JP2017211303A - Method and apparatus for estimating heat history of precipitation-hardened aluminum alloy members - Google Patents

Method and apparatus for estimating heat history of precipitation-hardened aluminum alloy members Download PDF

Info

Publication number
JP2017211303A
JP2017211303A JP2016105279A JP2016105279A JP2017211303A JP 2017211303 A JP2017211303 A JP 2017211303A JP 2016105279 A JP2016105279 A JP 2016105279A JP 2016105279 A JP2016105279 A JP 2016105279A JP 2017211303 A JP2017211303 A JP 2017211303A
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy member
precipitation hardening
heat exposure
hardening type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016105279A
Other languages
Japanese (ja)
Other versions
JP6759713B2 (en
Inventor
茜 津野
Akane Tsuno
茜 津野
智道 尾崎
Tomomichi Ozaki
智道 尾崎
健 中野
Ken Nakano
健 中野
平田 豊
Yutaka Hirata
豊 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2016105279A priority Critical patent/JP6759713B2/en
Publication of JP2017211303A publication Critical patent/JP2017211303A/en
Application granted granted Critical
Publication of JP6759713B2 publication Critical patent/JP6759713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of estimating a heat history of a precipitation-hardened aluminum alloy member, which allows for accurately estimating heat temperature the precipitation-hardened aluminum alloy member has been thermally exposed to.SOLUTION: A method of estimating a heat history of a precipitation-hardened aluminum alloy member includes: a conductivity measurement step (S10) for measuring conductivity of a precipitation-hardened aluminum alloy member before and after thermally exposure to heat; and a heat exposure temperature estimation step (S12) for estimating temperature to which the precipitation-hardened aluminum alloy member was thermally exposed by comparing change in conductivity of the precipitation-hardened aluminum alloy member before and after the heat exposure to heat and heat exposure time, and a pre-acquired change in conductivity of a precipitation-hardened aluminum alloy of the same composition as the precipitation-hardened aluminum alloy member before and after being thermally exposed to known heat and corresponding heat exposure time.SELECTED DRAWING: Figure 1

Description

本発明は、熱曝露された析出硬化型アルミニウム合金部材の熱履歴推定方法及び熱履歴推定装置に関する。   The present invention relates to a thermal history estimation method and a thermal history estimation device for a precipitation-hardened aluminum alloy member exposed to heat.

過給機、圧縮機等の運転温度の上昇により、析出硬化型アルミニウム合金で形成されたインペラ等の析出硬化型アルミニウム合金部材における使用環境は、材料の能力の限界に近付いている。析出硬化型アルミニウム合金部材の信頼性向上のために、高い精度での寿命設計が求められている。析出硬化型アルミニウム合金部材の寿命設計を高い精度で行うために、実環境での熱曝露温度をより正確に把握する必要がある。   Due to the increase in operating temperature of turbochargers, compressors, etc., the usage environment of precipitation hardening type aluminum alloy members such as impellers made of precipitation hardening type aluminum alloy is approaching the limit of the capability of the material. In order to improve the reliability of the precipitation hardening type aluminum alloy member, a life design with high accuracy is required. In order to perform the life design of the precipitation hardening type aluminum alloy member with high accuracy, it is necessary to more accurately grasp the heat exposure temperature in the actual environment.

従来、析出硬化型アルミニウム合金部材の熱曝露温度については、析出硬化型アルミニウム合金部材の周りの雰囲気温度を測定して推定することが行われている(例えば、特許文献1参照)。   Conventionally, the thermal exposure temperature of a precipitation hardening type aluminum alloy member has been estimated by measuring the ambient temperature around the precipitation hardening type aluminum alloy member (see, for example, Patent Document 1).

特開2012−2231号公報JP 2012-2231 A

ところで、上記のように析出硬化型アルミニウム合金部材の周りの雰囲気温度を測定して熱曝露温度を推定する方法では、析出硬化型アルミニウム合金部材から直接情報を得ていないので、析出硬化型アルミニウム合金部材の熱曝露温度を精度よく推定できない可能性がある。   By the way, in the method of measuring the ambient temperature around the precipitation hardening aluminum alloy member as described above and estimating the heat exposure temperature, the information is not obtained directly from the precipitation hardening aluminum alloy member. There is a possibility that the heat exposure temperature of the member cannot be accurately estimated.

そこで、本発明の目的は、熱曝露された析出硬化型アルミニウム合金部材の熱曝露温度をより精度よく推定することが可能な析出硬化型アルミニウム合金部材の熱履歴推定方法及び熱履歴推定装置を提供することである。   Accordingly, an object of the present invention is to provide a thermal history estimation method and a thermal history estimation device for a precipitation hardening type aluminum alloy member capable of estimating the heat exposure temperature of the precipitation hardening type aluminum alloy member exposed to heat with higher accuracy. It is to be.

本発明に係る析出硬化型アルミニウム合金部材の熱履歴推定方法は、熱曝露された析出硬化型アルミニウム合金部材の熱履歴推定方法であって、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する導電率測定工程と、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び熱曝露時間と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量及び熱曝露時間と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度を推定する熱曝露温度推定工程と、を備えることを特徴とする。   The thermal history estimation method of a precipitation hardening type aluminum alloy member according to the present invention is a thermal history estimation method of a precipitation hardening type aluminum alloy member that has been exposed to heat, and the conductivity of the precipitation hardening type aluminum alloy member before and after thermal exposure. A conductivity measuring step, a change in conductivity before and after thermal exposure and a thermal exposure time in the precipitation hardening aluminum alloy member, and a known composition having the same composition as the precipitation hardening aluminum alloy member obtained in advance. Thermal exposure temperature estimation step of estimating the thermal exposure temperature of the precipitation hardened aluminum alloy member by comparing the amount of change in conductivity before and after the heat exposure and the heat exposure time in the precipitation hardened aluminum alloy subjected to the heat exposure And.

本発明に係る析出硬化型アルミニウム合金部材の熱履歴推定方法において、前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する硬さ測定工程と、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さの変化量と、を変数とした関係式に基づくD値を算出するD値算出工程と、を備え、前記熱曝露温度推定工程は、前記析出硬化型アルミニウム合金部材のD値及び熱曝露時間と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金のD値及び熱曝露時間と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度を推定することを特徴とする。   In the thermal history estimation method for a precipitation hardening type aluminum alloy member according to the present invention, a hardness measurement step for measuring the hardness of the precipitation hardening type aluminum alloy member before and after thermal exposure, and the heat exposure in the precipitation hardening type aluminum alloy member A D value calculation step of calculating a D value based on a relational expression with a change amount of conductivity before and after and a change amount of hardness before and after thermal exposure in the precipitation hardening type aluminum alloy member, The heat exposure temperature estimation step includes a precipitation hardening type that has been subjected to a known heat exposure with the same composition as the precipitation hardening type aluminum alloy member obtained in advance and the D value and the heat exposure time of the precipitation hardening type aluminum alloy member. The D value of the aluminum alloy and the heat exposure time are compared, and the heat exposure temperature of the precipitation hardening type aluminum alloy member is estimated.

本発明に係る析出硬化型アルミニウム合金部材の熱履歴推定方法において、前記導電率測定工程は、渦電流式導電率測定法で測定することを特徴とする。   In the thermal history estimation method for a precipitation hardening type aluminum alloy member according to the present invention, the conductivity measuring step is measured by an eddy current conductivity measuring method.

本発明に係る析出硬化型アルミニウム合金部材の熱履歴推定方法において、前記硬さ測定工程は、ビッカース硬さ測定法、ロックウエル硬さ測定法、ブリネル硬さ測定法またはヌープ硬さ測定法で測定することを特徴とする。   In the thermal history estimation method for a precipitation hardening type aluminum alloy member according to the present invention, the hardness measurement step is measured by a Vickers hardness measurement method, a Rockwell hardness measurement method, a Brinell hardness measurement method, or a Knoop hardness measurement method. It is characterized by that.

本発明に係る析出硬化型アルミニウム合金部材の熱履歴推定装置は、熱曝露された析出硬化型アルミニウム合金部材の熱履歴推定装置であって、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する導電率測定手段と、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び熱曝露時間と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量及び熱曝露時間と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度を推定する熱曝露温度推定手段と、を備えることを特徴とする。   The thermal history estimation device for a precipitation hardening type aluminum alloy member according to the present invention is a thermal history estimation device for a heat treatment of a precipitation hardening type aluminum alloy member, and the conductivity of the precipitation hardening type aluminum alloy member before and after the heat exposure. A conductivity measuring means for measuring the amount of change in electrical conductivity before and after thermal exposure and thermal exposure time in the precipitation hardening aluminum alloy member, and the same composition as that of the precipitation hardening aluminum alloy member determined in advance. Thermal exposure temperature estimation means for estimating the thermal exposure temperature of the precipitation hardened aluminum alloy member by comparing the amount of change in electrical conductivity before and after heat exposure and the heat exposure time in the precipitation hardened aluminum alloy subjected to heat exposure And.

