JP6759705B2 - How to manufacture the rotor - Google Patents

How to manufacture the rotor Download PDF

Info

Publication number
JP6759705B2
JP6759705B2 JP2016100729A JP2016100729A JP6759705B2 JP 6759705 B2 JP6759705 B2 JP 6759705B2 JP 2016100729 A JP2016100729 A JP 2016100729A JP 2016100729 A JP2016100729 A JP 2016100729A JP 6759705 B2 JP6759705 B2 JP 6759705B2
Authority
JP
Japan
Prior art keywords
press
rotor
axial direction
fitting
magnetic cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016100729A
Other languages
Japanese (ja)
Other versions
JP2017208960A (en
Inventor
高紀 能勢
高紀 能勢
大介 小谷野
大介 小谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016100729A priority Critical patent/JP6759705B2/en
Priority to US15/338,943 priority patent/US10432044B2/en
Priority to CN201610950001.1A priority patent/CN106961171B/en
Publication of JP2017208960A publication Critical patent/JP2017208960A/en
Priority to US16/528,883 priority patent/US11296563B2/en
Application granted granted Critical
Publication of JP6759705B2 publication Critical patent/JP6759705B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、ロータの製造方法に関するものである。 The present invention relates to a rotor manufacturing how.

従来からモータのロータとしては、回転軸と、回転軸に外嵌固定されたロータコアと、ロータコアの外表面側に設けられた周方向に複数の永久磁石とを備えたものがある。そして、このようなロータとしては、永久磁石が、軸方向から見て、その外表面における周方向中央部が周方向両端部よりも軸中心からの距離が遠い湾曲形状とされ、各永久磁石が筒状の非磁性カバーによって覆われて保持されるものがある(例えば、特許文献1参照)。 Conventionally, as a rotor of a motor, there is one provided with a rotating shaft, a rotor core externally fitted and fixed to the rotating shaft, and a plurality of permanent magnets provided on the outer surface side of the rotor core in the circumferential direction. As such a rotor, the permanent magnets have a curved shape in which the central portion in the circumferential direction on the outer surface thereof is farther from the center of the axial direction than both ends in the circumferential direction, and each permanent magnet has a curved shape. Some are covered and held by a tubular non-magnetic cover (see, for example, Patent Document 1).

特開2015−231254号公報Japanese Unexamined Patent Publication No. 2015-231254

しかしながら、上記したロータでは、非磁性カバーの内面が永久磁石の外表面における周方向中央部のみと当接する真円形状に図示されており、永久磁石を強固に保持する構成については開示されていない。そこで、容易に永久磁石を強固に保持することができるロータ及びその製造方法が望まれている。 However, in the rotor described above, the inner surface of the non-magnetic cover is shown in a perfect circular shape in contact with only the central portion in the circumferential direction on the outer surface of the permanent magnet, and the configuration for firmly holding the permanent magnet is not disclosed. .. Therefore, a rotor capable of easily and firmly holding a permanent magnet and a method for manufacturing the same are desired.

本発明は、上記問題点を解決するためになされたものであって、その目的は、容易に永久磁石を強固に保持することができるロータの製造方法を提供することにある。 The present invention was made to solve the above problems, and an object thereof is to provide a manufacturing how the rotor can be firmly held easily permanent magnets.

上記課題を解決するロータの製造方法は、ロータコアと、ロータコアの外表面と当接して周方向に複数設けられ、軸方向から見て、その外表面における周方向中央部が周方向両端部よりも軸中心からの距離が遠い湾曲形状の永久磁石と、各前記永久磁石の外表面を覆う筒状の非磁性カバーとを備えたロータの製造方法であって、内径の大きい大径部と内径の小さい小径部とが軸方向に並設された前記非磁性カバーを成形する非磁性カバー成形工程と、前記ロータコアの外表面に前記永久磁石を当接させた状態で、前記大径部の内面及び前記小径部の内面が共に前記永久磁石の外表面と当接するように前記非磁性カバー成形工程で成形した前記非磁性カバーを圧入するカバー圧入工程とを備え、前記カバー圧入工程では、前記非磁性カバーの前記大径部側から圧入するとともに、前記ロータコアは、硬度の高い高硬度部と、硬度の低い低硬度部とが、軸方向に並設されて構成されるものであって、前記カバー圧入工程では、前記非磁性カバーを前記高硬度部側から圧入するIn a method for manufacturing a rotor that solves the above problems, a plurality of rotor cores are provided in the circumferential direction in contact with the rotor core and the outer surface of the rotor core, and when viewed from the axial direction, the central portion in the circumferential direction on the outer surface is larger than both ends in the circumferential direction. A method for manufacturing a rotor including a curved permanent magnet that is far from the center of the shaft and a tubular non-magnetic cover that covers the outer surface of each permanent magnet. The large diameter portion having a large inner diameter and the inner diameter A non-magnetic cover molding step of molding the non-magnetic cover in which small small-diameter portions are arranged side by side in the axial direction, and an inner surface of the large-diameter portion and a state in which the permanent magnet is brought into contact with the outer surface of the rotor core. The cover press-fitting step of press-fitting the non-magnetic cover molded in the non-magnetic cover molding step so that the inner surface of the small diameter portion is in contact with the outer surface of the permanent magnet is provided . The rotor core is formed by press-fitting from the large-diameter portion of the cover and having a high-hardness portion having a high hardness and a low-hardness portion having a low hardness arranged side by side in the axial direction. In the press-fitting step, the non-magnetic cover is press-fitted from the high hardness portion side .

同方法によれば、成形工程では、内径の大きい大径部と内径の小さい小径部とが軸方向に並設された非磁性カバーが成形される。そして、カバー圧入工程では、ロータコアの外表面に永久磁石が当接された状態で、前記大径部の内面及び前記小径部の内面が共に永久磁石の外表面と当接するように非磁性カバー成形工程で成形した非磁性カバーが圧入される。このようにすると、小径部によって永久磁石が強固に保持される。また、大径部によってカバー圧入工程時の圧入力が強くなり過ぎることが抑えられ非磁性カバーが座屈してしまうといったことが抑えられる。また、大径部も内面が永久磁石の外表面と当接するため、大径部の部位がロータ全体の最大外径を大きくしてしまうことが抑えられ、大径部がロータと対向するステータとのギャップを大きくしてしまうことが抑えられる。 According to this method, in the molding step, a non-magnetic cover in which a large diameter portion having a large inner diameter and a small diameter portion having a small inner diameter are arranged side by side in the axial direction is molded. Then, in the cover press-fitting step, the non-magnetic cover is molded so that the inner surface of the large-diameter portion and the inner surface of the small-diameter portion both come into contact with the outer surface of the permanent magnet while the permanent magnet is in contact with the outer surface of the rotor core. The non-magnetic cover formed in the process is press-fitted. In this way, the permanent magnet is firmly held by the small diameter portion. Further, the large diameter portion suppresses the pressure input during the cover press-fitting process from becoming too strong, and prevents the non-magnetic cover from buckling. In addition, since the inner surface of the large diameter part abuts on the outer surface of the permanent magnet, it is possible to prevent the large diameter part from increasing the maximum outer diameter of the entire rotor, and the large diameter part is a stator facing the rotor. It is possible to prevent the gap from becoming large.

方法によれば、カバー圧入工程では、非磁性カバーの大径部側から圧入されるため、小径部側から圧入する方法に比べて、圧入し易くなる。
同方法によれば、ロータコアは、硬度の高い高硬度部と、硬度の低い低硬度部とが、軸方向に並設されて構成され、カバー圧入工程では、非磁性カバーが高硬度部側から圧入されるため、低硬度部側から圧入される場合に比べて、ロータコアの変形を抑えることができる。
According to this method, in the cover press-fitting step, the non-magnetic cover is press-fitted from the large diameter portion side, so that the press-fitting is easier than the method of press-fitting from the small diameter portion side.
According to this method, the rotor core is configured by arranging a high-hardness portion having a high hardness and a low-hardness portion having a low hardness side by side in the axial direction. Since it is press-fitted, deformation of the rotor core can be suppressed as compared with the case where it is press-fitted from the low hardness portion side.

