給電部と受電部が、電力伝送と並行して給電部と受電部との間の通信を可能とされ、前記操作制御部が、前記給電部と電気的に接続され、操作制御部から制御回路部への少なくとも前記対向電極部の通電制御に係る信号送信が、前記給電部と受電部を通じてなされるものである。 Further, the hydrogen generation system according to the disclosure of the present invention is arranged in the chamber portion as a waterproof state, electrically connected to the power receiving portion, and at least from the power receiving portion to the counter electrode portion. A control circuit unit that controls the power supply of the power supply unit and an operation control unit that is arranged outside the water storage unit and issues a control instruction to the control circuit unit in response to an input operation of the user, and includes the power supply unit and the power receiving unit. The unit enables communication between the power supply unit and the power receiving unit in parallel with the power transmission, the operation control unit is electrically connected to the power supply unit, and at least from the operation control unit to the control circuit unit. The signal transmission related to the energization control of the counter electrode unit is performed through the power feeding unit and the power receiving unit.

このように本発明の開示によれば、給電部と受電部との間で電力伝送を行うと共に、給電部と受電部との間の通信も並行して行えるようにし、貯水部の外に配設される操作制御部から、チャンバー部に設けられる制御回路部への制御信号送信を、この給電部と受電部との間での通信により実行することにより、操作制御部と制御回路部との間で有線接続することなく非接触で制御に係る通信が行え、防水状態を確保しつつの信号線端子接続等の複雑な構造が不要となり、部品点数を減らして電気的接続構造を簡略化できると共に、チャンバー部の防水に係る構造も簡略化でき、コストダウンが図れる。 As described above, according to the disclosure of the present invention, power is transmitted between the power feeding unit and the power receiving unit, and communication between the power feeding unit and the power receiving unit can be performed in parallel, and the power is distributed outside the water storage unit. By transmitting a control signal from the operation control unit provided to the control circuit unit provided in the chamber unit by communication between the power supply unit and the power receiving unit, the operation control unit and the control circuit unit can be connected to each other. Communication related to control can be performed non-contactly without a wired connection between them, eliminating the need for complicated structures such as signal line terminal connections while ensuring a waterproof state, reducing the number of parts and simplifying the electrical connection structure. At the same time, the structure related to waterproofing of the chamber can be simplified, and the cost can be reduced.

また、本発明の開示に係る水素生成システムは必要に応じて、前記受電部が、電力伝送に伴う発熱で周囲の水又は湯を加熱し、水又は湯の熱対流を生じさせて前記対向電極部の各陽極部と陰極部間に水又は湯の流通状態を与える、前記水流発生手段を兼ねるものである。 Further, in the hydrogen generation system according to the disclosure of the present invention, if necessary, the power receiving unit heats the surrounding water or hot water by heat generated by power transmission to generate heat convection of water or hot water, and the counter electrode It also serves as the water flow generating means that provides a flow state of water or hot water between each anode portion and the cathode portion of the unit.

このように本発明の開示によれば、電力伝送を行うチャンバー部内の受電部から発生する熱で水の熱対流を生じさせ、この熱対流に基づいて対向電極部の陽極部と陰極部間に水を流通させるようにして、受電部を水流発生手段としても用いることにより、受電部の他に別途水流発生手段を設けずに済み、構造を簡略化できると共に、水流を発生させるのに可動部分を有する機構が不要となり、故障が生じにくく、水の流通に係る信頼性を高められる。 As described above, according to the disclosure of the present invention, heat convection of water is generated by the heat generated from the power receiving portion in the chamber portion that transmits power, and based on this heat convection, between the anode portion and the cathode portion of the counter electrode portion. By allowing water to flow and using the power receiving unit as a water flow generating means, it is not necessary to separately provide a water flow generating means in addition to the power receiving unit, the structure can be simplified, and a movable part for generating a water flow can be simplified. The mechanism with the cathode is not required, troubles are less likely to occur, and the reliability of water flow can be improved.

また、本発明の開示に係る水素生成システムは必要に応じて、前記水流発生手段が、前記給電手段より電力を供給されて発熱し、周囲の水又は湯を加熱して水又は湯の熱対流を生じさせて、前記対向電極部の各陽極部と陰極部間に水又は湯の流通状態を与えるヒータとされるものである。 Further, in the hydrogen generation system according to the disclosure of the present invention, if necessary, the water flow generating means is supplied with electric power from the power feeding means to generate heat, and heats the surrounding water or hot water to heat convection of water or hot water. Is used as a heater that gives a flow state of water or hot water between each anode portion and the cathode portion of the counter electrode portion.

このように本発明の開示によれば、チャンバー部内のヒータから発生する熱で水の熱対流を生じさせ、この熱対流に基づいて対向電極部の陽極部と陰極部間に水を流通させるようにして、ヒータを水流発生手段として用いることにより、水流発生手段の構造を簡略化できると共に、水流を発生させるのに可動部分を有する機構が不要となり、故障が生じにくく、水の流通に係る信頼性を高められる。 As described above, according to the disclosure of the present invention, heat convection of water is generated by the heat generated from the heater in the chamber portion, and water is circulated between the anode portion and the cathode portion of the counter electrode portion based on this heat convection. By using the heater as the water flow generating means, the structure of the water flow generating means can be simplified, and a mechanism having a moving part is not required to generate the water flow, failure is unlikely to occur, and reliability related to water flow is achieved. You can improve your sex.

また、本発明の開示に係る水素生成システムは必要に応じて、前記受電部が、耐食性を有する金属材部分が露出したコイル部を有してチャンバー部に配設され、前記対向電極部における陽極部と陰極部のいずれか一方を兼ねるものである。 Further, in the hydrogen generation system according to the disclosure of the present invention, if necessary, the power receiving portion is arranged in the chamber portion having a coil portion in which the metal material portion having corrosion resistance is exposed, and the anode in the counter electrode portion. It serves as either a unit or a cathode unit.

このように本発明の開示によれば、電力伝送を行うチャンバー部内の受電部が対向電極部の一方の電極を兼ね、電力伝送により通電状態に移行すると、水中に露出した受電部の金属材部分が電気分解用の電極をなして、周囲の水の電気分解を進行させ、金属表面で気体を発生させることにより、受電部の他に別途同極側の電極を設けずに済み、構造を簡略化できると共に、受電部での電力伝送に伴って発生する熱が水の熱対流をもたらし、受電部近傍に水の流通状態を与える一種の水流発生手段としても作用することとなり、電極をなす受電部近傍における水の流通を促して、受電部の金属材部分と貯水部内の水とを接触しやすくし、水の電気分解をより効率よく行うことができる。 As described above, according to the disclosure of the present invention, when the power receiving portion in the chamber portion that performs power transmission also serves as one electrode of the counter electrode portion and shifts to the energized state by power transmission, the metal portion of the power receiving portion exposed in water. Makes an electrode for electrolysis, promotes electrolysis of surrounding water, and generates gas on the metal surface, so that it is not necessary to separately provide an electrode on the same electrode side in addition to the power receiving part, and the structure is simplified. At the same time, the heat generated by the power transmission at the power receiving part brings about heat convection of water, and it also acts as a kind of water flow generating means that gives the water flow state to the vicinity of the power receiving part, and the power receiving that forms an electrode. It is possible to promote the flow of water in the vicinity of the portion, facilitate the contact between the metal portion of the power receiving portion and the water in the water storage portion, and perform electrolysis of water more efficiently.

また、本発明の開示に係る水素生成システムは必要に応じて、少なくともチャンバー部に対し着脱可能として配設される所定の支持枠部を備え、前記チャンバー部内に配設される前記対向電極部、水流発生手段、及び受電部が、前記支持枠部に取り付けられ、当該支持枠部ごとチャンバー部に対し着脱可能とされるものである。 Further, the hydrogen generation system according to the disclosure of the present invention includes, if necessary, at least a predetermined support frame portion that is detachably arranged with respect to the chamber portion, and the counter electrode portion arranged in the chamber portion. The water flow generating means and the power receiving portion are attached to the support frame portion, and the support frame portion together with the support frame portion can be attached to and detached from the chamber portion.

このように本発明の開示によれば、チャンバー部内に配設される対向電極部と、水流発生手段と、受電部とが、支持枠部に取り付けられて、この支持枠部と共にチャンバー部に対しまとめて着脱可能とされて、チャンバー部内に収められる各部品を一まとめに取り扱えることにより、チャンバー部内の各部品のメンテナンスや交換等のためにこれらのチャンバー部からの取付け、取り外しを行う際に、作業を効率よく行え、優れた保守性を与えられる。 As described above, according to the disclosure of the present invention, the counter electrode portion disposed in the chamber portion, the water flow generating means, and the power receiving portion are attached to the support frame portion, and the support frame portion and the chamber portion are provided with the support frame portion. It is removable all at once, and each part stored in the chamber can be handled together, so that when installing or removing from these chambers for maintenance or replacement of each part in the chamber, Work can be done efficiently and excellent maintainability is given.