本発明に係る析出硬化型アルミニウム合金部材の熱履歴推定装置において、前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する硬さ測定手段と、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さの変化量と、を変数とした関係式に基づくD値を算出するD値算出手段と、を備え、前記熱曝露温度推定手段は、前記析出硬化型アルミニウム合金部材のD値及び熱曝露時間と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金のD値及び熱曝露時間と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度を推定することを特徴とする。   In the thermal history estimation apparatus for precipitation hardening type aluminum alloy members according to the present invention, hardness measuring means for measuring the hardness of the precipitation hardening type aluminum alloy member before and after thermal exposure, and heat exposure in the precipitation hardening type aluminum alloy member D value calculation means for calculating a D value based on a relational expression with the amount of change in conductivity before and after and the amount of change in hardness before and after thermal exposure in the precipitation hardening aluminum alloy member, The heat exposure temperature estimation means is a precipitation hardening type that has received a known heat exposure with the same composition as the precipitation hardening type aluminum alloy member obtained in advance and the D value and the heat exposure time of the precipitation hardening type aluminum alloy member. The D value of the aluminum alloy and the heat exposure time are compared, and the heat exposure temperature of the precipitation hardening type aluminum alloy member is estimated.

上記構成によれば、熱曝露された析出硬化型アルミニウム合金部材の導電率の変化に基づいて熱曝露温度を推定しているので、析出硬化型アルミニウム合金部材の熱曝露温度をより精度よく推定することが可能となる。   According to the above configuration, the heat exposure temperature is estimated based on the change in conductivity of the precipitation-hardened aluminum alloy member exposed to heat, so the heat exposure temperature of the precipitation-hardening aluminum alloy member is estimated more accurately. It becomes possible.

本発明の第一実施形態において、析出硬化型アルミニウム合金部材の熱履歴推定方法を示すフローチャートである。In 1st embodiment of this invention, it is a flowchart which shows the thermal-history estimation method of a precipitation hardening type aluminum alloy member. 本発明の第一実施形態において、析出硬化型アルミニウム合金部材における導電率と熱曝露時間との関係を示すモデル図である。In 1st embodiment of this invention, it is a model figure which shows the relationship between the electrical conductivity in a precipitation hardening type aluminum alloy member, and heat exposure time. 本発明の第一実施形態において、熱曝露温度の推定方法を示すモデル図である。In 1st embodiment of this invention, it is a model figure which shows the estimation method of heat exposure temperature. 本発明の第一実施形態において、析出硬化型アルミニウム合金部材の熱履歴推定装置の構成を示すブロック図である。In 1st embodiment of this invention, it is a block diagram which shows the structure of the thermal history estimation apparatus of a precipitation hardening type aluminum alloy member. 本発明の第二実施形態において、析出硬化型アルミニウム合金部材の熱履歴推定方法を示すフローチャートである。In 2nd embodiment of this invention, it is a flowchart which shows the thermal history estimation method of a precipitation hardening type aluminum alloy member. 本発明の第二実施形態において、析出硬化型アルミニウム合金部材における硬さと熱曝露時間との関係を示すモデル図である。In 2nd embodiment of this invention, it is a model figure which shows the relationship between the hardness in a precipitation hardening type aluminum alloy member, and heat exposure time. 本発明の第二実施形態において、D値と、熱曝露時間と、熱曝露温度との関係を示すモデル図である。In 2nd embodiment of this invention, it is a model figure which shows the relationship between D value, heat exposure time, and heat exposure temperature. 本発明の第二実施形態において、熱曝露温度の推定方法を示すモデル図である。In 2nd embodiment of this invention, it is a model figure which shows the estimation method of heat exposure temperature. 本発明の第二実施形態において、析出硬化型アルミニウム合金部材の熱履歴推定装置の構成を示すブロック図である。In 2nd embodiment of this invention, it is a block diagram which shows the structure of the thermal history estimation apparatus of a precipitation hardening type aluminum alloy member. 本発明の実施例1において、マスター曲線を示すグラフである。In Example 1 of this invention, it is a graph which shows a master curve. 本発明の実施例2において、熱曝露前後の硬さの変化量と、熱曝露時間と、熱曝露温度との関係を示すグラフである。In Example 2 of this invention, it is a graph which shows the relationship between the variation | change_quantity of the hardness before and behind heat exposure, heat exposure time, and heat exposure temperature. 本発明の実施例2において、マスター曲線を示すグラフである。In Example 2 of this invention, it is a graph which shows a master curve.

以下に本発明の実施の形態について図面を用いて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

[第一実施形態]
本発明の第一実施形態について図面を用いて詳細に説明する。図1は、析出硬化型アルミニウム合金部材の熱履歴推定方法を示すフローチャートである。析出硬化型アルミニウム合金部材の熱履歴推定方法は、導電率測定工程(S10)と、熱曝露温度推定工程(S12)と、を備えている。
[First embodiment]
A first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a flowchart showing a thermal history estimation method for a precipitation hardening type aluminum alloy member. The thermal history estimation method for a precipitation hardening type aluminum alloy member includes a conductivity measurement step (S10) and a thermal exposure temperature estimation step (S12).

析出硬化型アルミニウム合金部材は、例えば、船舶用過給機、発電機、車両用過給機に用いられるコンプレッサインペラ等の展伸部材や鋳造部材である。このような析出硬化型アルミニウム合金部材は、例えば、過給機等の装置の運転中に、約100℃から約200℃で熱曝露されている。   The precipitation hardening type aluminum alloy member is, for example, a spreading member or a casting member such as a compressor impeller used for a marine supercharger, a generator, or a vehicle supercharger. Such a precipitation hardening type aluminum alloy member is exposed to heat at about 100 ° C. to about 200 ° C. during operation of a device such as a supercharger.

析出硬化型アルミニウム合金部材は、JIS規格等の析出硬化型アルミニウム合金で形成されている。析出硬化型アルミニウム合金は、溶体化処理した後に時効処理することにより、析出物を析出させて強化させたアルミニウム合金である。析出硬化型アルミニウム合金部材は、例えば、Al−Cu系合金、Al−Cu−Mg系合金、Al−Mg−Si系合金、Al−Zn−Mg系合金、Al−Zn−Mg−Cu系合金等(2000系、6000系、7000系、AC1B、AC4A、AC4C、AC4CH等)で形成されている。   The precipitation hardening type aluminum alloy member is formed of a precipitation hardening type aluminum alloy such as JIS standard. The precipitation hardening type aluminum alloy is an aluminum alloy that is strengthened by depositing precipitates by aging treatment after solution treatment. Precipitation hardening type aluminum alloy members include, for example, Al-Cu alloys, Al-Cu-Mg alloys, Al-Mg-Si alloys, Al-Zn-Mg alloys, Al-Zn-Mg-Cu alloys, etc. (2000 series, 6000 series, 7000 series, AC1B, AC4A, AC4C, AC4CH, etc.).

導電率測定工程(S10)は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する工程である。析出硬化型アルミニウム合金部材の導電率は、主に、析出硬化型アルミニウム合金におけるAl母相中の溶質元素の固溶量に影響される。析出硬化型アルミニウム合金部材が熱曝露されると、Al母相中に固溶している溶質元素が析出物として析出し、Al母相中の溶質元素の固溶量が低下することにより、析出硬化型アルミニウム合金部材の導電率が変化する。このことから、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化により、析出硬化型アルミニウム合金部材の熱曝露の影響を評価することができる。   The conductivity measurement step (S10) is a step of measuring the conductivity before and after thermal exposure in the precipitation hardening type aluminum alloy member. The electrical conductivity of the precipitation hardening type aluminum alloy member is mainly influenced by the amount of solute elements in the Al matrix in the precipitation hardening type aluminum alloy. When the precipitation hardening type aluminum alloy member is exposed to heat, the solute elements dissolved in the Al matrix phase precipitate as precipitates, and the amount of solute elements in the Al matrix phase decreases, resulting in precipitation. The conductivity of the curable aluminum alloy member changes. From this, the influence of the heat exposure of the precipitation hardening type aluminum alloy member can be evaluated by the change in the conductivity before and after the heat exposure in the precipitation hardening type aluminum alloy member.

図2は、析出硬化型アルミニウム合金部材における導電率と熱曝露時間との関係を示すモデル図である。図2では、横軸に熱曝露時間を取り、縦軸に導電率を取り、導電率の変化を実線で示している。また、熱曝露温度T1は、熱曝露温度T2より高温であることを示している。   FIG. 2 is a model diagram showing the relationship between electrical conductivity and heat exposure time in a precipitation hardening type aluminum alloy member. In FIG. 2, the horizontal axis indicates the heat exposure time, the vertical axis indicates the conductivity, and the change in conductivity is indicated by a solid line. Moreover, it is shown that the heat exposure temperature T1 is higher than the heat exposure temperature T2.

析出硬化型アルミニウム合金部材の導電率は、熱曝露開始から熱曝露時間の経過とともに大きくなる傾向がある。また、析出硬化型アルミニウム合金部材の導電率は、熱曝露時間が同じである場合には、熱曝露温度が高いほど大きくなる傾向がある。   The conductivity of the precipitation hardening type aluminum alloy member tends to increase with the passage of the heat exposure time from the start of the heat exposure. Moreover, when the heat exposure time is the same, the conductivity of the precipitation hardening type aluminum alloy member tends to increase as the heat exposure temperature increases.