上記ロータの製造方法であって、前記非磁性カバー成形工程では、前記大径部と前記小径部との間に徐々に内径が小さくなる縮径部を成形することが好ましい。
同方法によれば、非磁性カバー成形工程では、前記大径部と前記小径部との間に徐々に内径が小さくなる縮径部が成形されるため、カバー圧入工程で大径部から小径部にスムーズに圧入され、圧入し易くなる。
In the non-magnetic cover molding step of the rotor manufacturing method, it is preferable to mold a reduced diameter portion whose inner diameter gradually decreases between the large diameter portion and the small diameter portion.
According to the same method, in the non-magnetic cover molding step, a reduced diameter portion whose inner diameter gradually decreases is formed between the large diameter portion and the small diameter portion. Therefore, in the cover press-fitting step, the large diameter portion to the small diameter portion is formed. It is press-fitted smoothly and becomes easy to press-fit.

本発明のロータの製造方法では、容易に永久磁石を強固に保持することができる。 In the production how the rotor of the present invention, it is possible to firmly hold the easily permanent magnets.

一実施形態におけるモータの概略構成を示す模式断面図。The schematic cross-sectional view which shows the schematic structure of the motor in one Embodiment. 一実施形態におけるモータの分解斜視図。An exploded perspective view of the motor in one embodiment. (a)は一実施形態におけるモータの側面図、(b)はb−b断面図。(A) is a side view of the motor in one embodiment, and (b) is a sectional view taken along line bb. 一実施形態におけるステータコアとロータを示す断面図。FIG. 5 is a cross-sectional view showing a stator core and a rotor according to an embodiment. 一実施形態におけるモータの製造方法を説明するための説明図。Explanatory drawing for demonstrating the manufacturing method of the motor in one Embodiment. 一実施形態におけるロータの製造方法を説明するための説明図。Explanatory drawing for demonstrating the manufacturing method of a rotor in one Embodiment. (a)及び(b)は一実施形態におけるロータの部分拡大断面図。(A) and (b) are partially enlarged cross-sectional views of the rotor in one embodiment.

以下、一実施形態を図1〜図7に従って説明する。
図1に示すように、モータ10は、第1エンドフレーム(以下、第1フレーム11とする)と第2エンドフレーム(以下、第2フレーム12とする)とによって円環状のステータ13を回転軸方向に挟持した構成となっている。第1フレーム11と第2フレーム12とは、ステータ13の外周に配置される複数(本実施形態では2つ)のスルーボルト14によって互いに固定されている。また、ステータ13の内側にロータ15が回転可能に配置されている。なお、本実施形態では、モータ10の軸方向反出力側(図1において上側)でステータ13を保持するエンドフレームを第1フレーム11とし、軸方向出力側でステータ13を保持するエンドフレームを第2フレーム12としている。
Hereinafter, one embodiment will be described with reference to FIGS. 1 to 7.
As shown in FIG. 1, the motor 10 rotates an annular stator 13 by a first end frame (hereinafter referred to as a first frame 11) and a second end frame (hereinafter referred to as a second frame 12). It is configured to be sandwiched in the direction. The first frame 11 and the second frame 12 are fixed to each other by a plurality of (two in this embodiment) through bolts 14 arranged on the outer periphery of the stator 13. Further, the rotor 15 is rotatably arranged inside the stator 13. In the present embodiment, the end frame that holds the stator 13 on the axially counter-output side (upper side in FIG. 1) of the motor 10 is the first frame 11, and the end frame that holds the stator 13 on the axial output side is the first frame. It is set to 2 frames 12.

図1及び図2に示すように、ステータ13は、円環状のステータコア16と、該ステータコア16に巻装されたコイル17とを有する。図3(b)に示すように、ステータコア16は、円環状をなす環状部16aと、環状部16aから径方向内側に延び周方向に並ぶ複数(本実施形態では60個)のティース16bと、環状部16aの外周面から径方向外側に突出し軸方向に沿って延びる4つのコア外周突出部16cとから構成されている。環状部16aの外周面は円筒状をなすとともに、同環状部16aの軸方向の両端面は、軸方向と直交する平面状をなしている。また、コイル17は、複数のティース16bに跨って巻装されている。 As shown in FIGS. 1 and 2, the stator 13 has an annular stator core 16 and a coil 17 wound around the stator core 16. As shown in FIG. 3B, the stator core 16 includes an annular portion 16a forming an annular shape, a plurality of teeth 16b extending radially inward from the annular portion 16a and arranging in the circumferential direction (60 in the present embodiment). It is composed of four core outer peripheral protrusions 16c that protrude outward in the radial direction from the outer peripheral surface of the annular portion 16a and extend along the axial direction. The outer peripheral surface of the annular portion 16a has a cylindrical shape, and both end surfaces of the annular portion 16a in the axial direction have a planar shape orthogonal to the axial direction. Further, the coil 17 is wound so as to straddle the plurality of teeth 16b.

図3(a)及び図3(b)に示すように、コア外周突出部16cは、環状部16aの外周面における周方向に等角度間隔(本実施形態では90°間隔)となる4か所に設けられている。各コア外周突出部16cは、環状部16aの軸方向の一端から他端まで軸方向に沿って延びる突条をなすとともに、軸方向から見た形状がその基端から先端に向かうにつれて周方向の幅が狭くなる略台形状をなしている。また、各コア外周突出部16cには、各コア外周突出部16cの先端(径方向外側の端)から基端に向かって凹設された円弧凹部16dが形成されている。円弧凹部16dは、軸方向から見た形状が円弧状をなすとともに、コア外周突出部16cを軸方向に貫通する溝状をなしている。なお、円弧凹部16dの曲率半径は、スルーボルト14における雄螺子状の部分の半径より若干大きい値となっている。そして、4つのコア外周突出部16cのうち周方向に180°間隔となる2箇所に設けられた2つのコア外周突出部16c(図3(b)において左右に設けられた2つのコア外周突出部16c)の円弧凹部16dには、軸方向に延びる略円柱状をなすスルーボルト14が配置されている。これら2つのコア外周突出部16cは、軸方向から見て、スルーボルト14の外周の約半分を囲んでいる。 As shown in FIGS. 3A and 3B, the core outer peripheral protrusions 16c are provided at four locations having equal intervals (90 ° intervals in the present embodiment) in the circumferential direction on the outer peripheral surface of the annular portion 16a. It is provided in. Each core outer peripheral protrusion 16c forms a ridge extending along the axial direction from one end to the other end of the annular portion 16a in the axial direction, and the shape seen from the axial direction becomes circumferential as it goes from the base end to the tip end. It has a substantially trapezoidal shape with a narrow width. Further, each core outer peripheral protrusion 16c is formed with an arc recess 16d recessed from the tip end (radial outer end) of each core outer peripheral protrusion 16c toward the base end. The arcuate recess 16d has an arcuate shape when viewed from the axial direction, and has a groove shape that penetrates the core outer peripheral protrusion 16c in the axial direction. The radius of curvature of the arc recess 16d is slightly larger than the radius of the male screw-shaped portion of the through bolt 14. Then, of the four core outer peripheral protrusions 16c, two core outer peripheral protrusions 16c provided at two locations at 180 ° intervals in the circumferential direction (two core outer peripheral protrusions 16c provided on the left and right in FIG. 3B). In the arc recess 16d of 16c), a through bolt 14 having a substantially cylindrical shape extending in the axial direction is arranged. These two core outer peripheral protrusions 16c surround about half of the outer circumference of the through bolt 14 when viewed from the axial direction.