本発明の第1の実施形態に係る水素生成システムの概略構成説明図である。It is a schematic block diagram of the hydrogen generation system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る水素生成システムのブロック図である。It is a block diagram of the hydrogen generation system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る水素生成システムにおけるチャンバー部内の要部概略構成説明図である。It is a schematic block diagram of the main part in the chamber part in the hydrogen generation system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る水素生成システムにおける対向電極部の平面図である。It is a top view of the counter electrode part in the hydrogen generation system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る水素生成システムにおける対向電極部間の水流の流速大の場合の気泡離脱状態説明図である。It is explanatory drawing of the bubble separation state when the flow velocity of the water flow between the counter electrode portions is large in the hydrogen generation system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る水素生成システムにおける対向電極部間の水流の流速小の場合の気泡離脱状態説明図である。FIG. 5 is an explanatory diagram of a bubble separation state when the flow velocity of water flow between counter electrode portions is small in the hydrogen generation system according to the first embodiment of the present invention. 本発明の第1の実施形態に係る水素生成システムにおけるチャンバー部内各部品及び支持枠部の着脱状態説明図である。It is explanatory drawing of the attachment / detachment state of each part in a chamber part and a support frame part in the hydrogen generation system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る水素生成システムの他の貯水部への適用状態説明図である。It is explanatory drawing of application state to other water storage part of the hydrogen generation system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る水素生成システムにおける他のチャンバー部内の要部概略構成説明図である。It is a schematic block diagram of the main part in another chamber part in the hydrogen generation system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る水素生成システムにおけるチャンバー部内への導線接続状態説明図である。It is explanatory drawing of the lead wire connection state into the chamber part in the hydrogen generation system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る水素生成システムにおけるチャンバー部内への電池配設状態説明図である。It is explanatory drawing of the battery arrangement state in the chamber part in the hydrogen generation system which concerns on 1st Embodiment of this invention. 本発明の第2の実施形態に係る水素生成システムにおけるチャンバー部内の要部概略構成説明図である。It is a schematic block diagram of the main part in the chamber part in the hydrogen generation system which concerns on 2nd Embodiment of this invention. 本発明の第2の実施形態に係る水素生成システムにおけるチャンバー部内の他の構成例説明図である。It is explanatory drawing of another structural example in a chamber part in the hydrogen generation system which concerns on 2nd Embodiment of this invention. 本発明の第2の実施形態に係る水素生成システムにおける対向電極部の他の構成例説明図である。It is explanatory drawing of another structural example of the counter electrode part in the hydrogen generation system which concerns on 2nd Embodiment of this invention. 本発明の第3の実施形態に係る水素生成システムにおけるチャンバー部内の要部概略構成説明図である。It is a schematic block diagram of the main part in the chamber part in the hydrogen generation system which concerns on 3rd Embodiment of this invention.

(本発明の第1の実施形態)
以下、本発明の第1の実施形態に係る水素生成システムを前記図1ないし図7に基づいて説明する。本実施形態においては、貯水部が浴槽であり、入浴に供する浴槽中の水又は湯に水素を導入する場合に適用するシステムの例について説明する。
(First Embodiment of the present invention)
Hereinafter, the hydrogen generation system according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 7. In the present embodiment, an example of a system applied when the water storage unit is a bathtub and hydrogen is introduced into the water or hot water in the bathtub used for bathing will be described.

前記各図において本実施形態に係る水素生成システム1は、水が所定量入る浴槽である貯水部90の底に、この底から外側に突出する配置として配設されるチャンバー部10と、水の電気分解用の陽極部21と陰極部22を対向状態としつつ交互に複数並べて一体化して形成され、チャンバー部10内に着脱可能に配設される対向電極部20と、チャンバー部10内に配設され、対向電極部20の陽極部21と陰極部22間に水の流通状態を生じさせる前記水流発生手段としてのポンプ部30と、対向電極部20に電力を供給する給電手段としての給電部40と、チャンバー部10内に配設され、対向電極部20に通電可能に接続される受電部50と、この受電部50と電気的に接続されて受電部50から対向電極部20への通電を制御する制御回路部60と、貯水部90の外部で使用者の入力操作を受けて制御回路部60に対する制御指示を発する操作制御部70と、前記対向電極部20、ポンプ部30、及び受電部50を取り付けられてチャンバー部10に対し着脱可能とされる支持枠部80とを備える構成である。 In each of the above figures, the hydrogen generation system 1 according to the present embodiment has a chamber portion 10 arranged at the bottom of a water storage unit 90, which is a bathtub in which a predetermined amount of water is contained, and an arrangement of water protruding outward from the bottom. A plurality of electrode portions 21 and cathode portions 22 for electrolysis are alternately arranged side by side and integrated, and are arranged in a facing electrode portion 20 detachably arranged in the chamber portion 10 and in the chamber portion 10. The pump unit 30 as the water flow generating means for generating a water flow state between the anode portion 21 and the cathode portion 22 of the counter electrode portion 20 and the feeding unit as the feeding means for supplying power to the counter electrode portion 20. 40, a power receiving unit 50 that is arranged in the chamber unit 10 and is electrically connected to the counter electrode unit 20 and electrically connected to the power receiving unit 50 to energize the counter electrode unit 20 from the power receiving unit 50. The control circuit unit 60 that controls the water storage unit 90, the operation control unit 70 that issues a control instruction to the control circuit unit 60 in response to an input operation by the user outside the water storage unit 90, the counter electrode unit 20, the pump unit 30, and the power receiving unit. It is configured to include a support frame portion 80 to which the portion 50 is attached and which can be attached to and detached from the chamber portion 10.

なお、本実施形態の水素生成システム1における対向電極部20や通電のための各部品などの、水の電気分解により電解水や気体を生成する仕組み自体については、水素水生成器など、公知の電解水生成装置と同様のものであり、詳細な説明を省略する。 The mechanism itself for generating electrolyzed water or gas by electrolysis of water, such as the counter electrode portion 20 and each component for energization in the hydrogen generation system 1 of the present embodiment, is known as a hydrogen water generator or the like. It is the same as the electrolyzed water generator, and detailed description thereof will be omitted.

前記チャンバー部10は、貯水部90における底にこの底から外側に突出する配置として配設され、貯水部90の底の開口部分を通じて貯水部90の内側領域に連通する空隙部分を内部に設けられる構成であり、空隙部分に貯水部内の水又は湯を流通可能とされる仕組みである。このチャンバー部10は、貯水部90を外部と隔てる外殻部分に連続させて一体に設けられ、チャンバー部10と貯水部90との間からの水漏れを生じさせない構成である。 The chamber portion 10 is arranged at the bottom of the water storage portion 90 so as to project outward from the bottom, and a gap portion communicating with the inner region of the water storage portion 90 is provided inside through the opening portion of the bottom of the water storage portion 90. It is a structure that allows water or hot water in the water storage section to be circulated in the void portion. The chamber portion 10 is provided so as to be continuous with the outer shell portion that separates the water storage portion 90 from the outside, and is configured to prevent water leakage from between the chamber portion 10 and the water storage portion 90.

チャンバー部10は、貯水部90の内側領域から見ると貯水部90の底の一部に設けられた凹部に相当するものとなっており、貯水部90内へ水又は湯を入れると、同時にチャンバー部10内にも水又は湯を導入できる仕組みである。 The chamber portion 10 corresponds to a recess provided in a part of the bottom of the water storage portion 90 when viewed from the inner region of the water storage portion 90, and when water or hot water is put into the water storage portion 90, the chamber is simultaneously chambered. It is a mechanism that allows water or hot water to be introduced into the section 10.

前記対向電極部20は、金属製薄板からなる陽極部21と陰極部22とを所定間隔で対向状態としつつ交互に複数並べて一体化して形成されるものであり、前記支持枠部80に陽極部21と陰極部22の並ぶ向きを上下方向に一致させるように取り付けられてチャンバー部10内に着脱可能に配設される構成である。 The counter electrode portion 20 is formed by alternately arranging and integrating a plurality of anode portions 21 and cathode portions 22 made of a thin metal plate so as to face each other at predetermined intervals, and the anode portions are formed on the support frame portion 80. The structure is such that the 21 and the cathode portion 22 are attached so as to coincide with each other in the vertical direction and are detachably arranged in the chamber portion 10.

この対向電極部20をなす陽極部21と陰極部22には、気泡を上方の貯水部90に進みやすくする貫通孔21a、22aがそれぞれ複数穿設される構成である。これら陽極部21と陰極部22は前記制御回路部60と電気的に接続されて通電を制御される。 The anode portion 21 and the cathode portion 22 forming the counter electrode portion 20 are respectively provided with a plurality of through holes 21a and 22a for facilitating the passage of air bubbles to the upper water storage portion 90. The anode unit 21 and the cathode unit 22 are electrically connected to the control circuit unit 60 to control energization.

こうした対向電極部20に対し、チャンバー部10内の対向電極部20周囲に水が存在する状態で、制御回路部60による制御下で通電を実行することで、水の電気分解を行わせて水素と酸素の気泡を発生させ、これらの気体を貯水部90内の水に導入する仕組みである。 When water is present around the counter electrode portion 20 in the chamber portion 10 and the counter electrode portion 20 is energized under the control of the control circuit unit 60, the water is electrolyzed and hydrogen is generated. It is a mechanism to generate bubbles of oxygen and introduce these gases into the water in the water storage unit 90.

