JP6759713B2 - Thermal history estimation method and thermal history estimation device for precipitation hardening aluminum alloy members - Google Patents

Thermal history estimation method and thermal history estimation device for precipitation hardening aluminum alloy members Download PDF

Info

Publication number
JP6759713B2
JP6759713B2 JP2016105279A JP2016105279A JP6759713B2 JP 6759713 B2 JP6759713 B2 JP 6759713B2 JP 2016105279 A JP2016105279 A JP 2016105279A JP 2016105279 A JP2016105279 A JP 2016105279A JP 6759713 B2 JP6759713 B2 JP 6759713B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
heat exposure
alloy member
precipitation
precipitation hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016105279A
Other languages
Japanese (ja)
Other versions
JP2017211303A (en
Inventor
茜 津野
茜 津野
智道 尾崎
智道 尾崎
健 中野
健 中野
平田 豊
豊 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2016105279A priority Critical patent/JP6759713B2/en
Publication of JP2017211303A publication Critical patent/JP2017211303A/en
Application granted granted Critical
Publication of JP6759713B2 publication Critical patent/JP6759713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、熱曝露された析出硬化型アルミニウム合金部材の熱履歴推定方法及び熱履歴推定装置に関する。 The present invention relates to a thermal history estimation method and a thermal history estimation device for a heat-exposed precipitation hardening aluminum alloy member.

過給機、圧縮機等の運転温度の上昇により、析出硬化型アルミニウム合金で形成されたインペラ等の析出硬化型アルミニウム合金部材における使用環境は、材料の能力の限界に近付いている。析出硬化型アルミニウム合金部材の信頼性向上のために、高い精度での寿命設計が求められている。析出硬化型アルミニウム合金部材の寿命設計を高い精度で行うために、実環境での熱曝露温度をより正確に把握する必要がある。 Due to the rise in operating temperature of turbochargers, compressors, etc., the usage environment for precipitation hardening aluminum alloy members such as impellers made of precipitation hardening aluminum alloys is approaching the limit of material capacity. In order to improve the reliability of precipitation hardening aluminum alloy members, life design with high accuracy is required. In order to design the life of precipitation hardening aluminum alloy members with high accuracy, it is necessary to more accurately grasp the heat exposure temperature in the actual environment.

従来、析出硬化型アルミニウム合金部材の熱曝露温度については、析出硬化型アルミニウム合金部材の周りの雰囲気温度を測定して推定することが行われている(例えば、特許文献1参照)。 Conventionally, the heat exposure temperature of a precipitation hardening aluminum alloy member has been estimated by measuring the ambient temperature around the precipitation hardening aluminum alloy member (see, for example, Patent Document 1).

特開2012−2231号公報Japanese Unexamined Patent Publication No. 2012-2231

ところで、上記のように析出硬化型アルミニウム合金部材の周りの雰囲気温度を測定して熱曝露温度を推定する方法では、析出硬化型アルミニウム合金部材から直接情報を得ていないので、析出硬化型アルミニウム合金部材の熱曝露温度を精度よく推定できない可能性がある。 By the way, in the method of estimating the heat exposure temperature by measuring the ambient temperature around the precipitation hardening aluminum alloy member as described above, since the information is not directly obtained from the precipitation hardening aluminum alloy member, the precipitation hardening aluminum alloy It may not be possible to accurately estimate the heat exposure temperature of the member.

そこで、本発明の目的は、熱曝露された析出硬化型アルミニウム合金部材の熱曝露温度をより精度よく推定することが可能な析出硬化型アルミニウム合金部材の熱履歴推定方法及び熱履歴推定装置を提供することである。 Therefore, an object of the present invention is to provide a thermal history estimation method and a thermal history estimation device for a precipitation hardening aluminum alloy member capable of more accurately estimating the heat exposure temperature of the heat-exposed precipitation hardening aluminum alloy member. It is to be.

本発明に係る析出硬化型アルミニウム合金部材の熱履歴推定方法は、熱曝露された析出硬化型アルミニウム合金部材の熱履歴推定方法であって、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する導電率測定工程と、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び熱曝露時間と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量及び熱曝露時間と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度を推定する熱曝露温度推定工程と、を備えることを特徴とする。 The method for estimating the thermal history of a precipitation-curable aluminum alloy member according to the present invention is a method for estimating the thermal history of a heat-exposed precipitation-curable aluminum alloy member, and the conductivity of the precipitation-curable aluminum alloy member before and after heat exposure. It is known that the conductivity measuring step for measuring the above, the amount of change in conductivity and the heat exposure time before and after heat exposure of the precipitation-curable aluminum alloy member, and the same composition as that of the precipitation-curable aluminum alloy member obtained in advance. Heat exposure temperature estimation step for estimating the heat exposure temperature of the precipitation-curable aluminum alloy member by comparing the amount of change in conductivity before and after heat exposure and the heat exposure time of the heat-exposed precipitation-curable aluminum alloy. It is characterized by having.

本発明に係る析出硬化型アルミニウム合金部材の熱履歴推定方法において、前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する硬さ測定工程と、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さの変化量と、を変数とした関係式に基づくD値を算出するD値算出工程と、を備え、前記熱曝露温度推定工程は、前記析出硬化型アルミニウム合金部材のD値及び熱曝露時間と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金のD値及び熱曝露時間と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度を推定することを特徴とする。 In the method for estimating the thermal history of a precipitation-curable aluminum alloy member according to the present invention, a hardness measuring step of measuring the hardness of the precipitation-curable aluminum alloy member before and after heat exposure and heat exposure of the precipitation-curable aluminum alloy member. A D value calculation step for calculating a D value based on a relational expression with the amount of change in conductivity before and after and the amount of change in hardness of the precipitation-curable aluminum alloy member before and after heat exposure as variables is provided. The heat exposure temperature estimation step is a precipitation-hardening type in which the D value and the heat exposure time of the precipitation-hardening type aluminum alloy member and a known heat-exposure having the same composition as the precipitation-hardening type aluminum alloy member obtained in advance are received. It is characterized in that the heat exposure temperature of the precipitation-hardened aluminum alloy member is estimated by comparing the D value of the aluminum alloy and the heat exposure time.

本発明に係る析出硬化型アルミニウム合金部材の熱履歴推定方法において、前記導電率測定工程は、渦電流式導電率測定法で測定することを特徴とする。 In the method for estimating the thermal history of a precipitation hardening aluminum alloy member according to the present invention, the conductivity measuring step is characterized by measuring by an eddy current type conductivity measuring method.

本発明に係る析出硬化型アルミニウム合金部材の熱履歴推定方法において、前記硬さ測定工程は、ビッカース硬さ測定法、ロックウエル硬さ測定法、ブリネル硬さ測定法またはヌープ硬さ測定法で測定することを特徴とする。 In the method for estimating the thermal history of a precipitation-curable aluminum alloy member according to the present invention, the hardness measuring step is measured by a Vickers hardness measuring method, a Rockwell hardness measuring method, a Brinell hardness measuring method, or a Noupe hardness measuring method. It is characterized by that.

本発明に係る析出硬化型アルミニウム合金部材の熱履歴推定装置は、熱曝露された析出硬化型アルミニウム合金部材の熱履歴推定装置であって、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する導電率測定手段と、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び熱曝露時間と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量及び熱曝露時間と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度を推定する熱曝露温度推定手段と、を備えることを特徴とする。 The heat history estimation device for the precipitation-curable aluminum alloy member according to the present invention is a heat history estimation device for the heat-exposed precipitation-curable aluminum alloy member, and the conductivity of the precipitation-curable aluminum alloy member before and after heat exposure. It is known that the conductivity measuring means for measuring the above, the amount of change in conductivity and the heat exposure time before and after heat exposure of the precipitation-curable aluminum alloy member, and the same composition as the predetermined precipitation-curable aluminum alloy member. Heat exposure temperature estimation means for estimating the heat exposure temperature of the precipitation-curable aluminum alloy member by comparing the amount of change in conductivity and the heat exposure time before and after heat exposure in the heat-exposed precipitation-curable aluminum alloy. It is characterized by having.

本発明に係る析出硬化型アルミニウム合金部材の熱履歴推定装置において、前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する硬さ測定手段と、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さの変化量と、を変数とした関係式に基づくD値を算出するD値算出手段と、を備え、前記熱曝露温度推定手段は、前記析出硬化型アルミニウム合金部材のD値及び熱曝露時間と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金のD値及び熱曝露時間と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度を推定することを特徴とする。 In the thermal history estimation device of the precipitation-curable aluminum alloy member according to the present invention, a hardness measuring means for measuring the hardness of the precipitation-curable aluminum alloy member before and after heat exposure and heat exposure of the precipitation-curable aluminum alloy member. A D value calculating means for calculating a D value based on a relational expression with the amount of change in conductivity before and after and the amount of change in hardness of the precipitation-curable aluminum alloy member before and after heat exposure as variables is provided. The heat exposure temperature estimation means is a precipitation-curing type that has received a known heat exposure having the same composition as the precipitation-hardening type aluminum alloy member, which has the same composition as the D value and heat exposure time of the precipitation-hardening type aluminum alloy member. It is characterized in that the heat exposure temperature of the precipitation-hardened aluminum alloy member is estimated by comparing the D value of the aluminum alloy and the heat exposure time.