図1に示すように、このステータコア16は、電磁鋼板材をプレス加工により打ち抜いて形成した複数枚のステータコアシート18を軸方向に積層してかしめて一体化することにより形成されている。ステータコア16の軸方向の両端部には、径方向内側において軸方向外側に延設されるロータ対向部65を備えた断面L字型のL字コア66が取着されている。 As shown in FIG. 1, the stator core 16 is formed by laminating a plurality of stator core sheets 18 formed by punching an electromagnetic steel plate material by press working in the axial direction and caulking them together. L-shaped cores 66 having an L-shaped cross section are attached to both ends of the stator core 16 in the axial direction, which are provided with rotor facing portions 65 extending in the radial direction and outward in the axial direction.

従って、ステータコア16の積厚(積層されたステータコアシート18及びL字コア66全体の厚み)を小さく抑えつつも、ティース16bの径方向内側端面16e(ロータ15との対向面)の軸方向長さを確保することが可能となっている。図3(a)では、ステータコアシート18を省略してステータコア16を簡略化して図示している。 Therefore, while keeping the stacking thickness of the stator core 16 (the thickness of the laminated stator core sheet 18 and the entire L-shaped core 66) small, the axial length of the radial inner end surface 16e (opposing surface to the rotor 15) of the teeth 16b. It is possible to secure. In FIG. 3A, the stator core sheet 18 is omitted to simplify the stator core 16.

図1及び図2に示すように、ステータコア16の軸方向の両側に配置された第1フレーム11及び第2フレーム12は、金属材料よりなるとともに、鋳造により形成されている。第1及び第2フレーム11,12は、略円盤状の第1及び第2本体部21,31と、第1及び第2本体部21,31から軸方向に延出された円筒状の第1及び第2ステータ保持部22,32をそれぞれ備えている。また、第1及び第2フレーム11,12は、第1及び第2ステータ保持部22,32の外周面及び第1及び第2本体部21,31に一体に設けられた複数(本実施形態では2つずつ)の第1及び第2ボルト締結部23,33を備えている。第1及び第2ボルト締結部23,33は、周方向に等角度間隔(本実施形態では180°間隔)に設けられている。また、各第1ボルト締結部23には、スルーボルト14が挿通される第1締結孔23a(図2参照)が形成されるとともに、各第2ボルト締結部33には、スルーボルト14が螺合される雌螺子状の第2締結穴33a(図3(b)参照)が形成されている。第1フレーム11及び第2フレーム12は、第1締結孔23aを貫通し第2締結穴33aに螺合されたスルーボルト14によって第1及び第2ボルト締結部23,33が互いに連結されることにより、互いに固定されて一体化されている。また、第2フレーム12は、図示しない螺子にてモータ10を外部の固定場所に固定するための固定部34を有する。固定部34は、第2本体部31において2つの第2ボルト締結部33から周方向にずれた2箇所から径方向外側に延設されている。なお、モータ10は、例えば、第1フレーム11に対して第2フレーム12が下方に位置するように固定場所に固定される。 As shown in FIGS. 1 and 2, the first frame 11 and the second frame 12 arranged on both sides of the stator core 16 in the axial direction are made of a metal material and are formed by casting. The first and second frames 11 and 12 have a substantially disk-shaped first and second main body portions 21 and 31, and a cylindrical first body extending axially from the first and second main body portions 21 and 31. The second stator holding portions 22 and 32 are provided, respectively. Further, a plurality of first and second frames 11 and 12 are integrally provided on the outer peripheral surfaces of the first and second stator holding portions 22 and 32 and the first and second main body portions 21 and 31 (in the present embodiment). It is provided with first and second bolt fastening portions 23 and 33 (two each). The first and second bolt fastening portions 23 and 33 are provided at equal angular intervals (180 ° intervals in this embodiment) in the circumferential direction. Further, each first bolt fastening portion 23 is formed with a first fastening hole 23a (see FIG. 2) into which the through bolt 14 is inserted, and each second bolt fastening portion 33 is screwed with the through bolt 14. A female screw-shaped second fastening hole 33a (see FIG. 3B) to be combined is formed. In the first frame 11 and the second frame 12, the first and second bolt fastening portions 23 and 33 are connected to each other by a through bolt 14 that penetrates the first fastening hole 23a and is screwed into the second fastening hole 33a. Are fixed and integrated with each other. Further, the second frame 12 has a fixing portion 34 for fixing the motor 10 to an external fixing place with a screw (not shown). The fixing portion 34 extends radially outward from two positions deviated in the circumferential direction from the two second bolt fastening portions 33 in the second main body portion 31. The motor 10 is fixed at a fixed place so that the second frame 12 is located below the first frame 11, for example.

図2及び図3(a)に示すように、第1ステータ保持部22の先端部には、ステータコア16の軸方向の一端部(図3(a)において上端部)が径方向内側に嵌合された第1嵌合部25が形成されている。同様に、第2ステータ保持部32の先端部には、ステータコア16の軸方向の他端部(図3(a)において下端部)が径方向内側に嵌合された第2嵌合部35が形成されている。 As shown in FIGS. 2 and 3A, one end portion in the axial direction (the upper end portion in FIG. 3A) of the stator core 16 is fitted inward in the radial direction at the tip end portion of the first stator holding portion 22. The formed first fitting portion 25 is formed. Similarly, at the tip of the second stator holding portion 32, a second fitting portion 35 in which the other end portion (lower end portion in FIG. 3A) in the axial direction of the stator core 16 is fitted radially inward is provided. It is formed.

第1嵌合部25は、周方向に離間して並ぶ複数(本実施形態では4個)の第1嵌合壁25aから構成されている。4つの第1嵌合壁25aは、周方向に等角度間隔(本実施形態では90°間隔)に設けられている。更に、4つの第1嵌合壁25aは、周方向に隣り合うコア外周突出部16cの間に1つずつ配置されている。即ち、コア外周突出部16cは、周方向に隣り合う第1嵌合壁25aの間に位置して第1嵌合壁25aと周方向に重なっている。そして、コア外周突出部16cは、第1嵌合壁25aと径方向に重なっていない。また、第2嵌合部35は、周方向に離間して並ぶ複数(本実施形態では8個)の第2嵌合壁35aから構成されている。第2嵌合壁35aは、各コア外周突出部16cの周方向の両側に1つずつ(即ち周方向に隣り合うコア外周突出部16cの間に2つずつ)配置されている。即ち、コア外周突出部16cは、周方向に隣り合う第2嵌合壁35aの間に位置して第2嵌合壁35aと周方向に重なっている。そして、コア外周突出部16cは、第2嵌合壁35aと径方向に重なっていない。 The first fitting portion 25 is composed of a plurality of (four in the present embodiment) first fitting walls 25a arranged apart from each other in the circumferential direction. The four first fitting walls 25a are provided at equal angular intervals (90 ° intervals in the present embodiment) in the circumferential direction. Further, the four first fitting walls 25a are arranged one by one between the core outer peripheral protrusions 16c adjacent to each other in the circumferential direction. That is, the core outer peripheral protrusion 16c is located between the first fitting walls 25a adjacent to each other in the circumferential direction and overlaps the first fitting wall 25a in the circumferential direction. The core outer peripheral protrusion 16c does not overlap with the first fitting wall 25a in the radial direction. Further, the second fitting portion 35 is composed of a plurality of (eight in this embodiment) second fitting walls 35a arranged apart from each other in the circumferential direction. The second fitting wall 35a is arranged on both sides of each core outer peripheral protrusion 16c in the circumferential direction (that is, two each between the core outer peripheral protrusions 16c adjacent to each other in the circumferential direction). That is, the core outer peripheral protrusion 16c is located between the second fitting walls 35a adjacent to each other in the circumferential direction and overlaps the second fitting wall 35a in the circumferential direction. The core outer peripheral protrusion 16c does not overlap with the second fitting wall 35a in the radial direction.