対向電極部20は、支持枠部80に取り付けた状態で、チャンバー部10内の上部に配置され、対向電極部20で発生した気泡を貯水部90へ移行しやすくしている。この対向電極部20の上側には、支持枠部80の一部が対向電極部20をカバー状に覆う配置として設けられており、対向電極部20を支持枠部80で保護する構造となっている。 The counter electrode portion 20 is arranged in the upper part of the chamber portion 10 in a state of being attached to the support frame portion 80, and facilitates the transfer of air bubbles generated in the counter electrode portion 20 to the water storage portion 90. A part of the support frame portion 80 is provided on the upper side of the counter electrode portion 20 so as to cover the counter electrode portion 20 in a cover shape, and the counter electrode portion 20 is protected by the support frame portion 80. There is.

そして、チャンバー部10に対し対向電極部20は着脱可能とされており、対向電極部20をチャンバー部10から取り外した場合には、対向電極部20に対し析出物を除去するなどメンテナンスを行える他、新品と交換することができる。 The counter electrode portion 20 is detachable from the chamber portion 10, and when the counter electrode portion 20 is removed from the chamber portion 10, maintenance such as removing precipitates from the counter electrode portion 20 can be performed. , Can be replaced with a new one.

なお、対向電極部20をなす陽極部21と陰極部22は、金属製の単純な平板状の薄板として形成される構成に限らず、表面積を増やすように凹凸やリブを設けたり、細かく蛇腹状に多数回屈曲させた形状を有するものとすることもできる。 The anode portion 21 and the cathode portion 22 forming the counter electrode portion 20 are not limited to the configuration formed as a simple flat plate-shaped thin plate made of metal, and may be provided with irregularities or ribs so as to increase the surface area, or may be finely bellows-shaped. It can also have a shape that is bent many times.

前記ポンプ部30は、水流発生手段としてチャンバー部10内に対向電極部20の側方に位置するようにして配設され、対向電極部20の陽極部21と陰極部22間に水の流通状態を生じさせるものであり、制御回路部60と電気的に接続されて受電部50から電力供給可能とされる構成である。このポンプ部30は、チャンバー部10内に配設可能な小型のものとされるが、電力を供給されて作動し、水を送給する機能については公知の電動ポンプと同様のものであり、詳細な説明を省略する。 The pump portion 30 is arranged in the chamber portion 10 so as to be located on the side of the counter electrode portion 20 as a means for generating water flow, and a state of water flow between the anode portion 21 and the cathode portion 22 of the counter electrode portion 20. This is a configuration in which power can be supplied from the power receiving unit 50 by being electrically connected to the control circuit unit 60. The pump unit 30 is a small one that can be arranged in the chamber unit 10, but has the same function as a known electric pump in that it operates by being supplied with electric power and supplies water. Detailed description will be omitted.

ポンプ部30は、給電手段の一部をなす給電部40から受電部50を介して電力を供給される制御回路部60の制御に基づいて作動し、貯水部90の水を取り入れて対向電極部20の各陽極部21と陰極部22間に送り出すこととなる。 The pump unit 30 operates based on the control of the control circuit unit 60 in which electric power is supplied from the power supply unit 40, which is a part of the power supply means, via the power receiving unit 50, and takes in the water of the water storage unit 90 to take in the water of the water storage unit 90 to take in the counter electrode unit. It will be sent out between each anode portion 21 and the cathode portion 22 of 20.

このポンプ部30で対向電極部20の陽極部21と陰極部22間に生じさせる水流の流速を調整することで、対向電極部20を出る気泡の大きさを調節制御し、貯水部90の水に導入する気泡の大きさを適切なものとすることができる。例えば、水流の流速を大きくすると、水素の気泡がより小さい状態で陰極部22から離れて貯水部90の水中に導入されることとなり(図5参照)、水中を上昇しにくい小さい水素気泡がより長い時間にわたって水中に保持される状態が見込める。 By adjusting the flow velocity of the water flow generated between the anode portion 21 and the cathode portion 22 of the counter electrode portion 20 by the pump portion 30, the size of the bubbles exiting the counter electrode portion 20 is adjusted and controlled, and the water in the water storage portion 90 is controlled. The size of the air bubbles to be introduced into the water can be adjusted appropriately. For example, when the flow velocity of the water flow is increased, hydrogen bubbles are introduced into the water of the water storage section 90 away from the cathode section 22 in a smaller state (see FIG. 5), and small hydrogen bubbles that are difficult to rise in the water become more. It is expected to be kept in water for a long time.

また、例えば、水流の流速を小さくすると、酸素の気泡が隣接するものと繋がって成長し、気泡がより大きくなった状態で各陽極部21から離れて貯水部90の水中に達することとなり(図6参照)、水中を上昇しやすい大きな酸素気泡を速やかに水中から空気中に放出させる状態が見込める。 Further, for example, when the flow velocity of the water flow is reduced, oxygen bubbles are connected to adjacent objects and grow, and in a state where the bubbles become larger, they separate from each anode portion 21 and reach the water of the water storage portion 90 (FIG. 6), it is expected that large oxygen bubbles that easily rise in the water will be rapidly released from the water into the air.

なお、ポンプ部30と対向電極部20との配置関係については、対向電極部20の隙間の連続方向と平行にポンプ部30から水を導入可能な例として示しているが、これに限らず、ポンプ部からの水が対向電極部の電極面に対し直角となる向きで送られて、水流が電極部の各貫通孔や電極部の側方を経て電極部間の領域に出入りしながら貯水部90に向けて進行するように配置を設定する構成とすることもできる。 The arrangement relationship between the pump unit 30 and the counter electrode unit 20 is shown as an example in which water can be introduced from the pump unit 30 in parallel with the continuous direction of the gap between the counter electrode units 20, but the present invention is not limited to this. Water from the pump section is sent in a direction perpendicular to the electrode surface of the counter electrode section, and the water flow enters and exits the region between the electrode sections through each through hole of the electrode section and the side of the electrode section, and the water storage section. It is also possible to set the arrangement so as to proceed toward 90.

前記給電部40は、コイル等を備えて電磁誘導による非接触電力伝送に用いられる公知の装置であり、チャンバー部10の外側に隣接配置される構成である。この給電部40が、給電手段の一部をなして、外部の電源から電力供給を受けて、受電部50との組で電磁誘導等の非接触方式による電力伝送を実現し、受電部50を介して対向電極部20やポンプ部30に電力を供給することとなる。 The power feeding unit 40 is a known device provided with a coil or the like and used for non-contact power transmission by electromagnetic induction, and has a configuration adjacent to the outside of the chamber unit 10. The power feeding unit 40 forms a part of the power feeding means, receives power from an external power source, realizes power transmission by a non-contact method such as electromagnetic induction in combination with the power receiving unit 50, and causes the power receiving unit 50. Electric power is supplied to the counter electrode portion 20 and the pump portion 30 via the above.

前記受電部50は、コイル等を備えて電磁誘導による非接触電力伝送に用いられる給電部40と対をなす公知の装置であり、チャンバー部10内における給電部40と対向する所定箇所に配設され、制御回路部60と電気的に接続され、この制御回路部60を介して対向電極部20及びポンプ部30に電力供給可能とされる構成である。 The power receiving unit 50 is a known device provided with a coil or the like and paired with a power feeding unit 40 used for non-contact power transmission by electromagnetic induction, and is arranged at a predetermined position in the chamber unit 10 facing the power feeding unit 40. It is configured to be electrically connected to the control circuit unit 60 and to be able to supply electric power to the counter electrode unit 20 and the pump unit 30 via the control circuit unit 60.

この受電部50も、前記支持枠部80に取り付けられて、支持枠部80ごとチャンバー部10に対し着脱可能とされるものである。
受電部50を一体の支持枠部80や他の部品と共にチャンバー部10の外に取り外すと、給電部40と受電部50とによる電力伝送が可能となる条件を維持できなくなり、電力伝送が途絶えることとなる。この場合、対向電極部20やポンプ部30等への通電を自動的に停止状態にできることから、露出した対向電極部20等に接触しても安全を確保できる。
The power receiving portion 50 is also attached to the support frame portion 80 and can be attached to and detached from the chamber portion 10 together with the support frame portion 80.
If the power receiving unit 50 is removed from the chamber unit 10 together with the integrated support frame unit 80 and other parts, it becomes impossible to maintain the conditions under which the power feeding unit 40 and the power receiving unit 50 can transmit power, and the power transmission is interrupted. It becomes. In this case, since the energization of the counter electrode portion 20 and the pump portion 30 and the like can be automatically stopped, safety can be ensured even if the counter electrode portion 20 and the like are exposed.

なお、受電部50は、対をなす給電部40から非接触給電方式で電力供給を受けるコイル等の素子と周辺回路を組み合わせた電子部品とされる構成に限られるものではなく、直接接触型の導電構造をなす、すなわち、この受電部が、端子をなす導電部材で形成されて、対向電極部20の陽極部21や陰極部22と電気的に接続されると共に、チャンバー部10を貫通して外部に達した一部を給電手段側の端子部と電気的に接続させる構成とすることもできる。 The power receiving unit 50 is not limited to a configuration in which an element such as a coil that receives power from a pair of power feeding units 40 in a non-contact power feeding method and a peripheral circuit are combined, and is not limited to a direct contact type. It has a conductive structure, that is, the power receiving portion is formed of a conductive member forming a terminal, is electrically connected to the anode portion 21 and the cathode portion 22 of the counter electrode portion 20, and penetrates the chamber portion 10. A part that reaches the outside may be electrically connected to the terminal portion on the power feeding means side.