析出硬化型アルミニウム合金部材は、溶体化処理後の時効処理により、準安定相からなる析出物を析出させて強化させている。析出硬化型アルミニウム合金部材は、熱曝露されると、Al母相中に固溶している溶質元素が析出し、準安定相が増えるとともに準安定相の形態が変化し、最終的に安定相が形成される。熱曝露により、Al母相中に固溶している溶質元素が析出すると、Al母相中に固溶している溶質元素の固溶量が低下するので、析出硬化型アルミニウム合金部材の導電率が大きくなる傾向がある。また、熱曝露温度が高くなると、Al母相中に固溶している溶質元素の析出が促進されるので、Al母相中に固溶している溶質元素の固溶量の低下がより大きくなり、析出硬化型アルミニウム合金部材の導電率がより大きくなる傾向がある。   Precipitation hardening type aluminum alloy members are strengthened by precipitating precipitates composed of metastable phases by aging treatment after solution treatment. When precipitation hardened aluminum alloy members are exposed to heat, solute elements dissolved in the Al matrix phase precipitate, increasing the metastable phase and changing the metastable phase form. Is formed. When the solute element dissolved in the Al matrix phase precipitates due to heat exposure, the amount of the solute element dissolved in the Al matrix phase decreases, so the conductivity of the precipitation hardened aluminum alloy member Tend to be larger. In addition, when the heat exposure temperature increases, precipitation of solute elements dissolved in the Al matrix phase is promoted, so the decrease in the amount of solute elements dissolved in the Al matrix phase is greater. Therefore, the conductivity of the precipitation hardening type aluminum alloy member tends to be larger.

例えば、析出硬化型アルミニウム合金部材がAl−Cu−Mg系合金で形成されている場合には、熱曝露により、Al母相中に固溶しているCu、Mg等の溶質元素が析出し、合金組織内で析出物がGPB(Guinier Preston Bagaryatsky ギニエ・プレストン・バガリャツキ)(1)ゾーン→GPB(2)ゾーン(S”相)→S’相→S相(AlCuMg)の過程で変化して、最終的に安定相であるS相(AlCuMg)が形成される。熱曝露により、Al母相中に固溶しているCu、Mg等の溶質元素が析出すると、Al母相中に固溶しているCu、Mg等の溶質元素の固溶量が低下するので、析出硬化型アルミニウム合金部材の導電率が大きくなる。また、熱曝露温度が高くなると、Al母相中に固溶しているCu、Mg等の溶質元素の析出が促進されるので、Al母相中に固溶しているCu、Mg等の溶質元素の固溶量の低下が大きくなり、析出硬化型アルミニウム合金部材の導電率が大きくなる。このように、析出硬化型アルミニウム合金部材の導電率は、主に、Al母相中の溶質元素の固溶量に起因して変化する。 For example, when the precipitation hardening type aluminum alloy member is formed of an Al—Cu—Mg alloy, solute elements such as Cu and Mg that are solid-dissolved in the Al matrix are precipitated by heat exposure. Within the alloy structure, precipitates change in the process of GPB (Guiner Preston Bagalysky) (1) Zone → GPB (2) Zone (S ”phase) → S ′ phase → S phase (Al 2 CuMg) As a result, an S phase (Al 2 CuMg), which is a stable phase, is formed.When solute elements such as Cu and Mg that are dissolved in the Al matrix are precipitated by heat exposure, As the amount of solute elements such as Cu and Mg dissolved in the solution decreases, the conductivity of the precipitation hardened aluminum alloy member increases, and when the heat exposure temperature increases, Melted Since the precipitation of solute elements such as Cu and Mg is promoted, the decrease in the amount of solute elements such as Cu and Mg dissolved in the Al matrix is greatly increased. Thus, the conductivity of the precipitation hardening type aluminum alloy member changes mainly due to the solid solution amount of the solute element in the Al matrix.

析出硬化型アルミニウム合金部材の導電率は、一般的な金属材料の導電率測定方法で測定可能である。析出硬化型アルミニウム合金部材の導電率は、非破壊で測定可能であることから、渦電流式導電率測定法で測定されることが好ましい。渦電流式導電率測定法であれば、析出硬化型アルミニウム合金部材が設けられている現場でも測定可能である。   The conductivity of the precipitation hardening type aluminum alloy member can be measured by a general method for measuring the conductivity of a metal material. Since the conductivity of the precipitation hardening type aluminum alloy member can be measured nondestructively, it is preferably measured by an eddy current type conductivity measurement method. If it is an eddy current type conductivity measuring method, it can be measured even at the site where the precipitation hardening type aluminum alloy member is provided.

熱曝露温度推定工程(S12)は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び熱曝露時間と、予め求めておいた析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量及び熱曝露時間と、を比較して、析出硬化型アルミニウム合金部材の熱曝露温度を推定する工程である。   In the heat exposure temperature estimation step (S12), the amount of change in electrical conductivity and the heat exposure time before and after the heat exposure in the precipitation hardening type aluminum alloy member, the same composition as the precipitation hardening type aluminum alloy member obtained in advance and a known heat This is a step of estimating the heat exposure temperature of the precipitation hardening aluminum alloy member by comparing the amount of change in electrical conductivity before and after heat exposure and the heat exposure time in the exposed precipitation hardening aluminum alloy.

予め析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量と、熱曝露時間との関係を実験等により求めて、例えば、マスター曲線等を作成する。析出硬化型アルミニウム合金の熱曝露については、例えば、析出硬化型アルミニウム合金部材が設けられる装置の運転から解析等で想定される複数の熱曝露温度で行うとよい。例えば、析出硬化型アルミニウム合金部材が、装置の運転から100℃、120℃、140℃、160℃、180℃、200℃のいずれかの熱曝露温度に曝される可能性がある場合には、これらの温度で熱曝露すればよい。そして、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び熱曝露時間から、析出硬化型アルミニウム合金部材の熱曝露温度を推定する。   The relationship between the amount of change in conductivity before and after heat exposure in a precipitation hardened aluminum alloy that has been subjected to a known heat exposure with the same composition as the precipitation hardening aluminum alloy member in advance, and the relationship between the heat exposure time and the like are determined by experiments, for example, Create a master curve. The heat exposure of the precipitation hardening type aluminum alloy may be performed, for example, at a plurality of heat exposure temperatures assumed in the analysis or the like from the operation of the apparatus provided with the precipitation hardening type aluminum alloy member. For example, when the precipitation hardening type aluminum alloy member may be exposed to any one of the heat exposure temperatures of 100 ° C., 120 ° C., 140 ° C., 160 ° C., 180 ° C., and 200 ° C. from the operation of the apparatus, Heat exposure may be performed at these temperatures. And the heat exposure temperature of a precipitation hardening type aluminum alloy member is estimated from the variation | change_quantity of the electrical conductivity before and behind heat exposure in a precipitation hardening type aluminum alloy member, and heat exposure time.

図3は、熱曝露温度の推定方法を示すモデル図である。図3では、横軸に熱曝露時間を取り、縦軸に導電率の変化量を取り、導電率の変化量を実線で示している。また、熱曝露温度T1は、熱曝露温度T2より高温であることを示している。例えば、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量がΔE1であり、熱曝露時間がt1である場合には、熱曝露温度がT1と推定される。析出硬化型アルミニウム合金部材の熱曝露前後の導電率がΔE2であり、熱曝露時間がt2である場合には、熱曝露温度がT2と推定される。このようにして、析出硬化型アルミニウム合金部材の熱曝露温度が推定される   FIG. 3 is a model diagram showing a method for estimating the heat exposure temperature. In FIG. 3, the horizontal axis represents the heat exposure time, the vertical axis represents the amount of change in conductivity, and the amount of change in conductivity is indicated by a solid line. Moreover, it is shown that the heat exposure temperature T1 is higher than the heat exposure temperature T2. For example, when the amount of change in conductivity before and after heat exposure in the precipitation hardening type aluminum alloy member is ΔE1, and the heat exposure time is t1, the heat exposure temperature is estimated to be T1. When the conductivity of the precipitation hardening type aluminum alloy member before and after heat exposure is ΔE2 and the heat exposure time is t2, the heat exposure temperature is estimated to be T2. Thus, the heat exposure temperature of the precipitation hardening type aluminum alloy member is estimated.

また、熱曝露前後の導電率の変化量に基づいて熱曝露温度を推定することにより、熱曝露前(未曝露)のときの析出硬化型アルミニウム合金部材の調質状態や加工状態等が異なる場合でも、同じマスター曲線を用いて熱曝露温度を推定することができる。より詳細には、同一組成の析出硬化型アルミニウム合金で形成されており、熱処理条件や加工条件が異なる析出硬化型アルミニウム合金部材の場合でも、熱曝露前後の導電率の変化量に基づいて推定することから、熱曝露前の影響を除くことができる。これにより、調質状態や加工状態等が異なる析出硬化型アルミニウム合金部材の場合でも、同じマスター曲線を用いて熱曝露温度を推定することが可能となる。   In addition, when the heat exposure temperature is estimated based on the amount of change in conductivity before and after heat exposure, the tempering state or processing state of the precipitation hardening aluminum alloy member before heat exposure (unexposed) is different. But the same master curve can be used to estimate the heat exposure temperature. More specifically, even in the case of precipitation hardened aluminum alloy members that are formed of a precipitation hardening aluminum alloy having the same composition and have different heat treatment conditions and processing conditions, the estimation is based on the amount of change in conductivity before and after thermal exposure. Therefore, the effect before heat exposure can be eliminated. This makes it possible to estimate the heat exposure temperature using the same master curve even in the case of precipitation hardening type aluminum alloy members having different tempering states and processing states.

次に、析出硬化型アルミニウム合金部材の熱履歴推定装置について説明する。図4は、析出硬化型アルミニウム合金部材の熱履歴推定装置10の構成を示すブロック図である。析出硬化型アルミニウム合金部材の熱履歴推定装置10は、導電率測定手段12と、制御手段14と、出力手段16と、を備えている。   Next, a thermal history estimation device for precipitation hardening type aluminum alloy members will be described. FIG. 4 is a block diagram showing the configuration of the thermal history estimation device 10 for precipitation hardening type aluminum alloy members. Precipitation hardening type aluminum alloy member thermal history estimation device 10 includes conductivity measuring means 12, control means 14, and output means 16.