上記構成によれば、熱曝露された析出硬化型アルミニウム合金部材の導電率の変化に基づいて熱曝露温度を推定しているので、析出硬化型アルミニウム合金部材の熱曝露温度をより精度よく推定することが可能となる。 According to the above configuration, since the heat exposure temperature is estimated based on the change in the conductivity of the heat-exposed precipitation-curable aluminum alloy member, the heat exposure temperature of the precipitation-curable aluminum alloy member is estimated more accurately. It becomes possible.

本発明の第一実施形態において、析出硬化型アルミニウム合金部材の熱履歴推定方法を示すフローチャートである。It is a flowchart which shows the thermal history estimation method of the precipitation hardening type aluminum alloy member in 1st Embodiment of this invention. 本発明の第一実施形態において、析出硬化型アルミニウム合金部材における導電率と熱曝露時間との関係を示すモデル図である。It is a model figure which shows the relationship between the conductivity and the heat exposure time in the precipitation hardening type aluminum alloy member in the 1st Embodiment of this invention. 本発明の第一実施形態において、熱曝露温度の推定方法を示すモデル図である。It is a model diagram which shows the method of estimating the heat exposure temperature in the 1st Embodiment of this invention. 本発明の第一実施形態において、析出硬化型アルミニウム合金部材の熱履歴推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the thermal history estimation apparatus of the precipitation hardening type aluminum alloy member in the 1st Embodiment of this invention. 本発明の第二実施形態において、析出硬化型アルミニウム合金部材の熱履歴推定方法を示すフローチャートである。It is a flowchart which shows the thermal history estimation method of the precipitation hardening type aluminum alloy member in the 2nd Embodiment of this invention. 本発明の第二実施形態において、析出硬化型アルミニウム合金部材における硬さと熱曝露時間との関係を示すモデル図である。It is a model figure which shows the relationship between the hardness and the heat exposure time in the precipitation hardening type aluminum alloy member in the 2nd Embodiment of this invention. 本発明の第二実施形態において、D値と、熱曝露時間と、熱曝露温度との関係を示すモデル図である。It is a model figure which shows the relationship between the D value, the heat exposure time, and the heat exposure temperature in the 2nd Embodiment of this invention. 本発明の第二実施形態において、熱曝露温度の推定方法を示すモデル図である。It is a model diagram which shows the method of estimating the heat exposure temperature in the 2nd Embodiment of this invention. 本発明の第二実施形態において、析出硬化型アルミニウム合金部材の熱履歴推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the thermal history estimation apparatus of the precipitation hardening type aluminum alloy member in the 2nd Embodiment of this invention. 本発明の実施例1において、マスター曲線を示すグラフである。It is a graph which shows the master curve in Example 1 of this invention. 本発明の実施例2において、熱曝露前後の硬さの変化量と、熱曝露時間と、熱曝露温度との関係を示すグラフである。It is a graph which shows the relationship between the amount of change of hardness before and after heat exposure, heat exposure time, and heat exposure temperature in Example 2 of this invention. 本発明の実施例2において、マスター曲線を示すグラフである。It is a graph which shows the master curve in Example 2 of this invention.

以下に本発明の実施の形態について図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[第一実施形態]
本発明の第一実施形態について図面を用いて詳細に説明する。図1は、析出硬化型アルミニウム合金部材の熱履歴推定方法を示すフローチャートである。析出硬化型アルミニウム合金部材の熱履歴推定方法は、導電率測定工程(S10)と、熱曝露温度推定工程(S12)と、を備えている。
[First Embodiment]
The first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a flowchart showing a method for estimating the thermal history of a precipitation hardening aluminum alloy member. The method for estimating the thermal history of the precipitation hardening aluminum alloy member includes a conductivity measuring step (S10) and a heat exposure temperature estimating step (S12).

析出硬化型アルミニウム合金部材は、例えば、船舶用過給機、発電機、車両用過給機に用いられるコンプレッサインペラ等の展伸部材や鋳造部材である。このような析出硬化型アルミニウム合金部材は、例えば、過給機等の装置の運転中に、約100℃から約200℃で熱曝露されている。 The precipitation hardening aluminum alloy member is, for example, a spreading member or a casting member such as a compressor impeller used in a marine turbocharger, a generator, or a vehicle supercharger. Such precipitation hardening aluminum alloy members are heat-exposed at about 100 ° C. to about 200 ° C. during operation of, for example, a device such as a turbocharger.

析出硬化型アルミニウム合金部材は、JIS規格等の析出硬化型アルミニウム合金で形成されている。析出硬化型アルミニウム合金は、溶体化処理した後に時効処理することにより、析出物を析出させて強化させたアルミニウム合金である。析出硬化型アルミニウム合金部材は、例えば、Al−Cu系合金、Al−Cu−Mg系合金、Al−Mg−Si系合金、Al−Zn−Mg系合金、Al−Zn−Mg−Cu系合金等(2000系、6000系、7000系、AC1B、AC4A、AC4C、AC4CH等)で形成されている。 The precipitation hardening aluminum alloy member is formed of a precipitation hardening aluminum alloy such as JIS standard. The precipitation-hardening type aluminum alloy is an aluminum alloy in which precipitates are precipitated and strengthened by a solution treatment and then an aging treatment. Precipitated and cured aluminum alloy members include, for example, Al-Cu alloys, Al-Cu-Mg alloys, Al-Mg-Si alloys, Al-Zn-Mg alloys, Al-Zn-Mg-Cu alloys and the like. (2000 series, 6000 series, 7000 series, AC1B, AC4A, AC4C, AC4CH, etc.).

導電率測定工程(S10)は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する工程である。析出硬化型アルミニウム合金部材の導電率は、主に、析出硬化型アルミニウム合金におけるAl母相中の溶質元素の固溶量に影響される。析出硬化型アルミニウム合金部材が熱曝露されると、Al母相中に固溶している溶質元素が析出物として析出し、Al母相中の溶質元素の固溶量が低下することにより、析出硬化型アルミニウム合金部材の導電率が変化する。このことから、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化により、析出硬化型アルミニウム合金部材の熱曝露の影響を評価することができる。 The conductivity measuring step (S10) is a step of measuring the conductivity of the precipitation hardening aluminum alloy member before and after heat exposure. The conductivity of the precipitation-curable aluminum alloy member is mainly affected by the solid solution amount of the solute element in the Al matrix in the precipitation-curable aluminum alloy. When the precipitation-curable aluminum alloy member is exposed to heat, solute elements that are solid-dissolved in the Al matrix are precipitated as precipitates, and the amount of solute elements in the Al matrix is reduced, resulting in precipitation. The conductivity of the curable aluminum alloy member changes. From this, the influence of heat exposure of the precipitation hardening aluminum alloy member can be evaluated by the change in conductivity before and after heat exposure of the precipitation hardening aluminum alloy member.

図2は、析出硬化型アルミニウム合金部材における導電率と熱曝露時間との関係を示すモデル図である。図2では、横軸に熱曝露時間を取り、縦軸に導電率を取り、導電率の変化を実線で示している。また、熱曝露温度T1は、熱曝露温度T2より高温であることを示している。 FIG. 2 is a model diagram showing the relationship between conductivity and heat exposure time in a precipitation hardening aluminum alloy member. In FIG. 2, the horizontal axis represents the heat exposure time, the vertical axis represents the conductivity, and the change in conductivity is shown by a solid line. Further, the heat exposure temperature T1 indicates that the temperature is higher than the heat exposure temperature T2.

析出硬化型アルミニウム合金部材の導電率は、熱曝露開始から熱曝露時間の経過とともに大きくなる傾向がある。また、析出硬化型アルミニウム合金部材の導電率は、熱曝露時間が同じである場合には、熱曝露温度が高いほど大きくなる傾向がある。 The conductivity of the precipitation hardening aluminum alloy member tends to increase with the lapse of heat exposure time from the start of heat exposure. Further, the conductivity of the precipitation hardening aluminum alloy member tends to increase as the heat exposure temperature increases when the heat exposure time is the same.

析出硬化型アルミニウム合金部材は、溶体化処理後の時効処理により、準安定相からなる析出物を析出させて強化させている。析出硬化型アルミニウム合金部材は、熱曝露されると、Al母相中に固溶している溶質元素が析出し、準安定相が増えるとともに準安定相の形態が変化し、最終的に安定相が形成される。熱曝露により、Al母相中に固溶している溶質元素が析出すると、Al母相中に固溶している溶質元素の固溶量が低下するので、析出硬化型アルミニウム合金部材の導電率が大きくなる傾向がある。また、熱曝露温度が高くなると、Al母相中に固溶している溶質元素の析出が促進されるので、Al母相中に固溶している溶質元素の固溶量の低下がより大きくなり、析出硬化型アルミニウム合金部材の導電率がより大きくなる傾向がある。 The precipitation hardening aluminum alloy member is strengthened by precipitating a precipitate composed of a metastable phase by an aging treatment after the solution heat treatment. When the precipitation-curable aluminum alloy member is exposed to heat, solute elements that are solid-solved in the Al matrix are precipitated, the metastable phase increases, the morphology of the metastable phase changes, and finally the stable phase. Is formed. When a solute element dissolved in the Al matrix is precipitated by heat exposure, the amount of the solute element dissolved in the Al matrix is reduced, so that the conductivity of the precipitation-curable aluminum alloy member is reduced. Tends to increase. Further, when the heat exposure temperature becomes high, the precipitation of the solute element dissolved in the Al matrix is promoted, so that the amount of the solute element dissolved in the Al matrix is further reduced. Therefore, the conductivity of the precipitation-curable aluminum alloy member tends to be higher.