この受電部50及び給電部40については、電力伝送と並行して給電部40と受電部50間での通信を可能とされる。これら給電部40と受電部50を通じて、操作制御部70から制御回路部60への対向電極部20の通電制御に係る信号送信が行える。 With respect to the power receiving unit 50 and the power feeding unit 40, communication between the power receiving unit 40 and the power receiving unit 50 is possible in parallel with power transmission. Through these power feeding units 40 and power receiving units 50, signals related to energization control of the counter electrode unit 20 from the operation control unit 70 to the control circuit unit 60 can be transmitted.

前記制御回路部60は、チャンバー部10内に防水状態として配設され、対向電極部20とポンプ部30に電気的に接続されると共に、受電部50とも電力供給を受ける状態で接続されて、対向電極部20とポンプ部30への受電部50からの通電を制御するものである。使用者により操作制御部70からの操作入力がなされて、この操作制御部70からの制御信号が制御回路部60に入力された場合に、制御回路部60は操作に対応させて対向電極部20とポンプ部30へ通電がなされるように制御する。 The control circuit unit 60 is arranged in the chamber unit 10 in a waterproof state, is electrically connected to the counter electrode unit 20 and the pump unit 30, and is also connected to the power receiving unit 50 in a state of receiving power supply. It controls the energization of the counter electrode unit 20 and the pump unit 30 from the power receiving unit 50. When an operation input is made from the operation control unit 70 by the user and a control signal from the operation control unit 70 is input to the control circuit unit 60, the control circuit unit 60 corresponds to the operation and the counter electrode unit 20 And control so that the pump unit 30 is energized.

前記操作制御部70は、給電部40と電気的に接続され、貯水部90の外に、例えば浴室等の浴槽への給湯操作用パネルの接地面と同じ壁等に埋め込まれる形で配設され、使用者の入力操作を受けて、給電部40と受電部50を通じてなされる通信を経て、制御回路部60に対する制御指示を送信可能とされる構成である。 The operation control unit 70 is electrically connected to the power supply unit 40, and is arranged outside the water storage unit 90 so as to be embedded in the same wall as the ground surface of the hot water supply operation panel for a bathtub such as a bathroom. The configuration is such that a control instruction to the control circuit unit 60 can be transmitted via communication made through the power feeding unit 40 and the power receiving unit 50 in response to an input operation by the user.

この操作制御部70は、電源の入切や水への水素導入のための通電開始等を指示する複数のスイッチを有して、使用者の操作入力を受付けるものであり、操作制御部70から制御回路部60への対向電極部20やポンプ部30の通電制御に係る信号送信が、給電部40と受電部50を通じてなされることとなる。 The operation control unit 70 has a plurality of switches for instructing on / off of the power supply, start of energization for introducing hydrogen into water, and the like, and receives the operation input of the user, and is received from the operation control unit 70. The signal transmission related to the energization control of the counter electrode unit 20 and the pump unit 30 to the control circuit unit 60 is performed through the power feeding unit 40 and the power receiving unit 50.

前記支持枠部80は、チャンバー部10に対し、貯水部90の内側領域の方から着脱可能に配設される枠状体であり、対向電極部20、ポンプ部30、及び受電部50を取り付けられ、これらを一体としてチャンバー部10に対し着脱可能とするものである。この他、支持枠部80には制御回路部60も取り付けられ、この制御回路部60を支持枠部80ごとチャンバー部10に対し着脱可能とすることができる。 The support frame portion 80 is a frame-like body that is detachably arranged from the inner region of the water storage portion 90 with respect to the chamber portion 10, and the counter electrode portion 20, the pump portion 30, and the power receiving portion 50 are attached. These are integrated and can be attached to and detached from the chamber portion 10. In addition, a control circuit unit 60 is also attached to the support frame unit 80, and the control circuit unit 60 can be attached to and detached from the chamber unit 10 together with the support frame unit 80.

この支持枠部80の一部は、対向電極部20の上側に位置して対向電極部20をカバー状に覆う配置とされており、対向電極部20を貯水部90側から人が誤って触れないよう隔離、保護する一方、水や気泡は通過可能として、対向電極部20における水の電気分解や、対向電極部20側から貯水部90側への水素気泡の進行を妨げないものとなっている。 A part of the support frame portion 80 is located above the counter electrode portion 20 and covers the counter electrode portion 20 in a cover shape, and a person mistakenly touches the counter electrode portion 20 from the water storage portion 90 side. While isolating and protecting it so that it does not pass through, it does not hinder the electrolysis of water in the counter electrode section 20 and the progress of hydrogen bubbles from the counter electrode section 20 side to the water storage section 90 side. There is.

支持枠部80とこれに取り付けられる各部品は、チャンバー部10に対し貯水部90の内側領域の方から貯水部90の底の開口部分を通じて、支持枠部80ごとチャンバー部10に対し着脱されることとなる。 The support frame portion 80 and each component attached to the support frame portion 80 are attached to and detached from the inner region of the water storage portion 90 to the chamber portion 10 together with the support frame portion 80 through the opening portion at the bottom of the water storage portion 90. It will be.

次に、本実施形態に係る水素生成システムの使用状態について説明する。前提として、貯水部90の外に設けられる給電手段の一部としての給電部40が、給電手段の他部をなす電源装置(図示を省略)と接続されて電力供給を受けられることとなっており、給電部40と受電部50の組による公知の非接触電力伝送に基づいて、対向電極部20やポンプ部30への電力供給が可能な状態にあるものとする。また、チャンバー部10には対向電極部20、ポンプ部30、受電部50、及び制御回路部60があらかじめ配設された上で、貯水部90には十分な量の水が導入されているものとする。 Next, the usage state of the hydrogen generation system according to the present embodiment will be described. As a premise, the power supply unit 40 as a part of the power supply means provided outside the water storage unit 90 is connected to a power supply device (not shown) forming another part of the power supply means to receive power supply. It is assumed that power can be supplied to the counter electrode unit 20 and the pump unit 30 based on the known non-contact power transmission by the pair of the power feeding unit 40 and the power receiving unit 50. Further, the chamber section 10 is provided with the counter electrode section 20, the pump section 30, the power receiving section 50, and the control circuit section 60 in advance, and a sufficient amount of water is introduced into the water storage section 90. And.

なお、あらかじめ設定された標準的な通電時間で通電を行っても、水質により所望の水素気泡を生成できないことを確認した場合には、貯水部90の水に電解補助剤としてのカルシウム剤等を補充して、水質を電気分解で適切な量の水素気泡を生成可能な状態に調整するようにしてもよい。 If it is confirmed that the desired hydrogen bubbles cannot be generated due to the water quality even when energization is performed for a preset standard energization time, a calcium agent or the like as an electrolytic auxiliary agent is added to the water of the water storage unit 90. It may be replenished to adjust the water quality to a state in which an appropriate amount of hydrogen bubbles can be generated by electrolysis.

まず、貯水部90での水素生成に係る使用者の操作入力を受入れ可能となっている操作制御部70に対し、使用者が、水素生成指示用のスイッチを押すなどの指示操作入力を行うと、給電部40に通電され、給電部40と受電部50との間で非接触の電力伝送が開始し、チャンバー部10内の制御回路部60が電力供給を受けて作動する。 First, when the user inputs an instruction operation such as pressing a switch for hydrogen generation instruction to the operation control unit 70 which can accept the operation input of the user related to hydrogen generation in the water storage unit 90. , The power feeding unit 40 is energized, non-contact power transmission between the power feeding unit 40 and the power receiving unit 50 starts, and the control circuit unit 60 in the chamber unit 10 receives the power supply and operates.

この給電部40と受電部50との間での電力伝送と並行して、給電部40と受電部50間で通信も可能となっており、操作制御部70で受入れた操作入力に係る制御信号が、操作制御部70から給電部40への導線による信号伝送、給電部40と受電部50との間の非接触の通信、及び受電部50から制御回路部60への導線による信号伝送を経て、最終的に制御回路部60に送信される。 In parallel with the power transmission between the power feeding unit 40 and the power receiving unit 50, communication is also possible between the power feeding unit 40 and the power receiving unit 50, and a control signal related to the operation input received by the operation control unit 70. However, the signal is transmitted from the operation control unit 70 to the power feeding unit 40 by a wire, the non-contact communication between the power feeding unit 40 and the power receiving unit 50, and the signal transmission from the power receiving unit 50 to the control circuit unit 60. Finally, it is transmitted to the control circuit unit 60.

この制御信号を制御回路部60が受信すると、操作制御部70で受入れた操作入力内容に基づき、制御回路部60は、あらかじめ設定された量の水素気泡が得られるように、対向電極部20の陽極部21及び陰極部22への通電を実行させ、チャンバー部10内の対向電極部20周囲の水の電気分解を進行させる。 When the control circuit unit 60 receives this control signal, the control circuit unit 60 of the counter electrode unit 20 so as to obtain a preset amount of hydrogen bubbles based on the operation input content received by the operation control unit 70. The anode portion 21 and the cathode portion 22 are energized to allow the electrolysis of water around the counter electrode portion 20 in the chamber portion 10 to proceed.