第1及び第2嵌合部25,35(第1及び第2嵌合壁25a,35a)は、第1及び第2ステータ保持部22,32における基端側の部分よりも径方向の厚さが薄く形成されている。また、第1及び第2嵌合壁25a,35aは、軸方向と平行に延出されるとともに、軸方向から見て周方向に沿った円弧状をなしている。更に、各第1及び第2嵌合壁25a,35aは、基端から先端(第1及び第2ステータ保持部22,35の先端側の端)に向かうにつれて周方向の幅が狭くなっている。 The first and second fitting portions 25, 35 (first and second fitting walls 25a, 35a) are radially thicker than the proximal end side portions of the first and second stator holding portions 22, 32. Is thinly formed. Further, the first and second fitting walls 25a and 35a extend in parallel with the axial direction and form an arc shape along the circumferential direction when viewed from the axial direction. Further, the width of each of the first and second fitting walls 25a and 35a in the circumferential direction becomes narrower from the base end toward the tip end (the tip end side ends of the first and second stator holding portions 22 and 35). ..

図1に示すように、第1及び第2嵌合部25,35の内周面、即ち各第1及び第2嵌合壁25a,35aの径方向内側の側面は、第1及び第2フレーム11,12とステータコア16との芯出し用の第1及び第2芯出し面25b,35bとなっている。 As shown in FIG. 1, the inner peripheral surfaces of the first and second fitting portions 25 and 35, that is, the radial inner side surfaces of the first and second fitting walls 25a and 35a, respectively, are the first and second frames. The first and second centering surfaces 25b and 35b for centering the 11 and 12 and the stator core 16 are provided.

また、第1及び第2フレーム11,12は、第1及び第2ステータ保持部22,32の中心軸線と直交する方向に第1及び第2嵌合部25、35の基端部と隣り合う第1及び第2当接面26,36を有する。そして、第1当接面26には、第1嵌合部25に嵌入された環状部16aの軸方向の一端面(図1において上端面)が軸方向に当接している。また、第2当接面36には、第2嵌合部35に嵌入された環状部16aの軸方向の他端面(図1において下端面)が軸方向に当接している。この状態で、第1フレーム11及び第2フレーム12は、第1及び第2ステータ保持部22,32でステータ13を挟持しつつスルーボルト14にて互いに固定されている。 Further, the first and second frames 11 and 12 are adjacent to the base end portions of the first and second fitting portions 25 and 35 in a direction orthogonal to the central axes of the first and second stator holding portions 22 and 32. It has first and second contact surfaces 26, 36. An axial end surface (upper end surface in FIG. 1) of the annular portion 16a fitted into the first fitting portion 25 is in axial contact with the first contact surface 26. Further, the other end surface (lower end surface in FIG. 1) of the annular portion 16a fitted in the second fitting portion 35 in the axial direction is in axial contact with the second contact surface 36. In this state, the first frame 11 and the second frame 12 are fixed to each other by the through bolt 14 while sandwiching the stator 13 between the first and second stator holding portions 22 and 32.

なお、本実施形態では、第1及び第2ステータ保持部22,32の先端部に設けられた第1及び第2嵌合部25,35(第1及び第2嵌合壁25a,35a)は、第1及び第2当接面26,36から軸方向に突出している。そのため、第1フレーム11において第1芯出し面25bと第1当接面26とが直角をなして近接するとともに、第2フレーム12において第2芯出し面35bと第2当接面36とが直角をなして近接している。 In the present embodiment, the first and second fitting portions 25, 35 (first and second fitting walls 25a, 35a) provided at the tip portions of the first and second stator holding portions 22, 32 are , Protrudes in the axial direction from the first and second contact surfaces 26, 36. Therefore, in the first frame 11, the first centering surface 25b and the first contact surface 26 are close to each other at a right angle, and in the second frame 12, the second centering surface 35b and the second contact surface 36 are in contact with each other. They are close at right angles.

第1本体部21の中央部には、ボールベアリングB1を軸方向のステータ13側(モータ10の内部側)から組付け可能に凹設された軸受収容部29が形成されている。軸受収容部29は、軸方向視で円形状をなしており、その内周面が軸方向に延びる円筒状をなしている。また、軸受収容部29の中心軸線は、第1ステータ保持部22の中心軸線(第1嵌合部25の中心軸線)と一致している。そして、第1フレーム11は、この軸受収容部29内に円環状のボールベアリングB1を収容して保持している。また、軸受収容部29の底部中央には、軸受収容部29の底部を軸方向に貫通する貫通孔29aが形成されている。そして、軸受収容部29の底部における貫通孔29aの径方向外側の部分と軸受収容部29に収容されたボールベアリングB1との間には、ボールベアリングB1をステータ13側に軸方向に付勢するウェーブワッシャ41が介在されている。 A bearing accommodating portion 29 is formed in the central portion of the first main body portion 21 so that the ball bearing B1 can be assembled from the stator 13 side (internal side of the motor 10) in the axial direction. The bearing accommodating portion 29 has a circular shape in the axial direction, and its inner peripheral surface has a cylindrical shape extending in the axial direction. Further, the central axis of the bearing accommodating portion 29 coincides with the central axis of the first stator holding portion 22 (the central axis of the first fitting portion 25). The first frame 11 accommodates and holds the annular ball bearing B1 in the bearing accommodating portion 29. Further, a through hole 29a is formed in the center of the bottom of the bearing accommodating portion 29 so as to penetrate the bottom portion of the bearing accommodating portion 29 in the axial direction. Then, the ball bearing B1 is axially urged toward the stator 13 between the radial outer portion of the through hole 29a at the bottom of the bearing accommodating portion 29 and the ball bearing B1 accommodated in the bearing accommodating portion 29. A wave washer 41 is interposed.

第2本体部31の中央部には、円環状のボールベアリングB2を収容して保持する軸受収容部40が凹設されている。軸受収容部40は、第2フレーム12の軸方向外側端面からモータ10の内部側(ステータ13側)に窪む凹形状をなしている。つまり、軸受収容部40は、ボールベアリングB2をモータ10の外部側(ステータ13と反対側)から組付け可能に形成されている。また、軸受収容部40の中心軸線は、第2ステータ保持部32の中心軸線(第2嵌合部35の中心軸線)と一致している。そして、第2フレーム12は、軸受収容部40内に配置されたボールベアリングB2を、第1フレーム11に保持されたボールベアリングB1と同軸となるように保持している。また、ボールベアリングB2は、軸受収容部40の底部に軸方向から当接することで、軸方向の位置決めがなされている。なお、軸受収容部40の底部中央には、軸受収容部40の底部を軸方向に貫通する貫通孔40aが形成されている。 A bearing accommodating portion 40 for accommodating and holding an annular ball bearing B2 is recessed in the central portion of the second main body portion 31. The bearing accommodating portion 40 has a concave shape that is recessed from the axially outer end surface of the second frame 12 to the inner side (stator 13 side) of the motor 10. That is, the bearing accommodating portion 40 is formed so that the ball bearing B2 can be assembled from the outer side (opposite side to the stator 13) of the motor 10. Further, the central axis of the bearing accommodating portion 40 coincides with the central axis of the second stator holding portion 32 (the central axis of the second fitting portion 35). Then, the second frame 12 holds the ball bearing B2 arranged in the bearing accommodating portion 40 so as to be coaxial with the ball bearing B1 held in the first frame 11. Further, the ball bearing B2 is positioned in the axial direction by abutting the bottom portion of the bearing accommodating portion 40 from the axial direction. A through hole 40a is formed in the center of the bottom of the bearing accommodating portion 40 so as to penetrate the bottom portion of the bearing accommodating portion 40 in the axial direction.