例えば、析出硬化型アルミニウム合金部材がAl−Cu−Mg系合金で形成されている場合には、熱曝露により、Al母相中に固溶しているCu、Mg等の溶質元素が析出し、合金組織内で析出物がGPB(Guinier Preston Bagaryatsky ギニエ・プレストン・バガリャツキ)(1)ゾーン→GPB(2)ゾーン(S”相)→S’相→S相(AlCuMg)の過程で変化して、最終的に安定相であるS相(AlCuMg)が形成される。熱曝露により、Al母相中に固溶しているCu、Mg等の溶質元素が析出すると、Al母相中に固溶しているCu、Mg等の溶質元素の固溶量が低下するので、析出硬化型アルミニウム合金部材の導電率が大きくなる。また、熱曝露温度が高くなると、Al母相中に固溶しているCu、Mg等の溶質元素の析出が促進されるので、Al母相中に固溶しているCu、Mg等の溶質元素の固溶量の低下が大きくなり、析出硬化型アルミニウム合金部材の導電率が大きくなる。このように、析出硬化型アルミニウム合金部材の導電率は、主に、Al母相中の溶質元素の固溶量に起因して変化する。 For example, when the precipitation-curable aluminum alloy member is formed of an Al—Cu—Mg-based alloy, solute elements such as Cu and Mg that are solid-dissolved in the Al matrix are precipitated by heat exposure. In the alloy structure, the precipitate changes in the process of GPB (Guinier Preston Bagayatsky) (1) zone → GPB (2) zone (S “phase) → S'phase → S phase (Al 2 CuMg). Finally, the stable phase S phase (Al 2 CuMg) is formed. When solute elements such as Cu and Mg that are solid-dissolved in the Al matrix are precipitated by heat exposure, the Al matrix contains the solute elements. Since the amount of solute elements such as Cu and Mg that are solid-dissolved in the aluminum decreases, the conductivity of the precipitation-curable aluminum alloy member increases. Further, when the heat exposure temperature increases, it solidifies in the Al matrix. Since the precipitation of dissolved solute elements such as Cu and Mg is promoted, the amount of solute elements such as Cu and Mg dissolved in the Al matrix is greatly reduced, and the precipitation-curable aluminum The conductivity of the alloy member increases. As described above, the conductivity of the precipitation-curable aluminum alloy member changes mainly due to the solid solution amount of the solute element in the Al matrix.

析出硬化型アルミニウム合金部材の導電率は、一般的な金属材料の導電率測定方法で測定可能である。析出硬化型アルミニウム合金部材の導電率は、非破壊で測定可能であることから、渦電流式導電率測定法で測定されることが好ましい。渦電流式導電率測定法であれば、析出硬化型アルミニウム合金部材が設けられている現場でも測定可能である。 The conductivity of the precipitation hardening aluminum alloy member can be measured by a general method for measuring the conductivity of a metal material. Since the conductivity of the precipitation hardening aluminum alloy member can be measured non-destructively, it is preferably measured by the eddy current conductivity measuring method. If it is an eddy current type conductivity measuring method, it can be measured even at a site where a precipitation hardening aluminum alloy member is provided.

熱曝露温度推定工程(S12)は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び熱曝露時間と、予め求めておいた析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量及び熱曝露時間と、を比較して、析出硬化型アルミニウム合金部材の熱曝露温度を推定する工程である。 In the heat exposure temperature estimation step (S12), the amount of change in conductivity and the heat exposure time before and after heat exposure of the precipitation-curable aluminum alloy member and the heat known in the same composition as the predetermined precipitation-curable aluminum alloy member are obtained. This is a step of estimating the heat exposure temperature of the precipitation-curable aluminum alloy member by comparing the amount of change in conductivity and the heat exposure time before and after heat exposure of the exposed precipitation-curable aluminum alloy.

予め析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量と、熱曝露時間との関係を実験等により求めて、例えば、マスター曲線等を作成する。析出硬化型アルミニウム合金の熱曝露については、例えば、析出硬化型アルミニウム合金部材が設けられる装置の運転から解析等で想定される複数の熱曝露温度で行うとよい。例えば、析出硬化型アルミニウム合金部材が、装置の運転から100℃、120℃、140℃、160℃、180℃、200℃のいずれかの熱曝露温度に曝される可能性がある場合には、これらの温度で熱曝露すればよい。そして、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び熱曝露時間から、析出硬化型アルミニウム合金部材の熱曝露温度を推定する。 The relationship between the amount of change in conductivity before and after heat exposure in a precipitation hardening aluminum alloy having the same composition as the precipitation hardening aluminum alloy member and the known heat exposure and the heat exposure time can be obtained by experiments or the like, for example. Create a master curve, etc. The heat exposure of the precipitation hardening aluminum alloy may be performed at a plurality of heat exposure temperatures assumed in the operation and analysis of the apparatus provided with the precipitation hardening aluminum alloy member, for example. For example, if the precipitation hardening aluminum alloy member may be exposed to a heat exposure temperature of 100 ° C., 120 ° C., 140 ° C., 160 ° C., 180 ° C., or 200 ° C. from the operation of the device, Heat exposure may be sufficient at these temperatures. Then, the heat exposure temperature of the precipitation hardening aluminum alloy member is estimated from the amount of change in conductivity before and after heat exposure and the heat exposure time of the precipitation hardening aluminum alloy member.

図3は、熱曝露温度の推定方法を示すモデル図である。図3では、横軸に熱曝露時間を取り、縦軸に導電率の変化量を取り、導電率の変化量を実線で示している。また、熱曝露温度T1は、熱曝露温度T2より高温であることを示している。例えば、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量がΔE1であり、熱曝露時間がt1である場合には、熱曝露温度がT1と推定される。析出硬化型アルミニウム合金部材の熱曝露前後の導電率がΔE2であり、熱曝露時間がt2である場合には、熱曝露温度がT2と推定される。このようにして、析出硬化型アルミニウム合金部材の熱曝露温度が推定される FIG. 3 is a model diagram showing a method for estimating the heat exposure temperature. In FIG. 3, the horizontal axis represents the heat exposure time, the vertical axis represents the amount of change in conductivity, and the amount of change in conductivity is indicated by a solid line. Further, the heat exposure temperature T1 indicates that the temperature is higher than the heat exposure temperature T2. For example, when the amount of change in conductivity of the precipitation hardening aluminum alloy member before and after heat exposure is ΔE1 and the heat exposure time is t1, the heat exposure temperature is estimated to be T1. When the conductivity of the precipitation hardening aluminum alloy member before and after heat exposure is ΔE2 and the heat exposure time is t2, the heat exposure temperature is estimated to be T2. In this way, the heat exposure temperature of the precipitation hardening aluminum alloy member is estimated.

また、熱曝露前後の導電率の変化量に基づいて熱曝露温度を推定することにより、熱曝露前(未曝露)のときの析出硬化型アルミニウム合金部材の調質状態や加工状態等が異なる場合でも、同じマスター曲線を用いて熱曝露温度を推定することができる。より詳細には、同一組成の析出硬化型アルミニウム合金で形成されており、熱処理条件や加工条件が異なる析出硬化型アルミニウム合金部材の場合でも、熱曝露前後の導電率の変化量に基づいて推定することから、熱曝露前の影響を除くことができる。これにより、調質状態や加工状態等が異なる析出硬化型アルミニウム合金部材の場合でも、同じマスター曲線を用いて熱曝露温度を推定することが可能となる。 In addition, when the heat exposure temperature is estimated based on the amount of change in conductivity before and after heat exposure, the tempered state and processed state of the precipitation hardening aluminum alloy member before heat exposure (unexposed) are different. However, the same master curve can be used to estimate the heat exposure temperature. More specifically, it is estimated based on the amount of change in conductivity before and after heat exposure even in the case of precipitation hardening aluminum alloy members which are formed of precipitation hardening aluminum alloys having the same composition and have different heat treatment conditions and processing conditions. Therefore, the effects before heat exposure can be excluded. This makes it possible to estimate the heat exposure temperature using the same master curve even in the case of precipitation hardening aluminum alloy members having different tempered states, processed states, and the like.

次に、析出硬化型アルミニウム合金部材の熱履歴推定装置について説明する。図4は、析出硬化型アルミニウム合金部材の熱履歴推定装置10の構成を示すブロック図である。析出硬化型アルミニウム合金部材の熱履歴推定装置10は、導電率測定手段12と、制御手段14と、出力手段16と、を備えている。 Next, a thermal history estimation device for the precipitation hardening aluminum alloy member will be described. FIG. 4 is a block diagram showing a configuration of a heat history estimation device 10 for a precipitation hardening aluminum alloy member. The thermal history estimation device 10 for a precipitation hardening aluminum alloy member includes a conductivity measuring means 12, a controlling means 14, and an output means 16.

