JP6757892B2 - Arc welding control method - Google Patents

Arc welding control method Download PDF

Info

Publication number
JP6757892B2
JP6757892B2 JP2017535227A JP2017535227A JP6757892B2 JP 6757892 B2 JP6757892 B2 JP 6757892B2 JP 2017535227 A JP2017535227 A JP 2017535227A JP 2017535227 A JP2017535227 A JP 2017535227A JP 6757892 B2 JP6757892 B2 JP 6757892B2
Authority
JP
Japan
Prior art keywords
current
welding
droplet
arc
arc welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017535227A
Other languages
Japanese (ja)
Other versions
JPWO2017029783A1 (en
Inventor
昂裕 野口
昂裕 野口
海斗 松井
海斗 松井
将史 藤原
将史 藤原
将 古和
将 古和
篤寛 川本
篤寛 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2017029783A1 publication Critical patent/JPWO2017029783A1/en
Application granted granted Critical
Publication of JP6757892B2 publication Critical patent/JP6757892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode

Description

本発明は消耗電極である溶接ワイヤと被溶接物である母材との間でアークを発生させて溶接を行うアーク溶接制御方法に関する。 The present invention relates to an arc welding control method in which an arc is generated between a welding wire as a consumable electrode and a base metal to be welded to perform welding.

溶接ワイヤと母材との間にアークを発生させて溶接を行うアーク溶接において、臨界電流値を超えると溶滴の移行形態はスプレー移行となる。臨界電流値よりも高いピーク電流と、アークを維持するための臨界電流値より低いベース電流とを、交互に繰り返す事で行う溶接方法はパルスアーク溶接法と呼ばれ、直流のスプレー移行溶接よりも低い平均電流で、スプレー移行を行わせることができる。 In arc welding in which an arc is generated between the welding wire and the base metal to perform welding, when the critical current value is exceeded, the transfer form of the droplet becomes spray transfer. A welding method in which a peak current higher than the critical current value and a base current lower than the critical current value for maintaining the arc are alternately repeated is called a pulse arc welding method, which is more than DC spray transition welding. A low average current can be used to perform the spray transition.

パルスアーク溶接法では、アークを維持するために、溶滴の移行がアーク力の影響を受けることの最も少ないベース電流期間中にて行われる。従って、スパッタを大幅に低減することが可能である。 In the pulse arc welding method, in order to maintain the arc, the transfer of droplets is performed during the base current period, which is the least affected by the arc force. Therefore, it is possible to significantly reduce sputtering.

しかし、パルスアーク溶接法は、シールドガスの組成に制約を受ける。そして、シールドガス中の炭酸ガスの割合が30%を超えると、スパッタの低減効果が薄弱になる。一方、主成分として、高価なアルゴンガスを大量に使用すると、シールドガスのコストが高くなる。そこで、炭酸ガスを主成分とするシールドガスを用いて安定したスプレー移行溶接が可能なアーク溶接法が求められている。 However, the pulse arc welding method is restricted by the composition of the shield gas. When the ratio of carbon dioxide gas in the shield gas exceeds 30%, the effect of reducing spatter becomes weak. On the other hand, if a large amount of expensive argon gas is used as the main component, the cost of the shield gas increases. Therefore, there is a demand for an arc welding method capable of stable spray transfer welding using a shield gas containing carbon dioxide as a main component.

なお、スパッタが発生すると、母材に付着し、また、動作を行う製品の可動部にスパッタが入り込むと、製品の可動範囲を制限し、製品価値を著しく低下させる。このため、スパッタを除去する後工程が必要となり、溶接生産性を著しく低下させる。 When spatter occurs, it adheres to the base material, and when spatter enters the moving portion of the operating product, the movable range of the product is limited and the product value is significantly reduced. For this reason, a post-process for removing spatter is required, which significantly reduces welding productivity.

図4は炭酸ガスを主成分とするシールドガスを用いたパルスアーク溶接制御方法を説明するための図であり、アーク部の工程と溶接電圧Vと溶接電流Iとを示す。 FIG. 4 is a diagram for explaining a pulse arc welding control method using a shield gas containing carbon dioxide as a main component, and shows the process of the arc portion, the welding voltage V, and the welding current I.

図4に示すように、ピーク電流Ipの出力が開始されてピーク時間Tpが開始される。溶融開始時点t3から溶接ワイヤの先端の溶融が開始され、溶滴の成長期間T4にて溶接ワイヤの先端で溶滴が成長し、くびれが生じて溶滴が離脱し始める。溶滴離脱時点t5で溶滴が離脱し、溶滴離脱が完了する。溶融開始時点t3から溶滴離脱時点t5を繰り返すパルスアーク溶接が行われる。溶滴が離脱する溶滴離脱時点t5ではアーク長が短時間で長くなるので、溶接電圧Vが急峻に高くなる。 As shown in FIG. 4, the output of the peak current Ip is started and the peak time Tp is started. Melting of the tip of the welding wire is started from the melting start time t3, and the droplet grows at the tip of the welding wire during the growth period T4 of the droplet, and a constriction is generated and the droplet begins to separate. At the time of droplet detachment t5, the droplet is detached and the droplet detachment is completed. Pulse arc welding is performed in which the melting start time t3 and the droplet detachment time t5 are repeated. At the time point t5 when the droplets are separated, the arc length becomes long in a short time, so that the welding voltage V sharply increases.

このため、溶接電圧Vが所定の電圧しきい値を超えた場合に、あるいは、溶接電圧Vの単位時間当たりの変化量(dV/dt)が所定値を超えた場合に、溶滴の離脱を検出することができる。 Therefore, when the welding voltage V exceeds a predetermined voltage threshold value, or when the amount of change (dV / dt) of the welding voltage V per unit time exceeds a predetermined value, the droplets are separated. Can be detected.

溶滴の離脱後は、溶滴にかかるアーク力が強いすなわちアーク密度が高いと、アーク力の反力でスパッタが増加する。従って、溶滴の離脱後は、溶接電流Iをピーク電流Ipからピーク電流Ipよりも低い所定の低下電流Irに低下し、スパッタの発生を防止している。 After the droplets are separated, if the arc force applied to the droplets is strong, that is, the arc density is high, the reaction force of the arc force increases the sputtering. Therefore, after the droplets are separated, the welding current I is reduced from the peak current Ip to a predetermined lowering current Ir lower than the peak current Ip to prevent the occurrence of spatter.

その後、低下期間TMでは溶接電流Iは低下電流Irに維持され、低下期間TMの経過後は、溶接電流Iは元のピーク電流Ipに高められてワイヤの先端部を溶融させる。ピーク時間Tpが終了すると、ベース電流Ibが出力され始め、ベース時間Tbが開始される(例えば、特許文献1参照)。 After that, the welding current I is maintained at the lowering current Ir during the lowering period TM, and after the lowering period TM elapses, the welding current I is increased to the original peak current Ip to melt the tip of the wire. When the peak time Tp ends, the base current Ib starts to be output, and the base time Tb starts (see, for example, Patent Document 1).

特許第5036197号公報Japanese Patent No. 5036197

溶接ワイヤの一部を溶融させるようにアーク溶接装置をアーク溶接制御方法で制御する。溶接ワイヤの溶滴が溶接ワイヤから離脱したことを検出する動作を行うことにより溶滴が溶接ワイヤから離脱した溶滴離脱時点を検出する。溶滴離脱時点の後直ちに溶接電流を低下電流まで低下させる。溶接電流を低下電流まで低下させるステップにおいて溶接電流を低下電流まで低下させてから所定の電流低下期間が経過した後に所定の電流へ上昇させる。 The arc welding apparatus is controlled by an arc welding control method so as to melt a part of the welding wire. By performing an operation of detecting that the droplet of the welding wire has separated from the welding wire, the time when the droplet has separated from the welding wire is detected. Immediately after the droplet breaks off, the welding current is reduced to the reduced current. In the step of reducing the welding current to the reduced current, the welding current is reduced to the reduced current and then increased to the predetermined current after a predetermined current reduction period has elapsed.

このアーク溶接制御方法により、スパッタが低減すると共に幅の均一なビードを得る事ができる。 By this arc welding control method, spatter can be reduced and beads having a uniform width can be obtained.

図1は実施の形態におけるアーク溶接装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an arc welding apparatus according to an embodiment. 図2は実施の形態におけるアーク溶接制御方法を示す図である。FIG. 2 is a diagram showing an arc welding control method according to the embodiment. 図3は実施の形態における他のアーク溶接制御方法を示す図である。FIG. 3 is a diagram showing another arc welding control method according to the embodiment. 図4は従来のパルスアーク溶接制御方法を示す図である。FIG. 4 is a diagram showing a conventional pulse arc welding control method.