ロータ15は、ボールベアリングB1,B2に回転可能に支持された回転軸51と、回転軸51に一体回転可能に固定された円筒状のロータコア52と、ロータコア52の外表面に配置された複数の永久磁石53と、各永久磁石53の外表面を覆って保持する筒状の非磁性カバー54とを備える。各永久磁石53は、ステータコア16の内周面(ティース16bの径方向内側端面16e)と非磁性カバー54を介して径方向に対向している。回転軸51の先端部(図1において下端部)は、貫通孔40aを貫通しボールベアリングB2から第2フレーム12の外部であってモータ10の外部に突出しており、その突出部分には、出力部としてのジョイント55(図2参照)が装着される。また、回転軸51の基端部(図1において上端部)は、貫通孔29aを貫通し第1フレーム11の外部に突出しており、その突出部分には、固定部材56を介して円盤状のセンサマグネット57が固定されている。 The rotor 15 includes a rotating shaft 51 rotatably supported by ball bearings B1 and B2, a cylindrical rotor core 52 rotatably fixed to the rotating shaft 51, and a plurality of rotor cores 52 arranged on the outer surface of the rotor core 52. It includes a permanent magnet 53 and a tubular non-magnetic cover 54 that covers and holds the outer surface of each permanent magnet 53. Each permanent magnet 53 is radially opposed to the inner peripheral surface of the stator core 16 (the radial inner end surface 16e of the teeth 16b) via the non-magnetic cover 54. The tip end portion (lower end portion in FIG. 1) of the rotating shaft 51 penetrates the through hole 40a and protrudes from the ball bearing B2 to the outside of the second frame 12 and to the outside of the motor 10. A joint 55 (see FIG. 2) as a portion is attached. Further, the base end portion (upper end portion in FIG. 1) of the rotating shaft 51 penetrates the through hole 29a and protrudes to the outside of the first frame 11, and the protruding portion has a disk shape via the fixing member 56. The sensor magnet 57 is fixed.

図1及び図2に示すように、第1フレーム11の外側面には制御部61が固定されている。制御部61は、第1フレーム11に固定されるカバー62と、カバー62の内部に収容される回路基板63とを備えている。回路基板63には、前記センサマグネット57と対向する磁気センサ63a等を含む種々の素子が実装されている。また、回路基板63には、前記コイル17の端部が電気的に接続される。また、回路基板63には、モータ10に給電するための外部コネクタ(図示略)が接続されるコネクタ部64が固定されるとともに、該コネクタ部64はカバー62の外部に露出している。そして、外部コネクタから供給される電源が回路基板63を介してコイル17に供給されることにより、ロータ15が回転するようになっている。 As shown in FIGS. 1 and 2, the control unit 61 is fixed to the outer surface of the first frame 11. The control unit 61 includes a cover 62 fixed to the first frame 11 and a circuit board 63 housed inside the cover 62. Various elements including a magnetic sensor 63a and the like facing the sensor magnet 57 are mounted on the circuit board 63. Further, the end portion of the coil 17 is electrically connected to the circuit board 63. Further, a connector portion 64 to which an external connector (not shown) for supplying power to the motor 10 is connected is fixed to the circuit board 63, and the connector portion 64 is exposed to the outside of the cover 62. Then, the power supplied from the external connector is supplied to the coil 17 via the circuit board 63, so that the rotor 15 rotates.

ここで、図4に示すように、本実施形態のロータ15のロータコア52は複数枚のロータコアシート67が積層されて構成される。各ロータコアシート67の板厚は、ステータコアシート18の板厚と同一である。そして、ロータコア52の外周面をL字コア66を含むステータコア16の内周面全体に対向させるために、ロータコアシート67はステータコアシート18の積層枚数と同数のメインロータコアシート67aと、不足分の補助ロータコアシート67bとで構成されている。 Here, as shown in FIG. 4, the rotor core 52 of the rotor 15 of the present embodiment is configured by laminating a plurality of rotor core sheets 67. The plate thickness of each rotor core sheet 67 is the same as the plate thickness of the stator core sheet 18. Then, in order to make the outer peripheral surface of the rotor core 52 face the entire inner peripheral surface of the stator core 16 including the L-shaped core 66, the rotor core sheet 67 has the same number of main rotor core sheets 67a as the number of laminated stator core sheets 18 and supplements for the shortage. It is composed of a rotor core sheet 67b.

メインロータコアシート67aは、プレス加工によりステータコアシート18と共通の電磁鋼板材から形成される。すなわち、図5に示すように、共通の電磁鋼板材68からプレス加工によりステータコアシート18とメインロータコアシート67aが1枚ずつ形成される。 The main rotor core sheet 67a is formed of an electromagnetic steel plate material common to the stator core sheet 18 by press working. That is, as shown in FIG. 5, the stator core sheet 18 and the main rotor core sheet 67a are formed one by one from the common electromagnetic steel plate material 68 by press working.

補助ロータコアシート67bは、別工程で電磁鋼板材より柔らかい(硬度の低い)spcc材(冷間圧延鋼板)を打ち抜いて形成される。
そして、ロータコア52は、メインロータコアシート67aが積層されてなる硬度の高い高硬度部71と、補助ロータコアシート67bが積層されてなる硬度の低い低硬度部72とが、軸方向に並設されて構成されている。
The auxiliary rotor core sheet 67b is formed by punching a spcc material (cold rolled steel plate) that is softer (lower hardness) than the electromagnetic steel plate material in a separate process.
In the rotor core 52, a high hardness portion 71 in which the main rotor core sheet 67a is laminated and a low hardness portion 72 in which the auxiliary rotor core sheet 67b is laminated are arranged side by side in the axial direction. It is configured.

また、図1及び図6に示すように、回転軸51は、その長手方向(軸方向)の中間部にロータコア52が外嵌固定されるローレット部51a(図4では、図示略)を有する。本実施形態のローレット部51aは、軸方向に沿って延びる溝が周方向に多数設けられるようにローレット加工が施されてなる。また、回転軸51は、その両端側に前記ローレット部51aが形成されていない非ローレット部51b,51cを有し、それら同士の長さが異なり、軸方向一端側(図1において上端側)であってセンサマグネット57が固定される側の非ローレット部51bが軸方向他端側(図1において下端側)の非ローレット部51cよりも長く形成されている。そして、回転軸51は、その軸方向一端面(図1において上端面)と軸方向他端面(図1において下端面)とに異なる形状の溝部51d,51eが設けられている。本実施形態では、回転軸51の軸方向一端面の溝部51dと、回転軸51の軸方向他端面の溝部51eとは、軸方向から見て、径の異なる円形の溝部であって、軸方向一端面の溝部51dが軸方向他端面の溝部51eよりも径の大きな円形の溝部とされている。そして、回転軸51は、前記ロータコア52の高硬度部71側に長い方の(軸方向一端側であって径の大きい溝部51dが形成された側の)非ローレット部51bが配置されるように、ローレット部51aがロータコア52に圧入された状態でロータコア52と固定されている。 Further, as shown in FIGS. 1 and 6, the rotating shaft 51 has a knurled portion 51a (not shown in FIG. 4) in which the rotor core 52 is externally fitted and fixed in the intermediate portion in the longitudinal direction (axial direction) thereof. The knurled portion 51a of the present embodiment is knurled so that a large number of grooves extending along the axial direction are provided in the circumferential direction. Further, the rotating shaft 51 has non-knurled portions 51b and 51c in which the knurled portions 51a are not formed on both end sides thereof, and the lengths of the non-knurled portions 51b and 51c are different from each other. The non-knurled portion 51b on the side where the sensor magnet 57 is fixed is formed longer than the non-knurled portion 51c on the other end side in the axial direction (lower end side in FIG. 1). The rotary shaft 51 is provided with groove portions 51d and 51e having different shapes on one end surface in the axial direction (upper end surface in FIG. 1) and the other end surface in the axial direction (lower end surface in FIG. 1). In the present embodiment, the groove portion 51d on one end surface in the axial direction of the rotating shaft 51 and the groove portion 51e on the other end surface in the axial direction of the rotating shaft 51 are circular groove portions having different diameters when viewed from the axial direction, and are in the axial direction. The groove portion 51d on one end surface is a circular groove portion having a larger diameter than the groove portion 51e on the other end surface in the axial direction. The rotating shaft 51 is arranged so that the longer non-knurled portion 51b (on the one end side in the axial direction and on the side where the groove portion 51d having a large diameter is formed) is arranged on the high hardness portion 71 side of the rotor core 52. The knurled portion 51a is fixed to the rotor core 52 in a state of being press-fitted into the rotor core 52.