導電率測定手段12は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する機能を有している。導電率測定手段12は、渦電流式導電率測定装置等で構成されている。 The conductivity measuring means 12 has a function of measuring the conductivity of the precipitation hardening aluminum alloy member before and after heat exposure. The conductivity measuring means 12 is composed of an eddy current type conductivity measuring device or the like.

制御手段14は、熱曝露温度推定手段18と、記憶手段20と、を有している。制御手段14は、例えば、一般的なパーソナルコンピュータ等で構成されている。 The control means 14 includes a heat exposure temperature estimation means 18 and a storage means 20. The control means 14 is composed of, for example, a general personal computer or the like.

熱曝露温度推定手段18は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び熱曝露時間と、予め求めておいた析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量及び熱曝露時間と、を比較して、析出硬化型アルミニウム合金部材の熱曝露温度を推定する機能を有している。 The heat exposure temperature estimating means 18 determines the amount of change in conductivity and heat exposure time of the precipitation-curable aluminum alloy member before and after heat exposure, and the heat exposure known in advance with the same composition as that of the precipitation-curable aluminum alloy member. It has a function of estimating the heat exposure temperature of the precipitation-curable aluminum alloy member by comparing the amount of change in conductivity and the heat exposure time of the received precipitation-curable aluminum alloy before and after heat exposure.

記憶手段20は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び熱曝露時間、予め求めておいた析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量及び熱曝露時間、導電率の変化量及び熱曝露時間の関係を示すマスター曲線等のデータを記憶する機能を有している。 The storage means 20 is subjected to known heat exposure with the same composition as the previously determined precipitation-curable aluminum alloy member, such as the amount of change in conductivity and heat exposure time before and after heat exposure of the precipitation-curable aluminum alloy member. It has a function to store data such as a master curve showing the relationship between the amount of change in conductivity and the heat exposure time before and after heat exposure in the type aluminum alloy, the amount of change in conductivity and the heat exposure time.

出力手段16は、推定された析出硬化型アルミニウム合金部材の熱曝露温度等を出力する機能を有している。出力手段16は、ディスプレイやプリンタ等で構成されている。 The output means 16 has a function of outputting the estimated heat exposure temperature of the precipitation hardening aluminum alloy member and the like. The output means 16 is composed of a display, a printer, or the like.

以上、上記構成によれば、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び熱曝露時間から、析出硬化型アルミニウム合金部材の熱曝露温度を推定することにより、析出硬化型アルミニウム合金部材から直接情報を得て推定しているので、熱曝露温度をより精度よく推定することが可能となる。 As described above, according to the above configuration, precipitation hardening aluminum by estimating the heat exposure temperature of the precipitation hardening aluminum alloy member from the amount of change in conductivity before and after heat exposure and the heat exposure time of the precipitation hardening aluminum alloy member. Since the estimation is made by directly obtaining information from the alloy member, it is possible to estimate the heat exposure temperature more accurately.

[第二実施形態]
次に、本発明の第二実施形態について図面を用いて詳細に説明する。なお、第一実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。図5は、析出硬化型アルミニウム合金部材の熱履歴推定方法を示すフローチャートである。析出硬化型アルミニウム合金部材の熱履歴推定方法は、導電率測定工程(S10)と、硬さ測定工程(S20)と、D値算出工程(S22)と、熱曝露温度推定工程(S24)と、を備えている。
[Second Embodiment]
Next, the second embodiment of the present invention will be described in detail with reference to the drawings. The same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. FIG. 5 is a flowchart showing a method for estimating the thermal history of the precipitation hardening aluminum alloy member. The thermal history estimation method for the precipitation-curable aluminum alloy member includes a conductivity measurement step (S10), a hardness measurement step (S20), a D value calculation step (S22), and a heat exposure temperature estimation step (S24). It has.

導電率測定工程(S10)は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する工程である。導電率測定工程(S10)は、第一実施形態の導電率測定工程(S10)と同じであるので詳細な説明を省略する。 The conductivity measuring step (S10) is a step of measuring the conductivity of the precipitation hardening aluminum alloy member before and after heat exposure. Since the conductivity measurement step (S10) is the same as the conductivity measurement step (S10) of the first embodiment, detailed description thereof will be omitted.

硬さ測定工程(S20)は、析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する工程である。析出硬化型アルミニウム合金部材の硬さは、主に、析出硬化型アルミニウム合金の析出物の形態に影響される。 The hardness measuring step (S20) is a step of measuring the hardness of the precipitation hardening aluminum alloy member before and after heat exposure. The hardness of the precipitation hardening aluminum alloy member is mainly affected by the morphology of the precipitation hardening aluminum alloy deposits.

図6は、析出硬化型アルミニウム合金部材における硬さと熱曝露時間との関係を示すモデル図である。図6のモデル図では、横軸に熱曝露時間を取り、縦軸に硬さを取り、硬さの変化を実線で示している。また、熱曝露温度T1は、熱曝露温度T2より高温であることを示している。 FIG. 6 is a model diagram showing the relationship between hardness and heat exposure time in a precipitation hardening aluminum alloy member. In the model diagram of FIG. 6, the horizontal axis represents the heat exposure time, the vertical axis represents the hardness, and the change in hardness is shown by a solid line. Further, the heat exposure temperature T1 indicates that the temperature is higher than the heat exposure temperature T2.

熱曝露温度が比較的低い温度T2(例えば、140℃以下)の場合には、析出硬化型アルミニウム合金部材の硬さは、熱曝露の初期では略一定であり、所定の熱曝露時間の経過後に低下を開始する。また、熱曝露温度が比較的高い温度T1(例えば、160℃以上)の場合には、析出硬化型アルミニウム合金部材の硬さは、熱曝露の初期から緩やかに低下し、所定の熱曝露時間の経過後に低下が大きくなる。このように、析出硬化型アルミニウム合金の硬さは、熱曝露温度が高温になるほどより早く低下すると共に、低下の度合いが大きくなる。 When the heat exposure temperature is relatively low temperature T2 (for example, 140 ° C. or lower), the hardness of the precipitation hardening aluminum alloy member is substantially constant at the initial stage of heat exposure, and after a predetermined heat exposure time elapses. Starts to decline. Further, when the heat exposure temperature is a relatively high temperature T1 (for example, 160 ° C. or higher), the hardness of the precipitation hardening aluminum alloy member gradually decreases from the initial stage of heat exposure, and the predetermined heat exposure time is reached. After the lapse of time, the decrease becomes large. As described above, the hardness of the precipitation hardening aluminum alloy decreases faster as the heat exposure temperature becomes higher, and the degree of decrease increases.

析出硬化型アルミニウム合金部材は、熱曝露されると、Al母相中に固溶している溶質元素が析出し、準安定相が増えるとともに準安定相の形態が変化し、最終的に安定相が形成される。析出硬化型アルミニウム合金部材の硬さは、準安定相が析出物として析出している間は略一定となり、安定相が析出物として析出すると低下する傾向がある。析出硬化型アルミニウム合金部材の硬さは、安定相が析出した後においても、オストワルド成長等により更に低下する傾向がある。また、析出硬化型アルミニウム合金部材の硬さは、熱曝露温度が比較的低温の場合(例えば、140℃以下の熱曝露温度)には、準安定相の析出速度や形態の変化が遅くなり、安定相に移行し難くなるので、熱曝露時間が長くても略一定となる傾向がある。 When the precipitation-curable aluminum alloy member is exposed to heat, solute elements that are solid-solved in the Al matrix are precipitated, the metastable phase increases, the morphology of the metastable phase changes, and finally the stable phase. Is formed. The hardness of the precipitation-curable aluminum alloy member tends to be substantially constant while the metastable phase is precipitated as a precipitate, and tends to decrease when the stable phase is precipitated as a precipitate. The hardness of the precipitation hardening aluminum alloy member tends to further decrease due to Ostwald growth or the like even after the stable phase is precipitated. Further, regarding the hardness of the precipitation-curable aluminum alloy member, when the heat exposure temperature is relatively low (for example, the heat exposure temperature of 140 ° C. or lower), the precipitation rate and morphological change of the metastable phase become slow. Since it becomes difficult to shift to the stable phase, it tends to be substantially constant even if the heat exposure time is long.

例えば、析出硬化型アルミニウム合金部材がAl−Cu−Mg系合金で形成されている場合には、析出硬化型アルミニウム合金部材の硬さは、GPB(1)ゾーン、GPB(2)ゾーン(S”相)及びS’相からなる準安定相が析出物として析出している間は略一定となるが、S相(AlCuMg)からなる安定相が析出物として析出すると低下する傾向がある。このように、析出硬化型アルミニウム合金部材の硬さは、主に、析出物の形態に起因して変化する。 For example, when the precipitation-curing aluminum alloy member is formed of an Al—Cu—Mg-based alloy, the hardness of the precipitation-curing aluminum alloy member is GPB (1) zone, GPB (2) zone (S ”. It is substantially constant while the semi-stable phase composed of the phase) and the S'phase is precipitated as a precipitate, but tends to decrease when the stable phase composed of the S phase (Al 2 CuMg) is precipitated as a precipitate. As described above, the hardness of the precipitation-curable aluminum alloy member changes mainly due to the morphology of the precipitate.