対向電極部20の陽極部21及び陰極部22への通電による水の電気分解は、対向する陽極部21と陰極部22に挟まれた領域で進行していく。公知の水の電気分解の場合と同様、陰極部22側では、還元により気体の水素が生じることとなり、陰極部22表面に水素が気泡として多数発生し、且つ各気泡が成長する状態となる。
また、陽極部21側では、酸化により気体の酸素が生じることとなり、陽極部21表面に酸素が気泡として多数発生し、且つ各気泡が成長する状態となる。
The electrolysis of water by energizing the anode portion 21 and the cathode portion 22 of the counter electrode portion 20 proceeds in the region sandwiched between the anode portion 21 and the cathode portion 22 facing each other. As in the case of the known electrolysis of water, on the cathode portion 22 side, gaseous hydrogen is generated by reduction, a large amount of hydrogen is generated as bubbles on the surface of the cathode portion 22, and each bubble grows.
Further, on the anode portion 21 side, gaseous oxygen is generated by oxidation, a large amount of oxygen is generated as bubbles on the surface of the anode portion 21, and each bubble grows.

制御回路部60は、電気分解に係る対向電極部20への通電と共に、ポンプ部30への通電も合わせて行っており、電気分解と同時に、ポンプ部30の作動により対向電極部20の陽極部21と陰極部22間への水の送給がなされ、陽極部21と陰極部22の間には水が流れる状態となっている。 The control circuit unit 60 energizes the counter electrode unit 20 related to electrolysis and also energizes the pump unit 30. At the same time as electrolysis, the operation of the pump unit 30 causes the anode portion of the counter electrode unit 20 to be energized. Water is supplied between the anode portion 21 and the cathode portion 22, and the water flows between the anode portion 21 and the cathode portion 22.

こうして電気分解を行う中、陽極部21や陰極部22の表面で発生した気泡は、水の流れがない場合は所定の大きさまで成長後、その浮力により陽極部21や陰極部22を離れることとなるが、ポンプ部30が陽極部21と陰極部22の間に十分な水流を生じさせていることで、陰極部22で発生した水素気泡の陰極部22表面からの離脱を促せることとなる。 During the electrolysis in this way, the bubbles generated on the surfaces of the anode portion 21 and the cathode portion 22 grow to a predetermined size when there is no flow of water, and then leave the anode portion 21 and the cathode portion 22 due to the buoyancy. However, since the pump section 30 generates a sufficient water flow between the anode section 21 and the cathode section 22, hydrogen bubbles generated in the cathode section 22 can be promoted to separate from the surface of the cathode section 22. ..

したがって、陰極部22表面に発生した水素の気泡は、あまり成長せず小さい状態のまま陰極部22表面から離れ、陽極部21や陰極部22の側方あるいは貫通孔を通って上方へ向かい、水中をチャンバー部10から貯水部90内へと進む。 Therefore, the hydrogen bubbles generated on the surface of the cathode portion 22 do not grow much and leave the surface of the cathode portion 22 in a small state, and go upward through the side or through holes of the anode portion 21 and the cathode portion 22 and underwater. Proceed from the chamber portion 10 into the water storage portion 90.

このように水素気泡が上方へ進んで、貯水部90の水中に達する際に、気泡を小さいままとしていることで、水素気泡の浮力を抑えることができ、水素気泡を早期に浮上させず水中により長く保持させられる。すなわち、水中における水素の量(濃度)を大きくすることができ、水中での水素による酸化防止の機能を最大限発揮させられる。 By keeping the bubbles small when the hydrogen bubbles move upward and reach the water of the water storage unit 90 in this way, the buoyancy of the hydrogen bubbles can be suppressed, and the hydrogen bubbles do not float early and are separated by the water. It can be held for a long time. That is, the amount (concentration) of hydrogen in water can be increased, and the function of preventing oxidation by hydrogen in water can be maximized.

気泡の大きさは、制御回路部60によるポンプ部30の作動状態の制御で、水流の流速を変えて、水流が気泡を対向電極部20の各表面から引き離す度合いを変化させることで調整でき、気泡をより小さくして浮力を抑え、上昇しにくくして水中に長く留まるようにしたり、気泡を大きくして浮力を増やし、上昇しやすくして水中から空気中へ速やかに放出されるようにすることが可能である。 The size of the air bubbles can be adjusted by controlling the operating state of the pump unit 30 by the control circuit unit 60 and changing the flow velocity of the water flow to change the degree to which the water flow separates the air bubbles from each surface of the counter electrode unit 20. Make the bubbles smaller to reduce buoyancy and make them harder to rise so that they stay in the water longer, or make the bubbles larger to increase buoyancy and make them easier to rise so that they are quickly released from the water into the air. It is possible.

また、給電されて作動するポンプ部30が、対向電極部20の陽極部21と陰極部22の間に十分な水流を生じさせることで、対向電極部20と貯水部90内の水との接触機会を増やし、水の電気分解を促して水素を効率よく発生させることができる。 Further, the pump unit 30 that is supplied with power and operates generates a sufficient water flow between the anode portion 21 and the cathode portion 22 of the counter electrode portion 20, so that the counter electrode portion 20 and the water in the water storage portion 90 come into contact with each other. It can increase opportunities and promote electrolysis of water to efficiently generate hydrogen.

対向電極部20への通電によりチャンバー部10で水の電気分解が行われ、貯水部に水素気泡が導入される間、操作制御部70では、水素発生に係る操作を受けてからの経過時間を計測し取得している。この経過時間が、あらかじめ設定された水の電気分解を終了すべき時間に達すると、操作制御部70は給電部40に対しその電力伝送に係る作動を停止させる制御信号を送信し、これを受けた給電部40が受電部50への電力伝送を行わない状態に移行することで、対向電極部20等への通電が行われなくなり、水の電気分解が終了する。 While the chamber section 10 electrolyzes water by energizing the counter electrode section 20 and hydrogen bubbles are introduced into the water storage section, the operation control section 70 determines the elapsed time from receiving the operation related to hydrogen generation. It is measured and acquired. When this elapsed time reaches the preset time for completing the electrolysis of water, the operation control unit 70 transmits a control signal for stopping the operation related to the power transmission to the power supply unit 40, and receives the control signal. When the power feeding unit 40 shifts to a state in which power is not transmitted to the power receiving unit 50, the counter electrode unit 20 and the like are not energized, and the electrolysis of water is completed.

水の電気分解で水素を発生させる使用を繰り返して、長期の使用により対向電極部20やポンプ部30にメンテナンスや交換の必要が生じた場合には、対向電極部20やポンプ部30をこれらと一体の支持枠部80ごとチャンバー部10内から引き出して取り外し(図7参照)、必要に応じて対向電極部20やポンプ部30をさらに支持枠部80から取り外して、これらに対するメンテナンス等を行うこととなる。 When the counter electrode unit 20 and the pump unit 30 need to be maintained or replaced due to repeated use of generating hydrogen by electrolysis of water, the counter electrode unit 20 and the pump unit 30 are used together with these. The integrated support frame portion 80 is pulled out from the chamber portion 10 and removed (see FIG. 7), and the counter electrode portion 20 and the pump portion 30 are further removed from the support frame portion 80 as necessary to perform maintenance and the like. It becomes.

支持枠部80に取り付けた対向電極部20やポンプ部30、制御回路部60をあらためてチャンバー部10内に配設する場合には、各部品を支持枠部80ごと貯水部の内側領域の方から貯水部の底の開口部分を通じてチャンバー部10に挿入して取り付けることとなる。この場合、支持枠部80と各部品のチャンバー部10への取付に係り、受電部50がチャンバー部10外の給電部40と対向する適切な箇所に確実に位置して電力伝送を適切に行えるように、取付位置や向きの目安となる目印(マーク)を支持枠部80とチャンバー部10の双方に設けたり、支持枠部80がチャンバー部10に対し取付位置及び向きが適切となる場合のみ、互いに嵌合して支持枠部80と各部品がチャンバー部10に収まる形状となるように形成するのが好ましい。 When the counter electrode portion 20, the pump portion 30, and the control circuit portion 60 attached to the support frame portion 80 are arranged in the chamber portion 10 again, each component is arranged together with the support frame portion 80 from the inner region of the water storage portion. It will be inserted and attached to the chamber portion 10 through the opening portion at the bottom of the water storage portion. In this case, related to the attachment of the support frame portion 80 and each component to the chamber portion 10, the power receiving portion 50 is reliably positioned at an appropriate position facing the power feeding portion 40 outside the chamber portion 10, and power transmission can be appropriately performed. As described above, only when a mark (mark) as a guide for the mounting position and orientation is provided on both the support frame portion 80 and the chamber portion 10, or when the support frame portion 80 has an appropriate mounting position and orientation with respect to the chamber portion 10. It is preferable that the support frame portion 80 and each component are formed so as to be fitted to each other so as to fit in the chamber portion 10.