図1は、実施の形態におけるアーク溶接装置1001の概略構成図である。アーク溶接装置1001は、入力電源1から入力した交流電力を整流する1次整流部2と、溶接出力を制御するスイッチング部3と、スイッチング部3の出力を入力して溶接に適した電力に変換するトランス4とを備える。 FIG. 1 is a schematic configuration diagram of an arc welding apparatus 1001 according to an embodiment. The arc welding device 1001 inputs the primary rectifying unit 2 that rectifies the AC power input from the input power supply 1, the switching unit 3 that controls the welding output, and the output of the switching unit 3 and converts the power into power suitable for welding. The transformer 4 is provided.

アーク溶接装置1001は、トランス4の2次側出力を整流する2次整流部5と、2次整流部5の出力を平滑するリアクトル6と、スイッチング部3を駆動する駆動部7と、溶接電流を検出する溶接電流検出部8と、溶接電圧を検出する溶接電圧検出部9と、溶接電流検出部8と溶接電圧検出部9の出力に基づいて溶接ワイヤ18の先端部分の溶滴の離脱を検出する溶滴離脱検出部10と、をさらに備える。 The arc welding device 1001 includes a secondary rectifying unit 5 that rectifies the secondary output of the transformer 4, a reactor 6 that smoothes the output of the secondary rectifying unit 5, a driving unit 7 that drives the switching unit 3, and a welding current. Based on the outputs of the welding current detection unit 8 that detects the welding current, the welding voltage detection unit 9 that detects the welding voltage, and the welding current detection unit 8 and the welding voltage detection unit 9, the droplets at the tip of the welding wire 18 are released. A droplet detachment detection unit 10 for detecting is further provided.

アーク溶接装置1001は溶接条件設定部13と記憶部12とをさらに備える。溶接条件設定部13は、設定電流や設定電圧やワイヤ送給量やシールドガス種類やワイヤ種類やワイヤ径等の溶接条件等を設定する。記憶部12は、溶接条件設定部13により設定された情報やワイヤ送給速度毎の電子リアクトル制御のリアクトル値等の種々のパラメータを格納する。 The arc welding device 1001 further includes a welding condition setting unit 13 and a storage unit 12. The welding condition setting unit 13 sets welding conditions such as a set current, a set voltage, a wire feed amount, a shield gas type, a wire type, and a wire diameter. The storage unit 12 stores various parameters such as information set by the welding condition setting unit 13 and a reactor value of electronic reactor control for each wire feeding speed.

アーク溶接装置1001はアーク制御部11をさらに備える、アーク制御部11は、溶接電圧検出部9や溶滴離脱検出部10や記憶部12からの出力に基づいてアーク発生時の電流や電圧を制御する信号を出力する。駆動部7は、アーク制御部11の出力に基づいてスイッチング部3を制御する。 The arc welding device 1001 further includes an arc control unit 11. The arc control unit 11 controls the current and voltage at the time of arc generation based on the outputs from the welding voltage detection unit 9, the droplet detachment detection unit 10, and the storage unit 12. Output the signal to be welded. The drive unit 7 controls the switching unit 3 based on the output of the arc control unit 11.

溶接ワイヤ18は、ワイヤ送給部19により制御される送給モータによって送給される。溶接ワイヤ18には、トーチ14に備え付けられたチップ15を介して溶接用の電力が供給され、溶接ワイヤ18と母材17との間でアーク20を発生させて溶接が行われる。 The welding wire 18 is fed by a feed motor controlled by a wire feed unit 19. Power for welding is supplied to the welding wire 18 via a tip 15 provided on the torch 14, and an arc 20 is generated between the welding wire 18 and the base metal 17 to perform welding.

なお、図1で示したアーク溶接装置1001を構成する各構成部は、各々単独に構成してもよいし、複数の構成部を複合して構成してもよい。 It should be noted that each of the constituent parts constituting the arc welding apparatus 1001 shown in FIG. 1 may be individually configured, or a plurality of constituent parts may be combined and configured.

アーク溶接装置1001の動作を以下に説明する。図2はアーク溶接装置1001におけるアーク溶接制御方法を示し、アーク溶接装置1001の溶接ワイヤ18と、溶接電流Iと、溶接電圧Vと、溶接電圧Vの溶接電流Iに対する比である溶接抵抗Rとを示す。検出無効期間T6は離脱検出の閾値を超えても検出を実施しない期間である。 The operation of the arc welding apparatus 1001 will be described below. FIG. 2 shows an arc welding control method in the arc welding apparatus 1001, showing the welding wire 18 of the arc welding apparatus 1001, the welding current I, the welding voltage V, and the welding resistance R which is the ratio of the welding voltage V to the welding current I. Is shown. The detection invalid period T6 is a period during which detection is not performed even if the threshold value for withdrawal detection is exceeded.

溶接を行っている間には、溶接ワイヤ18のトーチ14から突き出す長さである突出し長さL18の変動や母材17の位置ずれ等の外乱が発生する。溶接は、作業者が設定する設定電流Isおよび設定電圧Vsに基づいて、外乱に強い定電圧制御にて行われる。 During the welding, disturbances such as fluctuation of the protruding length L18, which is the length protruding from the torch 14 of the welding wire 18, and misalignment of the base metal 17 occur. Welding is performed by constant voltage control that is resistant to disturbance based on the set current Is and the set voltage Vs set by the operator.

記憶部12は、溶接ワイヤ18を送給する速度である送給量を記憶する。溶接ワイヤ18の送給量は設定電流Isにて決定され、設定電流Isに対して予め実験的に導出されている。記憶部12は、溶接ワイヤ18の送給量を記憶する。記憶部12は、ワイヤ18の送給量の複数の値にそれぞれに対応する溶接制御パラメータの複数の値も記憶する。 The storage unit 12 stores the feeding amount, which is the speed at which the welding wire 18 is fed. Feed rate of the welding wire 18 is determined by the setting current Is, are previously experimentally derived for the set current Is. The storage unit 12 stores the feed amount of the welding wire 18. The storage unit 12 also stores a plurality of values of welding control parameters corresponding to the plurality of values of the feed amount of the wire 18.

実施の形態におけるアーク溶接制御方法では、スプレー移行状態の定電圧制御のアーク溶接において、溶接電圧Vの出力を設定する設定電圧Vs、および溶接電流Iの出力を設定する設定電流Isに基づいて、溶接電圧Vと溶接電流Iである溶接出力が制御される。図2に示す動作では、溶接電流Iは、溶滴23が離脱する際の突起状のピーク電流Ipと溶接ワイヤ18の溶融を開始して促進して極小値ILを有するように凹状に湾曲して連続的に変化する溶融電流Igとを交互に繰り返す。ピーク電流Ipと溶融電流Igの極小値ILとの差分である電流変動幅Itが所定の値になるように溶接出力が制御されて、溶接が行われる。溶接ワイヤ18から溶滴23が離脱してから、溶接ワイヤ18が溶融して次に溶滴23が溶接ワイヤ18から離脱するまでの移行周期Ttが所定の範囲に収まるように電流変動幅Itが調整される。言い換えると溶滴23が溶接ワイヤ18から移行周期Ttあたりに1回だけ離脱するように電流変動幅Itが調整される。 In the arc welding control method of the embodiment, in the arc welding of constant voltage control in the spray transition state, the set voltage Vs for setting the output of the welding voltage V and the set current Is for setting the output of the welding current I are used. The welding output, which is the welding voltage V and the welding current I, is controlled. In the operation shown in FIG. 2, the welding current I is curved in a concave shape so as to have a minimum value IL by starting and promoting melting of the protruding peak current Ip and the welding wire 18 when the droplet 23 is separated. The melting current Ig, which changes continuously, is repeated alternately. Welding is performed by controlling the welding output so that the current fluctuation width It, which is the difference between the peak current Ip and the minimum value IL of the melting current Ig, becomes a predetermined value. The current fluctuation width It is set so that the transition cycle Tt from when the droplet 23 is separated from the welding wire 18 until the welding wire 18 is melted and then the droplet 23 is separated from the welding wire 18 is within a predetermined range. It will be adjusted. In other words, the current fluctuation width It is adjusted so that the droplet 23 is separated from the welding wire 18 only once per transition cycle Tt.