硬さ測定は、例えば、マイクロビッカース硬さ測定法等のビッカース硬さ測定法、ロックウエル硬さ測定法、ブリネル硬さ測定法、ヌープ硬さ測定法等を用いることが可能である。硬さ測定は、析出硬化型アルミニウム合金部材を直接測定してもよいし、サンプルを切り出して樹脂埋めし、耐水研磨紙やアルミナ、コロイダルシリカ等の研磨材で研磨してから測定してもよい。また、硬さ測定は、マイクロビッカース硬さ測定法によることが好ましい。マイクロビッカース硬さ測定法によれば、圧痕サイズが小さいので、析出硬化型アルミニウム合金部材が小さくても硬さを複数箇所測定することができる。 For the hardness measurement, for example, a Vickers hardness measuring method such as a micro Vickers hardness measuring method, a Rockwell hardness measuring method, a Brinell hardness measuring method, a Knoop hardness measuring method and the like can be used. The hardness may be measured directly by directly measuring the precipitation-curable aluminum alloy member, or by cutting out a sample, embedding it in resin, and polishing it with a water-resistant abrasive paper or an abrasive such as alumina or colloidal silica. .. Further, the hardness is preferably measured by the Micro Vickers hardness measuring method. According to the micro Vickers hardness measurement method, since the indentation size is small, the hardness can be measured at a plurality of points even if the precipitation hardening aluminum alloy member is small.

D値算出工程(S22)は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、析出硬化型アルミニウム合金部材における熱曝露前後の硬さの変化量と、を変数とした関係式に基づくD値を算出する工程である。 In the D value calculation step (S22), the relationship between the amount of change in conductivity of the precipitation-curable aluminum alloy member before and after heat exposure and the amount of change in hardness of the precipitation-curable aluminum alloy member before and after heat exposure are used as variables. This is a step of calculating the D value based on the formula.

析出硬化型アルミニウム合金部材の導電率は、主に、Al母相中に固溶している溶質元素の固溶量に起因しており、熱曝露によりAl母相中の溶質元素が析出して、Al母相中の溶質元素の固溶量が減ることにより変化する。このことから、析出硬化型アルミニウム合金部材の導電率は、熱曝露の初期から変化の度合いが大きくなる傾向がある。一方、析出硬化型アルミニウム合金部材の導電率は、Al母相中に固溶している溶質元素がほとんど析出すると、Al母相中の溶質元素の固溶量が少なくなるので、変化の度合いが小さくなる傾向がある。 The conductivity of the precipitation-curable aluminum alloy member is mainly due to the amount of solute elements dissolved in the Al matrix, and the solute elements in the Al matrix are precipitated by heat exposure. , It changes as the amount of solute element dissolved in the Al matrix decreases. For this reason, the conductivity of precipitation hardening aluminum alloy members tends to change significantly from the initial stage of heat exposure. On the other hand, the conductivity of the precipitation-curable aluminum alloy member changes with respect to the degree of change because the amount of solute elements in the Al matrix decreases when most of the solute elements dissolved in the Al matrix are precipitated. It tends to be smaller.

析出硬化型アルミニウム合金部材の硬さは、主に、析出物の形態に起因しているので、準安定相が析出物として析出している熱曝露の初期では、変化の度合いが小さくなる傾向がある。一方、析出硬化型アルミニウム合金部材の硬さは、熱曝露時間の経過とともに析出物の形態が変化して安定相が析出されると変化の度合いが大きくなる傾向がある。また、析出硬化型アルミニウム合金部材の硬さは、安定相が形成された後でも、オストワルド成長等により変化の度合いが大きくなる傾向がある。 Since the hardness of the precipitation hardening aluminum alloy member is mainly due to the morphology of the precipitate, the degree of change tends to be small in the initial stage of heat exposure in which the metastable phase is precipitated as a precipitate. is there. On the other hand, the hardness of the precipitation hardening aluminum alloy member tends to increase when the morphology of the precipitate changes with the passage of heat exposure time and a stable phase is precipitated. Further, the hardness of the precipitation hardening aluminum alloy member tends to change greatly due to Ostwald growth or the like even after the stable phase is formed.

そこで、導電率の変化量と、硬さの変化量とを変数とした関係式に基づくD値をパラメータとすることにより、熱曝露の初期における硬さの変化の度合いが小さい期間では、主に、導電率の変化によりD値が変化し、熱曝露時間が長くなり、導電率の変化の度合が小さくなる期間では、主に、硬さの変化によりD値が変化する。このように、D値をパラメータとすることにより、熱曝露の全期間において析出硬化型アルミニウム合金部材の熱曝露温度を精度よく推定することができる。 Therefore, by using the D value based on the relational expression with the amount of change in conductivity and the amount of change in hardness as variables as parameters, mainly during the period when the degree of change in hardness at the initial stage of heat exposure is small. , The D value changes due to the change in conductivity, the heat exposure time becomes long, and the D value changes mainly due to the change in hardness during the period when the degree of change in conductivity becomes small. As described above, by using the D value as a parameter, the heat exposure temperature of the precipitation hardening aluminum alloy member can be accurately estimated during the entire period of heat exposure.

D値は、熱曝露前後における導電率の変化量をΔE、熱曝露前後における硬さの変化量をΔHとしたとき、D=(ΔH+100)/(ΔE+100)で算出されるとよい。D値をこのような簡素なパラメータに設定することにより、析出硬化型アルミニウム合金部材の熱曝露温度の推定が容易になるからである。 The D value may be calculated as D = (ΔH + 100) / (ΔE + 100), where ΔE is the amount of change in conductivity before and after heat exposure and ΔH is the amount of change in hardness before and after heat exposure. By setting the D value to such a simple parameter, it becomes easy to estimate the heat exposure temperature of the precipitation hardening aluminum alloy member.

図7は、D値と、熱曝露時間と、熱曝露温度との関係を示すモデル図である。図7のモデル図では、横軸に熱曝露時間を取り、縦軸にD値を取り、D値を実線で示している。なお、熱曝露温度T1は、熱曝露温度T2より高温の場合を示している。また、図7のモデル図では、図2の導電率と熱曝露時間との関係を示すモデル図と、図6の硬さと熱曝露時間との関係を示すモデル図とを用いることにより、導電率の変化量をΔE、硬さの変化量をΔHとしたとき、D=(ΔH+100)/(ΔE+100)でD値を算出している。 FIG. 7 is a model diagram showing the relationship between the D value, the heat exposure time, and the heat exposure temperature. In the model diagram of FIG. 7, the horizontal axis represents the heat exposure time, the vertical axis represents the D value, and the D value is indicated by a solid line. The heat exposure temperature T1 indicates a case where the temperature is higher than the heat exposure temperature T2. Further, in the model diagram of FIG. 7, the conductivity is obtained by using the model diagram showing the relationship between the conductivity and the heat exposure time of FIG. 2 and the model diagram showing the relationship between the hardness and the heat exposure time of FIG. When the amount of change in is ΔE and the amount of change in hardness is ΔH, the D value is calculated by D = (ΔH + 100) / (ΔE + 100).

この場合のD値は、熱曝露の初期では、硬さが略一定か緩やかに低下し、導電率が徐々に大きくなるので、熱曝露時間の経過とともに緩やかに低下する。そして、熱曝露時間が更に経過すると、硬さが更に低下し、導電率が更に大きくなるので、D値の低下が大きくなる。このようにD値は、熱曝露時間に依存して変化する。また、熱曝露温度T1及びT2のときのD値は、熱曝露時間に対してお互いに異なる変化を示す。 In this case, the D value gradually decreases with the lapse of the heat exposure time because the hardness is substantially constant or gradually decreases and the conductivity gradually increases in the initial stage of heat exposure. Then, as the heat exposure time elapses further, the hardness is further reduced and the conductivity is further increased, so that the decrease in the D value is large. Thus, the D value changes depending on the heat exposure time. In addition, the D values at the heat exposure temperatures T1 and T2 show different changes with respect to the heat exposure time.

熱曝露温度推定工程(S24)は、析出硬化型アルミニウム合金部材のD値及び熱曝露時間と、予め求めておいた析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金のD値及び熱曝露時間と、を比較して、析出硬化型アルミニウム合金部材の熱曝露温度を推定する工程である。 The heat exposure temperature estimation step (S24) is a precipitation-curing type in which the D value and heat exposure time of the precipitation-curing aluminum alloy member and a known heat-exposure having the same composition as the previously obtained precipitation-curing aluminum alloy member are received. This is a step of estimating the heat exposure temperature of the precipitation-curable aluminum alloy member by comparing the D value of the aluminum alloy and the heat exposure time.