導電率測定手段12は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する機能を有している。導電率測定手段12は、渦電流式導電率測定装置等で構成されている。   The conductivity measuring means 12 has a function of measuring the conductivity before and after thermal exposure in the precipitation hardening type aluminum alloy member. The conductivity measuring means 12 is composed of an eddy current conductivity measuring device or the like.

制御手段14は、熱曝露温度推定手段18と、記憶手段20と、を有している。制御手段14は、例えば、一般的なパーソナルコンピュータ等で構成されている。   The control means 14 has a heat exposure temperature estimation means 18 and a storage means 20. The control means 14 is comprised by the general personal computer etc., for example.

熱曝露温度推定手段18は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び熱曝露時間と、予め求めておいた析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量及び熱曝露時間と、を比較して、析出硬化型アルミニウム合金部材の熱曝露温度を推定する機能を有している。   The heat exposure temperature estimation means 18 performs the known heat exposure with the same composition as the precipitation hardening type aluminum alloy member obtained in advance and the amount of change in conductivity and the heat exposure time before and after the heat exposure in the precipitation hardening type aluminum alloy member. It has the function of estimating the heat exposure temperature of a precipitation hardening type aluminum alloy member by comparing the amount of change in conductivity and the heat exposure time before and after heat exposure in the received precipitation hardening type aluminum alloy.

記憶手段20は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び熱曝露時間、予め求めておいた析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量及び熱曝露時間、導電率の変化量及び熱曝露時間の関係を示すマスター曲線等のデータを記憶する機能を有している。   The storage means 20 is a precipitation hardening that has been subjected to a known heat exposure with the same composition as the precipitation hardening type aluminum alloy member obtained in advance and the amount of change in conductivity and the heat exposure time before and after the heat exposure in the precipitation hardening type aluminum alloy member. It has a function of storing data such as a master curve indicating the relationship between the amount of change in electrical conductivity and the heat exposure time before and after heat exposure and the relationship between the amount of change in electrical conductivity and the heat exposure time.

出力手段16は、推定された析出硬化型アルミニウム合金部材の熱曝露温度等を出力する機能を有している。出力手段16は、ディスプレイやプリンタ等で構成されている。   The output means 16 has a function of outputting the estimated heat exposure temperature of the precipitation hardening type aluminum alloy member. The output means 16 is composed of a display, a printer or the like.

以上、上記構成によれば、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び熱曝露時間から、析出硬化型アルミニウム合金部材の熱曝露温度を推定することにより、析出硬化型アルミニウム合金部材から直接情報を得て推定しているので、熱曝露温度をより精度よく推定することが可能となる。   As described above, according to the above configuration, the precipitation hardening type aluminum alloy member is estimated by estimating the heat exposure temperature of the precipitation hardening type aluminum alloy member from the amount of change in conductivity and the heat exposure time before and after the heat exposure in the precipitation hardening type aluminum alloy member. Since the information is obtained directly from the alloy member and estimated, the heat exposure temperature can be estimated more accurately.

[第二実施形態]
次に、本発明の第二実施形態について図面を用いて詳細に説明する。なお、第一実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。図5は、析出硬化型アルミニウム合金部材の熱履歴推定方法を示すフローチャートである。析出硬化型アルミニウム合金部材の熱履歴推定方法は、導電率測定工程(S10)と、硬さ測定工程(S20)と、D値算出工程(S22)と、熱曝露温度推定工程(S24)と、を備えている。
[Second Embodiment]
Next, a second embodiment of the present invention will be described in detail with reference to the drawings. In addition, about the structure similar to 1st embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted. FIG. 5 is a flowchart showing a thermal history estimation method for a precipitation hardening type aluminum alloy member. The thermal history estimation method of the precipitation hardening type aluminum alloy member includes a conductivity measurement step (S10), a hardness measurement step (S20), a D value calculation step (S22), a heat exposure temperature estimation step (S24), It has.

導電率測定工程(S10)は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する工程である。導電率測定工程(S10)は、第一実施形態の導電率測定工程(S10)と同じであるので詳細な説明を省略する。   The conductivity measurement step (S10) is a step of measuring the conductivity before and after thermal exposure in the precipitation hardening type aluminum alloy member. Since the conductivity measurement step (S10) is the same as the conductivity measurement step (S10) of the first embodiment, detailed description thereof is omitted.

硬さ測定工程(S20)は、析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する工程である。析出硬化型アルミニウム合金部材の硬さは、主に、析出硬化型アルミニウム合金の析出物の形態に影響される。   The hardness measurement step (S20) is a step of measuring the hardness of the precipitation hardening aluminum alloy member before and after thermal exposure. The hardness of the precipitation hardening type aluminum alloy member is mainly influenced by the form of the precipitate of the precipitation hardening type aluminum alloy.

図6は、析出硬化型アルミニウム合金部材における硬さと熱曝露時間との関係を示すモデル図である。図6のモデル図では、横軸に熱曝露時間を取り、縦軸に硬さを取り、硬さの変化を実線で示している。また、熱曝露温度T1は、熱曝露温度T2より高温であることを示している。   FIG. 6 is a model diagram showing the relationship between hardness and heat exposure time in a precipitation hardening type aluminum alloy member. In the model diagram of FIG. 6, the horizontal axis indicates the heat exposure time, the vertical axis indicates the hardness, and the change in hardness is indicated by a solid line. Moreover, it is shown that the heat exposure temperature T1 is higher than the heat exposure temperature T2.

熱曝露温度が比較的低い温度T2(例えば、140℃以下)の場合には、析出硬化型アルミニウム合金部材の硬さは、熱曝露の初期では略一定であり、所定の熱曝露時間の経過後に低下を開始する。また、熱曝露温度が比較的高い温度T1(例えば、160℃以上)の場合には、析出硬化型アルミニウム合金部材の硬さは、熱曝露の初期から緩やかに低下し、所定の熱曝露時間の経過後に低下が大きくなる。このように、析出硬化型アルミニウム合金の硬さは、熱曝露温度が高温になるほどより早く低下すると共に、低下の度合いが大きくなる。   When the heat exposure temperature is a relatively low temperature T2 (for example, 140 ° C. or less), the hardness of the precipitation hardening type aluminum alloy member is substantially constant at the beginning of the heat exposure, and after a predetermined heat exposure time has elapsed. Start to decline. Further, when the heat exposure temperature is a relatively high temperature T1 (for example, 160 ° C. or higher), the hardness of the precipitation hardening type aluminum alloy member gradually decreases from the initial stage of the heat exposure, and the predetermined heat exposure time is reached. The decrease increases after the passage. As described above, the hardness of the precipitation hardening type aluminum alloy decreases more rapidly as the heat exposure temperature becomes higher, and the degree of decrease increases.

析出硬化型アルミニウム合金部材は、熱曝露されると、Al母相中に固溶している溶質元素が析出し、準安定相が増えるとともに準安定相の形態が変化し、最終的に安定相が形成される。析出硬化型アルミニウム合金部材の硬さは、準安定相が析出物として析出している間は略一定となり、安定相が析出物として析出すると低下する傾向がある。析出硬化型アルミニウム合金部材の硬さは、安定相が析出した後においても、オストワルド成長等により更に低下する傾向がある。また、析出硬化型アルミニウム合金部材の硬さは、熱曝露温度が比較的低温の場合(例えば、140℃以下の熱曝露温度)には、準安定相の析出速度や形態の変化が遅くなり、安定相に移行し難くなるので、熱曝露時間が長くても略一定となる傾向がある。   When precipitation hardened aluminum alloy members are exposed to heat, solute elements dissolved in the Al matrix phase precipitate, increasing the metastable phase and changing the metastable phase form. Is formed. The hardness of the precipitation hardening type aluminum alloy member becomes substantially constant while the metastable phase is precipitated as a precipitate, and tends to decrease when the stable phase is precipitated as a precipitate. The hardness of the precipitation hardening type aluminum alloy member tends to further decrease due to Ostwald growth or the like even after the stable phase is precipitated. In addition, the hardness of the precipitation hardening type aluminum alloy member is such that when the heat exposure temperature is relatively low (for example, a heat exposure temperature of 140 ° C. or lower), the metastable phase precipitation rate and the change in form are slow, Since it becomes difficult to shift to a stable phase, it tends to be substantially constant even if the heat exposure time is long.

例えば、析出硬化型アルミニウム合金部材がAl−Cu−Mg系合金で形成されている場合には、析出硬化型アルミニウム合金部材の硬さは、GPB(1)ゾーン、GPB(2)ゾーン(S”相)及びS’相からなる準安定相が析出物として析出している間は略一定となるが、S相(AlCuMg)からなる安定相が析出物として析出すると低下する傾向がある。このように、析出硬化型アルミニウム合金部材の硬さは、主に、析出物の形態に起因して変化する。 For example, when the precipitation hardening type aluminum alloy member is formed of an Al-Cu-Mg alloy, the hardness of the precipitation hardening type aluminum alloy member is GPB (1) zone, GPB (2) zone (S " Phase) and the metastable phase consisting of the S ′ phase are substantially constant while being precipitated as precipitates, but tends to decrease when the stable phase consisting of the S phase (Al 2 CuMg) is precipitated as precipitates. As described above, the hardness of the precipitation hardening type aluminum alloy member changes mainly due to the form of the precipitate.

