JP6759157B2 - ウィンドファームの異常監視装置および異常監視方法 - Google Patents

ウィンドファームの異常監視装置および異常監視方法 Download PDF

Info

Publication number
JP6759157B2
JP6759157B2 JP2017117031A JP2017117031A JP6759157B2 JP 6759157 B2 JP6759157 B2 JP 6759157B2 JP 2017117031 A JP2017117031 A JP 2017117031A JP 2017117031 A JP2017117031 A JP 2017117031A JP 6759157 B2 JP6759157 B2 JP 6759157B2
Authority
JP
Japan
Prior art keywords
power generation
monitoring
parameter
group
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017117031A
Other languages
English (en)
Other versions
JP2019002330A (ja
Inventor
博義 久保
博義 久保
和成 井手
和成 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2017117031A priority Critical patent/JP6759157B2/ja
Priority to EP18170968.4A priority patent/EP3415753B1/en
Priority to US15/997,209 priority patent/US10844842B2/en
Publication of JP2019002330A publication Critical patent/JP2019002330A/ja
Application granted granted Critical
Publication of JP6759157B2 publication Critical patent/JP6759157B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/001Measuring real or reactive component; Measuring apparent energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/335Output power or torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/808Strain gauges; Load cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Description

本開示は、ウィンドファームの異常監視装置および異常監視方法に関する。
近年、環境保全の観点から風力発電装置の導入が進んでおり、複数の風力発電装置を同じ地域に集中して設置した集合型の風力発電所であるウィンドファームが建設されている。こうした風力発電の経済性を確保するためには各風力発電装置が安定して運転を続ける必要があり、風力発電装置の異常を早期に発見することが重要である。このため、例えば、遠隔監視装置(SCADA)などを用いることで、ウィンドファームの各風力発電装置の遠隔地からの監視なども行われる。
例えば、特許文献1の風車群の監視システムは、ウィンドファームを構成する複数の風車(風力発電装置)の一部または全体の状態監視を通して、ウィンドファームを構成する複数の風車のうち、他と異なる特性値を示している風車を異常として判定することで、風車の監視精度を高めようとしている。
同様に、特許文献2には、ウィンドファームを構成する複数の風力タービン(風力発電装置)の全てまたは一部のサブセットからのデータをグループに対する正常性の決定に用いることが開示されている。具体的には、同じ地域の風力タービンセットの性能パラメータを比較することで不必要な異常アラームを防止することや、主成分分析(PCA)による各風力タービンのデータ分析を通して異常を検出すること、複数の風力タービンの各々からのPCA分析や他の収集されたデータを使用して、より低い誤検出率で風力タービンの故障のより良い異常予測を行うとの記載がある。
他方、例えば特許文献3には、風車翼(根元部など)に設置した光ファイバセンサによる歪量の計測を通して風力発電装置の状態を監視する手法が開示されており、センサ部(FGB)からの反射光の波長の変動量を示す波長変動指標に基づいて、風車翼の損傷の有無の監視を行う。また、風車に設置された複数の翼でそれぞれ計測された波長の変動量を相互に比較し、予め設定した閾値を越えたとき、異常が発生したと判断する。
特開2009−243428号公報 米国特許出願公開第2011/0313726号明細書 特開2016−156674号公報
上述の通り、特許文献1〜2では、ウィンドファームを構成する複数の風力発電装置の一部または全部からなる監視グループに対して異常監視を行うことによって、監視精度を高めようとしている。異常判定の誤判定は、異常判定がなされた後に行われる詳細な調査により明らかになる場合が多く、風力発電による経済性を低下させる原因になる。よって、監視精度のさらなる向上が望まれる。
上述の事情に鑑みて、本発明の少なくとも一実施形態は、複数の風力発電装置からなる監視グループの異常監視を精度良く行うことが可能なウィンドファームの異常監視装置を提供することを目的とする。
(1)本発明の少なくとも一実施形態に係るウィンドファームの異常監視装置は、
ウィンドファームが有する複数の風力発電装置の2以上からなる監視グループの異常監視を行うウィンドファームの異常監視装置であって、
前記複数の風力発電装置の2以上から、それぞれ、前記風力発電装置の発電に関する発電パラメータ、および、前記風力発電装置の風車翼に設置されたセンサによって計測される歪パラメータを取得するパラメータ取得部と、
前記パラメータ取得部によって取得された2以上の前記風力発電装置の相互の前記発電パラメータの相関が第1所定値以上であり、かつ、相互の前記歪パラメータの相関が第2所定値以上となる2以上の前記風力発電装置を前記監視グループのメンバ候補として抽出するメンバ候補抽出部と、
前記メンバ候補のうちの少なくとも2つの前記風力発電装置を前記監視グループのメンバとして設定する監視グループ設定部と、
前記監視グループ設定部によって設定された前記監視グループの異常監視を行うグループ監視部と、を備える。
例えば歪量を計測するために風車翼に設置されたセンサの計測値は、風車翼へのセンサの取付状態や外部環境などの影響を受けるが、本発明者らは、この影響の度合いはセンサ間に違いがあり、個体差があることを見出している。例えば、光ファイバセンサは、センサ部を構成する回折格子(FBG)の屈折率や格子間隔が歪量に応じて変化するのに応じて、回折格子からの反射光における光の性質が変化することを利用して歪量を計測するが、回折格子の屈折率や間隔は歪量のみならず周囲の温度によっても変化し、例えば温度による変化の程度に個体差が存在することを見出している。
上記(1)の構成によれば、監視グループは、発電パラメータの相関(例えば相関係数)が強いのみならず、歪パラメータの相関も強い2以上の風力発電装置によって構成される。この発電パラメータは例えば風速、ロータ回転数、発電量などの発電状況に強い相関性を示す指標である。歪パラメータは、風車翼の歪量に強い相関性を示す指標である。つまり、監視グループは、発電状況の相関が強いのみならず、センサ間で生じている個体差の相関も強いセンサが取り付けられている2以上の風力発電装置によって形成されており、監視グループ内でのセンサの個体差も類似するようになっている。これによって、監視グループ内において、例えば外部環境の変化によって個体差の大きいセンサの計測値が正常値から逸脱するなどにより異常を誤検出するような事態を抑制することができ、2以上の風力発電装置からなる監視グループの異常監視の精度を高め、その信頼性を向上させることができる。
(2)幾つかの実施形態では、上記(1)の構成において、
前記メンバ候補抽出部は、
前記複数の風力発電装置のうちの2以上からなる第1メンバ候補群を選択する第1メンバ候補群選択部と、
前記第1メンバ候補群に属する前記風力発電装置の前記発電パラメータの相互の相関をそれぞれ求める発電パラメータ相関演算部と、
前記発電パラメータ相関演算部によって求められた相関が前記第1所定値以上である2以上の前記風力発電装置からなる第2メンバ候補群を前記第1メンバ候補群の中から選択する第2メンバ候補群選択部と、
前記第2メンバ候補群に属する前記風力発電装置の前記歪パラメータの相互の相関をそれぞれ求める歪パラメータ相関演算部と、
前記第2メンバ候補群の中から前記歪パラメータ相関演算部によって求められた相関が前記第2所定値以上である前記風力発電装置を前記メンバ候補として決定するメンバ候補決定部と、を有する。
上記(2)の構成によれば、発電パラメータの相関を評価した後に、歪パラメータの相関を評価する。これによって、発電パラメータの相関および歪パラメータの相関が強い2以上の風力発電装置を効率的に抽出することができる。
(3)幾つかの実施形態では、上記(1)〜(2)の構成において、
前記グループ監視部による前記異常監視を行う前の学習時において、前記監視グループに属する前記風力発電装置の前記発電パラメータと前記歪パラメータとの正準相関を求める正準相関学習部を、さらに備え、
前記グループ監視部は、前記正準相関学習部によって求められた前記正準相関に基づいて、前記監視グループの前記異常監視を行う。
上記(3)の構成によれば、グループ監視部による異常監視の判定基準を、機械学習により設定することができる。
(4)幾つかの実施形態では、上記(3)の構成において、
前記グループ監視部は、
前記学習時に求めた前記正準相関が、前記異常監視時において取得された監視時発電パラメータと監視時歪パラメータとの間で保たれているか否かの判定を行う正準相関逸脱判定部と、
前記正準相関逸脱判定部によって保たれていないと判定された場合を異常と判定する異常判定部と、を有する。
上記(4)の構成によれば、監視グループに属する風力発電装置の学習時における発電パラメータと歪パラメータとの正準相関が、異常監視時において保たれていない場合を異常と判定する。これによって、監視グループに異常状態となっている風力発電装置が存在することを検出することができる。
(5)幾つかの実施形態では、上記(4)の構成において、
前記正準相関逸脱判定部は、
前記監視時発電パラメータに基づく監視値を算出する監視値算出部と、
前記学習時に求めた前記正準相関を用いて、前記監視時歪パラメータから前記監視値の予測値を算出する予測値算出部と、
前記監視値と前記予測値との比較に基づいて、前記学習時に求めた前記正準相関が保たれているか否かの判定を行う逸脱判定部と、を有する。
上記(5)の構成によれば、異常監視時おいて取得される発電パラメータに基づいて算出される監視値と、歪パラメータ(監視時歪パラメータ)に基づいて算出される上記の監視値の予測値との比較に基づいて、学習時の正準相関が監視時において保たれているか否かを容易に判定することができる。
(6)幾つかの実施形態では、上記(3)〜(5)の構成において、
前記監視グループに属する前記風力発電装置の各々の前記発電パラメータを対象とした主成分分析の結果を用いて、前記主成分分析の対象とした前記発電パラメータの主成分である発電パラメータ主成分を取得する発電パラメータ主成分分析部を、さらに備え、
前記正準相関学習部は、前記発電パラメータ主成分と前記監視グループに属する前記風力発電装置の各々の前記歪パラメータとの前記正準相関を求める。
上記(6)の構成によれば、監視グループに属する風力発電装置の発電パラメータの主成分(発電パラメータ主成分)と歪パラメータとの正準相関が求められる。このように正準相関を求めるのに発電パラメータの主成分を用いることで、監視グループに属する複数の風力発電装置からの複数の発電パラメータのばらつきの成分の影響を低減することができ、異常監視の精度の向上を図ることができる。
(7)幾つかの実施形態では、上記(6)の構成において、
前記監視グループに属する前記風力発電装置の各々の前記歪パラメータを対象とした主成分分析の結果を用いて、前記主成分分析の対象とした前記歪パラメータの主成分である歪パラメータ主成分を取得する歪パラメータ主成分分析部を、さらに備え、
前記正準相関学習部は、前記発電パラメータ主成分と前記歪パラメータ主成分との前記正準相関を求める。