予め析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金のD値と熱曝露時間との関係を実験等により求めて、例えば、図7に示すようなマスター曲線を作成する。析出硬化型アルミニウム合金の熱曝露については、例えば、析出硬化型アルミニウム合金部材が設けられる装置の運転から解析等で想定される複数の熱曝露温度で行うとよい。そして、析出硬化型アルミニウム合金部材のD値及び熱曝露時間から、析出硬化型アルミニウム合金部材の熱曝露温度を推定する。 The relationship between the D value of the precipitation hardening aluminum alloy having the same composition as the precipitation hardening aluminum alloy member and the known heat exposure and the heat exposure time was obtained by experiments or the like, and for example, the master curve as shown in FIG. To create. The heat exposure of the precipitation hardening aluminum alloy may be performed at a plurality of heat exposure temperatures assumed in the operation and analysis of the apparatus provided with the precipitation hardening aluminum alloy member, for example. Then, the heat exposure temperature of the precipitation hardening aluminum alloy member is estimated from the D value and the heat exposure time of the precipitation hardening aluminum alloy member.

図8は、熱曝露温度の推定方法を示すモデル図である。図8のモデル図では、図7のモデル図を用いて析出硬化型アルミニウム合金部材の熱曝露温度を推定する方法を示している。例えば、熱曝露された析出硬化型アルミニウム合金部材のD値がD1であり、熱曝露時間がt1である場合には、熱曝露温度はT1と推定される。また、熱曝露された析出硬化型アルミニウム合金部材のD値がD2であり、熱曝露時間がt2である場合には、熱曝露温度はT2と推定される。このようにして、析出硬化型アルミニウム合金部材の熱曝露温度が推定される。 FIG. 8 is a model diagram showing a method for estimating the heat exposure temperature. The model diagram of FIG. 8 shows a method of estimating the heat exposure temperature of the precipitation hardening aluminum alloy member using the model diagram of FIG. 7. For example, when the heat-exposed precipitation hardening aluminum alloy member has a D value of D1 and a heat exposure time of t1, the heat exposure temperature is estimated to be T1. Further, when the D value of the heat-exposed precipitation hardening aluminum alloy member is D2 and the heat exposure time is t2, the heat exposure temperature is estimated to be T2. In this way, the heat exposure temperature of the precipitation hardening aluminum alloy member is estimated.

次に、析出硬化型アルミニウム合金部材の熱履歴推定装置について説明する。図9は、析出硬化型アルミニウム合金部材の熱履歴推定装置22の構成を示すブロック図である。析出硬化型アルミニウム合金部材の熱履歴推定装置22は、導電率測定手段12と、硬さ測定手段24と、制御手段26と、出力手段28と、を備えている。 Next, a thermal history estimation device for the precipitation hardening aluminum alloy member will be described. FIG. 9 is a block diagram showing a configuration of a heat history estimation device 22 for a precipitation hardening aluminum alloy member. The heat history estimation device 22 for a precipitation hardening aluminum alloy member includes a conductivity measuring means 12, a hardness measuring means 24, a control means 26, and an output means 28.

導電率測定手段12は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する機能を有している。導電率測定手段12は、第一実施形態の導電率測定手段12と同じであるので、詳細な説明を省略する。 The conductivity measuring means 12 has a function of measuring the conductivity of the precipitation hardening aluminum alloy member before and after heat exposure. Since the conductivity measuring means 12 is the same as the conductivity measuring means 12 of the first embodiment, detailed description thereof will be omitted.

硬さ測定手段24は、析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する機能を有している。硬さ測定手段24は、ビッカース硬さ試験機、ロックウエル硬さ試験機、ブリネル硬さ試験機、ヌープ硬さ試験機、超音波硬度計等で構成されている。 The hardness measuring means 24 has a function of measuring the hardness of the precipitation hardening aluminum alloy member before and after heat exposure. The hardness measuring means 24 includes a Vickers hardness tester, a Rockwell hardness tester, a Brinell hardness tester, a Knoop hardness tester, an ultrasonic hardness tester, and the like.

制御手段26は、D値算出手段30と、熱曝露温度推定手段32と、記憶手段34と、を有している。制御手段26は、例えば、一般的なパーソナルコンピュータ等で構成されている。 The control means 26 includes a D value calculation means 30, a heat exposure temperature estimation means 32, and a storage means 34. The control means 26 is composed of, for example, a general personal computer or the like.

D値算出手段30は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、析出硬化型アルミニウム合金部材における熱曝露前後の硬さの変化量と、を変数とした関係式に基づくD値を算出する機能を有している。 The D value calculating means 30 has a relational expression in which the amount of change in conductivity of the precipitation-curable aluminum alloy member before and after heat exposure and the amount of change in hardness of the precipitation-curable aluminum alloy member before and after heat exposure are variables. It has a function to calculate the D value based on it.

熱曝露温度推定手段32は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び熱曝露時間と、予め求めておいた析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量及び熱曝露時間と、を比較して、析出硬化型アルミニウム合金部材の熱曝露温度を推定する機能を有している。 The heat exposure temperature estimation means 32 provides known heat exposure with the same composition as the previously determined precipitation-curable aluminum alloy member, the amount of change in conductivity and heat exposure time before and after heat exposure in the precipitation-curable aluminum alloy member. It has a function of estimating the heat exposure temperature of the precipitation-curable aluminum alloy member by comparing the amount of change in conductivity and the heat exposure time of the received precipitation-curable aluminum alloy before and after heat exposure.

記憶手段34は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量、熱曝露前後の硬さの変化量、D値及び熱曝露時間、予め求めておいた析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量、熱曝露前後の硬さの変化量、D値及び熱曝露時間、D値及び熱曝露時間の関係を示すマスター曲線等のデータを記憶する機能を有している。 The storage means 34 is a precipitation-curable aluminum alloy member having a change in conductivity before and after heat exposure, a change in hardness before and after heat exposure, a D value and a heat exposure time, and a predetermined precipitation-curable aluminum alloy member. The amount of change in conductivity before and after heat exposure, the amount of change in hardness before and after heat exposure, D value and heat exposure time, D value and heat exposure time in a known heat-exposed precipitation-curable aluminum alloy with the same composition as It has a function to store data such as a master curve showing the relationship between.

出力手段28は、推定された析出硬化型アルミニウム合金部材の熱曝露温度等を出力する機能を有している。出力手段28は、ディスプレイやプリンタ等で構成されている。 The output means 28 has a function of outputting the estimated heat exposure temperature of the precipitation hardening aluminum alloy member and the like. The output means 28 is composed of a display, a printer, or the like.

以上、上記構成によれば、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、熱曝露前後の硬さの変化量と、に基づいて析出硬化型アルミニウム合金部材の熱曝露温度を推定することにより、析出硬化型アルミニウム合金部材から直接情報を得て推定しているので、熱曝露温度をより精度よく推定することが可能となる。 As described above, according to the above configuration, the heat exposure temperature of the precipitation-curable aluminum alloy member is based on the amount of change in conductivity of the precipitation-curable aluminum alloy member before and after heat exposure and the amount of change in hardness before and after heat exposure. By estimating, the heat exposure temperature can be estimated more accurately because the information is directly obtained from the precipitation-hardened aluminum alloy member.

[実施例1]
過給機等に用いられるコンプレッサインペラにおいて、熱曝露温度を推定する場合について説明する。コンプレッサインペラは、Al−Cu−Mg系合金である2014合金(調質状態T6:溶体化処理後の人工時効処理)で形成されている。コンプレッサインペラは、120℃から200℃の間の略一定温度で熱曝露されている。まず、コンプレッサインペラの熱曝露温度を推定するためのマスター曲線の作成について説明する。
[Example 1]
A case of estimating the heat exposure temperature in a compressor impeller used for a supercharger or the like will be described. The compressor impeller is formed of a 2014 alloy which is an Al—Cu—Mg based alloy (conditioning state T6: artificial aging treatment after solution treatment). The compressor impeller is heat exposed at a substantially constant temperature between 120 ° C and 200 ° C. First, the creation of a master curve for estimating the heat exposure temperature of the compressor impeller will be described.

マスター曲線用供試体には、コンプレッサインペラと同一組成の2014合金材(調質状態T6)を、120℃、140℃、160℃、180℃及び200℃の各熱曝露温度、所定の熱曝露時間で各々熱曝露したものと、未曝露のものと、を使用した。 For the specimen for the master curve, a 2014 alloy material (conditioned state T6) having the same composition as the compressor impeller was used at each heat exposure temperature of 120 ° C., 140 ° C., 160 ° C., 180 ° C. and 200 ° C., and a predetermined heat exposure time. The heat-exposed one and the unexposed one were used.

マスター曲線用供試体について、室温で、熱曝露前後の導電率を測定した。導電率測定は、渦電流式導電率測定法で行った。測定装置には、GE社製シグマテスタautoSigma3000(渦電流式)を用いた。 The conductivity of the master curve specimen was measured at room temperature before and after heat exposure. The conductivity was measured by an eddy current conductivity measuring method. As a measuring device, a Sigma tester autoSigma3000 (eddy current type) manufactured by GE was used.