電流変動幅Itが、溶接電流Iの所定期間の移動平均の平均値または設定電流Isである中心値を中心として、中心値の±25%以上±45%以下の幅に、より好ましくは中心値の±25%以上±30%以下となるように溶接出力が制御される。具体的には、ピーク電流Ipが溶接電流Iの上記の中心値の25%以上で45%以下の値だけ溶接電流Iの中心値より大きく、かつ溶融電流Igの極小値ILが溶接電流Iの中心値の25%以上で45%以下の値だけ溶接電流Iの中心値より小さくなるように電流変動幅Itを制御する。 The current fluctuation width It is a width of ± 25% or more and ± 45% or less of the center value, more preferably the center value, centered on the average value of the moving average of the welding current I for a predetermined period or the center value which is the set current Is. The welding output is controlled so as to be ± 25% or more and ± 30% or less of. Specifically, the peak current Ip is 25% or more and 45% or less of the above-mentioned center value of the welding current I, which is larger than the center value of the welding current I, and the minimum value IL of the melting current Ig is the welding current I. The current fluctuation width It is controlled so that it is smaller than the center value of the welding current I by a value of 25% or more and 45% or less of the center value.

具体的には、ピーク電流Ipが溶接電流Iの平均値の25%以上で30%以下の値だけ溶接電流Iの平均値より大きく、かつ溶融電流Igの極小値ILが溶接電流Iの平均値の25%以上で30%以下の値だけ溶接電流Iの平均値より小さくなるように電流変動幅Itを制御する。移動平均を算出する上記の所定期間は移行周期Ttの整数倍である。電流変動幅Itで調整される移行周期Ttは15msec以上35msec以下であり、より好ましくは15msec以上20msec以下である。これにより、移行周期Ttが安定するのでアーク20の長さであるアーク長L20の変動が抑制され、溶接により生成されるビードの幅の均一化が図られる。 Specifically, the peak current Ip is 25% or more and 30% or less of the average value of the welding current I, which is larger than the average value of the welding current I, and the minimum value IL of the melting current Ig is the average value of the welding current I. The current fluctuation width It is controlled so that it is smaller than the average value of the welding current I by a value of 25% or more and 30% or less. The above-mentioned predetermined period for calculating the moving average is an integral multiple of the transition cycle Tt. The transition period Tt adjusted by the current fluctuation width It is 15 msec or more and 35 msec or less, and more preferably 15 msec or more and 20 msec or less. As a result, since the transition cycle Tt is stabilized, fluctuations in the arc length L20, which is the length of the arc 20, are suppressed, and the width of the bead generated by welding can be made uniform.

実施の形態では、十分にスプレー移行状態となる溶接ワイヤ18の送給量が選択される。溶接ワイヤ18のワイヤ送給量は設定電流Isにて決定される。 In the embodiment, the feed amount of the welding wire 18 that is sufficiently in the spray transition state is selected. The wire feeding amount of the welding wire 18 is determined by the set current Is.

溶融開始時点t3で溶接ワイヤ18の先端18Pの溶滴23が溶融し始めて成長し始め、溶滴23が成長する成長期間T4を経て溶滴離脱時点t5で溶滴23は溶接ワイヤ18の先端18Pから離脱する。溶滴23が離脱する際の溶接電流Iが大きいとアーク反力が大きくなる。アーク反力により溶接ワイヤ18に向かう方向に溶滴23が押し戻されるので、溶滴23が安定して離脱せず、スパッタとなり飛散する。そのため、溶滴23が離脱した溶滴離脱時点t5を検出し、溶滴離脱時点t5を検出した後直ちに溶接電流Iを低下させ、アーク反力を抑制し、スパッタを低減する。 At the start of melting t3, the droplet 23 at the tip 18P of the welding wire 18 begins to melt and begins to grow, and after the growth period T4 at which the droplet 23 grows, the droplet 23 reaches the tip 18P of the welding wire 18 at the time of withdrawal t5. Withdraw from. If the welding current I when the droplet 23 is separated is large, the arc reaction force becomes large. Since the droplet 23 is pushed back in the direction toward the welding wire 18 by the arc reaction force, the droplet 23 does not stably separate and becomes spatter and scatters. Therefore, the welding current I is reduced immediately after detecting the droplet separation time point t5 from which the droplet 23 is separated, and the welding current I is suppressed to suppress the arc reaction force and reduce sputtering.

溶滴23が離脱した溶滴離脱時点t5では、アーク長L20が急に長くなるため、溶滴離脱時点t5で溶接電圧Vが急峻に高くなるまたは溶接抵抗Rが急峻に大きくなることを検知して溶滴23が溶接ワイヤ18の先端18Pから離脱したことを検出する。溶滴離脱検出部10は、溶接抵抗Rまたは溶接抵抗Rの単位時間当たりの変化量、あるいは、溶接電圧Vの絶対値または溶接電圧Vの単位時間当たりの変化量により溶滴23が溶接ワイヤ18の先端18Pから離脱したことを検出して溶滴離脱時点t5を検出する。 It is detected that the welding voltage V sharply increases or the welding resistance R sharply increases at the droplet detachment time t5 because the arc length L20 suddenly becomes long at the droplet detachment time t5 when the droplet 23 is detached. It is detected that the droplet 23 is separated from the tip 18P of the welding wire 18. In the droplet detachment detection unit 10, the welding wire 18 has the welding wire 18 changed according to the change amount of the welding resistance R or the welding resistance R per unit time, or the absolute value of the welding voltage V or the change amount of the welding voltage V per unit time. It is detected that the tip 18P is detached from the tip 18P, and the time point t5 of the droplet detachment is detected.

なお、実施の形態におけるアーク溶接制御方法では以下の理由から溶滴離脱検出部10は溶接抵抗Rの単位時間当たりの変化量により溶滴23が離脱したことを検出する。スプレー移行状態の溶接電圧Vはアーク長L20の変動によって俊敏に変化する。したがって、溶接電圧Vの単位時間当たりの変化量または溶接電圧Vの絶対値を用いて溶滴23の離脱を検出すると、溶接電圧Vの微細な変動である脈動による誤検出が頻発する。溶接抵抗Rは脈動により急峻には変化せず緩やかに変化するため、誤検出の発生を抑制する事が出来る。また、溶接抵抗Rは脈動(急峻な変動)が少ないため、溶滴23の離脱による溶接抵抗Rの単位時間当たりの変化量の検出に用いる閾値を小さく設定する事が可能である。そのため、溶接電圧Vやその変化量に比べて、溶接抵抗Rの単位時間当たりの変化量に基づいて、溶滴23の離脱を早期にかつ正確に検出する事が可能となる。 In the arc welding control method of the embodiment, the droplet detachment detection unit 10 detects that the droplet 23 has detached due to the amount of change in the welding resistance R per unit time for the following reasons. The welding voltage V in the spray transition state changes agilely due to fluctuations in the arc length L20. Therefore, when the detachment of the droplet 23 is detected by using the amount of change in the welding voltage V per unit time or the absolute value of the welding voltage V, erroneous detection due to pulsation, which is a minute fluctuation of the welding voltage V, frequently occurs. Since the welding resistance R does not change sharply due to pulsation but changes slowly, it is possible to suppress the occurrence of erroneous detection. Further, since the welding resistance R has little pulsation (steep fluctuation), it is possible to set a small threshold value used for detecting the amount of change in the welding resistance R per unit time due to the detachment of the droplet 23. Therefore, it is possible to detect the detachment of the droplet 23 early and accurately based on the amount of change in the welding resistance R per unit time as compared with the welding voltage V and the amount of change thereof.

溶滴23の離脱を検出した後に、アーク反力を低減させてスパッタを抑制するために、溶滴23が離脱する前のピーク電流Ipから急峻に溶接電流Iを低下電流Irまで低下させた後、電流低下期間T1だけ低下電流Irに維持する。低下電流Irの値は、電流変動幅Itの安定領域にかかわらず、低下電流Irの出力後の溶接ワイヤ18の先端18Pが円滑に溶融する値に予め実験的に定めても良い。低下電流Irが小さくなると溶接ワイヤ18への入熱量が不足するため、溶滴23が円滑に溶融し始めなくなり、アーク20が不安定となる。また、低下電流Irが大きいとスパッタ低減の効果が弱まる。 After detecting the detachment of the droplet 23, the welding current I is sharply reduced from the peak current Ip before the droplet 23 is detached to the reduced current Ir in order to reduce the arc reaction force and suppress spatter. The current reduction period T1 is maintained at the reduction current Ir. The value of the reduced current Ir may be experimentally set in advance to a value at which the tip 18P of the welding wire 18 after the output of the reduced current Ir melts smoothly regardless of the stable region of the current fluctuation width It. When the reduced current Ir becomes small, the amount of heat input to the welding wire 18 is insufficient, so that the droplet 23 does not start to melt smoothly and the arc 20 becomes unstable. Further, if the reduced current Ir is large, the effect of reducing sputtering is weakened.