硬さ測定は、例えば、マイクロビッカース硬さ測定法等のビッカース硬さ測定法、ロックウエル硬さ測定法、ブリネル硬さ測定法、ヌープ硬さ測定法等を用いることが可能である。硬さ測定は、析出硬化型アルミニウム合金部材を直接測定してもよいし、サンプルを切り出して樹脂埋めし、耐水研磨紙やアルミナ、コロイダルシリカ等の研磨材で研磨してから測定してもよい。また、硬さ測定は、マイクロビッカース硬さ測定法によることが好ましい。マイクロビッカース硬さ測定法によれば、圧痕サイズが小さいので、析出硬化型アルミニウム合金部材が小さくても硬さを複数箇所測定することができる。   For the hardness measurement, for example, a Vickers hardness measurement method such as a micro Vickers hardness measurement method, a Rockwell hardness measurement method, a Brinell hardness measurement method, a Knoop hardness measurement method, or the like can be used. The hardness measurement may be performed by directly measuring a precipitation hardening type aluminum alloy member, or by cutting a sample and filling it with a resin and polishing it with an abrasive such as water-resistant abrasive paper, alumina, or colloidal silica. . Further, the hardness measurement is preferably performed by a micro Vickers hardness measurement method. According to the micro Vickers hardness measurement method, since the indentation size is small, the hardness can be measured at a plurality of locations even if the precipitation hardening type aluminum alloy member is small.

D値算出工程(S22)は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、析出硬化型アルミニウム合金部材における熱曝露前後の硬さの変化量と、を変数とした関係式に基づくD値を算出する工程である。   In the D value calculation step (S22), the amount of change in conductivity before and after thermal exposure in the precipitation hardening aluminum alloy member and the amount of change in hardness before and after heat exposure in the precipitation hardening aluminum alloy member are variables. This is a step of calculating a D value based on the equation.

析出硬化型アルミニウム合金部材の導電率は、主に、Al母相中に固溶している溶質元素の固溶量に起因しており、熱曝露によりAl母相中の溶質元素が析出して、Al母相中の溶質元素の固溶量が減ることにより変化する。このことから、析出硬化型アルミニウム合金部材の導電率は、熱曝露の初期から変化の度合いが大きくなる傾向がある。一方、析出硬化型アルミニウム合金部材の導電率は、Al母相中に固溶している溶質元素がほとんど析出すると、Al母相中の溶質元素の固溶量が少なくなるので、変化の度合いが小さくなる傾向がある。   The electrical conductivity of the precipitation hardening type aluminum alloy member is mainly due to the amount of solute elements dissolved in the Al matrix, and the solute elements in the Al matrix are precipitated by heat exposure. The amount of solute elements in the Al matrix changes as the amount of solute decreases. From this, the electrical conductivity of the precipitation hardening type aluminum alloy member tends to increase in the degree of change from the initial stage of heat exposure. On the other hand, the conductivity of the precipitation-hardening type aluminum alloy member, when almost all the solute elements dissolved in the Al matrix phase are precipitated, the amount of solute elements in the Al matrix phase decreases, so the degree of change is small. There is a tendency to become smaller.

析出硬化型アルミニウム合金部材の硬さは、主に、析出物の形態に起因しているので、準安定相が析出物として析出している熱曝露の初期では、変化の度合いが小さくなる傾向がある。一方、析出硬化型アルミニウム合金部材の硬さは、熱曝露時間の経過とともに析出物の形態が変化して安定相が析出されると変化の度合いが大きくなる傾向がある。また、析出硬化型アルミニウム合金部材の硬さは、安定相が形成された後でも、オストワルド成長等により変化の度合いが大きくなる傾向がある。   Since the hardness of the precipitation hardening type aluminum alloy member is mainly due to the form of the precipitate, the degree of change tends to be small at the initial stage of heat exposure in which the metastable phase is precipitated as a precipitate. is there. On the other hand, the hardness of the precipitation hardening type aluminum alloy member tends to increase as the form of the precipitate changes and the stable phase precipitates as the heat exposure time elapses. Further, the hardness of the precipitation hardening type aluminum alloy member tends to increase in degree due to Ostwald growth or the like even after the stable phase is formed.

そこで、導電率の変化量と、硬さの変化量とを変数とした関係式に基づくD値をパラメータとすることにより、熱曝露の初期における硬さの変化の度合いが小さい期間では、主に、導電率の変化によりD値が変化し、熱曝露時間が長くなり、導電率の変化の度合が小さくなる期間では、主に、硬さの変化によりD値が変化する。このように、D値をパラメータとすることにより、熱曝露の全期間において析出硬化型アルミニウム合金部材の熱曝露温度を精度よく推定することができる。   Therefore, by using as a parameter the D value based on the relational expression in which the amount of change in conductivity and the amount of change in hardness are variables, in the period when the degree of change in hardness at the initial stage of heat exposure is small, In the period in which the D value changes due to the change in conductivity, the heat exposure time becomes longer, and the degree of change in conductivity becomes smaller, the D value changes mainly due to the change in hardness. Thus, by using the D value as a parameter, the heat exposure temperature of the precipitation hardening aluminum alloy member can be accurately estimated over the entire period of the heat exposure.

D値は、熱曝露前後における導電率の変化量をΔE、熱曝露前後における硬さの変化量をΔHとしたとき、D=(ΔH+100)/(ΔE+100)で算出されるとよい。D値をこのような簡素なパラメータに設定することにより、析出硬化型アルミニウム合金部材の熱曝露温度の推定が容易になるからである。   The D value may be calculated as D = (ΔH + 100) / (ΔE + 100), where ΔE is the amount of change in conductivity before and after heat exposure, and ΔH is the amount of change in hardness before and after heat exposure. This is because setting the D value to such a simple parameter makes it easy to estimate the heat exposure temperature of the precipitation hardening type aluminum alloy member.

図7は、D値と、熱曝露時間と、熱曝露温度との関係を示すモデル図である。図7のモデル図では、横軸に熱曝露時間を取り、縦軸にD値を取り、D値を実線で示している。なお、熱曝露温度T1は、熱曝露温度T2より高温の場合を示している。また、図7のモデル図では、図2の導電率と熱曝露時間との関係を示すモデル図と、図6の硬さと熱曝露時間との関係を示すモデル図とを用いることにより、導電率の変化量をΔE、硬さの変化量をΔHとしたとき、D=(ΔH+100)/(ΔE+100)でD値を算出している。   FIG. 7 is a model diagram showing the relationship between the D value, the heat exposure time, and the heat exposure temperature. In the model diagram of FIG. 7, the horizontal axis represents the heat exposure time, the vertical axis represents the D value, and the D value is indicated by a solid line. Note that the heat exposure temperature T1 is higher than the heat exposure temperature T2. Further, in the model diagram of FIG. 7, the conductivity is obtained by using the model diagram showing the relationship between the conductivity and the heat exposure time in FIG. 2 and the model diagram showing the relationship between the hardness and the heat exposure time in FIG. D is calculated by D = (ΔH + 100) / (ΔE + 100) where ΔE is the amount of change in Δ and ΔH is the amount of change in hardness.

この場合のD値は、熱曝露の初期では、硬さが略一定か緩やかに低下し、導電率が徐々に大きくなるので、熱曝露時間の経過とともに緩やかに低下する。そして、熱曝露時間が更に経過すると、硬さが更に低下し、導電率が更に大きくなるので、D値の低下が大きくなる。このようにD値は、熱曝露時間に依存して変化する。また、熱曝露温度T1及びT2のときのD値は、熱曝露時間に対してお互いに異なる変化を示す。   In this case, in the initial stage of heat exposure, the D value gradually decreases as the heat exposure time elapses because the hardness decreases substantially or gently and the conductivity gradually increases. And if heat exposure time passes further, since hardness will fall further and electrical conductivity will become larger, the fall of D value will become large. Thus, the D value varies depending on the heat exposure time. Further, the D values at the heat exposure temperatures T1 and T2 show different changes with respect to the heat exposure time.

熱曝露温度推定工程(S24)は、析出硬化型アルミニウム合金部材のD値及び熱曝露時間と、予め求めておいた析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金のD値及び熱曝露時間と、を比較して、析出硬化型アルミニウム合金部材の熱曝露温度を推定する工程である。   The heat exposure temperature estimation step (S24) is a precipitation hardening type that has been subjected to a known heat exposure with the same composition as the precipitation hardening type aluminum alloy member obtained in advance and the D value and heat exposure time of the precipitation hardening type aluminum alloy member. This is a step of estimating the heat exposure temperature of the precipitation hardening type aluminum alloy member by comparing the D value of the aluminum alloy and the heat exposure time.

予め析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金のD値と熱曝露時間との関係を実験等により求めて、例えば、図7に示すようなマスター曲線を作成する。析出硬化型アルミニウム合金の熱曝露については、例えば、析出硬化型アルミニウム合金部材が設けられる装置の運転から解析等で想定される複数の熱曝露温度で行うとよい。そして、析出硬化型アルミニウム合金部材のD値及び熱曝露時間から、析出硬化型アルミニウム合金部材の熱曝露温度を推定する。   The relationship between the D value of a precipitation hardening aluminum alloy having the same composition as that of the precipitation hardening aluminum alloy member, which has been subjected to known heat exposure, and the heat exposure time is obtained through experiments or the like. For example, a master curve as shown in FIG. Create The heat exposure of the precipitation hardening type aluminum alloy may be performed, for example, at a plurality of heat exposure temperatures assumed in the analysis or the like from the operation of the apparatus provided with the precipitation hardening type aluminum alloy member. And the heat exposure temperature of a precipitation hardening type aluminum alloy member is estimated from D value and the heat exposure time of a precipitation hardening type aluminum alloy member.