熱曝露前後の導電率の変化量と、熱曝露時間と、熱曝露温度との関係を示すマスター曲線を作成した。図10は、マスター曲線を示すグラフである。図10のグラフでは、横軸に熱曝露時間を取り、縦軸に導電率の変化量を取り、120℃のときを白菱形、140℃のときを白四角形、160℃のときを黒三角形、180℃のときを黒四角形、200℃のときを黒菱形で示している。各熱曝露温度において、熱曝露時間が長くなるほど導電率が大きくなり、熱曝露前後の導電率の変化量が大きくなった。また、熱曝露時間が同じである場合には、熱曝露温度が高いほど、熱曝露前後の導電率の変化量が大きくなった。このように、熱曝露前後の導電率の変化量は、熱曝露温度及び熱曝露時間ごとに異なる値を示すことが明らかとなった。 A master curve was created showing the relationship between the amount of change in conductivity before and after heat exposure, the heat exposure time, and the heat exposure temperature. FIG. 10 is a graph showing a master curve. In the graph of FIG. 10, the horizontal axis represents the heat exposure time, the vertical axis represents the amount of change in conductivity, a white rhombus at 120 ° C, a white quadrangle at 140 ° C, and a black triangle at 160 ° C. The temperature at 180 ° C. is indicated by a black square, and the temperature at 200 ° C. is indicated by a black rhombus. At each heat exposure temperature, the longer the heat exposure time, the greater the conductivity, and the greater the amount of change in conductivity before and after heat exposure. Further, when the heat exposure time was the same, the higher the heat exposure temperature, the larger the change in conductivity before and after the heat exposure. As described above, it was clarified that the amount of change in conductivity before and after heat exposure shows different values depending on the heat exposure temperature and the heat exposure time.

次に、熱曝露されたコンプレッサインペラの熱曝露温度を推定する方法について説明する。まず、コンプレッサインペラにおける熱曝露前後の導電率を、渦電流式導電率測定法で測定する。そして、コンプレッサインペラにおける熱曝露前後の導電率の変化量を算出する。予め求めておいたマスター曲線用供試体における熱曝露前後の導電率の変化量及び熱曝露時間のデータとして、図10に示すマスター曲線を用いることにより、コンプレッサインペラの熱曝露温度を推定する。例えば、コンプレッサインペラにおける熱曝露前後の導電率の変化量が6(%IACS)で、熱曝露時間が100時間である場合には、図10のマスター曲線から熱曝露温度が約200℃と推定される。 Next, a method of estimating the heat exposure temperature of the heat-exposed compressor impeller will be described. First, the conductivity of the compressor impeller before and after heat exposure is measured by an eddy current conductivity measuring method. Then, the amount of change in the conductivity of the compressor impeller before and after heat exposure is calculated. The heat exposure temperature of the compressor impeller is estimated by using the master curve shown in FIG. 10 as the data of the change in conductivity and the heat exposure time before and after heat exposure in the master curve specimen obtained in advance. For example, when the amount of change in conductivity of the compressor impeller before and after heat exposure is 6 (% IACS) and the heat exposure time is 100 hours, the heat exposure temperature is estimated to be about 200 ° C. from the master curve of FIG. To.

[実施例2]
次に、マスター曲線として、熱曝露前後の導電率の変化量と、熱曝露前後の硬さの変化量と、を変数とした関係式に基づくD値を用いて、コンプレッサインペラの熱曝露温度を推定する場合について説明する。まず、マスター曲線の作成方法について説明する。なお、熱曝露前後の導電率の変化量については、実施例1におけるマスター曲線用供試体のデータを使用した。
[Example 2]
Next, as a master curve, the heat exposure temperature of the compressor impeller is set using the D value based on the relational expression with the amount of change in conductivity before and after heat exposure and the amount of change in hardness before and after heat exposure as variables. The case of estimation will be described. First, a method of creating a master curve will be described. As for the amount of change in conductivity before and after heat exposure, the data of the master curve specimen in Example 1 was used.

マスター曲線用供試体には、実施例1と同様に、コンプレッサインペラと同一組成の2014合金材(調質状態T6)を、120℃、140℃、160℃、180℃及び200℃の各熱曝露温度、所定の熱曝露時間で各々熱曝露したものと、未曝露のものと、を使用した。マスター曲線用供試体について、室温で、硬さ測定を行った。硬さ測定は、マイクロビッカース硬さ測定法により行った。硬さ測定用サンプルについては、マスター曲線用供試体から小片(長さ10mm×幅5mm×厚み3mm)を切り出して樹脂埋めし、耐水研磨紙(エメリー紙)で#2000番まで研磨して用意した。硬さ試験機には、明石製作所製 AKASHI MVK−Hardness Testerを用いた。試験条件は、荷重1kgf、負荷時間15sとした。 Similar to Example 1, a 2014 alloy material (conditioned state T6) having the same composition as the compressor impeller was exposed to heat at 120 ° C., 140 ° C., 160 ° C., 180 ° C., and 200 ° C. on the master curve specimen. Heat-exposed and unexposed ones were used, respectively, at a temperature and a predetermined heat exposure time. The hardness of the master curve specimen was measured at room temperature. The hardness was measured by the Micro Vickers hardness measurement method. For the sample for hardness measurement, a small piece (length 10 mm x width 5 mm x thickness 3 mm t ) is cut out from the master curve specimen, filled with resin, and polished to # 2000 with water-resistant abrasive paper (emery paper). did. As the hardness tester, AKASHI MVK-Hardness Tester manufactured by Akashi Seisakusho was used. The test conditions were a load of 1 kgf and a load time of 15 s.

図11は、熱曝露前後の硬さの変化量と、熱曝露時間と、熱曝露温度との関係を示すグラフである。図11のグラフでは、横軸に熱曝露時間を取り、縦軸に硬さの変化量を取り、120℃のときを白三角形、140℃のときを白四角形、160℃のときを黒三角形、180℃のときを黒四角形、200℃のときを黒菱形で示している。熱曝露時間が長くなるほど硬さが低下し、熱曝露前後の硬さの変化量が大きくなった。また、熱曝露時間が同じである場合には、熱曝露温度が高いほど、熱曝露前後の硬さの変化量が大きくなった。更に、熱曝露温度が140℃以下の場合には、硬さは、約30時間まで略一定であった。 FIG. 11 is a graph showing the relationship between the amount of change in hardness before and after heat exposure, the heat exposure time, and the heat exposure temperature. In the graph of FIG. 11, the horizontal axis represents the heat exposure time, the vertical axis represents the amount of change in hardness, a white triangle at 120 ° C., a white quadrangle at 140 ° C., and a black triangle at 160 ° C. The temperature at 180 ° C. is indicated by a black square, and the temperature at 200 ° C. is indicated by a black rhombus. The longer the heat exposure time, the lower the hardness, and the greater the amount of change in hardness before and after heat exposure. In addition, when the heat exposure time was the same, the higher the heat exposure temperature, the greater the amount of change in hardness before and after heat exposure. Further, when the heat exposure temperature was 140 ° C. or lower, the hardness was substantially constant up to about 30 hours.

熱曝露前後の導電率の変化量ΔEと、熱曝露前後の硬さの変化量ΔHとからD値を求めた。D値については、D=(ΔH+100)/(ΔE+100)の式から算出した。そして、D値と、熱曝露時間と、熱曝露温度との関係を示すマスター曲線を作成した。図12は、マスター曲線を示すグラフである。図12のグラフでは、横軸に熱曝露時間を取り、縦軸にD値を取り、120℃のときを白菱形、140℃のときを白四角形、160℃のときを黒三角形、180℃のときを黒四角形、200℃のときを黒菱形で示している。図12のグラフから、D値は、熱曝露温度及び熱曝露時間ごとに異なる値を示すことが明らかとなった。 The D value was obtained from the change in conductivity ΔE before and after heat exposure and the change in hardness ΔH before and after heat exposure. The D value was calculated from the formula D = (ΔH + 100) / (ΔE + 100). Then, a master curve showing the relationship between the D value, the heat exposure time, and the heat exposure temperature was created. FIG. 12 is a graph showing a master curve. In the graph of FIG. 12, the horizontal axis is the heat exposure time, the vertical axis is the D value, 120 ° C is a white rhombus, 140 ° C is a white quadrangle, 160 ° C is a black triangle, and 180 ° C. The time is indicated by a black square, and the time at 200 ° C is indicated by a black rhombus. From the graph of FIG. 12, it was clarified that the D value shows different values depending on the heat exposure temperature and the heat exposure time.

次に、熱曝露されたコンプレッサインペラにおける熱曝露温度の推定方法を説明する。コンプレッサインペラにおける熱曝露前後の導電率を、渦電流式導電率測定法で測定する。コンプレッサインペラにおける熱曝露前後の硬さを、マイクロビッカース硬さ試験法で測定する。そして、熱曝露前後の導電率の変化量ΔEと、熱曝露前後の硬さの変化量ΔHとを算出し、D=(ΔH+100)/(ΔE+100)の式からD値を算出する。 Next, a method for estimating the heat exposure temperature in the heat-exposed compressor impeller will be described. The conductivity of the compressor impeller before and after heat exposure is measured by an eddy current conductivity measuring method. The hardness of the compressor impeller before and after heat exposure is measured by the Micro Vickers hardness test method. Then, the amount of change in conductivity ΔE before and after heat exposure and the amount of change in hardness ΔH before and after heat exposure are calculated, and the D value is calculated from the formula D = (ΔH + 100) / (ΔE + 100).