図4に示す定電流制御のパルスアーク溶接方法は、アーク長が溶滴の直径より少しでも大きい場合には、溶接ワイヤの先端部と母材とが短絡しないので、スパッタを低減することが可能である。しかし、溶接中には、チップから溶接ワイヤが突き出ている突出し長さの変動や母材の位置ずれ等の外乱により、溶接ワイヤの先端と母材との距離が短くなる場合がある。定電流制御は、突出し長さの変動や母材の位置ずれ等の外乱に影響されやすい。特に溶接ワイヤの先端と母材間との距離が短くなると、溶滴が離脱する前に溶接ワイヤの先端と母材とが短絡する。そして、短絡が発生する時の電流が高電流の時、多量のスパッタが発生する。シールドガスに炭酸ガスを用いたパルスアーク溶接でのスプレー移行溶接は、特に、アーク反力が大きく、溶接ワイヤの先端で成長した溶滴が溶接ワイヤの方向に押し戻される。したがって、溶滴が安定に離脱しないため、母材との短絡の発生頻度が高く、多量のスパッタが飛散する。 The constant current control pulse arc welding method shown in FIG. 4 can reduce spatter because the tip of the welding wire and the base metal do not short-circuit when the arc length is even slightly larger than the diameter of the droplet. Is. However, during welding, the distance between the tip of the welding wire and the base metal may be shortened due to disturbances such as fluctuations in the protruding length of the welding wire protruding from the tip and misalignment of the base metal. The constant current control is easily affected by disturbances such as fluctuations in the protrusion length and misalignment of the base metal. In particular, when the distance between the tip of the welding wire and the base metal is shortened, the tip of the welding wire and the base metal are short-circuited before the droplets are separated. Then, when the current at the time of short circuit is high, a large amount of sputtering occurs. In spray transfer welding in pulse arc welding using carbon dioxide as the shield gas, the arc reaction force is particularly large, and the droplets grown at the tip of the welding wire are pushed back toward the welding wire. Therefore, since the droplets do not separate stably, the frequency of short circuits with the base metal is high, and a large amount of spatter is scattered.

つまり、炭酸ガスを用いたスプレー溶接には、溶滴離脱時および突出し長さの変動やワークの位置ずれ等の外乱発生時に多量のスパッタが発生する。 That is, in spray welding using carbon dioxide gas, a large amount of spatter is generated when the droplets are separated and when disturbances such as fluctuations in the protruding length and displacement of the work are generated.

実施の形態におけるアーク溶接制御方法では、図2に示すように、低下電流Irを出力する際に発生する電流のアンダーシュートが電流低下期間T1内で収束する。電流低下期間T1が経過した後に所定の傾きαで電流上昇期間T2に溶接電流Iを所定の電流Ifまで増加させる。 In the arc welding control method of the embodiment, as shown in FIG. 2, the undershoot of the current generated when the reduced current Ir is output converges within the current decrease period T1. After the current decrease period T1 has elapsed, the welding current I is increased to a predetermined current If during the current increase period T2 with a predetermined inclination α.

なお、電流低下期間T1は、電流上昇期間T2より短い。電流低下期間T1が長くなると電流が低い期間が長くなり、アークが不安定になる。また、電流上昇期間T2が短くなり、溶接電流Iの上昇の角度αが大きくなると溶接ワイヤ18に電流が一気に流れて赤熱し、溶融プールを押す力が大きく成り過ぎてスパッタの発生が増加する「電流上昇期間T2は、溶滴23の溶融離脱によるスパッタの飛散を抑えて溶接電流Iを所定の電流Ifまで増加させる期間とすることが望ましい」。 The current decrease period T1 is shorter than the current increase period T2. When the current decrease period T1 becomes long, the period when the current is low becomes long, and the arc becomes unstable. Further, when the current rise period T2 becomes short and the angle α of the rise of the welding current I becomes large, the current flows through the welding wire 18 at once and becomes reddish, and the force pushing the molten pool becomes too large to generate spatter. It is desirable that the current increase period T2 is a period during which the welding current I is increased to a predetermined current If by suppressing scattering of spatter due to melting and detachment of the droplet 23. "

溶滴23が溶融し始める時の溶接ワイヤ18の先端18Pへの入熱を確保するために傾きαと電流上昇期間T2を設定し、溶滴23の離脱の検出後の所定の電流Ifを溶滴23の離脱の検出前のピーク電流Ipと実質的に同じにする。これにより、溶接電流Iが所定の電流Ifまで上昇した時点から溶滴離脱時点t5までの定電圧制御がされている期間T7で、所定の電流Ifと溶融電流Igの極小値ILとの差分である電流変動幅Itを調整して最適化することによって、溶接ワイヤ18の溶融の開始から溶滴23離脱までの移行周期Ttが安定するため、アーク20が安定する。 In order to secure heat input to the tip 18P of the welding wire 18 when the droplet 23 begins to melt, the inclination α and the current rise period T2 are set, and the predetermined current If after the detachment of the droplet 23 is detected is melted. It should be substantially the same as the peak current Ip before the detection of the detachment of the drop 23. As a result, in the period T7 during which the constant voltage control is performed from the time when the welding current I rises to the predetermined current If to the time when the droplet is removed t5, the difference between the predetermined current If and the minimum value IL of the melting current Ig is used. By adjusting and optimizing a certain current fluctuation width It, the transition cycle Tt from the start of melting of the welding wire 18 to the detachment of the droplet 23 is stabilized, so that the arc 20 is stabilized.

ここで、電流低下期間T1と電流上昇期間T2との和である所定の期間Tftでは定電流制御が行われ、期間T7は定電圧制御が行われる。定電流制御から定電圧制御への切替は、スパッタを低減する期間である所定の期間Tftの定電流制御と、溶滴23を成長させアークを安定させる期間T7の定電圧制御とがそれぞれ安定して行われるように、溶接電流Iが所定の電流Ifに上昇後直ちに、実施する。 Here, constant current control is performed during a predetermined period Tft, which is the sum of the current decrease period T1 and the current increase period T2, and constant voltage control is performed during the period T7. Switching from constant current control to constant voltage control stabilizes the constant current control of Tft for a predetermined period, which is a period for reducing spatter, and the constant voltage control for T7, which is a period for growing droplets 23 and stabilizing the arc. Immediately after the welding current I rises to a predetermined current If, it is carried out.

以上のように、実施の形態におけるアーク溶接装置1001を用いたアーク溶接制御方法では、溶接電流Iがピーク電流Ipと凹状に湾曲している溶融電流Igとを交互に繰り返す。溶滴23の離脱を検出した溶滴離脱時点t5の後に溶接電流Iを急峻に下げた後に所定の傾きαで電流上昇期間T2に所定の電流Ifまで増加する。所定の電流Ifが溶滴23の離脱の検出前のピーク電流Ipと実質的に同じになるように、所定の傾きαで電流上昇期間T2に溶接電流Iを増加させ、少なくとも電流変動幅Itを制御する。これによりスパッタの発生と、入熱量不足を抑制して、安定なアーク20で溶接を行う事ができる。 As described above, in the arc welding control method using the arc welding apparatus 1001 of the embodiment, the peak current Ip and the melt current Ig whose welding current I is curved in a concave shape are alternately repeated. After the welding current I is sharply lowered after the droplet detachment time t5 when the detachment of the droplet 23 is detected, the welding current I is increased to a predetermined current If during the current increase period T2 with a predetermined inclination α. The welding current I is increased during the current rise period T2 with a predetermined slope α so that the predetermined current If is substantially the same as the peak current Ip before the detachment of the droplet 23 is detected, and at least the current fluctuation width It is increased. Control. As a result, generation of spatter and insufficient heat input can be suppressed, and welding can be performed with a stable arc 20.

なお、電流上昇期間T2に所定の電流Ifまで増加する所定の傾きαは、溶滴離脱時点t5の後に、溶接電流Iを急峻に下げる傾きを傾きβとした場合、傾きαは傾きβより小さい。 The predetermined slope α that increases to a predetermined current If during the current increase period T2 is smaller than the slope β when the slope β that sharply lowers the welding current I after the droplet detachment time t5 is defined. ..