このように、本実施形態に係る水素生成システムは、貯水部90内の水が流通するチャンバー部10内の対向電極部20の陰極部22表面に電気分解に伴う水素の気泡を発生させると共に、ポンプ部30で対向電極部20間に水流を積極的に生じさせ、水素気泡を対向電極部20の表面から離脱させてチャンバー部10から貯水部90内に進行させ、貯水部90内の水に導入された水素気泡が貯水部90内の水の水素濃度を高めることから、対向電極部20の陰極部22表面に発生した水素の気泡を、ポンプ部30による水流が、気泡が小さいうちに離脱させて貯水部90の水中に導入でき、小さい気泡とされて浮力を抑えられた水素気泡を早期に浮上させることなく水中により長く保持可能となり、電気分解で生成した水素をできるだけ貯水部90内の水中に残存させて、貯水部90内で水素による酸化防止効果を効率よく発揮させることができる。 As described above, the hydrogen generation system according to the present embodiment generates hydrogen bubbles due to electrolysis on the surface of the cathode portion 22 of the counter electrode portion 20 in the chamber portion 10 in which the water in the water storage portion 90 flows. The pump unit 30 positively generates a water flow between the counter electrode portions 20, causes hydrogen bubbles to separate from the surface of the counter electrode portion 20 and advances from the chamber portion 10 into the water storage portion 90, and becomes water in the water storage portion 90. Since the introduced hydrogen bubbles increase the hydrogen concentration of the water in the water storage section 90, the hydrogen bubbles generated on the surface of the cathode section 22 of the counter electrode section 20 are separated while the water flow by the pump section 30 is small. It can be introduced into the water of the water storage unit 90, and the hydrogen bubbles whose buoyancy is suppressed as small bubbles can be retained in the water for a longer time without floating at an early stage, and the hydrogen generated by electrolysis can be stored in the water storage unit 90 as much as possible. By leaving it in water, the antioxidant effect of hydrogen can be efficiently exerted in the water storage unit 90.

また、貯水部90内の水に水素の気泡を直接導入する簡略な構造として、容易に設置することができ、導入のためのコストを抑えられる。さらに、貯水部90に繋がる凹部であるチャンバー部10に対向電極部20を配置して、貯水部90内に人が入る場合にチャンバー部10内には手足が届きにくいことで、貯水部90内で人が誤って対向電極部20に接触するような事態も起こりにくく、信頼性や安全性を確保できる。 Further, as a simple structure for directly introducing hydrogen bubbles into the water in the water storage unit 90, it can be easily installed and the cost for introduction can be suppressed. Further, the counter electrode portion 20 is arranged in the chamber portion 10 which is a recess connected to the water storage portion 90, and when a person enters the water storage portion 90, it is difficult for the limbs to reach the inside of the chamber portion 90. It is unlikely that a person will accidentally come into contact with the counter electrode portion 20, and reliability and safety can be ensured.

なお、前記実施形態に係る水素生成システムにおいては、チャンバー部10を貯水部90の底に、この底から外側に突出する配置として配設する構成としているが、これに限らず、チャンバー部を、所定量の水又は湯を保持する貯水部における水面位置より下側にあたる壁の所定箇所に、この壁から外側に突出する配置として配設し、貯水部の壁の開口部分を通じて貯水部の内側領域に連通する空隙部分を合わせて設ける構成とすることもでき、前記実施形態同様に、チャンバー部の空隙部分に貯水部内の水又は湯を流通可能として、チャンバー部から貯水部の水に水素の気泡を導入することができる。 In the hydrogen generation system according to the above embodiment, the chamber portion 10 is arranged at the bottom of the water storage portion 90 so as to project outward from the bottom, but the present invention is not limited to this, and the chamber portion is not limited to this. Arranged as an arrangement protruding outward from this wall at a predetermined position on the wall below the water surface position in the water storage section that holds a predetermined amount of water or hot water, and the inner region of the water storage section through the opening of the wall of the water storage section. It is also possible to provide a gap portion that communicates with the water, and as in the above embodiment, the water or hot water in the water storage portion can flow through the gap portion of the chamber portion, and hydrogen bubbles are provided from the chamber portion to the water in the water storage portion. Can be introduced.

また、貯水部の形状が底とその周囲の壁からなる単純な凹形状ではなく、底や壁から凸状や壇状に一部突出した複雑なものであっても、使用状態における貯水部91内の水面位置より下側で水と接触可能な箇所であれば、凸状又は壇状部分の上面や側面を貯水部91の底や壁の一部として、これらに開口部分を位置させるようにチャンバー部11を配設する構成としてもよい(図8参照)。 Further, even if the shape of the water storage unit is not a simple concave shape composed of the bottom and the surrounding wall, but a complicated shape partially protruding from the bottom or wall in a convex or platform shape, the water storage unit 91 in the used state. If it is a place that can come into contact with water below the water surface position inside, make the upper surface or side surface of the convex or platform-shaped part as a part of the bottom or wall of the water storage part 91, and position the opening part in these. The chamber portion 11 may be arranged (see FIG. 8).

この他、貯水部が浴槽であって、浴槽内の水や湯を一旦外部に導いて給湯器やいわゆるバランス釜等を通過させた後、再び浴槽に戻すような循環流路を浴槽内に連通させるために、浴槽の壁や底に水の流入口や流出口を設けたり、流入出口をまとめた循環金具(循環アダプタ)を設ける場合においては、例えば、図9に示すように、浴槽である貯水部92の壁に対し、水の流入口をなす器具93の貯水部外側に突出した部分がチャンバー部12を兼ねるようにし、その内部の水の流入路に対向電極部20を設ける構成とすることもできる。 In addition, the water storage unit is a bathtub, and a circulation flow path that guides the water or hot water in the bathtub to the outside, passes it through a water heater, a so-called balance kettle, etc., and then returns it to the bathtub is communicated in the bathtub. In the case where a water inlet or outlet is provided on the wall or bottom of the bathtub, or a circulation metal fitting (circulation adapter) is provided to collect the inflow outlets, the bathtub is, for example, as shown in FIG. With respect to the wall of the water storage portion 92, a portion of the device 93 that serves as an inflow port for water so as to protrude to the outside of the water storage portion also serves as a chamber portion 12, and a counter electrode portion 20 is provided in the water inflow path inside the chamber portion 12. You can also do it.

こうした構成では、貯水部内と外部の給湯器やバランス釜等との間で水や湯が循環することに伴う流れをそのまま水流発生手段で生じさせた流れと見なすことができ、この流れがある中で対向電極部20により電気分解を行わせ、水素気泡を発生させるようにすれば、対向電極部20間に水流を生じさせることのみを目的として特別な水流発生手段を設けずに済むこととなる。 In such a configuration, the flow associated with the circulation of water or hot water between the water storage unit and the external water heater, balance kettle, etc. can be regarded as the flow generated by the water flow generating means as it is. If the counter electrode portion 20 is used for electrolysis to generate hydrogen bubbles, it is not necessary to provide a special water flow generating means only for the purpose of generating a water flow between the counter electrode portions 20. ..

また、前記実施形態に係る水素生成システムにおいては、特別な給電部40と受電部50の組を用いて、チャンバー部10内各部品への電力供給をケーブル等導体を介さず非接触電力伝送により行い、合わせて外部からチャンバー部10内への制御用信号の送信も給電部40と受電部50間の電力伝送同様の非接触通信を介して行う構成としているが、これに限らず、図10に示すように、電力供給や制御用信号通信のためにケーブル43とコネクタ44による一般的な直接導体接続を採用し、合わせて導体接続部分や、これらケーブル、コネクタ等部品のチャンバー部10貫通部における防水を図る構成とすることもでき、非接触電力伝送用の特別な給電部や受電部等の部品を用いないことで、部品の入手性の影響をあまり受けずにシステム構築を行える。 Further, in the hydrogen generation system according to the above embodiment, a special pair of power feeding unit 40 and power receiving unit 50 is used to supply power to each component in the chamber unit 10 by non-contact power transmission without using a conductor such as a cable. At the same time, the control signal is transmitted from the outside to the inside of the chamber unit 10 via non-contact communication similar to the power transmission between the power feeding unit 40 and the power receiving unit 50, but the present invention is not limited to this. As shown in, a general direct conductor connection by a cable 43 and a connector 44 is adopted for power supply and control signal communication, and a conductor connection portion and a chamber portion 10 penetration portion of parts such as these cables and connectors are combined. It is also possible to construct a system for waterproofing in the above, and by not using parts such as a special power feeding part and power receiving part for non-contact power transmission, it is possible to construct a system without being affected by the availability of parts so much.

また、前記実施形態に係る水素生成システムにおいては、給電手段として外部の電源から供給された電力を給電部40と受電部50による非接触電力伝送によりチャンバー部10内各部品に導入可能とする構成としているが、この他、図11に示すように、チャンバー部10内に充電可能な電池65を設け、対向電極部20への通電及びポンプ部30への通電に係る電力供給を電池65から行う一方、電池65への充電はチャンバー部10外の給電部40とチャンバー部10内の受電部50との間の非接触電力伝送により実行する構成とすることもでき、公知の非接触電力伝送による二次電池の充電機構を採用して、より簡略にシステムを構築できる。 Further, in the hydrogen generation system according to the above embodiment, the electric power supplied from an external power source as a power feeding means can be introduced into each component in the chamber portion 10 by non-contact electric power transmission by the power feeding unit 40 and the power receiving unit 50. In addition to this, as shown in FIG. 11, a rechargeable battery 65 is provided in the chamber portion 10, and power is supplied from the battery 65 for energizing the counter electrode portion 20 and energizing the pump portion 30. On the other hand, the battery 65 may be charged by non-contact power transmission between the power supply unit 40 outside the chamber unit 10 and the power receiving unit 50 inside the chamber unit 10, and is performed by known non-contact power transmission. By adopting the charging mechanism of the secondary battery, the system can be constructed more simply.