予め求めておいたマスター曲線用供試体のD値及び熱曝露時間のデータとして、図12に示すマスター曲線を用いることにより、コンプレッサインペラの熱曝露温度を推定する。例えば、熱曝露されたコンプレッサインペラにおけるD値が0.45で、熱曝露時間が100時間である場合には、図12のマスター曲線から熱曝露温度が約200℃と推定される。 The heat exposure temperature of the compressor impeller is estimated by using the master curve shown in FIG. 12 as the data of the D value and the heat exposure time of the specimen for the master curve obtained in advance. For example, when the D value of the heat-exposed compressor impeller is 0.45 and the heat exposure time is 100 hours, the heat exposure temperature is estimated to be about 200 ° C. from the master curve of FIG.

10、22 熱履歴推定装置
12 導電率測定手段
14、26 制御手段
16、28 出力手段
18、32 熱曝露温度推定手段
20、34 記憶手段
24 硬さ測定手段
30 D値算出手段
10, 22 Thermal history estimation device 12 Conductivity measurement means 14, 26 Control means 16, 28 Output means 18, 32 Heat exposure temperature estimation means 20, 34 Storage means 24 Hardness measurement means 30 D value calculation means

Claims (4)

熱曝露された析出硬化型アルミニウム合金部材の熱履歴推定方法であって、
前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する導電率測定工程と、
前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する硬さ測定工程と、
前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さの変化量と、を変数とした関係式に基づくD値を算出するD値算出工程と
前記析出硬化型アルミニウム合金部材のD値及び熱曝露時間と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金のD値及び熱曝露時間と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度を推定する熱曝露温度推定工程と、
を備えることを特徴とする析出硬化型アルミニウム合金部材の熱履歴推定方法。
A method for estimating the thermal history of heat-exposed precipitation hardening aluminum alloy members.
A conductivity measuring step for measuring the conductivity of the precipitation hardening aluminum alloy member before and after heat exposure, and
A hardness measuring step for measuring the hardness of the precipitation hardening aluminum alloy member before and after heat exposure, and
Calculate the D value based on the relational expression with the amount of change in conductivity of the precipitation-hardening aluminum alloy member before and after heat exposure and the amount of change in hardness of the precipitation-hardening aluminum alloy member before and after heat exposure as variables. and D value calculation step of,
The D value and heat exposure time of the precipitation hardening aluminum alloy member, and the D value and heat exposure of the precipitation hardening aluminum alloy that has been subjected to known heat exposure with the same composition as the precipitation hardening aluminum alloy member obtained in advance. A heat exposure temperature estimation step for estimating the heat exposure temperature of the precipitation hardening aluminum alloy member by comparing with time, and
A method for estimating the thermal history of a precipitation hardening aluminum alloy member.
請求項1に記載の析出硬化型アルミニウム合金部材の熱履歴推定方法であって、
前記導電率測定工程は、渦電流式導電率測定法で測定することを特徴とする析出硬化型アルミニウム合金部材の熱履歴推定方法。
The method for estimating the thermal history of a precipitation hardening aluminum alloy member according to claim 1 .
The conductivity measuring step is a method for estimating the thermal history of a precipitation hardening aluminum alloy member, which comprises measuring by an eddy current type conductivity measuring method.
請求項またはに記載の析出硬化型アルミニウム合金部材の熱履歴推定方法であって、
前記硬さ測定工程は、ビッカース硬さ測定法、ロックウエル硬さ測定法、ブリネル硬さ測定法またはヌープ硬さ測定法で測定することを特徴とする析出硬化型アルミニウム合金部材の熱履歴推定方法。
The method for estimating the thermal history of a precipitation hardening aluminum alloy member according to claim 1 or 2 .
The hardness measuring step is a method for estimating the thermal history of a precipitation-hardened aluminum alloy member, which comprises measuring by a Vickers hardness measuring method, a Rockwell hardness measuring method, a Brinell hardness measuring method or a Knoop hardness measuring method.
熱曝露された析出硬化型アルミニウム合金部材の熱履歴推定装置であって、
前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する導電率測定手段と、
前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する硬さ測定手段と、
前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さの変化量と、を変数とした関係式に基づくD値を算出するD値算出手段と
前記析出硬化型アルミニウム合金部材のD値及び熱曝露時間と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金のD値及び熱曝露時間と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度を推定する熱曝露温度推定手段と、
を備えることを特徴とする析出硬化型アルミニウム合金部材の熱履歴推定装置。
A thermal history estimation device for heat-exposed precipitation hardening aluminum alloy members.
A conductivity measuring means for measuring the conductivity of the precipitation hardening aluminum alloy member before and after heat exposure,
A hardness measuring means for measuring the hardness of the precipitation hardening aluminum alloy member before and after heat exposure,
Calculate the D value based on the relational expression with the amount of change in conductivity of the precipitation hardening aluminum alloy member before and after heat exposure and the amount of change in hardness of the precipitation hardening aluminum alloy member before and after heat exposure as variables. and D value calculating means for,
The D value and heat exposure time of the precipitation hardening aluminum alloy member, and the D value and heat exposure of the precipitation hardening aluminum alloy that has been subjected to known heat exposure with the same composition as the precipitation hardening aluminum alloy member obtained in advance. A heat exposure temperature estimating means for estimating the heat exposure temperature of the precipitation hardening aluminum alloy member by comparing with time ,
Thermal history estimator of precipitation hardenable aluminum alloy member, characterized in that it comprises a.
JP2016105279A 2016-05-26 2016-05-26 Thermal history estimation method and thermal history estimation device for precipitation hardening aluminum alloy members Active JP6759713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016105279A JP6759713B2 (en) 2016-05-26 2016-05-26 Thermal history estimation method and thermal history estimation device for precipitation hardening aluminum alloy members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016105279A JP6759713B2 (en) 2016-05-26 2016-05-26 Thermal history estimation method and thermal history estimation device for precipitation hardening aluminum alloy members

Publications (2)

Publication Number Publication Date
JP2017211303A JP2017211303A (en) 2017-11-30
JP6759713B2 true JP6759713B2 (en) 2020-09-23

Family

ID=60476774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016105279A Active JP6759713B2 (en) 2016-05-26 2016-05-26 Thermal history estimation method and thermal history estimation device for precipitation hardening aluminum alloy members

Country Status (1)

Country Link
JP (1) JP6759713B2 (en)

Also Published As

Publication number Publication date
JP2017211303A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
Chen et al. A constitutive relation of AZ80 magnesium alloy during hot deformation based on Arrhenius and Johnson–Cook model
Wang et al. Oxide films, pores and the fatigue lives of cast aluminum alloys
Weakley-Bollin et al. Modeling the age-hardening behavior of Al-Si-Cu alloys
JP5787643B2 (en) Method for producing single crystal parts made of nickel-base superalloy
Wei et al. Deformation behavior and constitutive model for dual-phase Mg–Li alloy at elevated temperatures
Haghdadi et al. Microstructure characterization and thermal analysis of aluminum alloy B206 during solidification
TerBush et al. Partitioning of solute to the primary α-Mg phase in creep-resistant Mg-Al-Ca–based cast alloys
Dietrich et al. The fatigue damage development in a cast Al–Si–Cu alloy
RU2266348C2 (en) Heat treatment of age-hardening aluminum alloys
JP6759713B2 (en) Thermal history estimation method and thermal history estimation device for precipitation hardening aluminum alloy members
RU2686745C1 (en) Recovered nickel-based alloy construction element and method of manufacturing thereof
Basoalto et al. A generic microstructure-explicit model of creep in nickel-base superalloys
JP6736979B2 (en) Abnormal high temperature exposure detection method and abnormal high temperature exposure detection device for precipitation hardening type aluminum alloy member
Motoyama et al. Elasto-plastic-creep constitutive equation of An Al-Si-Cu high-pressure die casting alloy for thermal stress analysis
Ji et al. Loading rate sensitivity of nickel-based single crystal superalloys characterized by nanoindentation
Beddoes Prediction of creep properties for two nickel-base superalloys from stress relaxation testing
Dzwonczyk et al. Enhancement of workability in AZ31 alloy–processing maps: part I, cast material
US20180171431A1 (en) Method for solution heat treated alloy components
US20190184456A1 (en) Cast product mechanical characteristic prediction method, cast product mechanical characteristic prediction system, and computer readable recording medium recording cast product mechanical characteristic prediction program
Smart A study of directionally solidified Rene 80 subjected to short-term overtemperature
Seisenbacher et al. Modelling the effect of ageing on the yield strength of an aluminium alloy under cyclic loading at different ageing temperatures and test temperatures
JP2018146281A (en) Thermal stress analysis simulation program and analysis method
Suman Creep of diecast magnesium alloys AZ91D and AM60B
EP2936146A1 (en) A method of analysing an iron melt
Aune et al. Properties of Die Cast Magnesium Alloys of Varying Aluminum Content

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R151 Written notification of patent or utility model registration

Ref document number: 6759713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151