図8は、熱曝露温度の推定方法を示すモデル図である。図8のモデル図では、図7のモデル図を用いて析出硬化型アルミニウム合金部材の熱曝露温度を推定する方法を示している。例えば、熱曝露された析出硬化型アルミニウム合金部材のD値がD1であり、熱曝露時間がt1である場合には、熱曝露温度はT1と推定される。また、熱曝露された析出硬化型アルミニウム合金部材のD値がD2であり、熱曝露時間がt2である場合には、熱曝露温度はT2と推定される。このようにして、析出硬化型アルミニウム合金部材の熱曝露温度が推定される。   FIG. 8 is a model diagram showing a method for estimating the heat exposure temperature. The model diagram of FIG. 8 shows a method for estimating the heat exposure temperature of the precipitation hardening aluminum alloy member using the model diagram of FIG. For example, when the D value of the precipitation-hardened aluminum alloy member exposed to heat is D1, and the heat exposure time is t1, the heat exposure temperature is estimated to be T1. Further, when the D value of the precipitation-hardened aluminum alloy member exposed to heat is D2, and the heat exposure time is t2, the heat exposure temperature is estimated to be T2. Thus, the heat exposure temperature of the precipitation hardening type aluminum alloy member is estimated.

次に、析出硬化型アルミニウム合金部材の熱履歴推定装置について説明する。図9は、析出硬化型アルミニウム合金部材の熱履歴推定装置22の構成を示すブロック図である。析出硬化型アルミニウム合金部材の熱履歴推定装置22は、導電率測定手段12と、硬さ測定手段24と、制御手段26と、出力手段28と、を備えている。   Next, a thermal history estimation device for precipitation hardening type aluminum alloy members will be described. FIG. 9 is a block diagram showing a configuration of the thermal history estimator 22 for precipitation hardening type aluminum alloy members. Precipitation hardening type aluminum alloy member thermal history estimation device 22 includes conductivity measuring means 12, hardness measuring means 24, control means 26, and output means 28.

導電率測定手段12は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する機能を有している。導電率測定手段12は、第一実施形態の導電率測定手段12と同じであるので、詳細な説明を省略する。   The conductivity measuring means 12 has a function of measuring the conductivity before and after thermal exposure in the precipitation hardening type aluminum alloy member. Since the conductivity measuring means 12 is the same as the conductivity measuring means 12 of the first embodiment, a detailed description is omitted.

硬さ測定手段24は、析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する機能を有している。硬さ測定手段24は、ビッカース硬さ試験機、ロックウエル硬さ試験機、ブリネル硬さ試験機、ヌープ硬さ試験機、超音波硬度計等で構成されている。   The hardness measuring means 24 has a function of measuring the hardness of the precipitation hardening type aluminum alloy member before and after thermal exposure. The hardness measuring means 24 includes a Vickers hardness tester, a Rockwell hardness tester, a Brinell hardness tester, a Knoop hardness tester, an ultrasonic hardness tester, and the like.

制御手段26は、D値算出手段30と、熱曝露温度推定手段32と、記憶手段34と、を有している。制御手段26は、例えば、一般的なパーソナルコンピュータ等で構成されている。   The control unit 26 includes a D value calculation unit 30, a heat exposure temperature estimation unit 32, and a storage unit 34. The control means 26 is composed of, for example, a general personal computer.

D値算出手段30は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、析出硬化型アルミニウム合金部材における熱曝露前後の硬さの変化量と、を変数とした関係式に基づくD値を算出する機能を有している。   The D value calculation means 30 is a relational expression in which the amount of change in conductivity before and after thermal exposure in the precipitation hardening type aluminum alloy member and the amount of change in hardness before and after heat exposure in the precipitation hardening type aluminum alloy member are variables. It has a function to calculate the D value based on it.

熱曝露温度推定手段32は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び熱曝露時間と、予め求めておいた析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量及び熱曝露時間と、を比較して、析出硬化型アルミニウム合金部材の熱曝露温度を推定する機能を有している。   The heat exposure temperature estimation means 32 calculates the amount of change in conductivity and the heat exposure time before and after the heat exposure in the precipitation hardening aluminum alloy member, and the known heat exposure with the same composition as the precipitation hardening aluminum alloy member obtained in advance. It has the function of estimating the heat exposure temperature of a precipitation hardening type aluminum alloy member by comparing the amount of change in conductivity and the heat exposure time before and after heat exposure in the received precipitation hardening type aluminum alloy.

記憶手段34は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量、熱曝露前後の硬さの変化量、D値及び熱曝露時間、予め求めておいた析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量、熱曝露前後の硬さの変化量、D値及び熱曝露時間、D値及び熱曝露時間の関係を示すマスター曲線等のデータを記憶する機能を有している。   The storage means 34 is a precipitation hardening type aluminum alloy member obtained in advance, the amount of change in electrical conductivity before and after heat exposure in the precipitation hardening type aluminum alloy member, the amount of change in hardness before and after heat exposure, the D value and the heat exposure time. Change in conductivity before and after heat exposure, change in hardness before and after heat exposure, D value and heat exposure time, D value and heat exposure time It has a function of storing data such as a master curve indicating the relationship.

出力手段28は、推定された析出硬化型アルミニウム合金部材の熱曝露温度等を出力する機能を有している。出力手段28は、ディスプレイやプリンタ等で構成されている。   The output means 28 has a function of outputting the estimated heat exposure temperature of the precipitation hardening type aluminum alloy member. The output means 28 is composed of a display, a printer or the like.

以上、上記構成によれば、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、熱曝露前後の硬さの変化量と、に基づいて析出硬化型アルミニウム合金部材の熱曝露温度を推定することにより、析出硬化型アルミニウム合金部材から直接情報を得て推定しているので、熱曝露温度をより精度よく推定することが可能となる。   As described above, according to the above configuration, the heat exposure temperature of the precipitation hardening type aluminum alloy member based on the amount of change in conductivity before and after heat exposure in the precipitation hardening type aluminum alloy member and the amount of change in hardness before and after heat exposure. Since the information is directly obtained and estimated from the precipitation hardening type aluminum alloy member, it is possible to estimate the heat exposure temperature with higher accuracy.

[実施例1]
過給機等に用いられるコンプレッサインペラにおいて、熱曝露温度を推定する場合について説明する。コンプレッサインペラは、Al−Cu−Mg系合金である2014合金(調質状態T6:溶体化処理後の人工時効処理)で形成されている。コンプレッサインペラは、120℃から200℃の間の略一定温度で熱曝露されている。まず、コンプレッサインペラの熱曝露温度を推定するためのマスター曲線の作成について説明する。
[Example 1]
A case where the heat exposure temperature is estimated in a compressor impeller used for a supercharger or the like will be described. The compressor impeller is formed of 2014 alloy (tempered state T6: artificial aging treatment after solution treatment) which is an Al—Cu—Mg alloy. The compressor impeller is thermally exposed at a substantially constant temperature between 120 ° C and 200 ° C. First, the creation of a master curve for estimating the heat exposure temperature of the compressor impeller will be described.

マスター曲線用供試体には、コンプレッサインペラと同一組成の2014合金材(調質状態T6)を、120℃、140℃、160℃、180℃及び200℃の各熱曝露温度、所定の熱曝露時間で各々熱曝露したものと、未曝露のものと、を使用した。   For the master curve specimen, a 2014 alloy material (tempered state T6) having the same composition as the compressor impeller was exposed to 120 ° C., 140 ° C., 160 ° C., 180 ° C., and 200 ° C. heat exposure temperatures and predetermined heat exposure times. The ones exposed to heat and the unexposed ones were used.

マスター曲線用供試体について、室温で、熱曝露前後の導電率を測定した。導電率測定は、渦電流式導電率測定法で行った。測定装置には、GE社製シグマテスタautoSigma3000(渦電流式)を用いた。   About the test piece for master curves, the electrical conductivity before and behind heat exposure was measured at room temperature. The conductivity measurement was performed by an eddy current type conductivity measurement method. As a measuring device, Sigma tester autoSigma 3000 (eddy current type) manufactured by GE was used.

熱曝露前後の導電率の変化量と、熱曝露時間と、熱曝露温度との関係を示すマスター曲線を作成した。図10は、マスター曲線を示すグラフである。図10のグラフでは、横軸に熱曝露時間を取り、縦軸に導電率の変化量を取り、120℃のときを白菱形、140℃のときを白四角形、160℃のときを黒三角形、180℃のときを黒四角形、200℃のときを黒菱形で示している。各熱曝露温度において、熱曝露時間が長くなるほど導電率が大きくなり、熱曝露前後の導電率の変化量が大きくなった。また、熱曝露時間が同じである場合には、熱曝露温度が高いほど、熱曝露前後の導電率の変化量が大きくなった。このように、熱曝露前後の導電率の変化量は、熱曝露温度及び熱曝露時間ごとに異なる値を示すことが明らかとなった。   A master curve showing the relationship between the amount of change in conductivity before and after thermal exposure, the thermal exposure time, and the thermal exposure temperature was prepared. FIG. 10 is a graph showing a master curve. In the graph of FIG. 10, the horizontal axis represents the heat exposure time, the vertical axis represents the change in conductivity, the white rhombus at 120 ° C., the white square at 140 ° C., the black triangle at 160 ° C., When the temperature is 180 ° C., a black square is shown, and when it is 200 ° C., a black rhombus. At each heat exposure temperature, the longer the heat exposure time, the higher the conductivity, and the greater the change in conductivity before and after the heat exposure. When the heat exposure time was the same, the higher the heat exposure temperature, the greater the change in conductivity before and after heat exposure. Thus, it became clear that the variation | change_quantity of the electrical conductivity before and behind heat exposure shows a different value for every heat exposure temperature and heat exposure time.