上記(7)の構成によれば、監視グループに属する風力発電装置の発電パラメータの主成分(発電パラメータ主成分)と歪パラメータの主成分(歪パラメータ主成分)との正準相関が求められる。このように正準相関を求めるのに歪パラメータの主成分を用いることで、監視グループに属する複数の風力発電装置からの複数の歪パラメータのばらつきの成分の影響を低減することができ、異常監視の精度の向上を図ることができる。
(8)幾つかの実施形態では、上記(6)〜(7)の構成において、
前記発電パラメータには、風速、発電量、ロータ回転数の少なくとも1種類のパラメータが含まれており、
前記発電パラメータ主成分分析部は、前記発電パラメータの種類毎に前記発電パラメータ主成分を取得する。
上記(8)の構成によれば、発電パラメータには、風速、発電量、ロータ回転数の少なくとも1種類のパラメータが含まれ、種類毎に主成分分析する。風速は風エネルギーの風力発電装置への入力情報に関連する。ロータ回転数は、風力発電装置に入力される風エネルギーの機械(回転)エネルギーへの変換に関する情報に関連する。また、発電量は、風力発電装置の出力情報に関連する。よって、風速、発電量、ロータ回転数の少なくとも1種類を監視することで、風力発電装置の正常性を監視することが可能である共に、複数種類を監視することで異常部位の特定を行うことができる。
(9)幾つかの実施形態では、上記(1)〜(8)の構成において、
前記風車翼に設置された前記センサは、光ファイバセンサが有するセンサ部である。
上記(9)の構成によれば、監視グループに属する風力発電装置の各々に取り付けられた光ファイバセンサ間に個体差が存在している場合でも、監視グループに対する異常監視への影響を抑制することができる。
(10)本発明の少なくとも一実施形態に係るウィンドファームの異常監視方法は、
ウィンドファームが有する複数の風力発電装置の2以上からなる監視グループの異常監視を行うウィンドファームの異常監視方法であって、
前記複数の風力発電装置の2以上から、それぞれ、前記風力発電装置の発電に関する発電パラメータ、および、前記風力発電装置の風車翼に設置されたセンサによって計測される歪パラメータを取得するパラメータ取得ステップと、
前記パラメータ取得ステップによって取得された2以上の前記風力発電装置の相互の前記発電パラメータの相関が第1所定値以上であり、かつ、相互の前記歪パラメータの相関が第2所定値以上となる2以上の前記風力発電装置を前記監視グループのメンバ候補として抽出するメンバ候補抽出ステップと、
前記メンバ候補のうちの少なくとも2つの前記風力発電装置を前記監視グループのメンバとして設定する監視グループ設定ステップと、
前記監視グループ設定ステップによって設定された前記監視グループの異常監視を行うグループ監視ステップと、を備える。
上記(10)の構成によれば、上記(1)と同様の効果を有する。
(11)幾つかの実施形態では、上記(10)の構成において、
前記メンバ候補抽出ステップは、
前記複数の風力発電装置のうちの2以上からなる第1メンバ候補群を選択する第1メンバ候補群選択ステップと、
前記第1メンバ候補群に属する前記風力発電装置の前記発電パラメータの相互の相関をそれぞれ求める発電パラメータ相関演算ステップと、
前記発電パラメータ相関演算ステップによって求められた相関が前記第1所定値以上である2以上の前記風力発電装置からなる第2メンバ候補群を前記第1メンバ候補群の中から選択する第2メンバ候補群選択ステップと、
前記第2メンバ候補群に属する前記風力発電装置の前記歪パラメータの相互の相関をそれぞれ求める歪パラメータ相関演算ステップと、
前記第2メンバ候補群の中から前記歪パラメータ相関演算ステップによって求められた相関が前記第2所定値以上である前記風力発電装置を前記メンバ候補として決定するメンバ候補決定ステップと、を有する。
上記(11)の構成によれば、上記(2)と同様の効果を有する。
(12)幾つかの実施形態では、上記(10)〜(11)の構成において、
前記グループ監視ステップによる前記異常監視を行う前の学習時において、前記監視グループに属する前記風力発電装置の前記発電パラメータと前記歪パラメータとの正準相関を求める正準相関学習ステップを、さらに備え、
前記グループ監視ステップは、前記正準相関学習ステップによって求められた前記正準相関に基づいて、前記監視グループの前記異常監視を行う。
上記(12)の構成によれば、上記(3)と同様の効果を有する。
(13)幾つかの実施形態では、上記(12)の構成において、
前記グループ監視ステップは、
前記学習時に求めた前記正準相関が、前記異常監視時において取得された監視時発電パラメータと監視時歪パラメータとの間で保たれているか否かの判定を行う正準相関逸脱判定ステップと、
前記正準相関逸脱判定ステップによって保たれていないと判定された場合を異常と判定する異常判定ステップと、を有する。
上記(13)の構成によれば、上記(4)と同様の効果を有する。
(14)幾つかの実施形態では、上記(13)の構成において、
前記正準相関逸脱判定ステップは、
前記監視時発電パラメータに基づく監視値を算出する監視値算出ステップと、
前記学習時に求めた前記正準相関を用いて、前記監視時歪パラメータから前記監視値の予測値を算出する予測値算出ステップと、
前記監視値と前記予測値との比較に基づいて、前記学習時に求めた前記正準相関が保たれているか否かの判定を行う判定ステップと、を有する。
上記(14)の構成によれば、上記(5)と同様の効果を有する。
(15)幾つかの実施形態では、上記(12)〜(14)の構成において、
前記監視グループに属する前記風力発電装置の各々の前記発電パラメータを対象とした主成分分析の結果を用いて、前記主成分分析の対象とした前記発電パラメータの主成分である発電パラメータ主成分を取得する発電パラメータ主成分分析ステップを、さらに備え、
前記正準相関学習ステップは、前記発電パラメータ主成分と前記監視グループに属する前記風力発電装置の各々の前記歪パラメータとの前記正準相関を求める。
上記(15)の構成によれば、上記(6)と同様の効果を有する。
(16)幾つかの実施形態では、上記(15)の構成において、
前記監視グループに属する前記風力発電装置の各々の前記歪パラメータを対象とした主成分分析の結果を用いて、前記主成分分析の対象とした前記歪パラメータの主成分である歪パラメータ主成分を取得する歪パラメータ主成分分析ステップを、さらに備え、
前記正準相関学習ステップは、前記発電パラメータ主成分と前記歪パラメータ主成分との前記正準相関を求める。
上記(16)の構成によれば、上記(7)と同様の効果を有する。
(17)幾つかの実施形態では、上記(15)〜(16)の構成において、
前記発電パラメータには、風速、発電量、ロータ回転数の少なくとも1種類のパラメータが含まれており、
前記発電パラメータ主成分分析ステップは、前記発電パラメータの種類毎に前記発電パラメータ主成分を取得する。
上記(17)の構成によれば、上記(8)と同様の効果を有する。
(18)幾つかの実施形態では、上記(10)〜(17)の構成において、
前記風車翼に設置された前記センサは、光ファイバセンサが有するセンサ部である。
上記(18)の構成によれば、上記(9)と同様の効果を有する。
本発明の少なくとも一実施形態によれば、複数の風力発電装置からなる監視グループの異常監視を精度良く行うことが可能なウィンドファームの異常監視装置が提供される。
本発明の一実施形態に係るウィンドファームの監視システム構成を概略的に示す図である。 本発明の一実施形態に係るウィンドファームの異常監視装置を概略的に示す図である。 本発明の一実施形態に係る複数の風力発電装置の相関係数の評価結果のイメージを示す図である。 本発明の一実施形態に係るウィンドファームの異常監視方法を示すフロー図であり、監視グループの設定に関するフローを示す。 本発明の一実施形態に係るメンバ候補抽出部の機能を示すブロック図である。 本発明の一実施形態に係るメンバ候補抽出ステップの詳細を示すフロー図である。 本発明の一実施形態に係るウィンドファームの異常監視装置の異常監視に関連する機能を示すブロック図である。 本発明の一実施形態に係るグループ監視部の機能を示すブロック図である。 本発明の一実施形態に係るグループ監視部の機能を示すブロック図であり、歪パラメータの主成分分析を行う。 本発明の一実施形態に係る監視グループの異常監視のための前処理(図4のS4)のフロー図である。 本発明の一実施形態に係るグループ監視ステップ(図4のS5)のフロー図である。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
図1は、本発明の一実施形態に係るウィンドファーム9の監視システムを概略的に示す図である。図2は、本発明の一実施形態に係るウィンドファーム9の異常監視装置1を概略的に示す図である。図3は、本発明の一実施形態に係る複数の風力発電装置6の相関係数rxyの評価結果のイメージを示す図である。また、図4は、本発明の一実施形態に係るウィンドファーム9の異常監視方法を示すフロー図であり、監視グループGの設定に関するフローを示す。
図1に示すように、ウィンドファーム9の監視システムは複数の風力発電装置6で構成されるウィンドファーム9を監視するシステムであり、少なくとも1台の風力発電装置6に接続される少なくとも1台の遠隔監視制御装置94(SCADAサーバ:Supervisory Control And Data Acquisition)と、ウィンドファーム9の異常監視装置1(以下、適宜、異常監視装置1)と、を備える。図1に示すように、ウィンドファーム9を構成する複数の風力発電装置6の各々には遠隔監視制御装置94が接続されており、遠隔監視制御装置94を用いることで、各風力発電装置6の運転状況の遠隔地からの監視が可能とされる。遠隔監視制御装置94の台数は、例えばウィンドファーム9の規模などに応じて決められても良い。図1に示す実施形態では、複数(7台)の遠隔監視制御装置94が設けられている。そして、各風力発電装置6がいずれか1台の遠隔監視制御装置94に通信ネットワークを介して接続されることにより、複数の遠隔監視制御装置94の各々は、互いに異なる複数の風力発電装置6を監視対象とするようになっている。
また、図1に示す実施形態では、複数の遠隔監視制御装置94は、それぞれ、インターネット上のクラウド96に接続されたサーバ95に運転状況に関する情報(後述する発電パラメータPgおよび歪パラメータPtなど)を送信するようになっている。また、サーバ95は、複数の遠隔監視制御装置94から受信した上記の情報をクラウド96に保存するようになっている。よって、例えば、ウィンドファーム9(風力発電装置6)のオーナやメーカの事務所からクラウド96にアクセスすることで、各遠隔監視制御装置94に関する上記の情報をまとめて確認することが可能となっている。同様に、例えば、遠隔監視制御装置94にアクセスすれば、アクセスした遠隔監視制御装置94に接続されている風力発電装置6に関する上記の情報を確認することが可能となっている。
他方、図2に示すように、各風力発電装置6(風車)は、複数枚(図2では3枚)の風車翼61と、風車翼61が取り付けられるハブ62と、を備える風車ロータ63を備える。風車ロータ63は、タワー64の上部に設けられ、タワー64に支持されるナセル65に回転自在に支持されており、風車翼61が風を受けると風車翼61を含む風車ロータ63が回転するようになっている。また、図2の拡大図Aで示すように、ナセル65には、発電機66と、風車ロータ63の回転を発電機66に伝達するための動力伝達機構とが収容されており、風車ロータ63から動力伝達機構を介して発電機66に伝達された回転エネルギーが、発電機66によって電気エネルギーに変換されるように構成される。なお、ハブ62に取り付けられる風車翼61は1枚以上であれば良い。図2に示す実施形態では、動力伝達機構は、ハブ62に接続された主軸67と、風車ロータ63と発電機66との間において主軸67および発電機66に接続されたドライブトレイン68とを有している。このドライブトレイン68は、例えば、ギア式増速機であっても良いし、油圧トランスミッションであっても良い。あるいは、風車ロータ63と発電機66とが直結された構成(不図示)であっても良い。
また、各風力発電装置6は、発電パラメータPgを計測するための発電パラメータ計測用センサ8を備える(図2参照)。発電パラメータPgは、例えば風速、ロータ回転数、発電量などの発電状況に強い相関性を示す指標であり、発電パラメータPgには、風速、発電量、ロータ回転数の少なくとも1種類のパラメータPが含まる。図2に示す実施形態では、発電パラメータPgに、風速、発電量、ロータ回転数の3種類のパラメータPを含まれている。よって、図2の拡大図Aに示すように、これら3種類の各パラメータPが、それぞれ、各風力発電装置6に設置されている、風車ロータ63の近傍の風速を計測するための風速センサ81(風速計)と、風車ロータ63の回転数(ロータ回転数)を検出するための回転数センサ82と、発電機66の発電量を検出するための発電量センサ83とを利用して計測されている。