また、図3(b)に示すように、永久磁石53は、ロータコア52の外表面(外周面)と当接して周方向に複数(本実施形態では10個)設けられている。
図7(a)及び図7(b)に示すように、この永久磁石53は、軸方向から見て、その外表面(径方向外側の面)における周方向中央部が周方向両端部よりも軸中心L1からの距離が遠い湾曲形状とされている。詳しくは、永久磁石53は、ロータコア52の外表面と当接するように配置された状態で、軸中心L1から外表面における周方向中央部までの距離K1が、軸中心L1から外表面における周方向端部までの距離K2よりも遠くなる(大きくなる)湾曲形状に形成されている。また、本実施形態の永久磁石53は、図7(a)に示すように、その外表面における周方向中央部よりも径方向外側にある配向点Zを磁束(矢印A参照)が通るように(逆ラジアルに)着磁されている。
Further, as shown in FIG. 3B, a plurality of permanent magnets 53 (10 in this embodiment) are provided in the circumferential direction in contact with the outer surface (outer peripheral surface) of the rotor core 52.
As shown in FIGS. 7 (a) and 7 (b), the permanent magnet 53 has a circumferential central portion on the outer surface (diameter outer surface) of the permanent magnet 53 as compared to both peripheral portions. It has a curved shape that is far from the axis center L1. Specifically, the permanent magnet 53 is arranged so as to be in contact with the outer surface of the rotor core 52, and the distance K1 from the axis center L1 to the circumferential center on the outer surface is the circumferential direction from the axis center L1 to the outer surface. It is formed in a curved shape that is farther (larger) than the distance K2 to the end. Further, as shown in FIG. 7A, the permanent magnet 53 of the present embodiment has a magnetic flux (see arrow A) passing through an orientation point Z on the outer surface thereof which is radially outside the central portion in the circumferential direction. It is magnetized (reversely radial).

また、各永久磁石53の外表面を覆う筒状の非磁性カバー54は、その軸方向に高圧接部54a(図7(a)参照)と低圧接部54b(図7(b)参照)とを有する。高圧接部54aは、ロータコア52の高硬度部71側(図4における上側)に配置され、図7(a)に示すように、永久磁石53の外表面における周方向の広い範囲W1と高い圧力で圧接する。また低圧接部54bは、ロータコア52の低硬度部72側(図4における下側)に配置され、図7(b)に示すように、永久磁石53の外表面における周方向の狭い範囲W2と低い圧力で圧接(軸方向から見てほぼ点接触)する。 Further, the tubular non-magnetic cover 54 covering the outer surface of each permanent magnet 53 has a high-pressure contact portion 54a (see FIG. 7A) and a low-pressure contact portion 54b (see FIG. 7B) in the axial direction thereof. Has. The high-pressure contact portion 54a is arranged on the high-hardness portion 71 side (upper side in FIG. 4) of the rotor core 52, and as shown in FIG. 7A, has a wide range W1 in the circumferential direction and a high pressure on the outer surface of the permanent magnet 53. Press with. Further, the low pressure contact portion 54b is arranged on the low hardness portion 72 side (lower side in FIG. 4) of the rotor core 52, and as shown in FIG. 7 (b), has a narrow range W2 in the circumferential direction on the outer surface of the permanent magnet 53. Pressure contact at low pressure (almost point contact when viewed from the axial direction).

次に、上記のように構成されるロータ15の製造方法及びその作用について説明する。
本実施形態のロータ15の製造方法は、「軸圧入工程」、「非磁性カバー成形工程」、「カバー圧入工程」等を備える。
Next, a method for manufacturing the rotor 15 configured as described above and its operation will be described.
The method for manufacturing the rotor 15 of the present embodiment includes a "shaft press-fitting process", a "non-magnetic cover molding process", a "cover press-fitting process" and the like.

図6に示すように、「軸圧入工程」では、回転軸51を前記低硬度部72側から挿入してローレット部51aを上記のように予め構成されたロータコア52に圧入する。なお、このとき、回転軸51は、軸方向一端側(図6において上端側)であって、径の大きな円形の溝部51dが形成された長い方の非ローレット部51b側からロータコア52に挿入する。 As shown in FIG. 6, in the “shaft press-fitting step”, the rotating shaft 51 is inserted from the low hardness portion 72 side, and the knurled portion 51a is press-fitted into the rotor core 52 configured as described above. At this time, the rotating shaft 51 is inserted into the rotor core 52 from the longer non-knurled portion 51b side on which one end side in the axial direction (upper end side in FIG. 6) and in which a circular groove portion 51d having a large diameter is formed. ..

また、図6に示すように、「非磁性カバー成形工程」では、上記のように各永久磁石53の外表面を覆う筒状の非磁性カバー54であって、内径の大きい(後に低圧接部54bとなる)大径部81と内径の小さい(後に高圧接部54aとなる)小径部82とが軸方向に並設された非磁性カバー54を成形する。また、本実施形態の「非磁性カバー成形工程」では、前記大径部81と前記小径部82との間に徐々に内径が小さくなる縮径部83を成形する。また、本実施形態の「非磁性カバー成形工程」では、前記大径部81の開口端側に徐々に内径が大きくなる案内拡径部84を成形する。 Further, as shown in FIG. 6, in the "non-magnetic cover molding step", as described above, the tubular non-magnetic cover 54 covering the outer surface of each permanent magnet 53 has a large inner diameter (later, a low-pressure contact portion). A non-magnetic cover 54 is formed in which a large-diameter portion 81 (which becomes 54b) and a small-diameter portion 82 (which later becomes a high-pressure contact portion 54a) having a small inner diameter are arranged side by side in the axial direction. Further, in the "non-magnetic cover molding step" of the present embodiment, a reduced diameter portion 83 whose inner diameter gradually decreases is formed between the large diameter portion 81 and the small diameter portion 82. Further, in the "non-magnetic cover molding step" of the present embodiment, the guide diameter-expanded portion 84 whose inner diameter gradually increases is formed on the opening end side of the large-diameter portion 81.