図3はアーク溶接装置1001における他のアーク溶接制御方法を示し、アーク溶接装置1001の溶接ワイヤ18と、溶接電流Iと、溶接電圧Vと、溶接電圧Vの溶接電流Iに対する比である溶接抵抗Rとを示す。図3において、図2と同じ部分には同じ参照番号を付す。本実施の形態では、十分にスプレー移行状態となる溶接ワイヤ18の送給量を選択する。溶接電流Iは、所定の電流Ifまで増加してから溶滴23が離脱する溶滴離脱時点t5まで一定に維持される。溶接ワイヤ18の送給量は設定電流Isにより決定される。図3に示す動作でも、図2と同様に、溶滴23の離脱を検出した溶滴離脱時点t5の後に溶接電流Iを急峻に下げた後に所定の傾きαで電流上昇期間T2に所定の電流Ifまで増加する。所定の電流Ifが溶滴23の離脱の検出前のピーク電流Ipと実質的に同じになるように、所定の傾きαで電流上昇期間T2に溶接電流Iを増加させ制御する。これによりスパッタの発生と、入熱量不足を抑制して、安定なアーク20で溶接を行う事ができる。 FIG. 3 shows another arc welding control method in the arc welding device 1001, and is a welding resistance which is a ratio of the welding wire 18 of the arc welding device 1001, the welding current I, the welding voltage V, and the welding voltage V to the welding current I. Indicates R. In FIG. 3, the same reference numbers are assigned to the same parts as those in FIG. In the present embodiment, the feed amount of the welding wire 18 that is sufficiently in the spray transition state is selected. The welding current I is maintained constant until the droplet detachment time t5 when the droplet 23 is detached after increasing to a predetermined current If. The feed amount of the welding wire 18 is determined by the set current Is. Also in the operation shown in FIG. 3, similarly to FIG. 2, the welding current I is sharply lowered after the droplet detachment time point t5 when the detachment of the droplet 23 is detected, and then a predetermined current is applied during the current increase period T2 with a predetermined inclination α. Increases to If. The welding current I is increased and controlled during the current rise period T2 with a predetermined slope α so that the predetermined current If is substantially the same as the peak current Ip before the detachment of the droplet 23 is detected. As a result, generation of spatter and insufficient heat input can be suppressed, and welding can be performed with a stable arc 20.

記憶部12は溶接制御パラメータとして電子リアクトル制御のインダクタンス値を記憶してもよい。シールドガスとして炭酸ガスを用いたスプレー移行溶接の定電圧制御の電流は、例えばインダクタンス値を調整する事で調整できる。 The storage unit 12 may store the inductance value of the electronic reactor control as a welding control parameter. The constant voltage control current of spray transition welding using carbon dioxide as the shield gas can be adjusted, for example, by adjusting the inductance value.

また、電流変動幅Itは溶接の出力に関連するインダクタンス値を変更することで制御する。インダクタンス値はリアクトル6と、記憶部12に記憶された電子リアクトル制御の電子リアクトル値との加算値からなり、このインダクタンス値による出力制御信号を駆動部7に出力する。 Further, the current fluctuation width It is controlled by changing the inductance value related to the welding output. The inductance value is an addition value of the reactor 6 and the electronic reactor value of the electronic reactor control stored in the storage unit 12, and the output control signal based on this inductance value is output to the drive unit 7.

図3に示す一定の溶接電流Iを用いるよりも図2に示す電流変動幅Itを有する溶接電流Iの方がスプレー移行の溶滴23の離脱を制御しやすい。これは、湾曲状の波形の電流変動幅Itを制御することにより、溶接ワイヤ18の先端18Pで溶滴23が成長する時には溶接電流Iを小さくし、溶滴23が離脱する時には溶接電流を大きくすることが可能なためである。 The welding current I having the current fluctuation width It shown in FIG. 2 is easier to control the detachment of the droplet 23 in the spray transition than the constant welding current I shown in FIG. By controlling the current fluctuation width It of the curved waveform, the welding current I is reduced when the droplet 23 grows at the tip 18P of the welding wire 18, and the welding current is increased when the droplet 23 is separated. This is because it is possible to do so.

電流変動幅Itが大きすぎると、溶融電流Igが小さくなるので、溶滴23が成長する時の溶接ワイヤ18への入熱量が不足する。そのため、母材17に向かって送給されている溶接ワイヤ18の先端18Pと母材17との間の距離が溶滴23が成長する時に短くなる。したがって、溶接ワイヤ18の先端18Pで溶滴23が十分に成長せずにワイヤ18の先端18Pが十分に溶融せず、溶滴23が離脱する前に溶接ワイヤ18の先端18Pと母材17が短絡する。これにより、アーク20が不安定となると共にスパッタが発生する。 If the current fluctuation width It is too large, the melting current Ig becomes small, so that the amount of heat input to the welding wire 18 when the droplet 23 grows is insufficient. Therefore, the distance between the tip 18P of the welding wire 18 fed toward the base material 17 and the base material 17 becomes shorter when the droplet 23 grows. Therefore, the tip 18P of the welding wire 18 does not sufficiently grow the droplet 23, the tip 18P of the wire 18 does not sufficiently melt, and the tip 18P of the welding wire 18 and the base metal 17 are separated before the droplet 23 is separated. Short circuit. As a result, the arc 20 becomes unstable and spatter occurs.

また、電流変動幅Itが小さすぎると、溶融電流Igの極小値ILが大きくなるので、溶滴23が成長する時のアーク反力が大きくなる。そのため、溶融させたワイヤ18の先端18Pでの溶滴23が溶接ワイヤ18に向かって押し戻されるため、アーク20が不安定となると共に、溶接ワイヤ18の先端18Pから飛散しスパッタとなる。よって、電流変動幅Itを最適化することによって、溶接ワイヤ18が溶融し始めてから溶滴23が離脱するまでの移行周期Ttが安定するため、アーク20が安定する。 Further, if the current fluctuation width It is too small, the minimum value IL of the melting current Ig becomes large, so that the arc reaction force when the droplet 23 grows becomes large. Therefore, the droplet 23 at the tip 18P of the melted wire 18 is pushed back toward the welding wire 18, so that the arc 20 becomes unstable and scatters from the tip 18P of the welding wire 18 to cause sputtering. Therefore, by optimizing the current fluctuation width It, the transition cycle Tt from the start of melting of the welding wire 18 to the release of the droplet 23 is stabilized, so that the arc 20 is stabilized.

このように、炭酸ガスを主成分とするガスを用いたスプレー移行溶接において、定電圧制御で電流変動幅Itを調整し、溶接電流Iを制御する。図2に示す湾曲した溶接電流Iを用いると、溶滴23が安定に成長し、安定した周期で溶滴23を溶接ワイヤ18から離脱させることができる。また、溶滴23が安定に成長し、安定した周期で溶滴23が離脱するので、アーク20が安定し、アーク長L20が常に一定になるよう制御される。アーク長L20が一定となるので、突出し長さL18の変動や母材17の位置ずれ等の外乱が発生した時においてもアーク長L20の変動が抑制されるので、微小短絡が抑制され、スパッタが低減し、同時に幅の均一なビードが得られる。 As described above, in the spray transition welding using a gas containing carbon dioxide as a main component, the current fluctuation width It is adjusted by constant voltage control to control the welding current I. When the curved welding current I shown in FIG. 2 is used, the droplet 23 grows stably, and the droplet 23 can be separated from the welding wire 18 at a stable cycle. Further, since the droplet 23 grows stably and the droplet 23 is released at a stable cycle, the arc 20 is stabilized and the arc length L20 is controlled to be always constant. Since the arc length L20 is constant, fluctuations in the arc length L20 are suppressed even when disturbances such as fluctuations in the protruding length L18 and misalignment of the base metal 17 occur, so that minute short circuits are suppressed and sputtering occurs. It is reduced and at the same time a bead with a uniform width is obtained.

炭酸ガスを主成分とするシールドガスを用いたスプレー移行溶接において溶滴23の離脱を検出し、離脱を検出した後直ちに溶接電流Iを低下電流Irに低下させる。その後、電流低下期間T1と電流上昇期間T2を経て溶接電流Iが所定の電流Ifに達した後は、凹状に湾曲する溶融電流Igを出力する。 In spray transfer welding using a shield gas containing carbon dioxide as a main component, the detachment of the droplet 23 is detected, and immediately after the detachment is detected, the welding current I is reduced to the lowering current Ir. After that, after the welding current I reaches a predetermined current If through the current decrease period T1 and the current increase period T2, the melt current Ig curved in a concave shape is output.