なお、他の幾つかの実施形態において、発電パラメータPgに翼ピッチ角やその他のパラメータPを含める場合には、それぞれ、各風力発電装置6に設定されている、風車ロータ63の風車翼61のピッチ角を検出するためのピッチ角センサ(不図示)や、その他のパラメータPを計測するためのセンサを利用して計測される。また、各風力発電装置6は、風力発電装置6あるいはその近傍に設置される外気温センサ(不図示)など、周囲の外部環境を計測するための外部環境計測用のセンサを備えていても良い。
同様に、各風力発電装置6は、歪パラメータPtを計測するためのセンサ(以下、適宜、歪パラメータ計測用センサ7s)を備えており、図2に示すように、各風力発電装置6において、風車翼61の少なくとも1枚には、少なくとも1つの歪パラメータ計測用センサ7sが設置される。歪パラメータPtは、風車翼61の歪量に強い相関性を示す指標であり、歪量そのものであっても良いし、後述するような、温度の影響も受け得る光ファイバセンサ7によって歪量として計測された計測値であっても良い。また、歪パラメータPtは、風車翼61の上記の歪量から導かれた荷重、モーメントなど、歪量に基づいて算出されるパラメータであっても良い。上記の歪量や歪量に基づくパラメータは、風車翼61の回転に応じて周期的に変化するが、歪パラメータPtは、周期的に変化するパラメータの振幅値であっても良く、例えば、光ファイバセンサ7のセンサ部からの反射光の波長の変動量を示す波長変動指標であっても良い。波長変動指標は、センサ部からの反射光の波長の経時変化から得られる波長の変動量を示す指標である。より詳細には、異なる2つの時刻t1とt2(t1<t2)との間に、上記の反射光がλ1からλ2に変化した場合、波長の変動量(波長変動指標)はλ2−λ1となる。波長の変動量は歪量に関係しており、通常、反射光の波長はセンサ部に生じる歪や温度に依存するものであるが、風車ロータ63の回転周期(通常はおよぼ4〜7秒)や上記のサンプリング間隔などのような短い期間においては、センサ部の温度は変化しないと考えて良く、その間(t1〜t2)の歪の変化量は波長の変動量に依存(比例)するものとなる。または、歪パラメータPtは、上述したパラメータの少なくとも1つを組み合わせたものであっても良い。
図2に示す実施形態では、1台の風力発電装置6が有する複数の風車翼61の各々にそれぞれ同数の歪パラメータ計測用センサ7sが設置されている。よって、風車翼61の数をn(n≧1)、1枚の風車翼の61に設置された歪パラメータ計測用センサ7sの数をm(m≧1)とすると、風力発電装置6にはn×mの数の歪パラメータ計測用センサ7sが設置されることになる。ただし、本実施形態に本発明は限定されない。他の幾つかの実施形態では、複数の風車翼61の各々に設置される歪パラメータ計測用センサ7sの数は同数でなくても良いし、歪パラメータ計測用センサ7sが設置されていない風車翼61があっても良い。
より詳細には、図2に示す実施形態では、3枚の風車翼61の各々における略円形状の断面を有する翼根部61rの壁面に、それぞれ4つの歪パラメータ計測用センサ7sが90°ずつ離れて取り付けられている。具体的には、4つの歪パラメータ計測用センサ7sは、それぞれ風車翼61の腹側(HP側:High Pressure側)、後縁側(TE側:Trailing Edge側)、背側(LP側:Low Pressure側)、及び前縁側(LE側:Leading Edge側)において翼根部61rの壁面に貼り付けられている。そして、翼根部61rに歪が生じると、各歪パラメータ計測用センサ7sによって、取り付け位置で生じた歪に応じた歪パラメータPtが計測される。なお、他の幾つかの実施形態では、歪パラメータ計測用センサ7sは、例えば風車翼61の先端部61eなど、翼根部61rとは異なる位置に設置されても良い。翼根部61rおよび先端部61eなどの両方にそれぞれ1以上ずつ配置されても良い。
また、図2に示す実施形態では、上述した風車翼61に設置された歪パラメータ計測用センサ7sの各々は、光ファイバセンサ7が備える光ファイバ71に形成された回折格子(FBG:Fiber Bragg Grating)などであるセンサ部で構成されている。一般的に、光ファイバセンサ7は、基本的な構成として、光を発する光源(不図示)と、光源からの光を伝送する光ファイバ71と、光ファイバ71に互いに離間して形成された少なくとも1つのセンサ部(歪パラメータ計測用センサ7s)と、光ファイバ71から光を受光することにより検出した光(光の特性)を電気信号に変換する受光器(不図示)と、を備える。本実施形態では、光ファイバ71に接続された光源・信号処理ユニット72に、上記の光源、受光器と共に、受光器から入力される電気信号を処理して異常監視装置1に送る信号処理器(不図示)が格納されている。この信号処理器は、光の到達する時間差や周波数、波長などの外部環境に影響されない情報をもとに受光器からの電気信号を処理することによって、歪パラメータ計測用センサ7sによる計測値を取得すると共に、例えば50msなどの所定の周期で計測値をデータ化する。なお、他の幾つかの実施形態では、歪パラメータ計測用センサ7sの各々は歪ゲージで構成されるなど、他の種類のセンサであっても良い。
そして、上述したように風車翼61に設置された歪パラメータ計測用センサ7sによって計測される歪パラメータPtや、上述した発電パラメータ計測用センサ8によって計測さる発電パラメータPg、外気温センサ(不図示)などの外部環境計測用のセンサで取得された計測値は、風力発電装置6の異常監視装置1に入力されるようになっている(図2参照)。図2に示す実施形態では、上述した光源・信号処理ユニット72が第2通信ライン92bによりPLC91(Programmable Logic Controller)に接続されており、各風力発電装置6に設置された歪パラメータ計測用センサ7sが同時期(同じ時間タイミング)にそれぞれ計測した全ての計測値を、同時期に計測された発電パラメータPgと共に、第1通信ライン92aで接続された異常監視装置1に所定の周期(例えば50msなど)で送信するようになっている。この際、光源・信号処理ユニット72からの計測値の入力周期よりも、PLC91から異常監視装置1への送信周期(例えば100msなど)を長くすることで、通信処理負荷の低減を図っても良い。なお、図1〜図2に示す実施形態において、異常監視装置1とPLC91との間の第1通信ライン92aはインターネットなどの通信ネットワークを含んで構成されていても良い。また、第1通信ライン92aや第2通信ライン92bは、それぞれ、無線、有線、その両方のいずれかを含んで構成されていても良い。
上述したような構成を有するウィンドファーム9において、ウィンドファーム9の異常監視装置1は、複数の風力発電装置6から送信される運転状況に関する情報に基づいた異常監視を行う。図1に示す実施形態では、異常監視装置1はクラウド96に接続されているが、他の幾つかの実施形態では、遠隔監視制御装置94、サーバ95、クラウド96のいずれかに接続されても良い。これによって、異常監視装置1には、通信ネットワーク(第1通信ライン92aおよび第2通信ライン92b)を介して複数の風力発電装置6が接続されることになる。したがって、異常監視装置1は、後述するような、2以上の風力発電装置6を監視対象(監視グループG)とした異常監視をリアルタイムで実行することが可能となる。
以下、ウィンドファーム9の異常監視装置1について、図2を用いて説明する。
ウィンドファーム9の異常監視装置1は、ウィンドファーム9が有する複数の風力発電装置6の2以上からなる(2以上をメンバとする)監視グループGの異常監視を行うための装置である。図2に示すように、異常監視装置1は、パラメータ取得部2と、メンバ候補抽出部3と、監視グループ設定部4と、グループ監視部5と、を備える。そして、異常監視装置1は、上記のパラメータ取得部2が取得した情報に基づいて、メンバ候補抽出部3および監視グループ設定部4による処理を通して監視グループGを設定した後、グループ監視部5によって監視グループGの監視を行うように構成される。
以下、異常監視装置1が備える上記の各機能部について、それぞれ説明する。
なお、異常監視装置1はコンピュータで構成されており、図示しないCPU(プロセッサ)や、ROMやRAMといったメモリや補助記憶装置(記憶装置M)、外部通信インタフェースを備えている。そして、主記憶装置にロードされたプログラム(異常監視プログラム)の命令に従ってCPUが動作(データの演算など)することで、上記の各機能部を実現する。
パラメータ取得部2は、ウィンドファーム9を構成する複数(Na台)の風力発電装置6の2以上(N台)から、それぞれ、風力発電装置6の発電に関する発電パラメータPg(前述)、および、風力発電装置6の風車翼61に設置された歪パラメータ計測用センサ7sによって計測される歪パラメータPt(前述)を取得する。これは、後述するように、上記の2以上の風力発電装置6間における発電パラメータPgおよび歪パラメータPtの各々の種類毎の相関を評価するためである。図2に示す実施形態では、パラメータ取得部2は、クラウド96などにアクセスして、過去に計測された2つのパラメータP(Pg、Pt)の過去データを取得するようになっている。後述する学習用データLであっても良い。この際、パラメータ取得部2は、2つのパラメータPを、ウィンドファーム9が備える全ての風力発電装置6(Na台)からそれぞれ取得しても良いし、あるいは、例えば所定の1台の遠隔監視制御装置94に接続される風力発電装置6など、ウィンドファーム9が備える全ての風力発電装置6のうちから任意に選択された複数(N台)の風力発電装置6から取得しても良い。つまり、ウィンドファーム9が有する風力発電装置6の総数をNa(Na≧2)、パラメータ取得部2が取得の対象とする風力発電装置6の総数をN(N≧2)とする、N≦Naとなる。
より具体的には、例えば、発電パラメータPgに、風速、発電量、ロータ回転数の3種類のパラメータPを含めている場合には、パラメータ取得部2は、各風力発電装置6における風速、発電量、ロータ回転数の各々を、種類毎に、同時刻など風力発電装置6間での計測タイミングが大きくずれないようにしながら、複数の計測タイミングで計測することにより得られる複数のデータ(計測値)を取得する。同様に、歪パラメータPtについては、例えば、LP側やHP側など、設置位置などで分類される歪パラメータ計測用センサ7sの種類毎に、同時刻など風力発電装置6間での計測タイミングが大きくずれないようにしながら、複数の計測タイミングですることにより得られる複数のデータを取得する。上記の過去データは、こうして取得された複数のデータで構成される。これらの発電パラメータPgおよび歪パラメータPtに関する複数のデータ(過去データ)は、それぞれ、例えば、所定の時間数分、日数分、月数分などの、所定期間分のデータで構成されていても良いし、発電パラメータPgが最大となる時間帯などの所定の条件で抽出した所定期間分のデータで構成されていても良い。
また、歪パラメータPtに関しては、図2に示すような各風力発電装置6がそれぞれ複数の歪パラメータ計測用センサ7sで歪パラメータPtを計測する場合には、パラメータ取得部2は、風力発電装置6毎に複数の歪パラメータ計測用センサ7sでそれぞれ計測された計測値の全てを取得しても良いし、例えば複数の風車翼61の任意の1枚のLP側での計測値など、複数の歪パラメータ計測用センサ7sの一部からの計測値のみを取得しても良い。つまり、1台の風力発電装置6には、上述の通りn×mの数の歪パラメータ計測用センサ7sが設置されているため、パラメータ取得部2が取得する歪パラメータPtは、最大でn×m×Nの計測値の集合となる。複数の歪パラメータ計測用センサ7sのうちの一部のみ取得する場合には、最も少ない場合にはパラメータ取得部2は1台の風力発電装置6から1つの計測値(例えば1番翼のLP側の計測値)のみを取得するので、歪パラメータPtは最小でNの計測値の集合となる。
メンバ候補抽出部3は、パラメータ取得部2によって取得された2以上(N台)の風力発電装置6の相互の発電パラメータPgの相関が第1所定値以上であり、かつ、相互の歪パラメータPtの相関が第2所定値以上となる2以上の風力発電装置6を監視グループGのメンバ候補gとして抽出する。上記の第1所定値および第2所定値は同じ値であっても良いし、異なる値であっても良い。つまり、メンバ候補抽出部3は、パラメータ取得部2が取得した過去データを用いて、上記の相関を求める。これは、監視グループGを、発電パラメータPgのみならず、歪パラメータPtについても強い相関を示す2以上の風力発電装置6で構成することで、センサに生じる個体差による異常監視の異常検出精度への影響を抑制(低減)することが可能であるとの、本発明者らによる新たな知見に基づく。