次に、熱曝露されたコンプレッサインペラの熱曝露温度を推定する方法について説明する。まず、コンプレッサインペラにおける熱曝露前後の導電率を、渦電流式導電率測定法で測定する。そして、コンプレッサインペラにおける熱曝露前後の導電率の変化量を算出する。予め求めておいたマスター曲線用供試体における熱曝露前後の導電率の変化量及び熱曝露時間のデータとして、図10に示すマスター曲線を用いることにより、コンプレッサインペラの熱曝露温度を推定する。例えば、コンプレッサインペラにおける熱曝露前後の導電率の変化量が6(%IACS)で、熱曝露時間が100時間である場合には、図10のマスター曲線から熱曝露温度が約200℃と推定される。   Next, a method for estimating the heat exposure temperature of the heat-exposed compressor impeller will be described. First, the electrical conductivity before and after thermal exposure in the compressor impeller is measured by an eddy current conductivity measurement method. Then, the amount of change in conductivity before and after heat exposure in the compressor impeller is calculated. The heat exposure temperature of the compressor impeller is estimated by using the master curve shown in FIG. 10 as data of the change in conductivity before and after the heat exposure and the heat exposure time in the master curve specimen obtained in advance. For example, when the amount of change in conductivity before and after heat exposure in a compressor impeller is 6 (% IACS) and the heat exposure time is 100 hours, the heat exposure temperature is estimated to be about 200 ° C. from the master curve in FIG. The

[実施例2]
次に、マスター曲線として、熱曝露前後の導電率の変化量と、熱曝露前後の硬さの変化量と、を変数とした関係式に基づくD値を用いて、コンプレッサインペラの熱曝露温度を推定する場合について説明する。まず、マスター曲線の作成方法について説明する。なお、熱曝露前後の導電率の変化量については、実施例1におけるマスター曲線用供試体のデータを使用した。
[Example 2]
Next, as a master curve, using the D value based on the relational expression with the amount of change in conductivity before and after heat exposure and the amount of change in hardness before and after heat exposure as variables, the heat exposure temperature of the compressor impeller is calculated. A case of estimation will be described. First, a method for creating a master curve will be described. In addition, about the variation | change_quantity of the electrical conductivity before and behind heat exposure, the data of the specimen for master curves in Example 1 were used.

マスター曲線用供試体には、実施例1と同様に、コンプレッサインペラと同一組成の2014合金材(調質状態T6)を、120℃、140℃、160℃、180℃及び200℃の各熱曝露温度、所定の熱曝露時間で各々熱曝露したものと、未曝露のものと、を使用した。マスター曲線用供試体について、室温で、硬さ測定を行った。硬さ測定は、マイクロビッカース硬さ測定法により行った。硬さ測定用サンプルについては、マスター曲線用供試体から小片(長さ10mm×幅5mm×厚み3mm)を切り出して樹脂埋めし、耐水研磨紙(エメリー紙)で#2000番まで研磨して用意した。硬さ試験機には、明石製作所製 AKASHI MVK−Hardness Testerを用いた。試験条件は、荷重1kgf、負荷時間15sとした。 As in Example 1, the master curve specimen was subjected to a heat treatment at 120 ° C., 140 ° C., 160 ° C., 180 ° C., and 200 ° C. with a 2014 alloy material (tempered state T6) having the same composition as the compressor impeller Temperatures, those exposed to heat at a predetermined heat exposure time, and those not exposed were used. The hardness of the specimen for master curve was measured at room temperature. The hardness was measured by a micro Vickers hardness measurement method. For the sample for hardness measurement, a small piece (length 10 mm x width 5 mm x thickness 3 mm t ) is cut out from the master curve specimen, filled with resin, and polished to # 2000 with water-resistant abrasive paper (emery paper). did. An AKASHI MVK-Hardness Tester manufactured by Akashi Seisakusho was used as the hardness tester. The test conditions were a load of 1 kgf and a load time of 15 s.

図11は、熱曝露前後の硬さの変化量と、熱曝露時間と、熱曝露温度との関係を示すグラフである。図11のグラフでは、横軸に熱曝露時間を取り、縦軸に硬さの変化量を取り、120℃のときを白三角形、140℃のときを白四角形、160℃のときを黒三角形、180℃のときを黒四角形、200℃のときを黒菱形で示している。熱曝露時間が長くなるほど硬さが低下し、熱曝露前後の硬さの変化量が大きくなった。また、熱曝露時間が同じである場合には、熱曝露温度が高いほど、熱曝露前後の硬さの変化量が大きくなった。更に、熱曝露温度が140℃以下の場合には、硬さは、約30時間まで略一定であった。   FIG. 11 is a graph showing the relationship between the amount of change in hardness before and after heat exposure, the heat exposure time, and the heat exposure temperature. In the graph of FIG. 11, the horizontal axis represents the heat exposure time, the vertical axis represents the amount of change in hardness, a white triangle at 120 ° C., a white square at 140 ° C., a black triangle at 160 ° C., When the temperature is 180 ° C., a black square is shown, and when it is 200 ° C., a black rhombus. The longer the heat exposure time, the lower the hardness, and the greater the change in hardness before and after heat exposure. When the heat exposure time was the same, the higher the heat exposure temperature, the greater the amount of change in hardness before and after heat exposure. Furthermore, when the heat exposure temperature was 140 ° C. or lower, the hardness was substantially constant up to about 30 hours.

熱曝露前後の導電率の変化量ΔEと、熱曝露前後の硬さの変化量ΔHとからD値を求めた。D値については、D=(ΔH+100)/(ΔE+100)の式から算出した。そして、D値と、熱曝露時間と、熱曝露温度との関係を示すマスター曲線を作成した。図12は、マスター曲線を示すグラフである。図12のグラフでは、横軸に熱曝露時間を取り、縦軸にD値を取り、120℃のときを白菱形、140℃のときを白四角形、160℃のときを黒三角形、180℃のときを黒四角形、200℃のときを黒菱形で示している。図12のグラフから、D値は、熱曝露温度及び熱曝露時間ごとに異なる値を示すことが明らかとなった。   D value was calculated | required from the variation | change_quantity (DELTA) E of the electrical conductivity before and behind heat exposure, and the variation | change_quantity (DELTA) H of the hardness before and behind heat exposure. The D value was calculated from the equation D = (ΔH + 100) / (ΔE + 100). And the master curve which shows the relationship between D value, heat exposure time, and heat exposure temperature was created. FIG. 12 is a graph showing a master curve. In the graph of FIG. 12, the horizontal axis represents the heat exposure time, the vertical axis represents the D value, the white rhombus at 120 ° C., the white square at 140 ° C., the black triangle at 160 ° C., and the 180 ° C. The time is indicated by a black square, and the time at 200 ° C. is indicated by a black rhombus. From the graph of FIG. 12, it became clear that D value shows a different value for every heat exposure temperature and heat exposure time.

次に、熱曝露されたコンプレッサインペラにおける熱曝露温度の推定方法を説明する。コンプレッサインペラにおける熱曝露前後の導電率を、渦電流式導電率測定法で測定する。コンプレッサインペラにおける熱曝露前後の硬さを、マイクロビッカース硬さ試験法で測定する。そして、熱曝露前後の導電率の変化量ΔEと、熱曝露前後の硬さの変化量ΔHとを算出し、D=(ΔH+100)/(ΔE+100)の式からD値を算出する。   Next, a method for estimating the heat exposure temperature in a heat-exposed compressor impeller will be described. The electrical conductivity of the compressor impeller before and after thermal exposure is measured by an eddy current conductivity measurement method. The hardness of the compressor impeller before and after heat exposure is measured by the micro Vickers hardness test method. Then, the change amount ΔE of the conductivity before and after the heat exposure and the change amount ΔH of the hardness before and after the heat exposure are calculated, and the D value is calculated from the equation D = (ΔH + 100) / (ΔE + 100).

予め求めておいたマスター曲線用供試体のD値及び熱曝露時間のデータとして、図12に示すマスター曲線を用いることにより、コンプレッサインペラの熱曝露温度を推定する。例えば、熱曝露されたコンプレッサインペラにおけるD値が0.45で、熱曝露時間が100時間である場合には、図12のマスター曲線から熱曝露温度が約200℃と推定される。   The heat exposure temperature of the compressor impeller is estimated by using the master curve shown in FIG. 12 as data of the D value and heat exposure time of the master curve specimen obtained in advance. For example, when the D value in a heat-exposed compressor impeller is 0.45 and the heat exposure time is 100 hours, the heat exposure temperature is estimated to be about 200 ° C. from the master curve in FIG.