また、前記実施形態に係る水素生成システムにおいては、チャンバー部10内に収める対向電極部20やポンプ部30等の各部品を支持枠部80と一体化し、これら各部品に対するメンテナンス等の取り扱いに際して、これら各部品を支持枠部80ごとチャンバー部10に対しまとめて着脱する構成としているが、これに限られるものではなく、対向電極部20やポンプ部30等の各部品を支持枠部に対し分離可能としたり、これら各部品をそれぞれ取り付けられた支持枠部の一部を支持枠部の他部に対し分離可能としたり、あるいは支持枠部を用いずに各部品を直接チャンバー部10に部品ごとに着脱可能に取り付けるようにして、対向電極部20等の各部品を全てまとめてではなく、一又は複数の部品ごとに分けてチャンバー部10に対し着脱可能とする構成としてもかまわない。 Further, in the hydrogen generation system according to the above embodiment, each part such as the counter electrode part 20 and the pump part 30 housed in the chamber part 10 is integrated with the support frame part 80, and when handling maintenance or the like for each of these parts, Each of these parts is attached to and detached from the chamber portion 10 together with the support frame portion 80, but the present invention is not limited to this, and each component such as the counter electrode portion 20 and the pump portion 30 is separated from the support frame portion. It is possible, or a part of the support frame part to which each of these parts is attached can be separated from the other part of the support frame part, or each part can be directly connected to the chamber part 10 without using the support frame part. It is also possible to attach the counter electrode portion 20 and the like to the chamber portion 10 so as to be detachably attached to the chamber portion 10 instead of collecting all the parts such as the counter electrode portion 20 together.

(本発明の第2の実施形態)
前記実施形態に係る水素生成システムにおいて、水流発生手段としてポンプ部30を設ける構成としているが、これに限られるものではなく、別の水流発生手段を用いる構成とすることもでき、例えば、水を加熱して熱対流に伴う水流を生じさせるものを採用できる。特に、前記実施形態の、給電部40との組で非接触電力伝送を行う受電部50が、原理的に発熱しやすいことは既知であるが、この点を利用した本発明の第2の実施形態として、図12に示すように、電力伝送に伴い発熱する受電部52を水流発生手段として用いる構成とすることもできる。
(Second Embodiment of the present invention)
In the hydrogen generation system according to the above embodiment, the pump unit 30 is provided as the water flow generating means, but the present invention is not limited to this, and another water flow generating means may be used, for example, water. A pump that is heated to generate a water flow associated with heat convection can be adopted. In particular, it is known that the power receiving unit 50 that performs non-contact power transmission in combination with the power feeding unit 40 of the above embodiment tends to generate heat in principle, but the second embodiment of the present invention utilizing this point. As a form, as shown in FIG. 12, a power receiving unit 52 that generates heat due to power transmission may be used as a water flow generating means.

この場合、受電部52は、電力伝送に伴う発熱で周囲の水を加熱し、水の熱対流を生じさせる。こうした熱による水の対流に伴う上昇流の発生で、受電部52近くに配設された対向電極部20の各陽極部21と陰極部22周囲で水の上向きの流れが生じ、他部分から水がこの陽極部21と陰極部22との間の領域へ流れ込もうとすると共に、陽極部21と陰極部22との間から水が周囲に出ようとして、各陽極部21と陰極部22間に水の流通状態を与えることとなる。 In this case, the power receiving unit 52 heats the surrounding water by the heat generated by the electric power transmission, and causes thermal convection of the water. Due to the generation of an ascending flow due to the convection of water due to such heat, an upward flow of water is generated around each anode portion 21 and the cathode portion 22 of the counter electrode portion 20 arranged near the power receiving portion 52, and water is generated from the other portion. Is about to flow into the region between the anode portion 21 and the cathode portion 22, and water is about to flow out from between the anode portion 21 and the cathode portion 22 to the periphery between the anode portions 21 and the cathode portion 22. Will give the water distribution status to.

このように電力伝送を行うチャンバー部10内の受電部52から発生する熱で水の熱対流を生じさせ、この熱対流に基づいて対向電極部20の陽極部21と陰極部22間に水を流通させるようにして、受電部52を水流発生手段としても用いることで、受電部52の他に別途水流発生手段を設けずに済み、構造を簡略化できると共に、水流を発生させるのに可動部分を有する機構が不要となり、故障が生じにくく、水の流通に係る信頼性を高められる。 The heat generated from the power receiving unit 52 in the chamber unit 10 that transmits power in this way causes heat convection of water, and based on this heat convection, water is transferred between the anode portion 21 and the cathode portion 22 of the counter electrode portion 20. By using the power receiving unit 52 as a water flow generating means so as to circulate, it is not necessary to separately provide a water flow generating means in addition to the power receiving unit 52, the structure can be simplified, and a movable portion for generating a water flow can be simplified. The mechanism with the above is not required, failure is unlikely to occur, and the reliability of water flow can be improved.

この他、図13に示すように、水流発生手段としてポンプ部に代えてヒータ32を配設する構成とすることもできる。この場合、ヒータ32は受電部50から制御回路部60を通じて電力を供給されて発熱し、周囲の水を加熱して水の熱対流を生じさせることで、前記同様に対向電極部20の各陽極部21と陰極部22間に水の流通状態を与えることができる。 In addition, as shown in FIG. 13, a heater 32 may be arranged instead of the pump portion as the water flow generating means. In this case, the heater 32 is supplied with electric power from the power receiving unit 50 through the control circuit unit 60 to generate heat, and heats the surrounding water to generate heat convection of the water, whereby each anode of the counter electrode unit 20 is similarly described above. A water flow state can be provided between the portion 21 and the cathode portion 22.

こうして、チャンバー部10内のヒータ32から発生する熱で水の熱対流を生じさせ、この熱対流に基づいて対向電極部20の陽極部21と陰極部22間に水を流通させるようにして、ヒータ32を水流発生手段として用いることで、水流発生手段の構造を簡略化できると共に、水流を発生させるのに可動部分を有する機構が不要となり、故障が生じにくく、水の流通に係る信頼性を高められる。 In this way, heat convection of water is generated by the heat generated from the heater 32 in the chamber portion 10, and water is circulated between the anode portion 21 and the cathode portion 22 of the counter electrode portion 20 based on this heat convection. By using the heater 32 as the water flow generating means, the structure of the water flow generating means can be simplified, a mechanism having a moving part is not required to generate the water flow, a failure does not easily occur, and the reliability of the water flow is improved. Can be enhanced.

なお、このような受電部やヒータ等の発熱源から発生する熱で水を加熱し、熱対流を利用して対向電極部20の陽極部21と陰極部22間に水を流通させるようにする場合、図14に示すように、対向電極部25をなす陽極部26と陰極部27の並ぶ向きを上下方向と直角をなす向きとし、陽極部26と陰極部27の間の隙間が上下方向に連続するように配置する構成とすることもでき、発熱源で加熱された水が陽極部26と陰極部27の間での上昇を他から特に妨げられることなく継続でき、陽極部26と陰極部27の間で水が連続して流通する状態を確保できることとなり、熱対流に伴う流速をできるだけ大きくして水素気泡の引き離し性を向上させ、貯水部へ向かう水素気泡をより小さくして水素気泡の上昇を抑え、水中の水素濃度を高められると共に、流通する水と対向電極部との接触頻度を高められ、電気分解の効率を高められる。 It should be noted that water is heated by the heat generated from a heat generating source such as a power receiving portion or a heater, and water is circulated between the anode portion 21 and the cathode portion 22 of the counter electrode portion 20 by utilizing heat convection. In the case, as shown in FIG. 14, the direction in which the anode portion 26 and the cathode portion 27 forming the counter electrode portion 25 are arranged is set to be perpendicular to the vertical direction, and the gap between the anode portion 26 and the cathode portion 27 is in the vertical direction. It is also possible to arrange them so as to be continuous, so that the water heated by the heat generating source can continue to rise between the anode portion 26 and the cathode portion 27 without being particularly hindered by others, and the anode portion 26 and the cathode portion can be arranged. It is possible to secure a state in which water continuously flows between 27, increase the flow velocity due to thermal convection as much as possible to improve the separation property of hydrogen bubbles, and make the hydrogen bubbles toward the water storage part smaller to reduce the hydrogen bubbles. The rise can be suppressed, the hydrogen concentration in water can be increased, the frequency of contact between the circulating water and the counter electrode portion can be increased, and the efficiency of electrolysis can be improved.

(本発明の第3の実施形態)
前記実施形態に係る水素生成システムにおいて、気泡を発生させるために板状の電極板を複数重ねて配置した対向電極部20を用いる構成としているが、この他、第3の実施形態として、図15に示すように、給電部40との組で非接触電力伝送を行う関係上、通電状態となる受電部57を、対向電極部28における陽極部と陰極部のいずれか一方を兼ねるものとして用いる構成とすることもできる。
(Third Embodiment of the present invention)
In the hydrogen generation system according to the above-described embodiment, the counter electrode portion 20 in which a plurality of plate-shaped electrode plates are arranged in a stack is used in order to generate bubbles. In addition, FIG. 15 as a third embodiment. As shown in the above, since the non-contact power transmission is performed in combination with the power feeding unit 40, the power receiving unit 57 in the energized state is used as either the anode portion or the cathode portion of the counter electrode portion 28. It can also be.