すなわち、例えば歪量を計測するために風車翼61に設置された歪パラメータ計測用センサ7sの計測値は、風車翼61へのセンサの取付状態や外部環境などの影響を受けるが、本発明者らは、この影響の度合いはセンサ間に違いがあり、個体差があることを見出している。例えば、光ファイバセンサ7は、センサ部(7s)を構成する回折格子(FBG)の屈折率や格子間隔が歪量に応じて変化するのに応じて、回折格子からの反射光における光の性質が変化することを利用して歪量を計測するが、回折格子の屈折率や間隔は歪量のみならず周囲の温度によっても変化し、例えば温度による変化の程度に個体差が存在することを見出している。よって、上記の条件を満たす2以上の風力発電装置6で監視グループGを形成することにより、監視グループG内において、センサの個体差が及ぼす異常監視精度に対する影響を抑制することが可能となる。
ここで、発電パラメータPgの相関および歪パラメータPtの相関は、相関係数によって評価されても良い。一般に、2つの変量群x、yの各々の標準偏差をS、S、変量群xおよびyの共分散をSxyとすると、相関係数rxyは、rxy=Sxy/(S×S)で計算される。本発明においては、変量群x、yは、複数(N台)の風力発電装置6のうちから任意に選択した2つの風力発電装置6の各々に関する任意の種類のパラメータPの計測値の集合である。よって、メンバ候補抽出部3は、N台の風力発電装置6のうちから2台を選択する際の組合せ数である通りの相関係数rxyを、パラメータPの種類毎に求める。そして、メンバ候補抽出部3は、発電パラメータPgについて、その種類毎にそれぞれ計算した通りの相関係数rxyの計算結果の全てが第1所定値以上であり、かつ、歪パラメータPtについて、歪パラメータ計測用センサ7s毎(種類毎)にそれぞれ計算した通り算出の相関係数rxyの計算結果の全てが第2所定値以上となった風力発電装置6の集合を、メンバ候補gとして抽出する(図3参照)。
例えば、図3には、過去データにおいて、発電パラメータPgには風速、発電量が含まれており、歪パラメータPtには1番の風車翼61(1番翼)のLP側の歪パラメータ計測用センサ7sの計測値が含まれているとした場合において、N台の風力発電装置6の各々の風速、発電量、LP側の計測値に基づいて算出した歪量のピーク値の各々に関する相関係数rxyをそれぞれ算出した結果について示されている。また、上記の第1所定値および第2所定値を共に、強い相関を示すものの抽出が可能であるとして決めた所定値V1(例えば0.8など)としている。そして、図3の例示では、1番目の風力発電装置6aと3番目の風力発電装置6cとの歪パラメータPtの相関係数racのみが所定値V1(第2所定値)を下回っており、他の相関係数rxyは、全て、所定値V1を上回っている。よって、図3の例示では、監視グループGのメンバ候補gからは、N台の風力発電装置6のうち、1番目の風力発電装置6aまたは3番目の風力発電装置6cの少なくとも一方が除外されることになる。
監視グループ設定部4は、メンバ候補抽出部3によって抽出されたメンバ候補gのうちの少なくとも2つの風力発電装置6を監視グループGのメンバとして設定する。つまり、監視グループGは、メンバ候補gに含まれる全ての風力発電装置6をメンバとして構成されても良いし、メンバ候補gに含まれる風力発電装置6から任意の条件に合致する風力発電装置6をメンバとして構成されても良い。監視グループGを構成する風力発電装置6の数をNとすると、N≦Nとなる。
一方、グループ監視部5は、上述したようにパラメータ取得部2、メンバ候補抽出部3による処理を経て、監視グループ設定部4によって設定された監視グループGの異常監視を行う。異常監視の詳細については、後述する。
上述した異常監視装置1の処理に対応するウィンドファーム9の異常監視方法(以下、適宜、異常監視方法という。)を、図4を用いて説明する。
図4に示すように、異常監視方法は、パラメータ取得ステップ(S1)と、メンバ候補抽出ステップ(S2)と、監視グループ設定ステップ(S3)と、グループ監視ステップ(S5)と、を備えており、上記のパラメータ取得部ステップ(S1)が取得した情報に基づいて、メンバ候補抽出ステップ(S2)および監視グループ設定ステップ(S3)を経て監視グループGを設定した後、この監視グループGの監視をグループ監視ステップ(S5)で行う。本異常監視方法は、異常監視装置1が実行しても良いし、コンピュータを利用するなどして、人手で行っても良い。図4のフローに沿って本異常監視方法を説明する。
図4のステップS1において、パラメータ取得ステップを実行する。パラメータ取得ステップ(S1)は、複数(Na台)の風力発電装置6の2以上(N台)から、それぞれ、風力発電装置6の発電に関する発電パラメータPg、および、風力発電装置6の風車翼61に設置された歪パラメータ計測用センサ7sによって計測される歪パラメータPtを取得するステップである。本ステップの詳細は、上述したパラメータ取得部2の処理内容と同様であるため、省略する。
ステップS2において、メンバ候補抽出ステップを実行する。メンバ候補抽出ステップ(S2)は、パラメータ取得ステップ(S1)によって取得された2以上(N台)の風力発電装置6の相互の発電パラメータPgの相関が第1所定値以上であり、かつ、相互の歪パラメータPtの相関が第2所定値以上となる2以上の風力発電装置6を監視グループGのメンバ候補gとして抽出するステップである。本ステップの詳細は、上述したメンバ候補抽出部3の処理内容と同様であるため、省略する。
ステップS3において、監視グループ設定ステップを実行する。監視グループ設定ステップ(S3)は、メンバ候補gのうちの少なくとも2つの風力発電装置6を監視グループGのメンバとして設定するステップである。本ステップの詳細は、上述した、監視グループ設定部4の処理内容と同様であるため、省略する。
その後、ステップS4において、前ステップで設定した監視グループGに対して異常監視を行うための前処理(準備)を実行する。この異常監視の前処理は、後述する機械学習などであっても良い。あるいは、単なる監視グループGの情報の取得であっても良い。
そして、グループ監視ステップ(S5)において、グループ監視ステップを実行する。グループ監視ステップ(S5)は、監視グループ設定ステップ(S3)によって設定された監視グループGの異常監視を行うステップである。本ステップの詳細は、上記のグループ監視部5の処理内容(後述)と同様であるため、省略する。
上記の構成によれば、監視グループGは、発電パラメータPgの相関(例えば相関係数rxy)が強いのみならず、歪パラメータPtの相関も強い2以上の風力発電装置6によって構成される。この発電パラメータPgは例えば風速、ロータ回転数、発電量などの発電状況に強い相関性を示す指標である。歪パラメータPtは、風車翼61の歪量に強い相関性を示す指標である。つまり、監視グループGは、発電状況の相関が強いのみならず、センサ(歪パラメータ計測用センサ7s)間で生じている個体差の相関も強いセンサが取り付けられている2以上の風力発電装置6によって形成されており、監視グループG内でのセンサの個体差も類似するようになっている。これによって、監視グループG内において、例えば外部環境の変化によって個体差の大きいセンサの計測値が正常値から逸脱するなどにより異常を誤検出するような事態を抑制することができ、2以上の風力発電装置6からなる監視グループGの異常監視の精度を高め、その信頼性を向上させることができる。
次に、上述したメンバ候補抽出部3の処理に関する幾つかの実施形態について、図5〜図6を用いて説明する。図5は、本発明の一実施形態に係るメンバ候補抽出部3の機能を示すブロック図である。また、図6は、本発明の一実施形態に係るメンバ候補ステップ(S2)の詳細を示すフロー図である。
幾つかの実施形態では、図5に示すように、メンバ候補抽出部3は、第1メンバ候補群選択部31と、発電パラメータ相関演算部32と、第2メンバ候補群選択部33と、歪パラメータ相関演算部34と、メンバ候補決定部35と、を備えていても良い。
上述したメンバ候補抽出部3が備える上記の機能部について、それぞれ説明する。
第1メンバ候補群選択部31は、複数(Na台)の風力発電装置6のうちの2以上からなる第1メンバ候補群gを選択する。つまり、地理的に分散されて配置されたウィンドファーム9を構成するNa台の風力発電装置6の中から複数の風力発電装置6を任意に選択して、第1メンバ候補群gとする。例えば、第1メンバ候補群gは、地理的に近接する風力発電装置6同士で構成されても良いし、地理的に近接していなくても、風力など所定の条件が類似するような風力発電装置6同士で構成されても良い。あるいは、第1メンバ候補群gは、Na以下となる所定数だけランダムに選択された風力発電装置6から構成されていても良い。第1メンバ候補群gの数をNg1とすると、N≦Ng1≦Naとなる。
発電パラメータ相関演算部32は、第1メンバ候補群gに属する風力発電装置6の発電パラメータPgの相互の相関をそれぞれ求める。発電パラメータ相関演算部32は、上述の通り、相関係数rxyを算出しても良い(図3参照)。また、図5に示す実施形態では、発電パラメータ相関演算部32は、第1メンバ候補群選択部31に接続されることで、第1メンバ候補群選択部31が選択した第1メンバ候補群gの情報が入力されるようになっている。
第2メンバ候補群選択部33は、発電パラメータ相関演算部32によって求められた相関が第1所定値以上である2以上の風力発電装置6からなる第2メンバ候補群gを第1メンバ候補群gの中から選択する。第2メンバ候補群gの数をNg2とすると、N≦Ng2≦Ng1となる。図5に示す実施形態では、第2メンバ候補群選択部33は、発電パラメータ相関演算部32に接続されることで、発電パラメータ相関演算部32が求めた発電パラメータPgに関する相関(相関係数rxy)の情報が入力されるようになっている。
歪パラメータ相関演算部34は、第2メンバ候補群gに属する風力発電装置6の歪パラメータPtの相互の相関をそれぞれ求める。上述の通り、相関係数rxyを算出しても良い(図3参照)。図5に示す実施形態では、歪パラメータ相関演算部34は、第2メンバ候補群選択部33に接続されることで、第2メンバ候補群選択部33が選択した第2メンバ候補群gの情報が入力されるようになっている。
メンバ候補決定部35は、第2メンバ候補群gの中から歪パラメータ相関演算部34によって求められた相関が第2所定値以上である風力発電装置6をメンバ候補gとして決定する。つまり、こうして決定されたメンバ候補gによって、2以上の風力発電装置6からなるメンバ候補群が構成される。このメンバ候補群の数をNgaとすると、N≦Nga≦Naとなる。図5に示す実施形態では、メンバ候補決定部35は、歪パラメータ相関演算部34に接続されることで、歪パラメータ相関演算部34が求めた歪パラメータPtに関する相関(相関係数rxy)の情報が入力されるようになっている。
上述した構成を備えるメンバ候補抽出部3による処理結果を前述した図3を例に説明すると、第1メンバ候補群選択部31がN台の風力発電装置6を選択した場合、発電パラメータPgの相関係数rxyは全て第1所定値(V1)を満たしているため、第1メンバ候補群gと第2メンバ候補群gとは同じ集合となる。他方、1番目の風力発電装置6aと3番目の風力発電装置6cとの歪パラメータPtの相関係数racのみが第2所定値(V1)を下回っている。よって、メンバ候補決定部35は、1番目または3番目の風力発電装置6cの少なくとも一方を、メンバ候補gから除外して、複数のメンバ候補g(上記メンバ候補群)を決定する。
また、上述したメンバ候補抽出部3は、幾つかの実施形態では、各機能部による上述した処理を1回行うことでメンバ候補gを決定するように構成されても良い。これによって、多大な時間を費やすことなく、比較的迅速に、メンバ候補gを抽出することが可能となる。なお、この実施形態では、1回の処理でメンバ候補gに風力発電装置6が1台も含まれない場合には、この場合の集合とは異なる第1メンバ候補群gを選択し直して、メンバ候補gを決定する。
他の幾つかの実施形態では、メンバ候補抽出部3は、上記の各機能部(31〜35)の処理を少なくとも1回繰返すことで、メンバ候補gを決定するように構成されても良い。具体的には、1回目(1ループ目)には、第1メンバ候補群gの集合を例えば2台などの比較的少ない数を設定するなどして、上記の各機能部の処理を経て1ループ目のメンバ候補gを決定する。その後、例えば1台などの比較的少ない数の新たな風力発電装置6を1ループ目で決定されたメンバ候補gに加えた集合を2ループ目の第1メンバ候補群gとして、同様に、2ループ目のメンバ候補gを決定する。
3ループ目以降は、3ループ目なら2ループ目というように、直前の試行回で決定したメンバ候補gに対して、新たな風力発電装置6を加えた集合をその試行回の第1メンバ候補群gとして、1ループ目と同様な処理を通して、その試行回のメンバ候補gを決定する。この際、第1メンバ候補群g1に加えられたことがない風力発電装置6がウィンドファーム9において存在しない状態になった場合や、メンバ候補gに任意のメンバ数が含まれるようになった場合、試行回数が所定回となった場合などの少なくとも1つの条件を抽出終了条件として、抽出終了条件が満たされた場合に、メンバ候補抽出部3はメンバ候補gの抽出を終了するようにしても良い。これによって、メンバ候補gの比較的大きな集合を得ることができる。