溶滴23が離脱する溶滴離脱時点t5を検出することにより、溶滴離脱時点t5の直後に溶接電流Iを急峻にピーク電流Ipから低下電流Irに低下させることで、溶滴23が離脱する時のアーク反力を抑制でき、溶滴23が離脱する時に発生するスパッタも低減する事ができる。 By detecting the droplet detachment time point t5 at which the droplet 23 is detached, the welding current I is sharply reduced from the peak current Ip to the decrease current Ir immediately after the droplet detachment time point t5, so that the droplet 23 is detached. The arc reaction force at that time can be suppressed, and the spatter generated when the droplet 23 is separated can also be reduced.

所定の電流Ifの前後の定電流制御から定電圧制御への溶接制御の切り替わり時に、言い換えると、溶滴23の離脱を検出してから溶接電流Iが所定の電流Ifに到達するまでの定電流制御が行われる所定の期間Tftと定電圧制御が行われる期間T7とが切替わり時点では、溶接電流Iのハンチングが生じやすく、これに伴い溶接抵抗Rの値のハンチングが生じ易く、溶滴23の離脱の誤検出が発生する可能性がある。 When the welding control is switched from constant current control before and after the predetermined current If to constant voltage control, in other words, the constant current from the detection of the detachment of the droplet 23 until the welding current I reaches the predetermined current If. At the time when the predetermined period Tft in which the control is performed and the period T7 in which the constant voltage control is performed are switched, hunting of the welding current I is likely to occur, and hunting of the value of the welding resistance R is likely to occur accordingly. False detection of withdrawal may occur.

具体的には、溶滴23の離脱を検出した後に、定電流制御を行い、溶接電流を、溶滴23が離脱する前のピーク電流Ipから低下電流Irに急峻に溶接電流Iを下げて電流低下期間T1の間維持し、その後所定の傾きαで電流上昇期間T2に溶接電流Iを増加させて所定の電流Ifに達した後、定電流制御から定電圧制御に切替ると、電流上昇期間T2後の電流変動幅Itの電流の脈動が大きくなり安定し難くなるハンチングが生じ、溶滴23の離脱の誤検出が発生する場合がある。 Specifically, after detecting the detachment of the droplet 23, constant current control is performed to reduce the welding current from the peak current Ip before the droplet 23 detaches to the decreasing current Ir. It is maintained for the decrease period T1, and then the welding current I is increased in the current increase period T2 with a predetermined inclination α to reach the predetermined current If, and then the constant current control is switched to the constant voltage control. The pulsation of the current with the current fluctuation width It after T2 becomes large, causing hunting that makes it difficult to stabilize, and erroneous detection of detachment of the droplet 23 may occur.

なお、溶接電流Iが所定の電流Ifに到達した時点すなわち所定の期間Tftが経過した時点で溶接制御は定電流制御から定電圧制御に切り替わり、溶接電流Iのハンチングが生じやすい。図2に示す湾曲状の電流変動幅Itを発生させる溶接装置ではインダクタンス値が小さく、図3に示す一定の溶接電流Iに比べて、さらにハンチングが助長され易く、溶接電流のハンチングが生じやすくなり、これに伴い溶接抵抗Rの値のハンチングが生じ易い傾向がある。 When the welding current I reaches the predetermined current If, that is, when the predetermined period Tft elapses, the welding control is switched from the constant current control to the constant voltage control, and hunting of the welding current I is likely to occur. In the welding device that generates the curved current fluctuation width It shown in FIG. 2, the inductance value is small, and hunting is more likely to be promoted and hunting of the welding current is more likely to occur as compared with the constant welding current I shown in FIG. Along with this, hunting of the value of the welding resistance R tends to occur.

実施の形態におけるアーク溶接制御方法では、溶接電流Iが所定の電流Ifに到達した電流上昇期間T2が経過した時点から所定の検出無効期間T6に溶滴23を離脱したことを検出しない。 In the arc welding control method of the embodiment, it is not detected that the droplet 23 has left the droplet 23 during the predetermined detection invalid period T6 from the time when the current increase period T2 at which the welding current I reaches the predetermined current If has elapsed.

以上のように、本実施の形態のアーク溶接制御方法では、溶滴23の離脱は、溶接抵抗Rまたは溶接抵抗Rの単位時間当たりの変化量、あるいは、溶接電圧Vまたは溶接電圧Vの単位時間当たりの変化量に基づいて検出される。溶滴23の離脱を検出した溶滴離脱時点t5から所定の期間Tftには、定電流制御を行い所定の期間Tftが経過した後は定電圧制御に切り替え、所定の期間Tftが経過した時点すなわち溶接電流Iが所定の電流Ifに到達した時点から検出無効期間T6は溶滴23の離脱の検出を行わない。これにより、溶接抵抗Rにより安定に溶滴23を検出することが出来、微小短絡が低減しスパッタを低減することが出来る。 As described above, in the arc welding control method of the present embodiment, the detachment of the droplet 23 is the amount of change in the welding resistance R or the welding resistance R per unit time, or the unit time of the welding voltage V or the welding voltage V. It is detected based on the amount of change per hit. A constant current control is performed during the predetermined period Tft from the droplet detachment time point t5 when the detachment of the droplet 23 is detected, and after the predetermined period Tft elapses, the control is switched to the constant voltage control, and when the predetermined period Tft elapses, that is, From the time when the welding current I reaches a predetermined current If, the detection invalid period T6 does not detect the detachment of the droplet 23. As a result, the droplet 23 can be stably detected by the welding resistance R, minute short circuits can be reduced, and sputtering can be reduced.

これにより、アーク長L20の変動に対して追従性が高く、従来のパルスアーク溶接法のように炭酸ガス主成分とするシールドガスの組成に制約を受けることもなく、アーク20が不安定でスパッタが発生し易い、炭酸ガスを主成分とするガスを用いたスプレー移行溶接であっても、低スパッタで安定したアーク20を得る事ができる。 As a result, it has high followability to fluctuations in the arc length L20, and unlike the conventional pulse arc welding method, the arc 20 is unstable and spatters without being restricted by the composition of the shield gas containing carbon dioxide as the main component. It is possible to obtain a stable arc 20 with low spatter even in spray transfer welding using a gas containing carbon dioxide as a main component, which tends to generate gas.

上述のように、スプレー移行状態のアーク溶接制御方法は、溶接ワイヤ18に溶接電流Iを出力するアーク溶接装置1001を用いる。このアーク溶接制御方法では、溶接ワイヤ18の一部を溶融させるようにアーク溶接装置1001を制御する。溶接ワイヤ18の溶融した一部よりなる溶滴23が溶接ワイヤ18から離脱したことを検出する動作を行うことにより溶滴23が溶接ワイヤ18から離脱した溶滴離脱時点t5を検出する。溶滴離脱時点t5の後直ちに溶接電流Iを低下電流Irまで低下させる。溶接電流Iを低下電流Irまで低下させてから所定の電流低下期間T1が経過した後に所定の電流Ifへ上昇させる。 As described above, the arc welding control method in the spray transition state uses an arc welding device 1001 that outputs a welding current I to the welding wire 18. In this arc welding control method, the arc welding apparatus 1001 is controlled so as to melt a part of the welding wire 18. By performing an operation of detecting that the droplet 23 composed of a melted part of the welding wire 18 has separated from the welding wire 18, the droplet separation time point t5 at which the droplet 23 has separated from the welding wire 18 is detected. Immediately after the droplet separation time t5, the welding current I is reduced to the lowering current Ir. After the welding current I is reduced to the reduced current Ir and the predetermined current reduction period T1 has elapsed, the welding current I is increased to the predetermined current If.

溶接ワイヤ18の一部を溶融させるようにアーク溶接装置1001を制御する際に、溶滴離脱時点t5から定電流制御を行い、その後、定電流制御を定電圧制御に切替えてもよい。この場合に、所定の電流低下期間T1が経過した時点から所定の検出無効期間T6には溶滴23が溶接ワイヤ18から離脱したことを検出する動作を行わず、所定の検出無効期間T6が経過した後に溶滴23が溶接ワイヤ18から離脱したことを検出する動作を行う。 When controlling the arc welding apparatus 1001 so as to melt a part of the welding wire 18, constant current control may be performed from t5 at the time of droplet detachment, and then constant current control may be switched to constant voltage control. In this case, the operation of detecting that the droplet 23 has separated from the welding wire 18 is not performed during the predetermined detection invalid period T6 from the time when the predetermined current reduction period T1 elapses, and the predetermined detection invalid period T6 elapses. After that, the operation of detecting that the droplet 23 has separated from the welding wire 18 is performed.