10、22 熱履歴推定装置
12 導電率測定手段
14、26 制御手段
16、28 出力手段
18、32 熱曝露温度推定手段
20、34 記憶手段
24 硬さ測定手段
30 D値算出手段
DESCRIPTION OF SYMBOLS 10, 22 Thermal history estimation apparatus 12 Conductivity measurement means 14, 26 Control means 16, 28 Output means 18, 32 Thermal exposure temperature estimation means 20, 34 Storage means 24 Hardness measurement means 30 D value calculation means

Claims (6)

熱曝露された析出硬化型アルミニウム合金部材の熱履歴推定方法であって、
前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する導電率測定工程と、
前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び熱曝露時間と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量及び熱曝露時間と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度を推定する熱曝露温度推定工程と、
を備えることを特徴とする析出硬化型アルミニウム合金部材の熱履歴推定方法。
A thermal history estimation method for a precipitation-hardened aluminum alloy member exposed to heat,
A conductivity measuring step for measuring conductivity before and after thermal exposure in the precipitation hardening type aluminum alloy member;
Precipitation hardening type aluminum having the same composition as the precipitation hardening type aluminum alloy member obtained in advance and a known heat exposure, the amount of change in electrical conductivity and the heat exposure time before and after heat exposure in the precipitation hardening type aluminum alloy member A heat exposure temperature estimating step of estimating a heat exposure temperature of the precipitation hardening type aluminum alloy member by comparing a change in conductivity before and after heat exposure in the alloy and a heat exposure time;
A method for estimating the thermal history of a precipitation hardening aluminum alloy member, comprising:
請求項1に記載の析出硬化型アルミニウム合金部材の熱履歴推定方法であって、
前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する硬さ測定工程と、
前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さの変化量と、を変数とした関係式に基づくD値を算出するD値算出工程と、
を備え、
前記熱曝露温度推定工程は、
前記析出硬化型アルミニウム合金部材のD値及び熱曝露時間と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金のD値及び熱曝露時間と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度を推定することを特徴とする析出硬化型アルミニウム合金部材の熱履歴推定方法。
It is the thermal history estimation method of the precipitation hardening type aluminum alloy member according to claim 1,
A hardness measurement step for measuring the hardness before and after thermal exposure in the precipitation hardening type aluminum alloy member;
Calculate D value based on relational expression with variable amount of change in conductivity before and after thermal exposure in precipitation hardening aluminum alloy member and change in hardness before and after heat exposure in precipitation hardening aluminum alloy member. A D value calculating step,
With
The heat exposure temperature estimation step includes:
D value and heat exposure time of the precipitation hardening type aluminum alloy member, and D value and heat exposure of the precipitation hardening type aluminum alloy which has been subjected to known heat exposure with the same composition as the precipitation hardening type aluminum alloy member obtained in advance. A method for estimating the thermal history of a precipitation hardening type aluminum alloy member, comprising comparing the time and the heat exposure temperature of the precipitation hardening type aluminum alloy member.
請求項1または2に記載の析出硬化型アルミニウム合金部材の熱履歴推定方法であって、
前記導電率測定工程は、渦電流式導電率測定法で測定することを特徴とする析出硬化型アルミニウム合金部材の熱履歴推定方法。
It is the thermal history estimation method of the precipitation hardening type aluminum alloy member according to claim 1 or 2,
The method for estimating thermal history of a precipitation hardening type aluminum alloy member, wherein the conductivity measuring step is measured by an eddy current type conductivity measuring method.
請求項2または3に記載の析出硬化型アルミニウム合金部材の熱履歴推定方法であって、
前記硬さ測定工程は、ビッカース硬さ測定法、ロックウエル硬さ測定法、ブリネル硬さ測定法またはヌープ硬さ測定法で測定することを特徴とする析出硬化型アルミニウム合金部材の熱履歴推定方法。
It is the thermal history estimation method of the precipitation hardening type aluminum alloy member according to claim 2 or 3,
The method for estimating the heat history of a precipitation hardening type aluminum alloy member, wherein the hardness measurement step is performed by a Vickers hardness measurement method, a Rockwell hardness measurement method, a Brinell hardness measurement method, or a Knoop hardness measurement method.
熱曝露された析出硬化型アルミニウム合金部材の熱履歴推定装置であって、
前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する導電率測定手段と、
前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び熱曝露時間と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量及び熱曝露時間と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度を推定する熱曝露温度推定手段と、
を備えることを特徴とする析出硬化型アルミニウム合金部材の熱履歴推定装置。
A thermal history estimation device for a precipitation-hardened aluminum alloy member exposed to heat,
Conductivity measuring means for measuring conductivity before and after thermal exposure in the precipitation hardening type aluminum alloy member;
Precipitation hardening type aluminum having the same composition as the precipitation hardening type aluminum alloy member obtained in advance and a known heat exposure, the amount of change in electrical conductivity and the heat exposure time before and after heat exposure in the precipitation hardening type aluminum alloy member A thermal exposure temperature estimation means for estimating a thermal exposure temperature of the precipitation hardened aluminum alloy member by comparing a change in conductivity before and after thermal exposure in the alloy and a thermal exposure time;
A thermal history estimation device for a precipitation hardening type aluminum alloy member, comprising:
請求項5に記載の析出硬化型アルミニウム合金部材の熱履歴推定装置であって、
前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する硬さ測定手段と、
前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さの変化量と、を変数とした関係式に基づくD値を算出するD値算出手段と、
を備え、
前記熱曝露温度推定手段は、
前記析出硬化型アルミニウム合金部材のD値及び熱曝露時間と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金のD値及び熱曝露時間と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度を推定することを特徴とする析出硬化型アルミニウム合金部材の熱履歴推定装置。
It is the thermal history estimation apparatus of the precipitation hardening type aluminum alloy member according to claim 5,
Hardness measuring means for measuring the hardness before and after thermal exposure in the precipitation hardening type aluminum alloy member;
Calculate D value based on relational expression with variable amount of change in conductivity before and after thermal exposure in precipitation hardening aluminum alloy member and change in hardness before and after heat exposure in precipitation hardening aluminum alloy member. D value calculating means for
With
The thermal exposure temperature estimation means includes
D value and heat exposure time of the precipitation hardening type aluminum alloy member, and D value and heat exposure of the precipitation hardening type aluminum alloy which has been subjected to known heat exposure with the same composition as the precipitation hardening type aluminum alloy member obtained in advance. A thermal history estimation device for a precipitation hardening type aluminum alloy member, wherein the heat exposure temperature of the precipitation hardening type aluminum alloy member is estimated by comparing the time.
JP2016105279A 2016-05-26 2016-05-26 Thermal history estimation method and thermal history estimation device for precipitation hardening aluminum alloy members Active JP6759713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016105279A JP6759713B2 (en) 2016-05-26 2016-05-26 Thermal history estimation method and thermal history estimation device for precipitation hardening aluminum alloy members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016105279A JP6759713B2 (en) 2016-05-26 2016-05-26 Thermal history estimation method and thermal history estimation device for precipitation hardening aluminum alloy members

Publications (2)

Publication Number Publication Date
JP2017211303A true JP2017211303A (en) 2017-11-30
JP6759713B2 JP6759713B2 (en) 2020-09-23

Family

ID=60476774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016105279A Active JP6759713B2 (en) 2016-05-26 2016-05-26 Thermal history estimation method and thermal history estimation device for precipitation hardening aluminum alloy members

Country Status (1)

Country Link
JP (1) JP6759713B2 (en)

Also Published As

Publication number Publication date
JP6759713B2 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
Pippan et al. Fatigue crack closure: a review of the physical phenomena
Grieb et al. Thermomechanical fatigue of cast aluminium alloys for cylinder head applications–experimental characterization and life prediction
TerBush et al. Partitioning of solute to the primary α-Mg phase in creep-resistant Mg-Al-Ca–based cast alloys
Wei et al. Deformation behavior and constitutive model for dual-phase Mg–Li alloy at elevated temperatures
WO2020090805A1 (en) Material exploration apparatus, method, and program
JP4692402B2 (en) Casting simulation method, apparatus thereof, program thereof, recording medium recording the program, and casting method
Steinbach et al. Transient growth and interaction of equiaxed dendrites
RU2686745C9 (en) Nickel-based alloy regenerated member, and method for manufacturing same
Basoalto et al. A generic microstructure-explicit model of creep in nickel-base superalloys
JP2016132027A (en) Casting simulation method
JP2017211303A (en) Method and apparatus for estimating heat history of precipitation-hardened aluminum alloy members
Wang et al. A new, direct approach toward modeling thermo-coupled fatigue failure behavior of metals and alloys
Motoyama et al. Elasto-plastic-creep constitutive equation of An Al-Si-Cu high-pressure die casting alloy for thermal stress analysis
Ji et al. Loading rate sensitivity of nickel-based single crystal superalloys characterized by nanoindentation
JP6736979B2 (en) Abnormal high temperature exposure detection method and abnormal high temperature exposure detection device for precipitation hardening type aluminum alloy member
Beddoes Prediction of creep properties for two nickel-base superalloys from stress relaxation testing
US20190184456A1 (en) Cast product mechanical characteristic prediction method, cast product mechanical characteristic prediction system, and computer readable recording medium recording cast product mechanical characteristic prediction program
JP6148390B1 (en) Evaluation method for metal materials
US20180171431A1 (en) Method for solution heat treated alloy components
Durga et al. Grain structure prediction for directionally solidified superalloy castings
Smart A study of directionally solidified Rene 80 subjected to short-term overtemperature
JP3794943B2 (en) Method for estimating metal temperature and material properties of Ni-based alloy parts
KR100986923B1 (en) Solidification Analysis Method and Apparatus
Seisenbacher et al. Modelling the effect of ageing on the yield strength of an aluminium alloy under cyclic loading at different ageing temperatures and test temperatures
JP2018146281A (en) Thermal stress analysis simulation program and analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R151 Written notification of patent or utility model registration

Ref document number: 6759713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151