上述したメンバ候補抽出部3の処理に対応するメンバ候補抽出ステップ(S2)を、図6を用いて説明する。
図6に示すように、上述した異常監視方法が備えるメンバ候補抽出ステップ(S2)は、上述した第1メンバ候補群gを選択する第1メンバ候補群選択ステップ(S21)と、この第1メンバ候補群gに属する風力発電装置6の発電パラメータPgの相互の相関をそれぞれ求める発電パラメータ相関演算ステップ(S22)と、上述した第2メンバ候補群gを第1メンバ候補群gの中から選択する第2メンバ候補群選択ステップ(S23)と、この第2メンバ候補群gに属する風力発電装置6の歪パラメータPtの相互の相関をそれぞれ求める歪パラメータ相関演算ステップ(S24)と、第2メンバ候補群gの中から歪パラメータ相関演算ステップ(S24)によって求められた相関が第2所定値以上である風力発電装置6をメンバ候補gとして決定するメンバ候補決定ステップ(S25)と、を備える。なお、上記の各ステップ(S21〜S25)の詳細は、それぞれ、同様の名前の機能部(31〜35)の処理内容と同様であるため、省略する。
図6に示す実施形態について説明すると、ステップS21において第1メンバ候補群選択ステップを実行することによって第1メンバ候補群gを選択した後、ステップS22において発電パラメータ相関演算ステップを実行することによって発電パラメータPgの相関係数rxyを算出する(図3参照)。続いて、ステップS23において第2メンバ候補群選択ステップを実行することによって第2メンバ候補群gを選択した後、ステップS24において歪パラメータ相関演算ステップを実行することによって歪パラメータPtの相関係数rxyを算出する(図3参照)。その後、ステップS25においてメンバ候補決定ステップを実行し、メンバ候補gを決定する。そして、ステップS26にいて、上述したステップS25で得られたメンバ候補gについて、抽出終了条件を満たすか否かを判定し、満たす場合には本フローを終了し、満たさない場合には、抽出終了条件が満たされるまで、上述したステップS21からステップS25までを繰返し実行する。
ただし、本実施形態のメンバ候補抽出ステップ(S2)に本発明は限定されない。発電パラメータ相関演算ステップ(S22)よりも前のステップで第1メンバ候補群選択ステップ(S21)が実行され、歪パラメータ相関演算ステップ(S24)の前のステップで第2メンバ候補群選択ステップ(S23)が実行されていれば良い。上述したメンバ候補抽出部3が備える各機能部(31〜35)の処理順序についても同様である。
上記の構成によれば、発電パラメータPgの相関を評価した後に、歪パラメータPtの相関を評価する。これによって、発電パラメータPgの相関および歪パラメータPtの相関が強い2以上の風力発電装置6を効率的に抽出することができる。
なお、上述した幾つかの実施形態では、発電パラメータPgの相関を評価した後に、歪パラメータPtの相関を評価しているが、他の幾つかの実施形態では、歪パラメータPtの相関を評価した後に、発電パラメータPgの相関を評価しても良い。この場合には、図示しないメンバ候補抽出部3は、上述した第1メンバ候補群gを選択する第1メンバ候補群選択部31と、第1メンバ候補群gに属する風力発電装置6の歪パラメータPtの相互の相関をそれぞれ求める歪パラメータ相関演算部と、歪パラメータ相関演算部によって求められた相関が第2所定値以上である2以上の風力発電装置6からなる第2メンバ候補群gを第1メンバ候補群gの中から選択する第2メンバ候補群選択部と、第2メンバ候補群gに属する風力発電装置6の発電パラメータPgの相互の相関をそれぞれ求める発電パラメータ相関演算部と、第2メンバ候補群gの中から発電パラメータ相関演算部によって求められた相関が第1所定値以上である風力発電装置6をメンバ候補gとして決定するメンバ候補決定部と、を有することなる。これらの機能部は例えば上記の順番で直列に接続される。なお、メンバ候補抽出ステップ(S2)についても同様であり、上記の機能部をステップとして置き換えたものになる。
以上、監視グループGの設定に関する実施形態について説明した。以下では、監視グループGが行う異常監視の具体的な内容に関する幾つかの実施形態について、図7〜図11を用いて説明する。図7は、本発明の一実施形態に係るウィンドファーム9の異常監視装置1の異常監視に関連する機能を示すブロック図である。図8は、本発明の一実施形態に係るグループ監視部5の機能を示すブロック図である。図9は、本発明の一実施形態に係るグループ監視部5の機能を示すブロック図であり、歪パラメータPtの主成分分析を行う。図10は、本発明の一実施形態に係る監視グループGの異常監視のための前処理(図4のS4)のフロー図である。図11は、本発明の一実施形態に係るグループ監視ステップ(図4のS5)のフロー図である。
幾つかの実施形態では、グループ監視部5(図1参照)は、監視グループGを全体として見渡すことにより得られる監視グループGの運転状態が、正常時と異なる状態になったか否かの判定を通して、監視グループGに属する風力発電装置6のいずれかに発生した異常を検出する。これによって、異常監視の負荷を抑制しつつ、異常検出の早期化が可能となる。また、異常検出がより早期に行えることで、異常が発生している風力発電装置6の特定や対応などもより早期に行うことが可能となる。より具体的には、以下に説明するように、グループ監視部5は、機械学習を通して異常監視を行っても良い。
まず、機械学習について説明すると、幾つかの実施形態では、図7に示すように、異常監視装置1は、グループ監視部5による異常監視を行う前の学習時において、監視グループGに属する風力発電装置6の発電パラメータPgと歪パラメータPtとの正準相関を求める正準相関学習部5Lを、さらに備える。そして、グループ監視部5は、後述するように、正準相関学習部5Lによって求められた正準相関に基づいて、監視グループGの異常監視を行うように構成されても良い。つまり、正準相関学習部5Lによる学習(機械学習)は、グループ監視部5が異常監視を行うための前提となる処理であり、グループ監視部5による異常監視の実行前に取得された発電パラメータPgおよび歪パラメータPtの計測値が蓄積された学習用データLを用いて行う。なお、この学習用データLは、監視グループGが最初に運用を開始する際、定期的なメンテナンスの際など、監視グループGに属する風力発電装置6の正常性が確保されていると判断される状況で取得されたデータで構成されていれば、正準相関学習部5Lによって求められた正準相関には異常時の影響が排除されているので、より高い異常検出精度が得られる。
詳述すると、上記の正準相関は正準相関分析により求められる。一般に、正準相関分析では、変量群x、変量群yの各々について、まずは、各変量群に含まれる全ての変量の一次結合を作成する。具体的には、i番目(i=1、2、・・・)の各変量群の値をx、y、i番目の係数(正準相関係数)をa、bi、変量群x、yの正準変量をそれぞれf(x)、g(y)とすると、変量群xの一次結合をf(x)=Σ(a・x)とし、変量群yの一次結合をg(y)=Σ(b・y)として作成する。次に、本正準相関分析に用いる資料数をq(q≧2)とすると、q個ある変量群xおよび変量群yのデータセットを上記の一次結合にそれぞれ代入して、係数a、bを決定すべき変数とした複数の等式を作成した上で、正準変量f(x)とg(y)との相関係数rxyが最大となるように、係数a、係数bを決定する。これによって、正準相関係数(a、b)が得られる。
本実施形態においては、発電パラメータPgを変量群x、歪パラメータPtを変量群yとすると、学習用データLは、これらの変量群の各々が異なる計測タイミングで複数回計測されることによって得られる複数からなる例えば所定期間分のデータなどのデータセットを含んでいる。そして、正準相関学習部5Lは、学習用データLを対象として正準相関分析を実行し、発電パラメータPg(変量群x)に関する正準変量f(x)と、歪パラメータPt(変量群y)に関する正準変量g(y)との相関係数rxyが最大となるように、正準相関係数(a、b)を機械学習により決定する。
例えば歪パラメータPtに関して、幾つかの実施形態では、正準相関学習部5Lは、学習用データLのデータそのものを変量群yとしても良い。他の幾つかの実施形態では、学習用データLから特徴量を抽出して、変量群yとしても良い。例えば、特徴量は、学習用データLを構成する所定期間分のデータから例えば分単位などのより小さい時間単位で分割し、その時間単位の各々における最大値や最小値などであっても良いし、平均値などの統計値であっても良い。この場合、所定期間分のデータがH分のデータであり、M分単位で分割する場合、H÷M個の最小値あるいは最大値、統計値などが得られるので、変量群yは、これらの最小値または最大値、あるいは、最小値および最大値、または、統計値からなっていても良い(後述する図8〜図9参照)。図7に示す実施形態では、正準相関学習部5Lは、上述したパラメータ取得部2に接続されており、学習時には、学習用データLをパラメータ取得部2が取得して、パラメータ取得部2が特徴量を抽出するなどして、正準相関学習部5Lに入力するようになっている。
上述したように、正準相関分析は2つの変量群x、yを対象に行うが、正準相関学習部5Lに入力される2つの変量群(パラメータP)は、各パラメータPの計測値そのものであっても良い。具体的には、発電パラメータPgについては、幾つかの実施形態では、風速、発電量、ロータ回転数などの種類毎をそれぞれ変量群xとして、正準相関学習部5Lに入力しても良い(図8〜図9参照)。この場合には、正準相関学習部5Lは、発電パラメータPgの種類毎に、歪パラメータPtとの正準相関を求める。このように、異なる物理量である発電パラメータPgの種類毎に正準相関分析を行うことで、発電パラメータPgの種類毎に異常監視を行うことになり、比較的高い精度の異常監視が見込める。また、この場合には、変量群xの数を示す上記のiは、i=N(監視グループGに属する風力発電装置6の合計)となる。なお、他の幾つかの実施形態では、風速、発電量、ロータ回転数などの全ての種類を変量群xとして、正準相関学習部5Lに入力しても良く、この場合には、変量群xの数を示す上記のiは、i=N×(発電パラメータPgの種類数)となる。
同様に、歪パラメータPtについては、幾つかの実施形態では、各風力発電装置6が備える歪パラメータ計測用センサ7s毎(計測の種類毎)をそれぞれ変量群yとして、正準相関学習部5Lに入力しても良い(図8〜図9参照)。この際、正準相関学習部5Lには、風力発電装置6が備える全ての歪パラメータ計測用センサ7sの計測値を入力しても良いし(図9参照)、そのうちの任意の1以上の歪パラメータ計測用センサ7sの計測値を入力しても良い(図8参照)。この場合には、正準相関学習部5Lは、歪パラメータPtの種類毎に、発電パラメータPgとの正準相関を求める。このように、歪パラメータ計測用センサ7s毎に異常監視を行うことにより、他のセンサによる影響を排除できるので、比較的高い精度の異常監視が見込める。この場合には、変量群yの数を示す上記のiは、i=Nとなる。なお、他の幾つかの実施形態では、歪パラメータ計測用センサ7sの計測値の全てを変量群yとしても良く、この場合には、変量群yの数を示す上記のiは、i=N×(各風力発電装置6が備える歪パラメータ計測用センサ7sの数)となる。
あるいは、正準相関学習部5Lに入力される2つのパラメータPは、各々の計測値に種々の演算を加えられたものであっても良い。具体的には、例えば、正準相関学習部5Lには、発電パラメータPgまたは歪パラメータPtの少なくとも一方の主成分u(k=1、2、・・・・)が入力されるように構成されても良い(図8〜図9参照)。
ここで、パラメータPの主成分を算出するためには、上述した学習用データLを対象に主成分分析を行う必要がある。主成分分析では、まずは、変量群zの一次結合を作成する。具体的には、i番目(i=1、2、・・・)の変量群の値をz、i番目の係数をc、主成分をuとすると、u(z)=Σ(c・z)を作成する。なお、本実施形態では変量群zは、発電パラメータPg(変量群x)や歪パラメータPt(変量群y)のいずれかである。次に、主成分分析に用いる資料数をq(q≧2)とすると、q個ある変量群zを上記の一次結合式にそれぞれ代入して、係数cを決定すべき変数とした複数の等式を作成した上で、主成分uの分散が最大となるように係数cを決定する。こうして得られた係数cを用いることで、上記の一次結合式から変量群zの主成分u(z)の算出が可能となる。なお、第k主成分を算出するかは、例えば主成分の寄与率に基づいて決定しても良い。
他方、グループ監視部5は、正準相関学習部5Lによって求められた正準相関に基づいて監視グループGの異常監視を行う。したがって、グループ監視部5には、正準相関学習部5Lに入力されるのと同じ種類の変量群x、yが入力される必要がある。このため、図7に示す実施形態では、グループ監視部5は、パラメータ取得部2に対して正準相関学習部5Lと並列に接続されており、パラメータ取得部2が出力する2つのパラメータPが、正準相関学習部5Lおよびグループ監視部5にそれぞれ入力されるようになっている。