溶接抵抗Rまたは溶接抵抗Rの変化量、または溶接電圧Vまたは溶接電圧Vの変化量により溶滴23が溶接ワイヤ18から離脱したことを検出してもよい。 It may be detected that the droplet 23 is separated from the welding wire 18 due to the change amount of the welding resistance R or the welding resistance R, or the change amount of the welding voltage V or the welding voltage V.

溶接ワイヤ18の一部を溶融させて溶滴23が溶接ワイヤ18から離脱するまで溶接電流Iが一定電流となるようにアーク溶接装置1001を制御してもよい。 The arc welding apparatus 1001 may be controlled so that the welding current I becomes a constant current until a part of the welding wire 18 is melted and the droplet 23 is separated from the welding wire 18.

溶接電流Iが、溶滴23が溶接ワイヤ18から離脱する際のピーク電流Ipと、溶接ワイヤ18の溶融を開始して促進する際の凹状に極小値ILを有するように湾曲して連続的に変化する溶融電流Igとを交互に繰り返すように、アーク溶接装置1001を制御してもよい。 The welding current I is continuously curved so as to have a peak current Ip when the droplet 23 separates from the welding wire 18 and a concave minimum value IL when the welding wire 18 starts and accelerates melting. The arc welding apparatus 1001 may be controlled so as to alternately repeat the changing melting current Ig.

上記の場合に、所定の電流Ifがピーク電流Ipと実質的に同じになるように、所定の傾きαで所定の電流上昇期間T2だけ溶接電流Iを所定の電流Ifに増加させてもよい。この場合、ピーク電流Ipと溶融電流Igの極小値ILとの差分である電流変動幅Itを制御する。 In the above case, the welding current I may be increased to a predetermined current If by a predetermined current rise period T2 with a predetermined slope α so that the predetermined current If is substantially the same as the peak current Ip. In this case, the current fluctuation width It, which is the difference between the peak current Ip and the minimum value IL of the melting current Ig, is controlled.

所定の傾きαと所定の電流上昇期間T2を調整することにより電流変動幅Itを制御してもよい。 The current fluctuation width It may be controlled by adjusting a predetermined slope α and a predetermined current rise period T2.

溶接の出力に関連するインダクタンスの値を変更することにより設定電流Isを中心として電流変動幅Itを調整してもよい。 The current fluctuation width It may be adjusted around the set current Is by changing the value of the inductance related to the welding output.

インダクタンスは、リアクトルと電子リアクトル制御による電子リアクトル値との加算値からなっていてもよい。 The inductance may consist of the sum of the reactor and the electronic reactor value controlled by the electronic reactor.

溶接電圧Vの出力を設定する設定電圧Vsに基づいて、溶接電流Iがピーク電流Ipと溶融電流Igとを繰り返すようにアーク溶接装置1001を制御してもよい。 The arc welding apparatus 1001 may be controlled so that the welding current I repeats the peak current Ip and the melting current Ig based on the set voltage Vs that sets the output of the welding voltage V.

低下電流Irは極小値ILより小さくてもよい。 The reduced current Ir may be smaller than the minimum value IL.

所定の電流低下期間T1は、所定の電流上昇期間T2より短くてもよい。 The predetermined current decrease period T1 may be shorter than the predetermined current increase period T2.

実施の形態におけるアーク溶接制御では、スプレー移行状態のアーク溶接を行う場合において、突出し長さL18の変動や母材17の位置ずれ等の外乱が発生した場合においてもアーク長L20が安定する。したがって、作業者の作業性が向上すると共に、均一なビード幅で母材17を溶接でき、溶滴23の離脱や微小短絡時に発生するスパッタも抑制できる。 In the arc welding control according to the embodiment, the arc length L20 is stable even when disturbances such as fluctuation of the protrusion length L18 and misalignment of the base metal 17 occur in the case of performing arc welding in the spray transition state. Therefore, the workability of the operator is improved, the base metal 17 can be welded with a uniform bead width, and spatter generated when the droplet 23 is separated or a minute short circuit can be suppressed can be suppressed.

本発明によるアーク溶接制御方法ではアーク長を安定化することができるので、外乱が発生する状態でのアーク溶接に有用である。 Since the arc welding control method according to the present invention can stabilize the arc length, it is useful for arc welding in a state where disturbance occurs.

1 入力電源
2 1次整流部
3 スイッチング部
4 トランス
5 2次整流部
6 リアクトル
7 駆動部
8 溶接電流検出部
9 溶接電圧検出部
10 溶滴離脱検出部
11 アーク制御部
12 記憶部
13 溶接条件設定部
14 トーチ
15 チップ
17 母材
18 溶接ワイヤ
19 ワイヤ送給部
20 アーク
23 溶滴
Ip ピーク電流
Ig 溶融電流
It 電流変動幅
Ir 低下電流
T1 電流低下期間
T2 電流上昇期間
t3 溶融開始時点
T4 溶滴の成長期間
t5 溶滴離脱時点
T6 検出無効期間
T7 定電圧制御期間
Tft 所定の期間
Ib ベース電流
α 傾き
1 Input power supply 2 Primary rectifying unit 3 Switching unit 4 Transformer 5 Secondary rectifying unit 6 Reactor 7 Drive unit 8 Welding current detection unit 9 Welding voltage detection unit 10 Drip detachment detection unit 11 Arc control unit 12 Storage unit 13 Welding condition setting Part 14 Torch 15 Chip 17 Base material 18 Welding wire 19 Wire feeding part 20 Arc 23 Dropping Ip Peak current Ig Melting current It Current fluctuation width Ir Decrease current T1 Current decrease period T2 Current increase period t3 At the start of melting T4 Growth period t5 Time of droplet detachment T6 Detection invalid period T7 Constant voltage control period Tft Predetermined period Ib Base current α Tilt

Claims (12)