そして、後の「カバー圧入工程」では、前記ロータコア52の外表面に永久磁石53を当接させた状態で、前記大径部81の内面及び前記小径部82の内面が共に永久磁石53の外表面と当接するように前記「非磁性カバー成形工程」で成形した非磁性カバー54を圧入する(非磁性カバー54で覆うように強い圧力を加えて軸方向に押し込む)。本実施形態の「カバー圧入工程」では、非磁性カバー54の前記大径部81側であって案内拡径部84側から非磁性カバー54を圧入する。また、本実施形態の「カバー圧入工程」では、非磁性カバー54を前記高硬度部71側から圧入する。このようにすると、非磁性カバー54は、案内拡径部84によってスムーズに案内されながらまず大径部81が各永久磁石53を覆うように(軽)圧入され、途中で縮径部83によってスムーズに案内されながら小径部82が各永久磁石53を覆うように圧入される。すると、大径部81は上記した低圧接部54bとなり、小径部82は大きく変形して上記した高圧接部54aとなる。このようにして、ロータ15が製造される。 Then, in the subsequent "cover press-fitting step", the inner surface of the large diameter portion 81 and the inner surface of the small diameter portion 82 are both outside the permanent magnet 53 in a state where the permanent magnet 53 is in contact with the outer surface of the rotor core 52. The non-magnetic cover 54 molded in the "non-magnetic cover molding step" is press-fitted so as to come into contact with the surface (a strong pressure is applied so as to cover the non-magnetic cover 54 and the non-magnetic cover is pushed in the axial direction). In the "cover press-fitting step" of the present embodiment, the non-magnetic cover 54 is press-fitted from the large diameter portion 81 side of the non-magnetic cover 54 and from the guide diameter enlarged portion 84 side. Further, in the "cover press-fitting step" of the present embodiment, the non-magnetic cover 54 is press-fitted from the high hardness portion 71 side. In this way, the non-magnetic cover 54 is (lightly) press-fitted so that the large-diameter portion 81 first covers each permanent magnet 53 while being smoothly guided by the guide diameter-expanded portion 84, and is smoothly guided by the diameter-reduced portion 83 in the middle. The small diameter portion 82 is press-fitted so as to cover each permanent magnet 53 while being guided by. Then, the large diameter portion 81 becomes the above-mentioned low-pressure contact portion 54b, and the small-diameter portion 82 is greatly deformed to become the above-mentioned high-pressure contact portion 54a. In this way, the rotor 15 is manufactured.

次に、上記実施形態の特徴的な効果を以下に記載する。
(1)「成形工程」では、内径の大きい大径部81と内径の小さい小径部82とが軸方向に並設された非磁性カバー54が成形される。そして、「カバー圧入工程」では、ロータコア52の外表面に永久磁石53が当接された状態で、大径部81の内面及び小径部82の内面が共に永久磁石53の外表面と当接するように「非磁性カバー成形工程」で成形した非磁性カバー54が圧入される。このようにすると、小径部82(後に高圧接部54a)によって永久磁石53が強固に保持される。また、大径部81によって「カバー圧入工程」時の圧入力が強くなり過ぎることが抑えられ非磁性カバー54が座屈してしまうといったことが抑えられる。また、大径部81(後に低圧接部54b)も内面が永久磁石53の外表面と当接するため、大径部81(低圧接部54b)の部位がロータ15全体の最大外径を大きくしてしまうことが抑えられ、大径部81(低圧接部54b)がロータ15と対向するステータ13とのギャップを大きくしてしまうことが抑えられる。
Next, the characteristic effects of the above embodiment will be described below.
(1) In the "molding step", a non-magnetic cover 54 in which a large diameter portion 81 having a large inner diameter and a small diameter portion 82 having a small inner diameter are arranged side by side in the axial direction is molded. Then, in the "cover press-fitting step", the inner surface of the large diameter portion 81 and the inner surface of the small diameter portion 82 both come into contact with the outer surface of the permanent magnet 53 in a state where the permanent magnet 53 is in contact with the outer surface of the rotor core 52. The non-magnetic cover 54 molded in the "non-magnetic cover molding step" is press-fitted into the. In this way, the permanent magnet 53 is firmly held by the small diameter portion 82 (later, the high-voltage contact portion 54a). Further, the large diameter portion 81 suppresses the pressure input during the "cover press-fitting process" from becoming too strong, and prevents the non-magnetic cover 54 from buckling. Further, since the inner surface of the large diameter portion 81 (later the low pressure contact portion 54b) also comes into contact with the outer surface of the permanent magnet 53, the portion of the large diameter portion 81 (low pressure contact portion 54b) increases the maximum outer diameter of the entire rotor 15. It is possible to prevent the large diameter portion 81 (low pressure contact portion 54b) from increasing the gap between the rotor 15 and the stator 13 facing the rotor 15.

(2)「カバー圧入工程」では、非磁性カバー54の大径部81側から圧入されるため、小径部82側から圧入する方法に比べて、圧入し易くなる。
(3)「非磁性カバー成形工程」では、大径部81と小径部82との間に徐々に内径が小さくなる縮径部83が成形されるため、「カバー圧入工程」で大径部81から小径部82にスムーズに圧入され、圧入し易くなる。
(2) In the "cover press-fitting step", since the non-magnetic cover 54 is press-fitted from the large diameter portion 81 side, it is easier to press-fit than the method of press-fitting from the small diameter portion 82 side.
(3) In the "non-magnetic cover molding step", a reduced diameter portion 83 whose inner diameter gradually decreases is formed between the large diameter portion 81 and the small diameter portion 82. Therefore, in the "cover press-fitting step", the large diameter portion 81 is formed. Is smoothly press-fitted into the small diameter portion 82, which facilitates press-fitting.

(4)ロータコア52は、硬度の高い高硬度部71と、硬度の低い低硬度部72とが、軸方向に並設されて構成され、「カバー圧入工程」では、非磁性カバー54が高硬度部71側から圧入されるため、低硬度部72側から圧入される場合に比べて、ロータコア52の変形を抑えることができる。 (4) The rotor core 52 is composed of a high hardness portion 71 having a high hardness and a low hardness portion 72 having a low hardness arranged side by side in the axial direction. In the “cover press-fitting step”, the non-magnetic cover 54 has a high hardness. Since the press-fitting is performed from the portion 71 side, deformation of the rotor core 52 can be suppressed as compared with the case where the press-fitting is performed from the low hardness portion 72 side.

(5)非磁性カバー54は、永久磁石53の周方向の広い範囲W1と高い圧力で圧接する高圧接部54aと、永久磁石53の周方向の狭い範囲W2と低い圧力で圧接する低圧接部54bとが軸方向に並設されるため、高圧接部54aによって永久磁石53が強固に保持される。また、低圧接部54bによって、組み付け(カバー圧入工程)時の圧入力が強くなり過ぎることが抑えられ非磁性カバー54が座屈してしまうといったことが抑えられる。また、低圧接部54bも永久磁石53の外表面と当接するため、低圧接部54bの部位がロータ15全体の最大外径を大きくしてしまうことが抑えられ、低圧接部54bがロータ15と対向するステータ13とのギャップを大きくしてしまうことが抑えられる。 (5) The non-magnetic cover 54 has a high-pressure contact portion 54a that presses against a wide range W1 in the circumferential direction of the permanent magnet 53 at a high pressure and a low-pressure contact portion 54a that presses against a narrow range W2 in the circumferential direction of the permanent magnet 53 at a low pressure. Since the 54b and the 54b are arranged side by side in the axial direction, the permanent magnet 53 is firmly held by the high-pressure contact portion 54a. Further, the low-pressure contact portion 54b suppresses the pressure input during assembly (cover press-fitting step) from becoming too strong, and prevents the non-magnetic cover 54 from buckling. Further, since the low-pressure contact portion 54b also comes into contact with the outer surface of the permanent magnet 53, it is possible to prevent the portion of the low-pressure contact portion 54b from increasing the maximum outer diameter of the entire rotor 15, and the low-pressure contact portion 54b becomes the rotor 15. It is possible to prevent the gap between the stator 13 and the facing stator 13 from being increased.

上記実施形態は、以下のように変更してもよい。
・上記実施形態の「カバー圧入工程」では、非磁性カバー54の大径部81側から圧入するとしたが、これに限定されず、小径部82側から圧入してもよい。なお、この場合、案内拡径部84は、小径部82の開口端に成形することが好ましい。
The above embodiment may be modified as follows.
-In the "cover press-fitting step" of the above embodiment, the non-magnetic cover 54 is press-fitted from the large diameter portion 81 side, but the present invention is not limited to this, and press-fitting may be performed from the small diameter portion 82 side. In this case, the guide diameter expansion portion 84 is preferably formed at the open end of the small diameter portion 82.