上記の構成によれば、グループ監視部5による異常監視の判定基準を、機械学習により設定することができる。
次に、グループ監視部5によって行われる、上述のように学習された正準相関や主成分分析結果に基づいた異常監視について、説明する。
幾つかの実施形態では、図8〜図9に示すように、グループ監視部5は、上述した正準相関学習部5Lによって学習時に求めた正準相関が、異常監視時において取得された発電パラメータPg(監視時発電パラメータ)と歪パラメータPt(監視時歪パラメータ)との間で保たれているか否かの判定を行う正準相関逸脱判定部51と、上述した正準相関逸脱判定部51によって、学習時に求めた正準相関が監視時発電パラメータと監視時歪パラメータとの間で保たれていないと判定された場合を異常と判定する異常判定部55と、を有していても良い。なお、異常判定部55は、異常と判定した場合に、音、表示などによる報知を行うことが可能な報知部(報知装置)にその旨を通知しても良い。
より具体的には、正準相関逸脱判定部51は、幾つかの実施形態では、監視時発電パラメータに基づく監視値Tを算出する監視値算出部52と、学習時に求めた正準相関を用いて、監視時歪パラメータから上記の監視値Tの予測値Tpを算出する予測値算出部53と、これら監視値Tと予測値Tpとの比較に基づいて、学習時に求めた正準相関が保たれているか否かの判定を行う逸脱判定部54と、を有していても良い。つまり、監視時発電パラメータに基づいて監視値Tを算出するための予測式を異常監視の前に生成しておき、予測値算出部53は、この予測式に基づいて監視値Tの算出を行う。
具体的には、予測式の生成は、例えば、発電パラメータPg(変量群x)に関する正準変量f(x)、歪パラメータPt(変量群y)に関する正準変量g(y)、係数をd、定数をeとして、予測式をf(x)=d×g(y)+eと定義し、学習用データLに含まれる発電パラメータPgおよび歪パラメータPtの計測値を用いた係数dと定数eを決定して行っても良い。つまり、この場合には、予測値Tpを算出する予測式は、Tp=d×g(y)+e=d×Σ(b・y)+eとなる。また、監視値算出部52は、監視値Tを、T=f(x)=Σ(a・x)として算出する。そして、正準相関逸脱判定部51は、例えば、監視値Tと予測値Tpとを比較し、その差が所定値以上の場合には上述した相関が保たれていないと判定する。逆に、その差が所定値未満の場合には相関が保たれていると判定する。この相関が保たれているか否かを判定する所定値も、機械学習を通して決定しても良い。
上記の構成によれば、異常監視時おいて取得される発電パラメータPgに基づいて算出される監視値Tと、歪パラメータPt(監視時歪パラメータ)に基づいて算出される上記の監視値Tの予測値Tpとの比較に基づいて、学習時の正準相関が監視時において保たれているか否かを容易に判定することができる。
また、幾つかの実施形態では、上述したように、発電パラメータPgの主成分uが正準相関学習部5Lに入力されるように構成されているため、図8〜図9に示すように、グループ監視部5にも、発電パラメータPgの主成分uが入力されるようになっている。つまり、本実施形態では、異常監視装置1は、監視グループGに属する風力発電装置6の各々の発電パラメータPgを対象とした主成分分析(後述)の結果を用いて、主成分分析の対象とした発電パラメータPgの主成分である発電パラメータ主成分ugkを取得する発電パラメータ主成分分析部5pを、さらに備えている。そして、正準相関学習部5Lは、発電パラメータ主成分ugkと監視グループGに属する風力発電装置6の各々の歪パラメータPtとの正準相関を求めるように構成されている。
図8〜図9に示す実施形態では、図示するように、発電パラメータ主成分分析部5pは、パラメータ取得部2とグループ監視部5(正準相関逸脱判定部51)との間に設けられており、発電パラメータ主成分分析部5pの出力(発電パラメータ主成分ugk)は、正準相関学習部5Lおよびグループ監視部5の両方に入力されるようになっている。なお、本実施形態においては、発電パラメータPgの種類毎を、正準相関を算出するための変量群xとする場合には、変量群xに含まれるデータの数(i)は、i=(kの最大値)であり、発電パラメータPgの全ての種類を変量群xとする場合には、i=(kの最大値)×(発電パラメータPgの種類数)となる。
上記の構成によれば、監視グループGに属する風力発電装置6の発電パラメータPgの主成分(発電パラメータ主成分ukg)と歪パラメータPtとの正準相関が求められる。このように正準相関を求めるのに発電パラメータPgの主成分を用いることで、監視グループGに属する複数の風力発電装置6からの複数の発電パラメータPgのばらつきの成分の影響を低減することができ、異常監視の精度の向上を図ることができる。
また、幾つかの実施形態では、上述したように、歪パラメータPtの主成分uが(l
=1、2、・・・)正準相関学習部5Lに入力されるように構成されている。よって、図9に示すように、グループ監視部5にも、歪パラメータPtの主成分uが入力されるようになっている。つまり、本実施形態では、異常監視装置1は、監視グループGに属する風力発電装置6の各々の歪パラメータPtを対象とした主成分分析(後述)の結果を用いて、主成分分析の対象とした歪パラメータPtの主成分である歪パラメータ主成分utlを取得する歪パラメータ主成分分析部5tを、さらに備えている。そして、正準相関学習部5Lは、発電パラメータ主成分ugkと歪パラメータ主成分utlとの正準相関を求める。
図9に示す実施形態では、図示するように、歪パラメータ主成分分析部5tは、パラメータ取得部2とグループ監視部5(正準相関逸脱判定部51)との間に設けられており、歪パラメータ主成分分析部5tの出力(歪パラメータ主成分utl)は、正準相関学習部5Lおよびグループ監視部5の両方に入力されるようになっている。また、図9に示す実施形態では、歪パラメータPtは上述した特徴量が入力されるようになっていると共に、各歪パラメータ計測用センサ7sの最大値、最小値の両方(図9では、これらの歪パラメータ主成分utl)がグループ監視部5に入力されるようになっている。なお、本実施形態においては、歪パラメータPtの計測値の種類毎を変量群yとする場合には、変量群yに含まれるデータの数(i)は、i=(lの最大値)であり、歪パラメータPtの全ての種類を変量群yとする場合には、i=(lの最大値)×(歪パラメータPtの計測値の種類数)となる。
上記の構成によれば、監視グループGに属する風力発電装置6の発電パラメータPgの主成分u(発電パラメータ主成分ugk)と歪パラメータPtの主成分(歪パラメータ主成分utl)との正準相関が求められる。このように正準相関を求めるのに歪パラメータPtの主成分uを用いることで、監視グループGに属する複数の風力発電装置6からの複数の歪パラメータPtのばらつきの成分の影響を低減することができ、異常監視の精度の向上を図ることができる。
ただし、本実施形態に本発明は限定されない。他の幾つかの実施形態では、図8に示すように、異常監視装置1は、歪パラメータ主成分分析部5tを備えていなくても良い。なお、図8に示す実施形態では、1番翼のLP側に設置された歪パラメータ計測用センサ7sの計測値のみグループ監視部5および正準相関学習部5Lに入力されるようになっていると共に、その最小値(LP min)のみが入力されるようになっている。
次に、上述した異常監視装置1(グループ監視部5)が実行する監視グループGの異常監視に対応する異常監視方法について、図10のフロー(監視グループGの異常監視に関するフロー)に沿って説明する。
まず、上述した機械学習に関する実施形態に対応した方法ついて説明する。図10に示すように、幾つかの実施形態では、異常監視方法は、グループ監視ステップ(S5)による異常監視を行う前の学習時において、監視グループGに属する風力発電装置6の発電パラメータPgと歪パラメータPtとの正準相関を求める正準相関学習ステップ(S41〜S45)を、さらに備える。本実施形態においては、グループ監視ステップ(S5)は、正準相関学習ステップによって求められた正準相関に基づいて、監視グループGの異常監視を行う。
図10のステップS41において、上述した監視グループGに含まれ各風力発電装置6に関する学習用データLを取得した後、ステップS42において、取得された学習用データLから、異常監視の対象となる発電パラメータPgおよび歪パラメータPtを抽出(取得)する。ステップS43において、抽出した2つのパラメータPのデータ(計測値)の正規化(標準化)を実行する。図10に示す実施形態では、ステップS43は、以降のステップ(S44〜S45)への入力データを生成するために行われている。他の幾つかの実施形態ではステップS43は省略されても良い。
ステップS44において、パラメータPの主成分分析を実行する。幾つかの実施形態では、発電パラメータPgまたは歪パラメータPtの少なくとも一方に対して主成分分析を実行しても良い。この場合において、風速、発電量など、発電パラメータPgに複数種類のパラメータPが含まれる場合には、種類毎に主成分分析を実行しても良いし、あるいは、複数種類のデータの集合に対して主成分分析を実行しても良い。詳細については、上述した内容と同様であるため、省略する。なお、他の幾つかの実施形態では、ステップS44は省略されても良い。
ステップS45において、2つのパラメータPの正準相関分析を実行する。本実施形態では、前のステップS44において、監視グループGに属する風力発電装置6の各々の発電パラメータPgを対象とした主成分分析が実行されている。よって、主成分分析が実行されているパラメータPについてはその結果を用いて算出される主成分が正準相関分析の対象となる。逆に、主成分分析が実行されていないパラメータPについては、パラメータPの計測値そのものが正準相関分析の対象となる。詳細については、上述した内容と同様であるため、省略する。
次に、グループ監視ステップ(S5)に関する実施形態について、図11を用いて説明する。
図11に示すように、幾つかの実施形態では、グループ監視ステップ(S5)は、上述した正準相関学習ステップ(S45)によって学習時に求めた正準相関が、異常監視時において取得された発電パラメータPg(監視時発電パラメータ)と歪パラメータPt(監視時歪パラメータ)との間で保たれているか否かの判定を行う正準相関逸脱判定ステップ(S50)と、上述した正準相関逸脱判定ステップ(S50)によって、学習時に求めた正準相関が監視時発電パラメータと監視時歪パラメータとの間で保たれていないと判定された場合を異常と判定する異常判定ステップ(S54)と、を有している。
より具体的には、正準相関逸脱判定ステップ(S50)は、幾つかの実施形態では、監視時発電パラメータに基づく監視値Tを算出する監視値算出ステップ(S51)と、学習時に求めた正準相関を用いて、監視時歪パラメータから上記の監視値Tの予測値Tpを算出する予測値算出ステップ(S52)と、これらの監視値Tと予測値Tpとの比較に基づいて、学習時に求めた正準相関が保たれているか否かの判定を行う判定ステップ(S53)と、を有していても良い。上記の予測値Tpの算出は、監視時発電パラメータに基づいて監視値Tを算出するための予測式を予め生成しておき、監視時歪パラメータを予測式に代入して行う。詳細については、既に述べているため省略する。
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
1 異常監視装置
2 パラメータ取得部
3 メンバ候補抽出部
M 記憶装置
31 第1メンバ候補群選択部
32 発電パラメータ相関演算部
33 第2メンバ候補群選択部
34 歪パラメータ相関演算部
35 メンバ候補決定部
4 監視グループ設定部
5 グループ監視部
51 正準相関逸脱判定部
52 監視値算出部
53 予測値算出部
54 逸脱判定部
55 異常判定部
5L 正準相関学習部
5p 発電パラメータ主成分分析部
5t 歪パラメータ主成分分析部
6 風力発電装置
61 風車翼
61e 先端部
61r 翼根部
62 ハブ
63 風車ロータ
64 タワー
65 ナセル
66 発電機
67 主軸
68 ドライブトレイン
7 光ファイバセンサ
7s 歪パラメータ計測用センサ
71 光ファイバ
72 光源・信号処理ユニット
8 発電パラメータ計測用センサ
81 風速センサ
82 回転数センサ
83 発電量センサ
9 ウィンドファーム
91 PLC(Programmable Logic Controller)
92a 第1通信ライン
92b 第2通信ライン
94 遠隔監視制御装置
95 サーバ
96 クラウド
G 監視グループ
第1メンバ候補群
第2メンバ候補群
メンバ候補
P パラメータ
Pg 発電パラメータ
Pt 歪パラメータ
L 学習用データ
V1 所定値
T 監視値
Tp 予測値
x 変量群
y 変量群
z 変量群
xy 相関係数
f(x) 正準変量
g(y) 正準変量
主成分
gk 発電パラメータ主成分
tl 歪パラメータ主成分