この場合、受電部57は、耐食性を有する金属材部分が露出したコイル部を有してチャンバー部10に配設され、対向電極部28における陽極部と陰極部のいずれか一方を兼ねるようにされることで、給電部40と受電部57との間で非接触電力伝送がなされ、且つ対向電極部28をなす他方の電極にも通電がなされると、受電部57と他方の電極との間で水の電気分解が生じ、受電部57では通電に伴って露出金属部分に気泡が発生することとなる。 In this case, the power receiving portion 57 is arranged in the chamber portion 10 having a coil portion in which a metal portion having corrosion resistance is exposed, and is configured to serve as either an anode portion or a cathode portion in the counter electrode portion 28. As a result, when non-contact power transmission is performed between the power feeding unit 40 and the power receiving unit 57 and the other electrode forming the counter electrode unit 28 is also energized, between the power receiving unit 57 and the other electrode. The electrolysis of water occurs in the water, and bubbles are generated in the exposed metal portion of the power receiving unit 57 as the electricity is applied.

こうして対向電極部28の一方の電極を兼ねる受電部57の金属材部分が、周囲の水の電気分解を進行させ、金属表面で気体を発生させることで、受電部57の他に別途同極側の電極を設けずに済み、構造を簡略化できると共に、受電部57での電力伝送に伴って発生する熱が水の熱対流をもたらし、受電部近傍に水の流通状態を与える一種の水流発生手段としても作用することとなり、電極をなす受電部57近傍における水の流通を促して、受電部57の金属材部分と貯水部内の水とを接触しやすくし、水の電気分解をより効率よく進められる。 In this way, the metal portion of the power receiving portion 57 that also serves as one electrode of the counter electrode portion 28 advances the electrolysis of the surrounding water and generates gas on the metal surface, whereby the same electrode side is separately provided in addition to the power receiving portion 57. It is not necessary to provide the electrodes of the above, the structure can be simplified, and the heat generated by the power transmission in the power receiving unit 57 brings about the thermal convection of water, which is a kind of water flow generation that gives the water flow state in the vicinity of the power receiving unit. It also acts as a means, promotes the flow of water in the vicinity of the power receiving part 57 that forms the electrode, makes it easier for the metal part of the power receiving part 57 to come into contact with the water in the water storage part, and makes the electrolysis of water more efficient. It can be advanced.

1 水素生成システム
10、11、12 チャンバー部
20、25 対向電極部
21、26 陽極部
22、27 陰極部
21a、22a 貫通孔
28 対向電極部
30 ポンプ部
32 ヒータ
40 給電部
50 受電部
51 操作部
52、57 受電部
60 制御回路部
65 電池
70 操作制御部
80 支持枠部
90、91、92 貯水部
93 器具
1 Hydrogen generation system 10, 11, 12 Chamber part 20, 25 Counter electrode part 21, 26 Anode part 22, 27 Cathode part 21a, 22a Through hole 28 Opposite electrode part 30 Pump part 32 Heater 40 Power supply part 50 Power receiving part 51 Operation part 52, 57 Power receiving unit 60 Control circuit unit 65 Battery 70 Operation control unit 80 Support frame unit 90, 91, 92 Water storage unit 93 Equipment

Claims (1)

水又は湯が所定量保持される貯水部における水面位置より下側の壁又は底に配設され、貯水部の壁又は底の開口部分を通じて貯水部の内側領域に連通する空隙部分を内部に設けられ、当該空隙部分に貯水部内の水又は湯を流通可能とされるチャンバー部と、
水の電気分解用の陽極部と陰極部を対向状態としつつ交互に一又は複数並べて一体化して形成され、前記チャンバー部内に着脱可能に配設される対向電極部と、
前記チャンバー部の外側にチャンバー部と隣接させて配置される非接触電力伝送用の給電部と、前記チャンバー部内の前記給電部と対向する位置関係となる所定箇所に配設され、少なくとも前記対向電極部に電力供給可能とされる、前記給電部と対をなす非接触電力伝送用の受電部と、を備える給電手段と、
を備え、
前記対向電極部に所定の給電手段より電力を供給して、少なくとも水素の気泡を発生させ、当該水素気泡をチャンバー部から貯水部内の水又は湯に導入する水素生成システムにおいて、
前記受電部が、耐食性を有する金属材部分が露出したコイル部を有してチャンバー部に配設され、前記対向電極部における陽極部と陰極部のいずれか一方を兼ねることを
特徴とする水素生成システム。
A gap portion is provided inside, which is arranged on the wall or bottom below the water surface position in the water storage portion where a predetermined amount of water or hot water is held, and communicates with the inner region of the water storage portion through the opening portion of the wall or bottom of the water storage portion. And a chamber part that allows water or hot water in the water storage part to flow through the gap part,
A counter electrode portion formed by alternately arranging one or a plurality of anode portions and cathode portions for electrolysis of water in a facing state and integrally arranged, and detachably arranged in the chamber portion.
A power supply unit for non-contact power transmission, which is arranged outside the chamber unit so as to be adjacent to the chamber unit, and a predetermined position in the chamber unit that faces the power supply unit, and at least the counter electrode. A power supply means including a power receiving unit for non-contact power transmission paired with the power supply unit, which is capable of supplying power to the unit.
With
In a hydrogen generation system in which electric power is supplied to the counter electrode portion from a predetermined power feeding means to generate at least hydrogen bubbles, and the hydrogen bubbles are introduced from the chamber portion into water or hot water in the water storage portion.
The power receiving portion has a coil portion in which a metal portion having corrosion resistance is exposed and is disposed in a chamber portion, and hydrogen generation is characterized by serving as either an anode portion or a cathode portion in the counter electrode portion. system.
JP2016157662A 2016-08-10 2016-08-10 Hydrogen generation system Active JP6760795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016157662A JP6760795B2 (en) 2016-08-10 2016-08-10 Hydrogen generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016157662A JP6760795B2 (en) 2016-08-10 2016-08-10 Hydrogen generation system

Publications (2)

Publication Number Publication Date
JP2018023937A JP2018023937A (en) 2018-02-15
JP6760795B2 true JP6760795B2 (en) 2020-09-23

Family

ID=61193448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016157662A Active JP6760795B2 (en) 2016-08-10 2016-08-10 Hydrogen generation system

Country Status (1)

Country Link
JP (1) JP6760795B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7465054B2 (en) * 2018-03-26 2024-04-10 マクセル株式会社 Hydrogen water generator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11276403A (en) * 1998-03-31 1999-10-12 Matsushita Electric Ind Co Ltd Washing machine using sink
US6296756B1 (en) * 1999-09-09 2001-10-02 H20 Technologies, Ltd. Hand portable water purification system
JP2001314049A (en) * 2000-04-28 2001-11-09 Techno Excel Co Ltd Induced power supply controller and load apparatus thereof
JP2002177961A (en) * 2000-10-06 2002-06-25 Denso Corp Bathing water reformer
JP2005095323A (en) * 2003-09-24 2005-04-14 Matsushita Electric Works Ltd Bath water improving device
JP5947708B2 (en) * 2012-12-27 2016-07-06 株式会社日省エンジニアリング Electrolyzed water generator
JP2015157281A (en) * 2014-01-21 2015-09-03 邦昭 堀越 Electric field type gas generator
JP6308047B2 (en) * 2014-06-24 2018-04-11 株式会社Ihi Contactless power supply system, power transmission device, power reception device
JP6012782B2 (en) * 2015-01-28 2016-10-25 株式会社八森電子デバイス Hydrogen water generator
CN205151851U (en) * 2015-11-25 2016-04-13 周锋 Healthy water equipment
TWM520064U (en) * 2016-01-15 2016-04-11 Winstream Technology Co Ltd Hydrogen generator featuring wireless power supply

Also Published As

Publication number Publication date
JP2018023937A (en) 2018-02-15

Similar Documents

Publication Publication Date Title
TWI570276B (en) A gas generator
JP6760795B2 (en) Hydrogen generation system
EP2902531B1 (en) Method for rapid service and replacement of an elektrolytic cell
EP0203900A2 (en) Chlorinating apparatus
KR920006725B1 (en) Gas alarm and detoxification heating systems
US7488415B2 (en) Disposable salt chlorine generator
JP4571386B2 (en) Brown gas generator
JP6836898B2 (en) Fine bubble-containing water generator
KR101695673B1 (en) Manufacturing apparatus of SPA Hydrogen water
US20140346036A1 (en) Electrolysis device and heat pump hot-water supply device provided with same
EP1647525A1 (en) Chlorine generator for water treatment
JP2006150188A (en) Hydrogen water production device
KR20020071099A (en) A hydrogen and oxygen generator
US4561955A (en) Cooling electrical apparatus
WO2018084117A1 (en) Electrolyzed water server
JP2006150189A (en) Hydrogen water production device and method for warming electrolytic solution in the device
KR101210841B1 (en) Non-aeration organic matter removing apparatus
JP4133730B2 (en) Steam generator for sauna
JP2005171383A (en) Hydrogen-oxygen gas generating electrode, and electrolytic cell structure
JP3373285B2 (en) Electrolytic ionic water generator
JP3102932U (en) Hydrogen and oxygen mixed gas generation electrolyzer
EP3243932B1 (en) Method and device for preventing electrochemical corrosion of clothes care machine heater, steam generator, and clothes care machine
ES2365491T3 (en) APPLIANCE TO CARRY OUT AN ELECTROLYTIC PROCESS IN A HALOGENED COMPOUND.
JP4442752B2 (en) Alkaline ion water conditioner
EP3892251A1 (en) Chlorine generator system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200903

R150 Certificate of patent or registration of utility model

Ref document number: 6760795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250