溶接ワイヤに溶接電流を出力するアーク溶接装置を用いた、スプレー移行状態のアーク溶接制御方法であって、
前記溶接ワイヤの一部を溶融させるように前記アーク溶接装置を制御するステップと、
前記溶接ワイヤの前記溶融した一部よりなる溶滴が前記溶接ワイヤから離脱したことを検出する動作を行うことにより前記溶滴が前記溶接ワイヤから離脱した溶滴離脱時点を検出するステップと、
前記溶滴離脱時点の後直ちに前記溶接電流を低下電流まで低下させるステップと、
前記溶接電流を前記低下電流まで低下させる前記ステップにおいて前記溶接電流を前記低下電流まで低下させてから所定の電流低下期間が経過した後に所定の電流へ上昇させるステップと、
を含むアーク溶接制御方法。
This is an arc welding control method in the spray transition state using an arc welding device that outputs a welding current to the welding wire.
A step of controlling the arc welding apparatus to melt a part of the welding wire, and
A step of detecting a droplet detachment time point when the droplet is detached from the welding wire by performing an operation of detecting that the droplet composed of the molten portion of the welding wire is detached from the welding wire.
A step of reducing the welding current to a reduced current immediately after the droplet detachment, and
In the step of reducing the welding current to the reduced current, a step of reducing the welding current to the reduced current and then increasing the welding current to a predetermined current after a predetermined current reduction period has elapsed.
Arc welding control method including.
前記溶接ワイヤの前記一部を溶融させるように前記アーク溶接装置を制御する前記ステップは、
前記溶滴離脱時点から定電流制御を行うステップと、
前記定電流制御を定電圧制御に切替えるステップと、
を含み、
前記溶滴離脱時点を検出する前記ステップは、前記所定の電流低下期間が経過した時点から所定の検出無効期間には前記溶滴が前記溶接ワイヤから離脱したことを検出する前記動作を行わず、前記所定の検出無効期間が経過した後に前記溶滴が前記溶接ワイヤから離脱したことを検出する前記動作を行うステップを含む、請求項1に記載のアーク溶接制御方法。
The step of controlling the arc welding apparatus to melt the part of the welding wire is
The step of performing constant current control from the time of droplet detachment and
The step of switching the constant current control to the constant voltage control,
Including
The step of detecting the droplet detachment time point does not perform the operation of detecting that the droplet has detached from the welding wire during the predetermined detection invalid period from the time when the predetermined current reduction period elapses. The arc welding control method according to claim 1, further comprising the step of performing the operation of detecting that the droplet has separated from the welding wire after the predetermined detection invalid period has elapsed.
前記溶滴離脱時点を検出する前記ステップは、溶接抵抗または前記溶接抵抗の変化量、または溶接電圧または前記溶接電圧の変化量により前記溶滴が前記溶接ワイヤから離脱したことを検出するステップを含む、請求項1または2に記載のアーク溶接制御方法。 The step of detecting the time of the droplet detachment includes a step of detecting that the droplet has detached from the welding wire due to the welding resistance or the amount of change in the welding resistance, or the welding voltage or the amount of change in the welding voltage. , The arc welding control method according to claim 1 or 2. 前記溶接ワイヤの前記一部を溶融させるように前記アーク溶接装置を制御する前記ステップは、前記溶接ワイヤの前記一部を溶融させて前記溶滴が前記溶接ワイヤから離脱するまで前記溶接電流が一定電流となるように前記アーク溶接装置を制御するステップを含む、請求項1または2に記載のアーク溶接制御方法。 In the step of controlling the arc welding device so as to melt the part of the welding wire, the welding current is constant until the part of the welding wire is melted and the droplets are separated from the welding wire. The arc welding control method according to claim 1 or 2, which comprises a step of controlling the arc welding apparatus so as to be a current. 前記溶接ワイヤの前記一部を溶融させるように前記アーク溶接装置を制御する前記ステップは、前記溶接電流が、前記溶滴が前記溶接ワイヤから離脱する際のピーク電流と、前記溶接ワイヤの溶融を開始して促進する際の凹状に極小値を有するように湾曲して連続的に変化する溶融電流とを交互に繰り返すように、前記アーク溶接装置を制御するステップを含む、請求項1または2に記載のアーク溶接制御方法。 The step of controlling the arc welding apparatus to melt the part of the welding wire is that the welding current causes the peak current when the droplets are separated from the welding wire and the melting of the welding wire. 1 or 2, wherein the arc welding apparatus is controlled so as to alternately repeat a melting current which is curved so as to have a minimum value in a concave shape when starting and promoting. The arc welding control method described. 前記溶接電流を前記所定の電流へ上昇させる前記ステップは、前記所定の電流が前記ピーク電流と実質的に同じになるように、所定の傾きで所定の電流上昇期間だけ前記溶接電流を前記所定の電流に増加させるステップを含み、
前記溶接ワイヤの前記一部を溶融させるように前記アーク溶接装置を制御する前記ステップは、前記ピーク電流と前記溶融電流の前記極小値との差分である電流変動幅を制御するステップをさらに含む、請求項5に記載のアーク溶接制御方法。
In the step of increasing the welding current to the predetermined current, the welding current is increased to the predetermined current for a predetermined current increase period with a predetermined inclination so that the predetermined current is substantially the same as the peak current. Including the step of increasing the current
The step of controlling the arc welding apparatus so as to melt the part of the welding wire further includes a step of controlling a current fluctuation width which is a difference between the peak current and the minimum value of the melting current. The arc welding control method according to claim 5.
前記電流変動幅を制御する前記ステップは、前記所定の傾きと前記所定の電流上昇期間を調整することにより前記電流変動幅を制御するステップを含む、請求項6に記載のアーク溶接制御方法。 The arc welding control method according to claim 6, wherein the step of controlling the current fluctuation width includes a step of controlling the current fluctuation width by adjusting the predetermined inclination and the predetermined current rise period. 前記溶接ワイヤの前記一部を溶融させるように前記アーク溶接装置を制御する前記ステップは、溶接の出力に関連するインダクタンスの値を変更することにより設定電流を中心として前記電流変動幅を調整するステップを含む、請求項7に記載のアーク溶接制御方法。 The step of controlling the arc welding device so as to melt the part of the welding wire is a step of adjusting the current fluctuation width around a set current by changing the value of the inductance related to the welding output. 7. The arc welding control method according to claim 7. 前記インダクタンスは、リアクトルと電子リアクトル制御による電子リアクトル値との加算値からなる、請求項に記載のアーク溶接制御方法。 The arc welding control method according to claim 8 , wherein the inductance is an sum of a reactor and an electronic reactor value controlled by an electronic reactor. 前記所定の電流低下期間は、前記所定の電流上昇期間より短い、請求項6から9のいずれか一項に記載のアーク溶接制御方法。 The arc welding control method according to any one of claims 6 to 9, wherein the predetermined current decrease period is shorter than the predetermined current increase period. 前記溶接ワイヤの前記一部を溶融させるように前記アーク溶接装置を制御する前記ステップは、溶接電圧の出力を設定する設定電圧に基づいて、前記溶接電流が前記ピーク電流と前記溶融電流とを繰り返すように前記アーク溶接装置を制御するステップを含む、請求項5に記載のアーク溶接制御方法。 The step of controlling the arc welding apparatus to melt the part of the welding wire is such that the welding current repeats the peak current and the melting current based on a set voltage that sets the output of the welding voltage. The arc welding control method according to claim 5, further comprising a step of controlling the arc welding apparatus. 前記低下電流は前記極小値より小さい、請求項5から11のいずれか一項に記載のアーク溶接制御方法。 The arc welding control method according to any one of claims 5 to 11, wherein the reduced current is smaller than the minimum value.
JP2017535227A 2015-08-17 2016-08-04 Arc welding control method Active JP6757892B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015160271 2015-08-17
JP2015160271 2015-08-17
PCT/JP2016/003604 WO2017029783A1 (en) 2015-08-17 2016-08-04 Arc welding control method

Publications (2)

Publication Number Publication Date
JPWO2017029783A1 JPWO2017029783A1 (en) 2018-05-31
JP6757892B2 true JP6757892B2 (en) 2020-09-23

Family

ID=58051486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017535227A Active JP6757892B2 (en) 2015-08-17 2016-08-04 Arc welding control method

Country Status (3)

Country Link
JP (1) JP6757892B2 (en)
CN (1) CN107614181B (en)
WO (1) WO2017029783A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7048382B2 (en) * 2018-03-28 2022-04-05 株式会社神戸製鋼所 Control method and control device for gas shielded arc welding
EP3960351B1 (en) * 2019-04-22 2023-09-13 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method and arc welding device
WO2020246416A1 (en) * 2019-06-06 2020-12-10 パナソニックIpマネジメント株式会社 Welding condition setting assistance device
JPWO2021140970A1 (en) * 2020-01-06 2021-07-15
CN114473145B (en) * 2021-12-20 2024-04-16 上海工程技术大学 Control method for forming welding seam of aluminum steel heterogeneous metal arc welding

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744472A (en) * 1980-08-29 1982-03-12 Mitsubishi Electric Corp Pulse arc welding method
JPH0829412B2 (en) * 1987-04-28 1996-03-27 松下電器産業株式会社 Arc welding machine
JP3300157B2 (en) * 1994-04-25 2002-07-08 株式会社神戸製鋼所 CO2 pulse arc welding method
US8937267B2 (en) * 2007-09-26 2015-01-20 Lincoln Global, Inc. Method and system to increase heat input to a weld during a short-circuit arc welding process
JP5061007B2 (en) * 2008-03-28 2012-10-31 株式会社神戸製鋼所 Welding control apparatus, welding control method and program thereof
JP6596675B2 (en) * 2015-04-07 2019-10-30 パナソニックIpマネジメント株式会社 Arc welding control method

Also Published As

Publication number Publication date
CN107614181B (en) 2019-08-02
WO2017029783A1 (en) 2017-02-23
CN107614181A (en) 2018-01-19
JPWO2017029783A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
JP6757892B2 (en) Arc welding control method
US10870161B2 (en) Arc welding control method
JP6778855B2 (en) Pulse arc welding control method and pulse arc welding equipment
CA2550134C (en) Pulse arc welding control method and pulse arc welding device
US11813704B2 (en) Pulsed arc welding control method and pulsed arc welding device
JP5998355B2 (en) Arc welding control method and arc welding apparatus
KR102327740B1 (en) Control method and control device of gas shielded arc welding
JP5840921B2 (en) Constriction detection control method for consumable electrode arc welding
JP2016168617A (en) Arc-welding control method
JP6596675B2 (en) Arc welding control method
CN111315520B (en) Arc welding control method
JP2014083571A (en) Welding current control method during short-circuit period
WO2017038060A1 (en) Arc welding method and arc welding device
JP6994623B2 (en) Arc start method
EP3695930B1 (en) Arc welding method
JPH08267239A (en) Output control method of power source for consumable electrode type gas shielded pulsed arc welding
JP5871360B2 (en) Constriction detection control method for consumable electrode arc welding
WO2021235210A1 (en) Direct current arc welding control method
JP2019188434A (en) Control method of ac arc-welding
JPS60106669A (en) Method for controlling output of power source for welding

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171018

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R151 Written notification of patent or utility model registration

Ref document number: 6757892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151