Claims (18)

  1. ウィンドファームが有する複数の風力発電装置の2以上からなる監視グループの異常監視を行うウィンドファームの異常監視装置であって、
    前記複数の風力発電装置の2以上から、それぞれ、前記風力発電装置の発電に関する発電パラメータ、および、前記風力発電装置の風車翼に設置された光ファイバセンサであるセンサによって計測される歪パラメータを取得するパラメータ取得部と、
    前記パラメータ取得部によって取得された2以上の前記風力発電装置の相互の前記発電パラメータの相関が第1所定値以上であり、かつ、相互の前記歪パラメータの相関が第2所定値以上となる2以上の前記風力発電装置を前記監視グループのメンバ候補として抽出するメンバ候補抽出部と、
    前記メンバ候補のうちの少なくとも2つの前記風力発電装置を前記監視グループのメンバとして設定する監視グループ設定部と、
    前記監視グループ設定部によって設定された前記監視グループの異常監視を行うグループ監視部と、を備えることを特徴とするウィンドファームの異常監視装置。
  2. 前記メンバ候補抽出部は、
    前記複数の風力発電装置のうちの2以上からなる第1メンバ候補群を選択する第1メンバ候補群選択部と、
    前記第1メンバ候補群に属する前記風力発電装置の前記発電パラメータの相互の相関をそれぞれ求める発電パラメータ相関演算部と、
    前記発電パラメータ相関演算部によって求められた相関が前記第1所定値以上である2以上の前記風力発電装置からなる第2メンバ候補群を前記第1メンバ候補群の中から選択する第2メンバ候補群選択部と、
    前記第2メンバ候補群に属する前記風力発電装置の前記歪パラメータの相互の相関をそれぞれ求める歪パラメータ相関演算部と、
    前記第2メンバ候補群の中から前記歪パラメータ相関演算部によって求められた相関が前記第2所定値以上である前記風力発電装置を前記メンバ候補として決定するメンバ候補決定部と、を有することを特徴とする請求項1に記載のウィンドファームの異常監視装置。
  3. 前記グループ監視部による前記異常監視を行う前の学習時において、前記監視グループに属する前記風力発電装置の前記発電パラメータと前記歪パラメータとの正準相関を求める正準相関学習部を、さらに備え、
    前記グループ監視部は、前記正準相関学習部によって求められた前記正準相関に基づいて、前記監視グループの前記異常監視を行うことを特徴とする請求項1または2に記載のウィンドファームの異常監視装置。
  4. 前記グループ監視部は、
    前記学習時に求めた前記正準相関が、前記異常監視時において取得された監視時発電パラメータと監視時歪パラメータとの間で保たれているか否かの判定を行う正準相関逸脱判定部と、
    前記正準相関逸脱判定部によって保たれていないと判定された場合を異常と判定する異常判定部と、を有することを特徴とする請求項3に記載のウィンドファームの異常監視装置。
  5. 前記正準相関逸脱判定部は、
    前記監視時発電パラメータに基づく監視値を算出する監視値算出部と、
    前記学習時に求めた前記正準相関を用いて、前記監視時歪パラメータから前記監視値の予測値を算出する予測値算出部と、
    前記監視値と前記予測値との比較に基づいて、前記学習時に求めた前記正準相関が保たれているか否かの判定を行う逸脱判定部と、を有することを特徴とする請求項4に記載のウィンドファームの異常監視装置。
  6. 前記監視グループに属する前記風力発電装置の各々の前記発電パラメータを対象とした主成分分析の結果を用いて、前記主成分分析の対象とした前記発電パラメータの主成分である発電パラメータ主成分を取得する発電パラメータ主成分分析部を、さらに備え、
    前記正準相関学習部は、前記発電パラメータ主成分と前記監視グループに属する前記風力発電装置の各々の前記歪パラメータとの前記正準相関を求めることを特徴とする請求項3〜5のいずれか1項に記載のウィンドファームの異常監視装置。
  7. 前記監視グループに属する前記風力発電装置の各々の前記歪パラメータを対象とした主成分分析の結果を用いて、前記主成分分析の対象とした前記歪パラメータの主成分である歪パラメータ主成分を取得する歪パラメータ主成分分析部を、さらに備え、
    前記正準相関学習部は、前記発電パラメータ主成分と前記歪パラメータ主成分との前記正準相関を求めることを特徴とする請求項6に記載のウィンドファームの異常監視装置。
  8. 前記発電パラメータには、風速、発電量、ロータ回転数の少なくとも1種類のパラメータが含まれており、
    前記発電パラメータ主成分分析部は、前記発電パラメータの種類毎に前記発電パラメータ主成分を取得することを特徴とする請求項6または7に記載のウィンドファームの異常監視装置。
  9. 前記風車翼に設置された前記センサは、前記光ファイバセンサが有するセンサ部であることを特徴とする請求項1〜8のいずれか1項に記載のウィンドファームの異常監視装置。
  10. ウィンドファームが有する複数の風力発電装置の2以上からなる監視グループの異常監視を行うウィンドファームの異常監視方法であって、
    前記複数の風力発電装置の2以上から、それぞれ、前記風力発電装置の発電に関する発電パラメータ、および、前記風力発電装置の風車翼に設置された光ファイバセンサであるセンサによって計測される歪パラメータを取得するパラメータ取得ステップと、
    前記パラメータ取得ステップによって取得された2以上の前記風力発電装置の相互の前記発電パラメータの相関が第1所定値以上であり、かつ、相互の前記歪パラメータの相関が第2所定値以上となる2以上の前記風力発電装置を前記監視グループのメンバ候補として抽出するメンバ候補抽出ステップと、
    前記メンバ候補のうちの少なくとも2つの前記風力発電装置を前記監視グループのメンバとして設定する監視グループ設定ステップと、
    前記監視グループ設定ステップによって設定された前記監視グループの異常監視を行うグループ監視ステップと、を備えることを特徴とするウィンドファームの異常監視方法。
  11. 前記メンバ候補抽出ステップは、
    前記複数の風力発電装置のうちの2以上からなる第1メンバ候補群を選択する第1メンバ候補群選択ステップと、
    前記第1メンバ候補群に属する前記風力発電装置の前記発電パラメータの相互の相関をそれぞれ求める発電パラメータ相関演算ステップと、
    前記発電パラメータ相関演算ステップによって求められた相関が前記第1所定値以上である2以上の前記風力発電装置からなる第2メンバ候補群を前記第1メンバ候補群の中から選択する第2メンバ候補群選択ステップと、
    前記第2メンバ候補群に属する前記風力発電装置の前記歪パラメータの相互の相関をそれぞれ求める歪パラメータ相関演算ステップと、
    前記第2メンバ候補群の中から前記歪パラメータ相関演算ステップによって求められた相関が前記第2所定値以上である前記風力発電装置を前記メンバ候補として決定するメンバ候補決定ステップと、を有することを特徴とする請求項10に記載のウィンドファームの異常監視方法。
  12. 前記グループ監視ステップによる前記異常監視を行う前の学習時において、前記監視グループに属する前記風力発電装置の前記発電パラメータと前記歪パラメータとの正準相関を求める正準相関学習ステップを、さらに備え、
    前記グループ監視ステップは、前記正準相関学習ステップによって求められた前記正準相関に基づいて、前記監視グループの前記異常監視を行うことを特徴とする請求項10または11に記載のウィンドファームの異常監視方法。
  13. 前記グループ監視ステップは、
    前記学習時に求めた前記正準相関が、前記異常監視時において取得された監視時発電パラメータと監視時歪パラメータとの間で保たれているか否かの判定を行う正準相関逸脱判定ステップと、
    前記正準相関逸脱判定ステップによって保たれていないと判定された場合を異常と判定する異常判定ステップと、を有することを特徴とする請求項12に記載のウィンドファームの異常監視方法。
  14. 前記正準相関逸脱判定ステップは、
    前記監視時発電パラメータに基づく監視値を算出する監視値算出ステップと、
    前記学習時に求めた前記正準相関を用いて、前記監視時歪パラメータから前記監視値の予測値を算出する予測値算出ステップと、
    前記監視値と前記予測値との比較に基づいて、前記学習時に求めた前記正準相関が保たれているか否かの判定を行う判定ステップと、を有することを特徴とする請求項13に記載のウィンドファームの異常監視方法。
  15. 前記監視グループに属する前記風力発電装置の各々の前記発電パラメータを対象とした主成分分析の結果を用いて、前記主成分分析の対象とした前記発電パラメータの主成分である発電パラメータ主成分を取得する発電パラメータ主成分分析ステップを、さらに備え、
    前記正準相関学習ステップは、前記発電パラメータ主成分と前記監視グループに属する前記風力発電装置の各々の前記歪パラメータとの前記正準相関を求めることを特徴とする請求項12〜14のいずれか1項に記載のウィンドファームの異常監視方法。
  16. 前記監視グループに属する前記風力発電装置の各々の前記歪パラメータを対象とした主成分分析の結果を用いて、前記主成分分析の対象とした前記歪パラメータの主成分である歪パラメータ主成分を取得する歪パラメータ主成分分析ステップを、さらに備え、
    前記正準相関学習ステップは、前記発電パラメータ主成分と前記歪パラメータ主成分との前記正準相関を求めることを特徴とする請求項15に記載のウィンドファームの異常監視方法。
  17. 前記発電パラメータには、風速、発電量、ロータ回転数の少なくとも1種類のパラメータが含まれており、
    前記発電パラメータ主成分分析ステップは、前記発電パラメータの種類毎に前記発電パラメータ主成分を取得することを特徴とする請求項15または16に記載のウィンドファームの異常監視方法。
  18. 前記風車翼に設置された前記センサは、前記光ファイバセンサが有するセンサ部であることを特徴とする請求項10〜17のいずれか1項に記載のウィンドファームの異常監視方法。
JP2017117031A 2017-06-14 2017-06-14 ウィンドファームの異常監視装置および異常監視方法 Active JP6759157B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017117031A JP6759157B2 (ja) 2017-06-14 2017-06-14 ウィンドファームの異常監視装置および異常監視方法
EP18170968.4A EP3415753B1 (en) 2017-06-14 2018-05-07 Abnormality monitoring apparatus and abnormality monitoring method for wind farm
US15/997,209 US10844842B2 (en) 2017-06-14 2018-06-04 Abnormality monitoring apparatus and abnormality monitoring method for wind farm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017117031A JP6759157B2 (ja) 2017-06-14 2017-06-14 ウィンドファームの異常監視装置および異常監視方法

Publications (2)

Publication Number Publication Date
JP2019002330A JP2019002330A (ja) 2019-01-10
JP6759157B2 true JP6759157B2 (ja) 2020-09-23

Family

ID=62116783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017117031A Active JP6759157B2 (ja) 2017-06-14 2017-06-14 ウィンドファームの異常監視装置および異常監視方法

Country Status (3)

Country Link
US (1) US10844842B2 (ja)
EP (1) EP3415753B1 (ja)
JP (1) JP6759157B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019104820A1 (de) * 2019-02-26 2020-08-27 fos4X GmbH Windenergieanlage, Sensorkit für eine Windenergieanlage, System mit einer Windenergieanlage und einem onlinebasierten Speicher- und Serverdienst und Verfahren zum Senden von Daten von einer Windenergieanlage an einen onlinebasierten Speicher- und Serverdienst
CN111191950B (zh) * 2020-01-03 2023-04-07 国电联合动力技术有限公司 风电机组齿轮箱油温异常分析方法及装置
CN111257629B (zh) * 2020-05-06 2020-07-21 南京笛儒新能源技术服务有限公司 一种新能源场站功率特性检测方法、装置和系统
CN112502909B (zh) * 2020-11-26 2023-09-08 中车永济电机有限公司 风力发电机故障检测方法、数采装置、服务器及系统
CN113374654B (zh) * 2021-07-30 2022-09-30 湖南优利泰克自动化系统有限公司 一种检测风力发电机组叶片开裂的方法
CN116154841A (zh) * 2022-11-22 2023-05-23 华能广东汕头海上风电有限责任公司 一种海上风电场计算机监控系统

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020029097A1 (en) 2000-04-07 2002-03-07 Pionzio Dino J. Wind farm control system
US6925385B2 (en) 2003-05-16 2005-08-02 Seawest Holdings, Inc. Wind power management system and method
US7013203B2 (en) 2003-10-22 2006-03-14 General Electric Company Wind turbine system control
US7677075B2 (en) * 2006-09-29 2010-03-16 General Electric Company Methods and apparatus for evaluating sensors and/or for controlling operation of an apparatus that includes a sensor
DE102007026176A1 (de) 2007-01-04 2008-07-17 Dewind Ltd. SCADA-Einheit
EP2122430B1 (en) 2007-03-16 2017-12-06 Vestas Wind Systems A/S Method for condition monitoring a rotor of a wind energy plant
JP4995134B2 (ja) 2008-03-31 2012-08-08 三菱重工業株式会社 風車の監視装置及び方法並びにプログラム
JP5101396B2 (ja) 2008-05-29 2012-12-19 三菱重工業株式会社 健全性診断方法及びプログラム並びに風車の健全性診断装置
EP2166422B1 (en) 2008-09-17 2017-09-13 Siemens Aktiengesellschaft Method of alarm mask generation and condition monitoring of wind turbines
EP2172824B1 (en) 2008-10-01 2012-02-29 Siemens Aktiengesellschaft Method and system of wind turbine condition monitoring
US20110313726A1 (en) * 2009-03-05 2011-12-22 Honeywell International Inc. Condition-based maintenance system for wind turbines
WO2010121615A1 (en) 2009-04-22 2010-10-28 Vestas Wind System A/S Wind turbine configuration system
US20110020122A1 (en) 2009-07-24 2011-01-27 Honeywell International Inc. Integrated condition based maintenance system for wind turbines
US8277183B2 (en) 2009-09-30 2012-10-02 General Electric Company Systems and methods for monitoring wind turbine operation
CN102108936B (zh) 2009-12-25 2014-07-02 通用电气公司 用于监视和控制风机场的系统和方法
GB2477968A (en) 2010-02-19 2011-08-24 Vestas Wind Sys As Method of operating a wind turbine to provide a corrected power curve
DE102010016292A1 (de) 2010-04-01 2011-10-06 Ssb Wind Systems Gmbh & Co. Kg Kontrolleinrichtung für eine Windkraftanlage
WO2011143531A2 (en) * 2010-05-13 2011-11-17 University Of Cincinnati Turbine-to-turbine prognostics technique for wind farms
DE102010048008A1 (de) 2010-06-16 2011-12-22 Robert Bosch Gmbh Zustandsüberwachungsverfahren und -system für Windenergieanlagen
EP2585716B1 (en) 2010-06-28 2020-08-19 Vestas Wind Systems A/S A method for performing condition monitoring in a wind farm
US8219356B2 (en) * 2010-12-23 2012-07-10 General Electric Company System and method for detecting anomalies in wind turbines
US8977403B2 (en) 2011-06-22 2015-03-10 Mitsubishi Heavy Industries, Ltd. Remote monitoring apparatus, wind turbine generator system, and method of controlling remote monitoring apparatus
EP2592447A1 (en) 2011-11-08 2013-05-15 Topwind Consultancy B.V. Frost condition detection system and method
EP2610487A1 (en) 2011-12-28 2013-07-03 Siemens Aktiengesellschaft Wind turbine controller and method for controlling a wind turbine to provide redundancy
EP2674581A1 (de) 2012-06-15 2013-12-18 Siemens Aktiengesellschaft Maschinenkomponente eines Antriebsstrangs sowie Verfahren zur Auslegung und/oder zur Inbetriebnahme und/oder zum Betreiben eines solchen Antriebsstrangs
US20140093373A1 (en) 2012-10-03 2014-04-03 General Electric Company System and method for detecting lightning strikes on a wind turbine
JP6345041B2 (ja) 2014-09-02 2018-06-20 三菱重工業株式会社 風力発電設備の疲労評価システム
JP6242830B2 (ja) * 2015-02-24 2017-12-06 三菱重工業株式会社 風車翼の損傷検知方法及び風車
US10883475B2 (en) * 2015-11-26 2021-01-05 Vestas Wind Systems A/S Method for monitoring and assessing power performance changes of a wind turbine

Also Published As

Publication number Publication date
EP3415753B1 (en) 2020-02-19
US10844842B2 (en) 2020-11-24
US20180363633A1 (en) 2018-12-20
EP3415753A3 (en) 2018-12-26
EP3415753A2 (en) 2018-12-19
JP2019002330A (ja) 2019-01-10

Similar Documents

Publication Publication Date Title
JP6759157B2 (ja) ウィンドファームの異常監視装置および異常監視方法
JP6698715B2 (ja) 設備状態監視装置および設備状態監視方法
US7895018B2 (en) Event monitoring via combination of signals
US10344740B2 (en) Methods and systems for detecting sensor fault modes
JP5984791B2 (ja) 風力発電装置のモニタリングシステム及びモニタリング方法
JP4995134B2 (ja) 風車の監視装置及び方法並びにプログラム
US20100004878A1 (en) Wind turbine monitoring
US10883475B2 (en) Method for monitoring and assessing power performance changes of a wind turbine
WO2011024304A1 (ja) 風車の監視装置及び方法並びにプログラム
EP2589943B1 (en) Methods and Systems for Detecting Sensor Fault Modes
EP2112375A2 (en) Wind turbine icing detection
WO2018047564A1 (ja) 風力発電装置の状態監視装置及びそれを有する状態監視システム並びに風力発電装置の状態監視方法
CN109715936A (zh) 用于监测至少一个风力涡轮机的状态的方法和设备和计算机程序产品
WO2018008571A1 (ja) 風車の監視装置、風車の監視方法、風車の監視プログラムおよび記憶媒体
JP2016188612A (ja) 疲労評価システム及びこれを備えた風力発電装置、並びに、風力発電装置の疲労評価方法
EP3855019A1 (en) System and method for operating a wind turbine
EP3855018A1 (en) A method for computer-implemented monitoring of a wind turbine
Wisznia Condition Monitoring of Offshore Wind Turbines
WO2014111169A1 (en) Adjusted operating time of a component in a wind turbine
Wu Advanced data-driven modelling approaches to alarm-related fault detection and condition monitoring of wind turbines
EP3956563A1 (en) Wind turbine replacement schedule

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200902

R150 Certificate of patent or registration of utility model

Ref document number: 6759157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150