・上記実施形態の「非磁性カバー成形工程」では、大径部81と小径部82との間に徐々に内径が小さくなる縮径部83を成形するとしたが、これに限定されず、縮径部83を成形しなくてもよい。 -In the "non-magnetic cover molding step" of the above embodiment, the reduced diameter portion 83 whose inner diameter gradually decreases is formed between the large diameter portion 81 and the small diameter portion 82, but the diameter is not limited to this. It is not necessary to mold the part 83.

・上記実施形態では、ロータコア52は、硬度の高い高硬度部71と、硬度の低い低硬度部72とが、軸方向に並設されて構成されるとしたが、これに限定されず、例えば軸方向に硬度が一定のロータコアとしてもよい。 -In the above embodiment, the rotor core 52 is configured by having a high hardness portion 71 having a high hardness and a low hardness portion 72 having a low hardness arranged side by side in the axial direction, but the rotor core 52 is not limited to this, for example. A rotor core having a constant hardness in the axial direction may be used.

・上記実施形態の「カバー圧入工程」では、非磁性カバー54を高硬度部71側から圧入するとしたが、これに限定されず、低硬度部72側から圧入してもよい。 -In the "cover press-fitting step" of the above embodiment, the non-magnetic cover 54 is press-fitted from the high hardness portion 71 side, but the present invention is not limited to this, and the non-magnetic cover 54 may be press-fitted from the low hardness portion 72 side.

52…ロータコア、53…永久磁石、54…非磁性カバー、54a…高圧接部、54b…低圧接部、71…高硬度部、72…低硬度部、81…大径部、82…小径部、83…縮径部、L1…軸中心。 52 ... rotor core, 53 ... permanent magnet, 54 ... non-magnetic cover, 54a ... high pressure contact part, 54b ... low pressure contact part, 71 ... high hardness part, 72 ... low hardness part, 81 ... large diameter part, 82 ... small diameter part, 83 ... Reduced diameter part, L1 ... Axis center.

Claims (2)

ロータコアと、
ロータコアの外表面と当接して周方向に複数設けられ、軸方向から見て、その外表面における周方向中央部が周方向両端部よりも軸中心からの距離が遠い湾曲形状の永久磁石と、
各前記永久磁石の外表面を覆う筒状の非磁性カバーと
を備えたロータの製造方法であって、
内径の大きい大径部と内径の小さい小径部とが軸方向に並設された前記非磁性カバーを成形する非磁性カバー成形工程と、
前記ロータコアの外表面に前記永久磁石を当接させた状態で、前記大径部の内面及び前記小径部の内面が共に前記永久磁石の外表面と当接するように前記非磁性カバー成形工程で成形した前記非磁性カバーを圧入するカバー圧入工程と
を備え、
前記カバー圧入工程では、前記非磁性カバーの前記大径部側から圧入するとともに、
前記ロータコアは、硬度の高い高硬度部と、硬度の低い低硬度部とが、軸方向に並設されて構成されるものであって、
前記カバー圧入工程では、前記非磁性カバーを前記高硬度部側から圧入することを特徴とするロータの製造方法。
With the rotor core
A curved permanent magnet that is provided in contact with the outer surface of the rotor core in the circumferential direction, and the central portion of the outer surface in the circumferential direction is farther from the axial center than both ends in the circumferential direction when viewed from the axial direction.
A method for manufacturing a rotor including a tubular non-magnetic cover that covers the outer surface of each of the permanent magnets.
A non-magnetic cover molding step of molding the non-magnetic cover in which a large-diameter portion having a large inner diameter and a small-diameter portion having a small inner diameter are arranged side by side in the axial direction.
In a state where the permanent magnet is in contact with the outer surface of the rotor core, the inner surface of the large diameter portion and the inner surface of the small diameter portion are both formed in the non-magnetic cover molding step so as to be in contact with the outer surface of the permanent magnet. The cover press-fitting process for press-fitting the non-magnetic cover is provided.
In the cover press-fitting step, the non-magnetic cover is press-fitted from the large diameter side and is press-fitted.
The rotor core is composed of a high hardness portion having a high hardness and a low hardness portion having a low hardness arranged side by side in the axial direction.
A method for manufacturing a rotor, wherein in the cover press-fitting step, the non-magnetic cover is press-fitted from the high hardness portion side.
請求項1に記載のロータの製造方法であって、
前記非磁性カバー成形工程では、前記大径部と前記小径部との間に徐々に内径が小さくなる縮径部を成形することを特徴とするロータの製造方法。
The method for manufacturing a rotor according to claim 1.
A method for manufacturing a rotor, characterized in that, in the non-magnetic cover molding step, a reduced diameter portion whose inner diameter gradually decreases is formed between the large diameter portion and the small diameter portion.
JP2016100729A 2015-11-02 2016-05-19 How to manufacture the rotor Expired - Fee Related JP6759705B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016100729A JP6759705B2 (en) 2016-05-19 2016-05-19 How to manufacture the rotor
US15/338,943 US10432044B2 (en) 2015-11-02 2016-10-31 Rotor including stacked cores, motor, method for manufacturing rotor, and method for manufacturing motor
CN201610950001.1A CN106961171B (en) 2015-11-02 2016-11-02 Rotor, motor, method for manufacturing rotor, and method for manufacturing motor
US16/528,883 US11296563B2 (en) 2015-11-02 2019-08-01 Rotor, motor, method for manufacturing rotor, and method for manufacturing motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016100729A JP6759705B2 (en) 2016-05-19 2016-05-19 How to manufacture the rotor

Publications (2)

Publication Number Publication Date
JP2017208960A JP2017208960A (en) 2017-11-24
JP6759705B2 true JP6759705B2 (en) 2020-09-23

Family

ID=60416563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016100729A Expired - Fee Related JP6759705B2 (en) 2015-11-02 2016-05-19 How to manufacture the rotor

Country Status (1)

Country Link
JP (1) JP6759705B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2582015A4 (en) * 2010-06-10 2016-11-02 Mitsubishi Electric Corp Rotating electrical machine rotor
JP2012115016A (en) * 2010-11-24 2012-06-14 Toyota Motor Corp Rotating electric machine
JP2015023680A (en) * 2013-07-19 2015-02-02 三菱電機株式会社 Permanent magnet type motor

Also Published As

Publication number Publication date
JP2017208960A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
KR100950829B1 (en) Rotor of rotary electric machine and manufacturing method of the same
KR100401083B1 (en) Stator iron core of electric motor, manufacturing method thereof, electric motor, and compressor
JP5840151B2 (en) Rotating electric machine
US7504753B2 (en) Motor
JP6349140B2 (en) Rotor, rotor manufacturing method, and rotating electric machine provided with rotor
JP6651268B2 (en) Stator core for rotating electric machine and method of manufacturing the same
JP6776808B2 (en) Rotor and motor
JP2014033588A (en) Resolver, motor and stator
JP2021164217A (en) Axial gap type motor
JP6828307B2 (en) How to manufacture rotors and motors
JP6759705B2 (en) How to manufacture the rotor
JP2008005580A (en) Electric motor
JP6828308B2 (en) How to manufacture rotors and motors
JP6776727B2 (en) How to manufacture rotors and motors
JP2013027122A (en) Resolver and manufacturing method therefor, and rolling bearing device with resolver
JP6711131B2 (en) Rotor and method of manufacturing rotor
JP2020078099A (en) Rotary electric machine
JP6645210B2 (en) Motor manufacturing method
KR20210039448A (en) Rotary electric machine and its manufacturing method
JPH06245452A (en) Back yoke for dc motor magnet and its manufacture
JP7204027B1 (en) Rotating electric machine and its rotor
US11063483B2 (en) Electric motor
JP6805878B2 (en) Motors and motor manufacturing methods
JP6645239B2 (en) motor
JP7053240B2 (en) Electric motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R151 Written notification of patent or utility model registration

Ref document number: 6759705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees