JP6596675B2 - Arc welding control method - Google Patents

Arc welding control method Download PDF

Info

Publication number
JP6596675B2
JP6596675B2 JP2017511456A JP2017511456A JP6596675B2 JP 6596675 B2 JP6596675 B2 JP 6596675B2 JP 2017511456 A JP2017511456 A JP 2017511456A JP 2017511456 A JP2017511456 A JP 2017511456A JP 6596675 B2 JP6596675 B2 JP 6596675B2
Authority
JP
Japan
Prior art keywords
welding
current
arc
melting
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017511456A
Other languages
Japanese (ja)
Other versions
JPWO2016163073A1 (en
Inventor
昂裕 野口
海斗 松井
篤寛 川本
将 古和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2016163073A1 publication Critical patent/JPWO2016163073A1/en
Application granted granted Critical
Publication of JP6596675B2 publication Critical patent/JP6596675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)
  • Arc Welding In General (AREA)

Description

本発明は消耗電極である溶接ワイヤと被溶接物である母材との間でアークを発生させて溶接を行うアーク溶接制御方法に関する。  The present invention relates to an arc welding control method for performing welding by generating an arc between a welding wire as a consumable electrode and a base material as a workpiece.

溶接ワイヤと母材との間にアークを発生させて溶接を行うアーク溶接において、臨界電流値を超えると溶接ワイヤが溶融して生成された溶滴の移行の形態はスプレー移行となる。臨界電流値よりも高いピーク電流と、アークを維持するための臨界電流値より低いベース電流とを交互に繰り返す事で行う溶接方法はパルスアーク溶接法と呼ばれ、直流のスプレー移行溶接よりも低い平均電流で、スプレー移行を行わせることができる。  In arc welding in which an arc is generated between a welding wire and a base material and welding is performed, when the critical current value is exceeded, the form of transfer of droplets generated by melting the welding wire is spray transfer. A welding method that is performed by alternately repeating a peak current higher than the critical current value and a base current lower than the critical current value for maintaining the arc is called a pulse arc welding method, which is lower than the direct current spray transfer welding. The spray transfer can be performed with an average current.

ベース電流が流れるベース電流期間ではアークが維持される。パルスアーク溶接法では、溶滴の移行がアーク力の影響を受けることの最も少ないベース電流期間中にて行われる。従って、スパッタを大幅に低減することが可能である。  The arc is maintained during the base current period in which the base current flows. In the pulse arc welding method, the droplet transfer is performed during a base current period in which the arc force is least affected by the arc force. Therefore, it is possible to greatly reduce spatter.

しかし、パルスアーク溶接法は、シールドガスの組成に制約を受ける。シールドガス中の炭酸ガスの割合が30%を超えると、スパッタの低減効果が薄弱になる。一方、主成分として、スパッタの低減効果は大きいが高価であるアルゴンガスを大量に使用すると、シールドガスのコストが高くなる。そこで、炭酸ガスを主成分とするシールドガスを用いて安定したスプレー移行溶接が可能なアーク溶接法が求められている。  However, the pulse arc welding method is limited by the composition of the shielding gas. When the proportion of carbon dioxide in the shield gas exceeds 30%, the effect of reducing spatter becomes weak. On the other hand, if a large amount of argon gas, which has a large sputter reduction effect as a main component but is expensive, is used, the cost of the shielding gas increases. Therefore, there is a demand for an arc welding method capable of stable spray transfer welding using a shielding gas containing carbon dioxide as a main component.

なお、スパッタが発生すると、母材に付着し、特に、動作を行う製品の可動部にスパッタが付着すると、製品の可動範囲を制限し、製品価値を著しく低下させる。このため、スパッタを除去する別の工程が必要となり、溶接生産性を著しく低下させる。  When spatter occurs, it adheres to the base material, and particularly when spatter adheres to the movable part of the product to be operated, the movable range of the product is limited, and the product value is significantly reduced. For this reason, another process for removing spatters is required, which significantly reduces welding productivity.

図6は特許文献1に開示されている従来のパルスアーク溶接制御方法におけるアーク部501と溶接電圧と溶接電流波形とを示す。このパルスアーク溶接制御方法では、炭酸ガスを主成分とするシールドガスを用いた定電流パルス制御を行っている。  FIG. 6 shows an arc portion 501, a welding voltage, and a welding current waveform in the conventional pulsed arc welding control method disclosed in Patent Document 1. In this pulse arc welding control method, constant current pulse control is performed using a shield gas containing carbon dioxide as a main component.

図6に示すように、ピーク電流Ipの出力が開始され、ピーク時間Tpが開始される。溶融開始点t501から溶接ワイヤ519の先端519Pが溶融し始める。溶融開始点t501から始まる成長期間T502にて溶接ワイヤ519の先端519Pから溶滴523が成長し、溶接ワイヤ519の先端519Pと溶滴523との間にくびれ523Aが生じて溶滴523が先端519Pから離脱し始める。溶滴離脱点t503で溶滴523が溶接ワイヤ519から離脱し、溶滴523の離脱が完了する。パルスアーク溶接では、溶融開始点t501から溶滴離脱点t503が繰り返される。溶滴離脱点t503では、アーク517の長さであるアーク長が短時間で長くなるので、溶接電圧が急峻に高くなる。したがって、溶接電圧Vが所定の電圧しきい値を超えた場合に、あるいは、溶接電圧Vの単位時間当たりの変化量(dV/dt)が所定値を超えたことを検出することにより、溶滴523の溶接ワイヤ519からの離脱を検出することができる。  As shown in FIG. 6, the output of the peak current Ip is started and the peak time Tp is started. The tip 519P of the welding wire 519 starts to melt from the melting start point t501. In the growth period T502 starting from the melting start point t501, the droplet 523 grows from the tip 519P of the welding wire 519, a constriction 523A is generated between the tip 519P of the welding wire 519 and the droplet 523, and the droplet 523 is the tip 519P. Begin to leave. The droplet 523 is detached from the welding wire 519 at the droplet separation point t503, and the separation of the droplet 523 is completed. In the pulse arc welding, the droplet separation point t503 is repeated from the melting start point t501. At the droplet detachment point t503, the arc length, which is the length of the arc 517, increases in a short time, so that the welding voltage increases sharply. Therefore, when the welding voltage V exceeds a predetermined voltage threshold value or by detecting that the amount of change (dV / dt) per unit time of the welding voltage V exceeds a predetermined value, The separation of 523 from the welding wire 519 can be detected.

溶滴523の離脱後において溶滴523にかかるアーク力が強いすなわちアーク517の密度が高いと、アーク力の反力でスパッタが増加する。従って、溶滴523の離脱後は、溶接電流Iの値を、ピーク電流Ipからピーク電流Ipよりも低い所定の低下電流Irに低下し、スパッタの発生を防止している。その後、低下時間TMにおいて溶接電流Iを低下電流Irに維持し、低下時間TMの経過後は、溶接電流Iを元のピーク電流Ipに高めて溶接ワイヤ519の先端部519Pを溶融させる。そして、ピーク時間Tpが終了すると、ベース電流Ibが出力され始めて、ベース時間Tbが開始される。  When the arc force applied to the droplet 523 is strong after the droplet 523 is detached, that is, when the density of the arc 517 is high, spatter increases due to the reaction force of the arc force. Therefore, after the droplet 523 is detached, the value of the welding current I is reduced from the peak current Ip to a predetermined reduction current Ir lower than the peak current Ip, thereby preventing the occurrence of sputtering. Thereafter, the welding current I is maintained at the reduction current Ir during the decrease time TM, and after the decrease time TM has elapsed, the welding current I is increased to the original peak current Ip to melt the tip portion 519P of the welding wire 519. When the peak time Tp ends, the base current Ib starts to be output, and the base time Tb is started.

一方、パルスアーク溶接法を用いず、臨界電流値よりも高い直流の溶接電流を与える事でスプレー移行溶接を行う場合、一般的には、アーク期間では電圧を制御する。特許文献2は、短絡期間とアーク期間を繰り返して短絡アーク溶接を行うアーク溶接制御方法において、電圧制御における電圧の変動を制御する方法として、アーク期間中に電子リアクトル制御によるインダクタンス値を調整することを開示している。  On the other hand, when spray transfer welding is performed by applying a DC welding current higher than the critical current value without using the pulse arc welding method, the voltage is generally controlled during the arc period. Patent Document 2 discloses an arc welding control method in which short-circuit arc welding is performed by repeating a short-circuit period and an arc period, and as a method for controlling voltage fluctuation in voltage control, an inductance value by electronic reactor control is adjusted during the arc period. Is disclosed.

特許第5036197号公報Japanese Patent No. 5036197 国際公開第2013/145569号International Publication No. 2013/14569

スプレー移行状態の定電圧制御のアーク溶接制御方法は、溶接ワイヤに溶接電流を出力するアーク溶接装置を用いる。溶接電流が、溶接ワイヤが溶融して形成された溶滴が溶接ワイヤから離脱する際のピーク電流と、溶接ワイヤの溶融を開始して促進する際の凹状に極小値を有するように湾曲して連続的に変化する溶融電流とを繰り返すようにアーク溶接装置を制御する。ピーク電流と溶融電流が所定の範囲に入るようにアーク溶接装置を制御してもよい。  An arc welding control method of constant voltage control in a spray transfer state uses an arc welding apparatus that outputs a welding current to a welding wire. The welding current is curved to have a minimum value in the peak current when the droplet formed by melting the welding wire separates from the welding wire and the concave shape when starting and promoting the melting of the welding wire. The arc welding apparatus is controlled to repeat a continuously changing melting current. The arc welding apparatus may be controlled so that the peak current and the melting current fall within a predetermined range.

このアーク溶接制御方法により、スパッタが低減できると共に、幅の均一なビードを得る事ができる。  With this arc welding control method, spatter can be reduced and a bead with a uniform width can be obtained.

図1は実施の形態1におけるアーク溶接装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an arc welding apparatus in the first embodiment. 図2は実施の形態1におけるアーク溶接装置のアーク部と溶接電圧と溶接電流とを示す図である。FIG. 2 is a diagram showing an arc portion, a welding voltage, and a welding current of the arc welding apparatus in the first embodiment. 図3は実施の形態1におけるアーク溶接装置の溶接電流の電流変動幅と移行周期を示す図である。FIG. 3 is a diagram showing the current fluctuation width and transition period of the welding current of the arc welding apparatus in the first embodiment. 図4は実施の形態2におけるアーク溶接装置の概略構成図である。FIG. 4 is a schematic configuration diagram of the arc welding apparatus in the second embodiment. 図5Aは実施の形態3におけるアーク溶接装置の溶接電流と溶接電圧との関係を示す図である。FIG. 5A is a diagram showing a relationship between a welding current and a welding voltage of the arc welding apparatus in the third embodiment. 図5Bは実施の形態3におけるアーク溶接装置の溶接電圧と溶接電流を示す図である。FIG. 5B is a diagram showing a welding voltage and a welding current of the arc welding apparatus in the third embodiment. 図6は従来のアーク溶接制御方法におけるアーク部と溶接電圧と溶接電流とを示す図である。FIG. 6 is a diagram showing an arc portion, a welding voltage, and a welding current in a conventional arc welding control method.

(実施の形態1)
図1は実施の形態1におけるアーク溶接装置101の概略構成図である。アーク溶接装置101はアーク部102を備える。図2はアーク部2の動作を模式図に示す。図2はアーク溶接装置101の溶接電圧と溶接電流を併せて示す。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of an arc welding apparatus 101 according to the first embodiment. The arc welding apparatus 101 includes an arc part 102. FIG. 2 schematically shows the operation of the arc part 2. FIG. 2 shows the welding voltage and welding current of the arc welding apparatus 101 together.

アーク溶接装置101は、入力電源1から入力した交流電力を整流する1次整流部2と、溶接出力を制御するスイッチング部3と、スイッチング部3の出力を入力して溶接に適した電力に変換するトランス4とを備える。  The arc welding apparatus 101 includes a primary rectification unit 2 that rectifies AC power input from an input power supply 1, a switching unit 3 that controls welding output, and an output from the switching unit 3 that is input to convert the power into a power suitable for welding. The transformer 4 is provided.

アーク溶接装置101は、トランス4の2次側出力を整流する2次整流部5と、2次整流部5の出力を平滑するリアクトル6と、スイッチング部3を駆動する駆動部7と、溶接電流Iを検出する溶接電流検出部8と、溶接電圧Vを検出する溶接電圧検出部9と、溶滴離脱検出部10とをさらに備える。溶滴離脱検出部10は、溶接電圧検出部9の出力に基づいて溶接ワイヤ19の先端部19Pからの溶滴23の離脱を検出する。  The arc welding apparatus 101 includes a secondary rectification unit 5 that rectifies the secondary output of the transformer 4, a reactor 6 that smoothes the output of the secondary rectification unit 5, a drive unit 7 that drives the switching unit 3, and a welding current. It further includes a welding current detection unit 8 that detects I, a welding voltage detection unit 9 that detects a welding voltage V, and a droplet detachment detection unit 10. The droplet detachment detection unit 10 detects the detachment of the droplet 23 from the distal end portion 19P of the welding wire 19 based on the output of the welding voltage detection unit 9.

アーク溶接装置101は、溶接条件設定部14と記憶部13とをさらに備える。溶接条件設定部14は、溶接電流Iの設定電流Isや溶接電圧Vの設定電圧Vsや溶接ワイヤ19の送給量やシールドガス種類や溶接ワイヤ19の種類や溶接ワイヤ19の径等の溶接条件等を設定する。記憶部13は、溶接条件設定部14により設定された情報や溶接ワイヤ19の送給量の複数の値にそれぞれ対応する電子リアクトル制御の複数のリアクトル値、ピーク電流Ip、溶融電流Ig等の種々のパラメータを格納している。  The arc welding apparatus 101 further includes a welding condition setting unit 14 and a storage unit 13. The welding condition setting unit 14 has welding conditions such as the setting current Is of the welding current I, the setting voltage Vs of the welding voltage V, the feed amount of the welding wire 19, the type of shield gas, the type of the welding wire 19, and the diameter of the welding wire 19. Etc. are set. The storage unit 13 includes various values such as a plurality of reactor values, peak currents Ip, melting currents Ig of the electronic reactor control respectively corresponding to information set by the welding condition setting unit 14 and a plurality of values of the feeding amount of the welding wire 19. The parameters are stored.

アーク溶接装置101は、溶接電圧検出部9や記憶部13からの出力に基づいてアーク17の発生時の電流や電圧を制御する信号を出力するアーク制御部12をさらに備える。駆動部7は、アーク制御部12の出力に基づいてスイッチング部3を制御する。  The arc welding apparatus 101 further includes an arc control unit 12 that outputs a signal for controlling a current and a voltage when the arc 17 is generated based on outputs from the welding voltage detection unit 9 and the storage unit 13. The drive unit 7 controls the switching unit 3 based on the output of the arc control unit 12.

溶接ワイヤ19は、ワイヤ送給部20により制御されるワイヤ送給モータによって送給される。溶接ワイヤ19には、トーチ15に備え付けられたチップ16を介して溶接用の電力が供給され、溶接ワイヤ19と母材18との間でアーク17を発生させて母材18の溶接が行われる。  The welding wire 19 is fed by a wire feeding motor controlled by the wire feeding unit 20. Electric power for welding is supplied to the welding wire 19 via a tip 16 provided on the torch 15, and an arc 17 is generated between the welding wire 19 and the base material 18 to weld the base material 18. .

図1で示すアーク溶接装置101を構成する各構成部は、各々単独に構成してもよいし、複数の構成部を複合して構成してもよい。  Each component constituting the arc welding apparatus 101 shown in FIG. 1 may be configured independently, or a plurality of components may be combined.

アーク溶接装置101の動作を以下に説明する。アーク溶接装置101は、スプレー移行状態の定電圧制御のアーク溶接において、溶接電圧Vの出力を設定する設定電圧Vsおよび溶接電流Iの出力を設定する設定電流Isに基づいて、溶接電圧Vと溶接電流Iを含む溶接出力を制御する。図2において、溶融開始点t1では溶滴23が溶接ワイヤ19の先端部19Pから離脱し、溶接ワイヤ19の先端部19Pの溶滴23が成長し始める。溶滴離脱点t3では、溶接電流Iがピーク電流Ipに到達する。溶融開始点t1から溶滴離脱点t3までの成長期間T2では、溶接ワイヤ19の先端部19Pは溶融して形成される溶滴23が成長する。溶接電圧Vはアーク17のアーク長L17に依存する。溶接ワイヤ19の溶融が開始してから溶滴23が成長するにつれてアーク長L17が短くなり、溶接ワイヤ19と母材18との間の抵抗値が小さくなるので溶接電圧Vは低下する。溶滴離脱点t3で溶接ワイヤ19の先端部19Pから溶滴23が離脱し、再度、溶接ワイヤ19の溶融が開始されるとアーク長L17が再び長くなる。したがって、溶滴離脱点t3で溶接ワイヤ19と母材18との間の抵抗値は高くなり、これに伴い溶接電圧Vが急峻に高くなる。このように溶接電圧Vの波形はのこぎり波となる。のこぎり波の波形に沿った溶接電圧Vの変化に伴い、溶接電流Iは、溶融電流Igと突起状のピーク電流Ipとを交互に繰り返す。詳細には、溶接電流Iは、溶滴23が離脱する際の溶滴離脱点t3でピーク電流Ipとなる。溶融電流Igは、溶接ワイヤ19の溶融を開始して促進をする凹状に湾曲して極小値ILを有するように連続的に変化する。溶接ワイヤ19を送給する速度であるワイヤ送給量は設定電流にて決定される。設定電流の複数の値にそれぞれ対応する予め実験的に導出したワイヤ送給量の複数の値が記憶部13に格納されている。ワイヤ送給量の複数の値にそれぞれ対応する溶接制御パラメータも記憶部13に格納されている。実施の形態1では、十分にスプレー移行状態となる設定電流の値に対応するワイヤ送給量の値を選択する。本実施の形態におけるアーク溶接制御方法では、スプレー移行状態の定電圧制御のアーク溶接において、溶接電圧Vの出力を設定する設定電圧、および溶接電流Iの出力を設定する設定電流に基づいて、溶接出力の制御を行い、溶滴23が離脱する際の突起状のピーク電流Ipと溶接ワイヤ19の溶融を開始して促進する凹状に湾曲して連続的に変化する曲線波形の溶融電流Igとを繰り返し、ピーク電流Ipと溶融電流Igの湾曲の極小値ILとの差分である電流変動幅Itが所定の値になるように制御し、溶接を行う。溶接ワイヤ19から溶滴23が離脱して、溶接ワイヤ19の溶融が開始してから溶滴23が溶接ワイヤ19から離脱するまでの移行周期Ttが所定の範囲に収まるように電流変動幅Itを調整する。言い換えると溶滴23が溶接ワイヤ19から離脱するタイミングが1回離脱/1周期となるように電流変動幅Itを調整する。  The operation of the arc welding apparatus 101 will be described below. The arc welding apparatus 101 performs welding voltage V and welding based on a set voltage Vs for setting the output of the welding voltage V and a set current Is for setting the output of the welding current I in arc welding with constant voltage control in a spray transition state. The welding output including the current I is controlled. In FIG. 2, at the melting start point t <b> 1, the droplet 23 is detached from the tip portion 19 </ b> P of the welding wire 19 and the droplet 23 at the tip portion 19 </ b> P of the welding wire 19 starts to grow. At the droplet separation point t3, the welding current I reaches the peak current Ip. In the growth period T2 from the melting start point t1 to the droplet separation point t3, the droplet 23 formed by melting the tip 19P of the welding wire 19 grows. The welding voltage V depends on the arc length L17 of the arc 17. As the droplet 23 grows after the welding wire 19 starts to melt, the arc length L17 becomes shorter, and the resistance value between the welding wire 19 and the base material 18 becomes smaller, so the welding voltage V decreases. When the droplet 23 is detached from the tip 19P of the welding wire 19 at the droplet separation point t3 and the melting of the welding wire 19 is started again, the arc length L17 becomes longer again. Therefore, the resistance value between the welding wire 19 and the base material 18 is increased at the droplet separation point t3, and the welding voltage V is sharply increased accordingly. Thus, the waveform of the welding voltage V is a sawtooth wave. With the change of the welding voltage V along the waveform of the sawtooth wave, the welding current I alternately repeats the melting current Ig and the projecting peak current Ip. Specifically, the welding current I becomes the peak current Ip at the droplet separation point t3 when the droplet 23 is detached. The melting current Ig continuously changes so as to have a minimum value IL by curving into a concave shape that starts and accelerates the melting of the welding wire 19. The wire feed amount that is the speed at which the welding wire 19 is fed is determined by the set current. A plurality of values of the wire feed amount derived experimentally in advance corresponding to a plurality of values of the set current are stored in the storage unit 13. Welding control parameters respectively corresponding to a plurality of values of the wire feed amount are also stored in the storage unit 13. In the first embodiment, the wire feed amount value corresponding to the set current value at which the spray transition state is sufficiently achieved is selected. In the arc welding control method according to the present embodiment, welding is performed based on a set voltage for setting the output of the welding voltage V and a set current for setting the output of the welding current I in arc welding with constant voltage control in a spray transition state. The output is controlled, and the peak current Ip having a protrusion when the droplet 23 is detached and the melting current Ig having a curved waveform continuously changing in a concave shape that starts and accelerates the melting of the welding wire 19 are obtained. Repeatedly, welding is performed by controlling the current fluctuation range It, which is the difference between the peak current Ip and the minimum curve IL of the melting current Ig, to be a predetermined value. The current fluctuation width It is set so that the transition period Tt from when the droplet 23 is detached from the welding wire 19 and melting of the welding wire 19 to when the droplet 23 is separated from the welding wire 19 is within a predetermined range. adjust. In other words, the current fluctuation width It is adjusted such that the timing at which the droplet 23 is detached from the welding wire 19 is one separation / one cycle.

電流変動幅Itは、設定電流または、溶接電流Iの所定期間の移動平均の平均値を中心として、言い換えると溶接電流に対して±25%以上±45%以下の幅に、より好ましくは±25%以上±30%以下となるように制御する。具体的には、ピーク電流Ipが溶接電流Iの平均値の25%以上で45%以下の値だけ溶接電流Iの平均値より大きく、かつ溶融電流Igの極小値ILが溶接電流Iの平均値の25%以上で45%以下の値だけ溶接電流Iの平均値より小さくなるように電流変動幅Itを制御する。より好ましくは、具体的には、ピーク電流Ipが溶接電流Iの平均値の25%以上で30%以下の値だけ溶接電流Iの平均値より大きく、かつ溶融電流Igの極小値ILが溶接電流Iの平均値の25%以上で30%以下の値だけ溶接電流Iの平均値より小さくなるように電流変動幅Itを制御する。移動平均を算出する上記の所定期間は移行周期Ttの整数倍である。電流変動幅Itで調整される移行周期Ttは15msec以上35msec以下であり、より好ましくは15msec以上20msec以下である。これにより、移行周期Ttが安定するのでアーク長L19の変動が抑制され、ビード幅の均一化が図られる。  The current fluctuation width It is centered on the set current or the average value of the moving average of the welding current I over a predetermined period, in other words, within a range of ± 25% to ± 45% with respect to the welding current, more preferably ± 25. % To ± 30% or less. Specifically, the peak current Ip is greater than the average value of the welding current I by 25% or more and 45% or less of the average value of the welding current I, and the minimum value IL of the melting current Ig is the average value of the welding current I. The current fluctuation width It is controlled so that it is smaller than the average value of the welding current I by 25% or more and 45% or less. More preferably, specifically, the peak current Ip is larger than the average value of the welding current I by a value not less than 25% and not more than 30% of the average value of the welding current I, and the minimum value IL of the melting current Ig is the welding current. The current fluctuation width It is controlled so that it is smaller than the average value of the welding current I by 25% or more and 30% or less of the average value of I. The predetermined period for calculating the moving average is an integral multiple of the transition period Tt. The transition period Tt adjusted by the current fluctuation width It is 15 msec or more and 35 msec or less, more preferably 15 msec or more and 20 msec or less. Thereby, since the transition period Tt is stabilized, the fluctuation of the arc length L19 is suppressed, and the bead width is made uniform.

図3は電流変動幅Itと移行周期Ttの関係を示す。図3に示す電流変動幅Itと移行周期Ttとの上記範囲であるアーク安定領域As内に電流変動幅Itと移行周期Ttとを調整する事により溶接中のアークは安定する。  FIG. 3 shows the relationship between the current fluctuation width It and the transition period Tt. The arc during welding is stabilized by adjusting the current fluctuation width It and the transition period Tt within the arc stable region As, which is the above range of the current fluctuation width It and the transition period Tt shown in FIG.

図3において、電流変動幅Itが±45%を超えて大きく、アーク安定領域Asから外れて、電流変動幅Itが大きくなると、凹状に湾曲して連続的に変化する曲線波形の溶融電流Igの極小値ILが低くなるので、溶接ワイヤ19を溶融して溶滴23を成長させる成長期間T2での溶接ワイヤ19への入熱量が不足する。そのため、母材18に向かって送給されている溶接ワイヤ19の先端部19Pと母材18間との距離が成長期間T2において短くなり、溶滴23が溶接ワイヤ19から離脱する前に溶接ワイヤ19の先端部19Pと母材18が短絡することになり、アークが不安定となると共に、スパッタが発生する。  In FIG. 3, when the current fluctuation width It is larger than ± 45%, deviates from the arc stable region As, and the current fluctuation width It becomes larger, the melting current Ig having a curved waveform continuously curved and changes in a concave shape. Since the minimum value IL becomes low, the amount of heat input to the welding wire 19 in the growth period T2 in which the welding wire 19 is melted to grow the droplet 23 is insufficient. Therefore, the distance between the tip 19P of the welding wire 19 fed toward the base material 18 and the base material 18 is shortened in the growth period T2, and before the droplet 23 is detached from the welding wire 19, the welding wire The tip 19P of 19 and the base material 18 are short-circuited, the arc becomes unstable, and spatter occurs.

また、電流変動幅Itが±25%より小さく、アーク安定領域Asから外れて、電流変動幅Itが小さくなると、溶融電流Igの極小値ILが高くなるので、成長期間T2での溶接ワイヤ19への入熱量が過大となる。これにより、成長期間T2でのアーク反力が大きくなる。そのため、溶融させた溶接ワイヤ19の先端部19Pの溶滴23が、溶接ワイヤ19に向かって押し戻されるため、アーク不安定となると共に、溶接ワイヤ19の先端部19Pから飛散し、スパッタとなる。  Further, when the current fluctuation width It is smaller than ± 25% and deviates from the arc stable region As and the current fluctuation width It becomes smaller, the minimum value IL of the melting current Ig becomes higher, so that the welding wire 19 in the growth period T2 is increased. The amount of heat input becomes excessive. This increases the arc reaction force in the growth period T2. Therefore, since the molten droplet 23 at the tip 19P of the molten welding wire 19 is pushed back toward the welding wire 19, the arc becomes unstable and is scattered from the tip 19P of the welding wire 19 to be sputtered.

次に、インダクタンス値を用いて、電流変動幅Itを制御する詳細動作について、図3を用いて説明する。インダクタンス値は、例えば、固定値としてのリアクトル6と電子リアクトル制御による可変可能な電子リアクトル値との加算値からなる。なお、実施の形態1ではリアクトル6のインダクタンス値は固定値であるが、可変としても良い。  Next, a detailed operation for controlling the current fluctuation width It using the inductance value will be described with reference to FIG. The inductance value is, for example, an added value of the reactor 6 as a fixed value and a variable electronic reactor value by electronic reactor control. In the first embodiment, the inductance value of reactor 6 is a fixed value, but may be variable.

図3において、電流変動幅Itが±45%を超えてアーク安定領域Asから外れて大きい場合は、電子リアクトル値を小さくして溶接の出力に関係するインダクタンスの値を大きくし、電圧制御の追従性を低下させて、電流変動幅Itがアーク安定領域As内となるように調整する。  In FIG. 3, when the current fluctuation width It exceeds ± 45% and deviates from the arc stable region As, the electronic reactor value is decreased to increase the inductance value related to the welding output, and voltage control tracking is performed. And the current fluctuation width It is adjusted so as to be in the arc stable region As.

また、電流変動幅Itが±25%より小さくアーク安定領域Asから外れて小さい場合は、電子リアクトル値を大きくして、インダクタンス値を小さくし、電圧制御の追従性を向上させて、電流変動幅Itがアーク安定領域As内となるように調整する。  Further, when the current fluctuation width It is smaller than ± 25% and smaller than the arc stable region As, the electronic reactor value is increased, the inductance value is decreased, and the followability of the voltage control is improved. It is adjusted so that It is within the arc stable region As.

以上の様に、図3に示すアーク安定領域As内となるように電流変動幅Itを調整して制御することで、溶接ワイヤ19の溶融時間が変化し、これに伴い、溶接ワイヤ19の溶滴23を離脱させる移行周期Ttをアーク安定領域As内である15msec以上35msec以下とすることができ、安定したアーク17を得る事が出来る。  As described above, by adjusting and controlling the current fluctuation width It so as to be within the arc stable region As shown in FIG. 3, the melting time of the welding wire 19 changes. The transition period Tt for releasing the droplet 23 can be set to 15 msec or more and 35 msec or less in the arc stable region As, and a stable arc 17 can be obtained.

さらに、本実施の形態では、溶接電圧Vの所定期間の移動平均である平均値を設定する設定電圧を変更することで電流変動幅Itを調整する。溶接中の状態がスプレー移行状態になると共に、図3に示すように、電流変動幅Itが、アーク17の安定するアーク安定領域As内となるように、溶接電流Iの波形が設定電流を中心とした所定の範囲に入るように電流変動幅Itを調整する。  Furthermore, in the present embodiment, the current fluctuation range It is adjusted by changing a setting voltage that sets an average value that is a moving average of the welding voltage V over a predetermined period. As shown in FIG. 3, the welding current I waveform is centered on the set current so that the current fluctuation range It is within the stable arc stable region As of the arc 17 as shown in FIG. The current fluctuation width It is adjusted so as to fall within the predetermined range.

また、スプレー移行状態の定電圧制御のアーク溶接において、溶接の出力に関連するインダクタンス値を変更することで電流変動幅Itを制御する。インダクタンス値はリアクトル6と、記憶部13に記憶された電子リアクトル制御の電子リアクトル値との加算値であり、インダクタンス値に対応する出力制御信号を駆動部7に出力する。これにより、インダクタンス値をきめ細かく調整し、電流変動幅Itがアーク安定領域As内となるように電流変動幅Itを調整できる。  In addition, in the constant voltage control arc welding in the spray transfer state, the current fluctuation width It is controlled by changing the inductance value related to the welding output. The inductance value is an addition value of the reactor 6 and the electronic reactor value of the electronic reactor control stored in the storage unit 13, and outputs an output control signal corresponding to the inductance value to the driving unit 7. Thereby, the inductance value can be finely adjusted, and the current fluctuation width It can be adjusted so that the current fluctuation width It is within the arc stable region As.

このように、実施の形態1におけるアーク溶接制御方法では、定電圧制御における設定電圧とインダクタンス値を調整して電流変動幅Itを最適化することによって、言い換えると溶滴23の成長の変動幅を適正化し、電流変動幅Itがアーク安定領域As内となるようにして移行周期Ttを安定させることにより、スパッタの発生を抑制して、より安定したアーク溶接が可能となる。  As described above, in the arc welding control method according to the first embodiment, by adjusting the set voltage and the inductance value in the constant voltage control to optimize the current fluctuation range It, in other words, the fluctuation width of the growth of the droplet 23 is reduced. By optimizing and stabilizing the transition period Tt so that the current fluctuation width It is within the arc stable region As, it is possible to suppress the occurrence of spatter and achieve more stable arc welding.

図6に示すパルスアーク溶接方法では、アーク長が溶滴523の直径より少しでも大きければ、溶接ワイヤ519の先端部519Pと母材518とが短絡することがないので、スパッタを低減することが可能である。しかし、溶接中には、チップから溶接ワイヤ519が突き出ている長さである突出し長さの変動や母材518の位置ずれ等の外乱により、溶接ワイヤ519の先端519Pと母材518との距離が短くなる場合がある。溶接ワイヤ519の先端519Pと母材518間との距離が短くなると、溶滴523が溶接ワイヤ519の先端519Pから離脱する前に溶接ワイヤ519の先端519Pと母材518との短絡が発生する。そして、短絡が発生した時の溶接電流Iが高いピーク電流Ipである場合には、短絡時に多量のスパッタが発生する。このように、突出し長さの変動や母材518の位置ずれ等の外乱が発生する場合に多量のスパッタが発生する場合がある。また、溶接ワイヤ519が溶融している時の溶接電流Iが低いベース電流Ibである時には、アーク517の指向性欠如によるアークブローが生じやすくなる。このため、アーク長の変動が大きく、ビード幅が不均一になる場合がある。  In the pulse arc welding method shown in FIG. 6, if the arc length is slightly larger than the diameter of the droplet 523, the tip portion 519P of the welding wire 519 and the base material 518 are not short-circuited, so that spatter can be reduced. Is possible. However, during welding, the distance between the tip 519 </ b> P of the welding wire 519 and the base material 518 due to a disturbance such as a variation in the protruding length, which is the length of the welding wire 519 protruding from the tip, or a displacement of the base material 518. May become shorter. When the distance between the tip 519P of the welding wire 519 and the base material 518 becomes short, the short-circuit between the tip 519P of the welding wire 519 and the base material 518 occurs before the droplet 523 separates from the tip 519P of the welding wire 519. When the welding current I when the short circuit occurs is a high peak current Ip, a large amount of spatter is generated during the short circuit. As described above, a large amount of spatter may occur when a disturbance such as a variation in the protruding length or a displacement of the base material 518 occurs. Further, when the welding current I when the welding wire 519 is melted is a low base current Ib, arc blow due to the lack of directivity of the arc 517 is likely to occur. For this reason, the variation of the arc length is large, and the bead width may be uneven.

実施の形態1におけるアーク溶接装置101では、上述のような定電圧制御を用いて電流変動幅Itを制御するので、アーク長L17の変動が抑制される。これにより、溶接ワイヤ19のチップ16から突出する突出し長さL19の変動や母材18の位置ずれ等の外乱が発生してもアーク長L17の変動が抑制され、移行周期Ttが安定し、アークが安定する。したがって、溶接ワイヤ19と母材18との間の微小短絡が抑制され、スパッタが低減し、幅の均一なビードが得られる。  In arc welding apparatus 101 in the first embodiment, current fluctuation width It is controlled using constant voltage control as described above, so that fluctuations in arc length L17 are suppressed. As a result, even if disturbance such as fluctuation of the protruding length L19 of the welding wire 19 protruding from the tip 16 or displacement of the base material 18 occurs, fluctuation of the arc length L17 is suppressed, the transition period Tt is stabilized, and the arc Is stable. Therefore, a minute short circuit between the welding wire 19 and the base material 18 is suppressed, spatter is reduced, and a bead having a uniform width is obtained.

上述のように、実施の形態1におけるスプレー移行状態の定電圧制御のアーク溶接制御方法は、溶接ワイヤ19に溶接電流Iを出力するアーク溶接装置を用いる。そのアーク溶接制御方法では、溶接電流Iが、溶接ワイヤ19が溶融して形成された溶滴23が溶接ワイヤ19から離脱する際のピーク電流Ipと、溶接ワイヤ19の溶融を開始して促進する際の凹状に極小値ILを有するように湾曲して連続的に変化する溶融電流Igとを繰り返すようにアーク溶接装置101を制御する。また、ピーク電流Ipが溶接電流Iの平均値の25%以上で45%以下の値だけ溶接電流Iの平均値より大きく、かつ溶融電流Igの極小値ILが溶接電流Iの平均値の25%以上で45%以下の値だけ溶接電流Iの平均値より小さくなるようにアーク溶接装置101を制御する。  As described above, the arc welding control method of the constant voltage control in the spray transition state in the first embodiment uses the arc welding apparatus that outputs the welding current I to the welding wire 19. In the arc welding control method, the welding current I is accelerated by starting the melting of the welding wire 19 and the peak current Ip when the droplet 23 formed by melting the welding wire 19 is detached from the welding wire 19. The arc welding apparatus 101 is controlled so as to repeat the melting current Ig which is curved and continuously changed so as to have a minimum value IL in a concave shape. Further, the peak current Ip is larger than the average value of the welding current I by 25% or more and 45% or less of the average value of the welding current I, and the minimum value IL of the melting current Ig is 25% of the average value of the welding current I. The arc welding apparatus 101 is controlled so as to be smaller than the average value of the welding current I by 45% or less.

溶接電圧Vの出力を設定する設定電圧Vsに基づいて、溶接電流Iがピーク電流Ipと溶融電流Igとを繰り返すようにアーク溶接装置101を制御してもよい。  Based on the set voltage Vs that sets the output of the welding voltage V, the arc welding apparatus 101 may be controlled such that the welding current I repeats the peak current Ip and the melting current Ig.

スプレー移行状態の定電圧制御のアーク溶接制御方法は、溶接ワイヤ19に溶接電流Iを出力するアーク溶接装置101を用いる。そのアーク溶接制御方法では、溶接ワイヤ19の溶融の開始から溶滴23が溶接ワイヤ19から離脱するまでの移行周期Ttが15msec以上35msec以下となるように、ピーク電流Ipと極小値ILとの差分である電流変動幅Itを制御してもよい。  The arc welding control method of constant voltage control in the spray transfer state uses an arc welding apparatus 101 that outputs a welding current I to the welding wire 19. In the arc welding control method, the difference between the peak current Ip and the minimum value IL is such that the transition period Tt from the start of melting of the welding wire 19 until the droplet 23 is detached from the welding wire 19 is 15 msec or more and 35 msec or less. The current fluctuation width It may be controlled.

(実施の形態2)
図4は実施の形態2におけるアーク溶接装置101aの概略構成図である。図4において図1に示す実施の形態1におけるアーク溶接装置101と同様の箇所には同一の符号を付す。実施の形態2におけるアーク溶接装置101aは実施の形態1におけるアーク溶接装置101の溶滴離脱検出部10に接続された計時部11をさらに備える。
(Embodiment 2)
FIG. 4 is a schematic configuration diagram of the arc welding apparatus 101a according to the second embodiment. In FIG. 4, the same reference numerals are given to the same portions as those of the arc welding apparatus 101 in the first embodiment shown in FIG. The arc welding apparatus 101a in the second embodiment further includes a time measuring unit 11 connected to the droplet separation detecting unit 10 of the arc welding apparatus 101 in the first embodiment.

計時部11は移行周期Ttを以下の方法で検出する。溶滴23が溶接ワイヤ19の先端部19Pから離脱した溶滴離脱点t3でアーク長L17が急に長くなるので、溶滴離脱点t3で検出された溶接電圧Vが急峻に高くなる。溶滴離脱検出部10は、溶接電圧Aが所定の電圧しきい値を超えた場合、あるいは、溶接電圧Vの単位時間当たりの変化量(dV/dt)が所定値を超えた場合に、溶滴23が離脱したと判断し、溶滴23の溶接ワイヤ19からの離脱を検出する。計時部11は、溶滴離脱検出部10が溶滴の離脱を検出してから、その後溶滴23の離脱を再度検出するまでの時間を移行周期Ttとして検出する。記憶部13は、予め実験等により求めたアーク安定領域As(図3参照)内の移行周期Ttの値を記憶している。検出した移行周期Ttが、記憶部13に記憶されているアーク安定領域As内の移行周期Ttの値となるように電流変動幅Itが調整される。  The timer unit 11 detects the transition period Tt by the following method. Since the arc length L17 suddenly increases at the droplet separation point t3 at which the droplet 23 has separated from the tip 19P of the welding wire 19, the welding voltage V detected at the droplet separation point t3 increases sharply. When the welding voltage A exceeds a predetermined voltage threshold or when the amount of change (dV / dt) per unit time of the welding voltage V exceeds a predetermined value, the droplet detachment detection unit 10 It is determined that the droplet 23 has detached, and the separation of the droplet 23 from the welding wire 19 is detected. The timer 11 detects the time from when the droplet detachment detecting unit 10 detects the detachment of the droplet until the detachment of the droplet 23 is detected again as the transition period Tt. The storage unit 13 stores the value of the transition period Tt within the arc stable region As (see FIG. 3) obtained in advance by experiments or the like. The current fluctuation width It is adjusted so that the detected transition period Tt becomes the value of the transition period Tt in the arc stable region As stored in the storage unit 13.

実施の形態2におけるアーク溶接制御方法では、溶接電圧Vの所定の電圧しきい値、あるいは、溶接電圧Vの単位時間当たりの変化量(dV/dt)を用いて移行周期Ttを検出し、移行周期Ttが予め求めたアークの安定領域As内での所定の値となるように、電流変動幅Itを調整することにより、溶接ワイヤ19の突出し長さL19の変動や母材18の位置ずれ等の外乱発生時においてもアーク17が安定したアーク溶接が可能となる。また、このようにアーク17が安定するため、ビード幅を均一に出来ると共に、微小短絡が抑制されるため、スパッタも低減される。  In the arc welding control method according to the second embodiment, the transition period Tt is detected using a predetermined voltage threshold value of the welding voltage V or a change amount (dV / dt) of the welding voltage V per unit time, and the transition is performed. By adjusting the current fluctuation width It so that the period Tt becomes a predetermined value within the arc stable region As determined in advance, the fluctuation of the protruding length L19 of the welding wire 19, the positional deviation of the base material 18, etc. Even when the disturbance occurs, the arc 17 can be stably arc-welded. Further, since the arc 17 is stabilized in this way, the bead width can be made uniform, and a minute short circuit is suppressed, so that sputtering is also reduced.

(実施の形態3)
図5Aは実施の形態3におけるアーク溶接制御方法における溶接電流Iと溶接電圧Vとの関係を示す外部特性を示す。図5Aにおいて縦軸は溶接電圧Vの平均値を示し、横軸は溶接電流Iの平均値を示す。図5Bは溶接電圧Vと溶接電流Iとを示す。溶接ワイヤ19から溶滴23が離脱して溶接ワイヤ19の溶融の開始から溶滴23の離脱までの移行周期Ttが繰り返される。実施の形態3におけるアーク溶接制御方法では、繰り返される移行周期Ttのうち、移行周期Tt1でのアーク長L17に応じて移行周期Tt1の次の移行周期Tt2の電流変動幅Itが予め実験等により求めたアーク安定領域As内に入るように、電流変動幅Itを図5Aに示す外部特性の曲線に基づき制御する。電流変動幅Itを図5Aに示す外部特性の曲線の代わりに、外部特性の関係を示すデータ表に基づき制御してもよい。
(Embodiment 3)
FIG. 5A shows external characteristics showing the relationship between welding current I and welding voltage V in the arc welding control method according to the third embodiment. In FIG. 5A, the vertical axis represents the average value of the welding voltage V, and the horizontal axis represents the average value of the welding current I. FIG. 5B shows the welding voltage V and the welding current I. The transition period Tt from the start of melting of the welding wire 19 to the separation of the droplet 23 is repeated after the droplet 23 is detached from the welding wire 19. In the arc welding control method according to the third embodiment, among the repeated transition periods Tt, the current fluctuation width It of the transition period Tt2 next to the transition period Tt1 is obtained beforehand by experiments or the like according to the arc length L17 in the transition period Tt1. The current fluctuation width It is controlled based on the external characteristic curve shown in FIG. 5A so as to fall within the arc stable region As. The current fluctuation width It may be controlled based on a data table showing the relationship of the external characteristics instead of the curve of the external characteristics shown in FIG. 5A.

電流変動幅Itの調整にはピーク電流Ip、溶融電流Ig、移行周期Ttおよび設定電圧のうち少なくとも一つの溶接制御パラメータを用いる。そして、図3に記載するアーク安定領域Asでの電流変動幅Itおよび移行周期Ttを満たすように電流変動幅Itを調整する。  The adjustment of the current fluctuation width It uses at least one welding control parameter among the peak current Ip, the melting current Ig, the transition period Tt, and the set voltage. Then, the current fluctuation width It is adjusted so as to satisfy the current fluctuation width It and the transition period Tt in the arc stable region As shown in FIG.

図1に示す溶接電圧検出部9は、直前の移行周期Tt1または今の移行周期Tt2のうちの所定の一部の期間に検出した溶接電圧Vを用いてアーク長L17を検出する。図5Aと図5Bにおいて、設定電流Isおよび設定電圧Vsを設定する。設定された設定電流Isと設定電圧Vsに対応する溶接制御パラメータを用いてアーク溶接を行う。このアーク溶接において、溶接ワイヤ19から溶滴23が離脱して溶接ワイヤ19の溶融の開始から溶接ワイヤ19からの溶滴23の離脱までの移行周期Tt1内においての溶接電圧Vの平均値により、移行周期Tt1での平均値としてのアーク長L17を検出する。  The welding voltage detector 9 shown in FIG. 1 detects the arc length L17 using the welding voltage V detected during a predetermined part of the immediately preceding transition period Tt1 or the current transition period Tt2. 5A and 5B, the set current Is and the set voltage Vs are set. Arc welding is performed using welding control parameters corresponding to the set current Is and set voltage Vs. In this arc welding, the average value of the welding voltage V within the transition period Tt1 from the start of melting of the welding wire 19 to the separation of the droplet 23 from the welding wire 19 after the droplet 23 is detached from the welding wire 19 The arc length L17 as an average value in the transition period Tt1 is detected.

例えば、図5Bにおいて、移行周期Tt2の直前の移行周期Tt1において、溶接電圧V(設定電圧Vsの出力)の平均値をアーク長L17の平均値として検出する。溶接電圧V(設定電圧Vsの出力)の平均値が値V1である場合、図5Aに示す外部特性より、溶接電圧Vの値V1に対応する溶接電流I(設定電流Isの出力)の平均値は値I1である。したがって、溶接電圧Vの値V1の設定電圧Vsと溶接電流Iの値I1の設定電流Isとの溶接制御パラメータを移行周期Tt2の溶接制御パラメータとして用いる。  For example, in FIG. 5B, the average value of the welding voltage V (output of the set voltage Vs) is detected as the average value of the arc length L17 in the transition period Tt1 immediately before the transition period Tt2. When the average value of the welding voltage V (the output of the set voltage Vs) is the value V1, the average value of the welding current I (the output of the set current Is) corresponding to the value V1 of the welding voltage V from the external characteristics shown in FIG. 5A. Is the value I1. Therefore, the welding control parameter of the setting voltage Vs of the welding voltage V value V1 and the setting current Is of the welding current I value I1 is used as the welding control parameter of the transition period Tt2.

また、移行周期Tt1における溶接電圧V(設定電圧Vsに対する電圧の出力値)の平均値をアーク長L17の平均値として検出し、図5Aに示す外部特性に従い、次の移行周期Tt2では、溶接電流Iの平均値が移行周期Tt1で検出した溶接電圧Vの平均値に対応する値になるように、ピーク電流Ipおよび/または溶融電流Igの溶接制御パラメータを用いて電流変動幅Itを制御することで、スパッタの発生を抑制すると共に、ビード幅を均一化することができる。  Further, the average value of the welding voltage V (the output value of the voltage with respect to the set voltage Vs) in the transition period Tt1 is detected as the average value of the arc length L17, and the welding current is detected in the next transition period Tt2 in accordance with the external characteristics shown in FIG. 5A. The current fluctuation range It is controlled using the welding current control parameter of the peak current Ip and / or the melting current Ig so that the average value of I becomes a value corresponding to the average value of the welding voltage V detected in the transition period Tt1. Thus, the generation of spatter can be suppressed and the bead width can be made uniform.

例えば、移行周期Tt1での溶接電圧Vの平均値によりアーク長の平均値を検出する。移行周期Tt1の次の移行周期Tt2では、移行周期Tt1で検出した溶接電圧Vの平均値に対応して図5Aに示す外部特性で決定される溶接電流I(設定電流Isの出力)の平均値になるように、ピーク電流Ip(Ip2)および/または溶融電流Ig(Ig2)を用いて次の移行周期Tt2での電流変動幅Itを制御しても良い。これにより、きめ細かい電流変動幅Itの調整が可能となる。  For example, the average value of the arc length is detected from the average value of the welding voltage V in the transition period Tt1. In the transition period Tt2 next to the transition period Tt1, the average value of the welding current I (output of the set current Is) determined by the external characteristics shown in FIG. 5A corresponding to the average value of the welding voltage V detected in the transition period Tt1. The current fluctuation width It in the next transition period Tt2 may be controlled using the peak current Ip (Ip2) and / or the melting current Ig (Ig2). Thereby, fine adjustment of the current fluctuation width It becomes possible.

同様に、移行周期Tt2での溶接電圧Vの平均値によりアーク長の平均値を検出する。移行周期Tt2の次の移行周期Tt3では、移行周期Tt2で検出した溶接電圧Vの平均値に対応して図5Aに示す外部特性で決定される溶接電流I(設定電流Isの出力)の平均値になるように、ピーク電流Ip(Ip3)および/または溶融電流Ig(Ig3)を用いて次の移行周期Tt3での電流変動幅Itを制御しても良い。これにより、きめ細かい電流変動幅Itの調整が可能となる。  Similarly, the average value of the arc length is detected from the average value of the welding voltage V in the transition period Tt2. In the transition period Tt3 next to the transition period Tt2, the average value of the welding current I (output of the set current Is) determined by the external characteristics shown in FIG. 5A corresponding to the average value of the welding voltage V detected in the transition period Tt2. The current fluctuation width It in the next transition period Tt3 may be controlled using the peak current Ip (Ip3) and / or the melting current Ig (Ig3). Thereby, fine adjustment of the current fluctuation width It becomes possible.

また、溶接ワイヤ19が赤熱することによって、アーク長L17が長くなり、移行周期Ttd毎の溶接電圧Vの平均値が相対的に高くなると、母材18への入熱量が大きくなって母材18に溶け落ちが生じる場合がある。この場合には、溶接電流Iと溶接電圧Vとの外部特性の曲線の傾きを緩くし、アーク長L17(各移行周期Ttでの溶接電圧Vの平均値)の変動に対する溶接制御パラメータ(溶接電流Iの平均値)の追従性を向上させることで、母材18への入熱量を低減させることができる。  Further, when the welding wire 19 is heated red, the arc length L17 is increased, and when the average value of the welding voltage V for each transition period Ttd is relatively high, the amount of heat input to the base material 18 is increased and the base material 18 is increased. May burn out. In this case, the slope of the external characteristic curve of the welding current I and the welding voltage V is relaxed, and a welding control parameter (welding current) with respect to fluctuations in the arc length L17 (the average value of the welding voltage V in each transition period Tt). By improving the followability of (average value of I), the amount of heat input to the base material 18 can be reduced.

実施の形態3におけるアーク溶接制御方法では、溶接中に直前の移行周期Tt(Tt1)でのアーク長L17(溶接電圧Vの平均値)を検出し、次の移行周期Tt(Tt2)において、アーク長L17(溶接電圧Vの平均値)に対して最適な電流変動幅Itを調整するので、突出し長さL19や溶接ワイヤ19と母材18の位置によらず、アーク17が安定する。なお、移行周期Tt1でのアーク長L17に基づいて電流変動幅Itは、次の移行周期Tt2に調整されるが、アーク17の安定に悪影響を与えなければ、移行周期Tt2以降の例えばさらに次の移行周期Tt3に移行周期Tt1でのアーク長L17に基づいて電流変動幅Itを調整しても良い。  In the arc welding control method in the third embodiment, the arc length L17 (average value of the welding voltage V) in the immediately preceding transition period Tt (Tt1) is detected during welding, and the arc is detected in the next transition period Tt (Tt2). Since the optimum current fluctuation width It is adjusted with respect to the length L17 (average value of the welding voltage V), the arc 17 is stabilized regardless of the protruding length L19 and the positions of the welding wire 19 and the base material 18. The current fluctuation width It is adjusted to the next transition period Tt2 based on the arc length L17 in the transition period Tt1, but if the stability of the arc 17 is not adversely affected, for example, the following period after the transition period Tt2 The current fluctuation width It may be adjusted in the transition period Tt3 based on the arc length L17 in the transition period Tt1.

さらに、溶接時に突出し長さL19の変動や母材18の位置ずれ等の外乱が発生しても、アーク長L17が一定になる様に制御されるので、アーク17が安定する。これにより、溶接ワイヤ19と母材18との微小短絡が抑制され、スパッタ低減やビード幅の均一化も可能となり、また、溶接ワイヤ19の溶け落ちを抑制することも可能となる。  Furthermore, even if a disturbance such as a change in the protruding length L19 or a displacement of the base material 18 occurs during welding, the arc 17 is stabilized because the arc length L17 is controlled to be constant. Thereby, a minute short-circuit between the welding wire 19 and the base material 18 is suppressed, it is possible to reduce spatter and make the bead width uniform, and it is also possible to suppress the welding wire 19 from being burned out.

以上のように、実施の形態1、2、3におけるスプレー移行状態の定電圧制御のアーク溶接を行うアーク溶接制御方法では、スプレー移行状態の定電圧制御のアーク溶接において、溶接電圧Vの出力を設定する設定電圧Vsおよび溶接電流Iの出力を設定する設定電流Isに基づいて溶接出力(溶接電圧V、溶接電流I)を制御する。溶接電流が、溶滴23が離脱する突起状のピーク電流Ipと、溶接ワイヤ19の溶融を開始して促進する凹状に湾曲して連続的に変化する曲線波形の溶融電流Igとを繰り返し、ピーク電流Ipと溶融電流Igの湾曲の極小値ILとの差分である電流変動幅Itが所定の値になるように、設定電圧Vsと、設定電流Isと、溶接出力に関係するインダクタンス値と、溶接電流Iと溶接電圧Vの関係を示す外部特性の少なくとも一つを用いて溶接電流Iを制御する。これにより、溶接電流Iの電流変動幅Itで溶接電流Iを調整するので、アーク長L17の変動に対して追従性が高く、従来の定電流パルス制御としてのパルスアーク溶接法のようにシールドガス等の組成に制約を受けることもなく、さらに、突出し長さL19の変動や母材18の位置ずれ等の外乱が発生しても、またさらに、炭酸ガスの濃度が30%を超える、または炭酸ガスを主成分とするシールドガスを用いた場合でもアーク17が安定する。したがって、溶接ワイヤ19と母材18との微小短絡が抑制され、スパッタが低減され、ビード幅が均一化される。  As described above, in the arc welding control method for performing arc welding for constant voltage control in the spray transition state in the first, second, and third embodiments, the output of the welding voltage V is obtained in arc welding for constant voltage control in the spray transition state. Based on the set voltage Vs to be set and the set current Is to set the output of the welding current I, the welding output (welding voltage V, welding current I) is controlled. The welding current repeats a peak current Ip having a protrusion from which the droplet 23 is detached and a melting current Ig having a curved waveform continuously changing in a concave shape that starts and accelerates the melting of the welding wire 19. The set voltage Vs, the set current Is, the inductance value related to the welding output, and the welding so that the current fluctuation width It, which is the difference between the current Ip and the minimum value IL of the melting current Ig, becomes a predetermined value. The welding current I is controlled using at least one of the external characteristics indicating the relationship between the current I and the welding voltage V. As a result, the welding current I is adjusted by the current fluctuation width It of the welding current I, so that the followability is high with respect to the fluctuation of the arc length L17, and the shield gas is used as in the conventional pulse arc welding method as constant current pulse control. Even if a disturbance such as a variation in the protruding length L19 or a displacement of the base material 18 occurs, the concentration of carbon dioxide gas exceeds 30%, or carbonic acid is not limited. The arc 17 is stabilized even when a shielding gas containing gas as a main component is used. Therefore, a minute short circuit between the welding wire 19 and the base material 18 is suppressed, spatter is reduced, and the bead width is made uniform.

上述のように、スプレー移行状態の定電圧制御のアーク溶接制御方法は、溶接ワイヤ19に溶接電流Iと溶接電圧Vとを含む溶接出力を出力して溶接ワイヤ19からアーク17を発生させるアーク溶接装置101を用いる。そのアーク溶接制御方法では、ピーク電流Ipと極小値ILとの差分である電流変動幅Itが所定の値になるように、溶接出力に関係するインダクタンス値と、溶接電流Iと溶接電圧Vとの関係を示す外部特性との少なくとも一つを用いてアーク溶接装置を制御する。  As described above, the arc welding control method of constant voltage control in the spray transfer state generates arc 17 from the welding wire 19 by outputting the welding output including the welding current I and the welding voltage V to the welding wire 19. The apparatus 101 is used. In the arc welding control method, the inductance value related to the welding output, the welding current I, and the welding voltage V are set such that the current fluctuation width It which is the difference between the peak current Ip and the minimum value IL becomes a predetermined value. The arc welding apparatus is controlled using at least one of the external characteristics indicating the relationship.

溶接ワイヤ19の溶融を開始してから溶滴23が溶接ワイヤ19から離脱するまでの移行周期Ttが所定の範囲に収まるように、電流変動幅Itを調整してもよい。  The current fluctuation width It may be adjusted so that the transition period Tt from when the welding wire 19 starts to melt until the droplet 23 separates from the welding wire 19 falls within a predetermined range.

移行周期Ttは15msec以上35msec以下であってもよい。  The transition period Tt may be 15 msec or more and 35 msec or less.

溶接電圧Vの所定の電圧しきい値、または、溶接電圧Vの単位時間当たりの変化量(dV/dt)を用いて、溶接ワイヤ19の溶融を開始してから溶滴23が溶接ワイヤ19から離脱するまでの移行周期Ttを検出する。検出した移行周期Ttが予め求めたアークの安定領域As内での所定の値となるように、電流変動幅Itを調整する。  Using the predetermined voltage threshold value of the welding voltage V or the amount of change (dV / dt) per unit time of the welding voltage V, the droplet 23 is removed from the welding wire 19 after the welding wire 19 starts to melt. The transition period Tt until the separation is detected. The current fluctuation width It is adjusted so that the detected transition period Tt becomes a predetermined value within the arc stable region As determined in advance.

ピーク電流Ipは溶接電流Iの平均値の25%以上で45%以下の値だけ溶接電流の平均値より大きく、溶融電流Igの極小値ILは溶接電流Iの平均値の25%以上で45%以下の値だけ溶接電流Iの平均値より小さくてもよい。  The peak current Ip is 25% or more of the average value of the welding current I and larger than the average value of the welding current by a value of 45% or less, and the minimum value IL of the melting current Ig is 45% or more of 25% or more of the average value of the welding current I. The following value may be smaller than the average value of the welding current I.

ピーク電流Ipは溶接電流Iの平均値の30%以下の値だけ溶接電流Iの平均値より大きく、溶融電流Igの極小値ILは溶接電流の平均値の30%以下の値だけ溶接電流Iの平均値より小さくてもよい。  The peak current Ip is larger than the average value of the welding current I by a value that is 30% or less of the average value of the welding current I, and the minimum value IL of the melting current Ig is the value of the welding current I that is 30% or less of the average value of the welding current. It may be smaller than the average value.

アーク溶接装置はリアクトルを備えて、かつ電子リアクトル制御を行ってもよい。その場合、インダクタンス値は、リアクトルと電子リアクトル制御による電子リアクトル値との加算値である。  The arc welding apparatus may include a reactor and perform electronic reactor control. In this case, the inductance value is an addition value of the reactor and the electronic reactor value by the electronic reactor control.

アーク溶接装置101(101a)は、溶接ワイヤ19の溶融を開始してから溶滴23が溶接ワイヤ19から離脱するまでの移行周期Ttを繰り返す。繰り返される移行周期Ttのうちの或る移行周期Tt1でのアーク17のアーク長L17に応じて、繰り返される移行周期Ttのうちの或る移行周期Tt1の次の移行周期Tt2において溶接電流Iの平均値が溶接電圧Vの平均値に対応する値になるように外部特性を用いて電流変動幅Itを調整する。  The arc welding apparatus 101 (101a) repeats the transition period Tt from the start of melting of the welding wire 19 until the droplet 23 is detached from the welding wire 19. According to the arc length L17 of the arc 17 in a certain transition period Tt1 among the repeated transition periods Tt, the average of the welding current I in the transition period Tt2 next to the certain transition period Tt1 in the repeated transition periods Tt. The current fluctuation width It is adjusted using external characteristics so that the value corresponds to the average value of the welding voltage V.

ピーク電流Ipと溶融電流Igとのうちの少なくとも一つにより電流変動幅Itを制御してもよい。  The current fluctuation width It may be controlled by at least one of the peak current Ip and the melting current Ig.

6 リアクトル
17 アーク
18 母材
19 溶接ワイヤ
101 溶接装置
Ip ピーク電流
Ig 溶融電流
Tt 移行周期
It 電流変動幅
t1 溶融開始点
T2 成長期間
t3 溶滴離脱点
TM 低下時間
6 Reactor 17 Arc 18 Base material 19 Welding wire 101 Welding device Ip Peak current Ig Melting current Tt Transition period It Current fluctuation width t1 Melting start point T2 Growth period t3 Droplet separation point TM Decrease time

Claims (15)

溶接ワイヤに溶接電流を出力するアーク溶接装置を用いた、スプレー移行状態の定電圧制御のアーク溶接制御方法であって、
前記溶接電流が、前記溶接ワイヤが溶融して形成された溶滴が前記溶接ワイヤから離脱する際のピーク電流と、前記溶接ワイヤの溶融を開始して促進する際の凹状に極小値を有するように湾曲して連続的に変化する溶融電流とを繰り返すように前記アーク溶接装置を制御するステップと、
前記ピーク電流が前記溶接電流の平均値の25%以上で45%以下の値だけ前記溶接電流の前記平均値より大きく、かつ前記溶融電流の前記極小値が前記溶接電流の平均値の25%以上で45%以下の値だけ前記溶接電流の前記平均値より小さくなるように前記アーク溶接装置を制御するステップと、
を含むアーク溶接制御方法。
An arc welding control method for constant voltage control in a spray transition state using an arc welding apparatus that outputs a welding current to a welding wire,
The welding current has a minimum value in a peak current when a droplet formed by melting the welding wire is detached from the welding wire and a concave shape when starting and promoting melting of the welding wire. Controlling the arc welding apparatus to repeat a melting current that curves continuously and changes continuously,
The peak current is greater than the average value of the welding current by 25% or more and 45% or less of the average value of the welding current, and the minimum value of the melting current is 25% or more of the average value of the welding current. And controlling the arc welding apparatus to be smaller than the average value of the welding current by a value of 45% or less;
An arc welding control method including:
前記溶接電流が前記ピーク電流と前記溶融電流とを繰り返すように前記アーク溶接装置を制御する前記ステップは、溶接電圧の出力を設定する設定電圧に基づいて、前記溶接電流が前記ピーク電流と前記溶融電流とを繰り返すように前記アーク溶接装置を制御するステップを含む、請求項1に記載のアーク溶接制御方法。The step of controlling the arc welding apparatus so that the welding current repeats the peak current and the melting current is based on a set voltage that sets an output of a welding voltage. The arc welding control method according to claim 1, comprising the step of controlling the arc welding apparatus so as to repeat a current. 溶接ワイヤに溶接電流を出力するアーク溶接装置を用いた、スプレー移行状態の定電圧制御のアーク溶接制御方法であって、
前記溶接電流が、前記溶接ワイヤが溶融して形成された溶滴が前記溶接ワイヤから離脱する際のピーク電流と、前記溶接ワイヤの溶融を開始して促進する際の凹状に湾曲して極小値を有するように連続的に変化する溶融電流とを繰り返すように前記アーク溶接装置を制御するステップと、
前記溶接ワイヤの前記溶融の開始から前記溶滴が前記溶接ワイヤから離脱するまでの移行周期が15msec以上35msec以下となるように、前記ピーク電流と前記極小値との差分である電流変動幅を制御するステップと、
を含むアーク溶接制御方法。
An arc welding control method for constant voltage control in a spray transition state using an arc welding apparatus that outputs a welding current to a welding wire,
The welding current has a peak current when a droplet formed by melting the welding wire is detached from the welding wire, and a minimum value by curving into a concave shape when starting and promoting melting of the welding wire Controlling the arc welding apparatus to repeat a melting current that continuously changes to have:
A current fluctuation range which is a difference between the peak current and the minimum value is controlled so that a transition period from the start of melting of the welding wire to the time when the droplet is detached from the welding wire is 15 msec or more and 35 msec or less. And steps to
An arc welding control method including:
溶接ワイヤに溶接電流と溶接電圧とを含む溶接出力を出力して前記溶接ワイヤからアークを発生させるアーク溶接装置を用いた、スプレー移行状態の定電圧制御のアーク溶接制御方法であって、
前記溶接電流が、前記溶接ワイヤが溶融して形成された溶滴が前記溶接ワイヤから離脱する際のピーク電流と、溶接ワイヤの溶融を開始して促進する際の凹状に湾曲して極小値を有するように連続的に変化する溶融電流とを繰り返すように前記アーク溶接装置を制御するステップと、
前記ピーク電流と前記極小値との差分である電流変動幅が所定の値になるように、前記溶接出力に関係するインダクタンス値と、前記溶接電流と前記溶接電圧との関係を示す外部特性との少なくとも一つを用いて前記アーク溶接装置を制御するステップと、
を含むアーク溶接制御方法。
An arc welding control method for constant voltage control in a spray transition state using an arc welding apparatus for generating a welding output including a welding current and a welding voltage on a welding wire to generate an arc from the welding wire,
The welding current has a peak current when the droplet formed by melting the welding wire is detached from the welding wire and a minimum value by curving into a concave shape when starting and promoting melting of the welding wire. Controlling the arc welding apparatus to repeat a continuously changing melting current to have
An inductance value related to the welding output and an external characteristic indicating a relationship between the welding current and the welding voltage so that a current fluctuation range which is a difference between the peak current and the minimum value becomes a predetermined value. Controlling the arc welding apparatus using at least one;
An arc welding control method including:
前記ピーク電流は前記溶接電流の平均値の25%以上で45%以下の値だけ前記溶接電流の前記平均値より大きく、
前記溶融電流の前記極小値は前記溶接電流の平均値の25%以上で45%以下の値だけ前記溶接電流の前記平均値より小さい、請求項4に記載のアーク溶接制御方法。
The peak current is larger than the average value of the welding current by a value of 25% or more and 45% or less of the average value of the welding current,
The arc welding control method according to claim 4, wherein the minimum value of the melting current is smaller than the average value of the welding current by a value of 25% or more and 45% or less of the average value of the welding current.
前記ピーク電流は前記溶接電流の前記平均値の30%以下の値だけ前記溶接電流の前記平均値より大きく、
前記溶融電流の前記極小値は前記溶接電流の平均値の30%以下の値だけ前記溶接電流の前記平均値より小さい、請求項5に記載のアーク溶接制御方法。
The peak current is larger than the average value of the welding current by a value of 30% or less of the average value of the welding current,
The arc welding control method according to claim 5, wherein the minimum value of the melting current is smaller than the average value of the welding current by a value of 30% or less of the average value of the welding current.
前記アーク溶接装置はリアクトルを備えて、かつ電子リアクトル制御を行い、
前記インダクタンス値は、前記リアクトルと前記電子リアクトル制御による電子リアクトル値との加算値である、請求項4に記載のアーク溶接制御方法。
The arc welding apparatus includes a reactor and performs electronic reactor control,
The arc welding control method according to claim 4, wherein the inductance value is an added value of the reactor and an electronic reactor value by the electronic reactor control.
前記アーク溶接装置は、前記溶接ワイヤの前記溶融を開始してから前記溶滴が前記溶接ワイヤから離脱するまでの移行周期を繰り返し、
前記インダクタンス値と前記外部特性との前記少なくとも一つを用いて前記アーク溶接装置を制御するステップは、前記繰り返される移行周期のうちの或る移行周期での前記アークのアーク長に応じて、前記繰り返される移行周期のうちの前記或る移行周期の次の移行周期において前記溶接電流の平均値が前記溶接電圧の平均値に対応する値になるように前記外部特性を用いて前記電流変動幅を調整するステップを含む、請求項4に記載のアーク溶接制御方法。
The arc welding apparatus repeats a transition period from the start of the melting of the welding wire until the droplets are detached from the welding wire,
The step of controlling the arc welding apparatus using the at least one of the inductance value and the external characteristic is based on the arc length of the arc at a certain transition period among the repeated transition periods. The current fluctuation width is set using the external characteristics so that the average value of the welding current becomes a value corresponding to the average value of the welding voltage in the transition period next to the certain transition period among the repeated transition periods. The arc welding control method according to claim 4, comprising a step of adjusting.
前記電流変動幅を調整するステップは、前記ピーク電流と前記溶融電流とのうちの少なくとも一つにより前記電流変動幅を制御するステップを含む、請求項8に記載のアーク溶接制御方法。The arc welding control method according to claim 8, wherein the step of adjusting the current fluctuation range includes a step of controlling the current fluctuation range by at least one of the peak current and the melting current. 前記ピーク電流と前記溶融電流とのうちの少なくとも一つにより前記電流変動幅を制御するステップをさらに含む、請求項4に記載のアーク溶接制御方法。The arc welding control method according to claim 4, further comprising the step of controlling the current fluctuation range by at least one of the peak current and the melting current. 溶接ワイヤに溶接電流と溶接電圧とを含む溶接出力を出力して前記溶接ワイヤからアークを発生させるアーク溶接装置を用いた、スプレー移行状態の定電圧制御のアーク溶接制御方法であって、
前記溶接電流が、前記溶接ワイヤが溶融して形成された溶滴が前記溶接ワイヤから離脱する際のピーク電流と、溶接ワイヤの溶融を開始して促進する際の凹状に湾曲して極小値を有するように連続的に変化する溶融電流とを繰り返すように前記アーク溶接装置を制御するステップと、
前記溶接ワイヤの前記溶融を開始してから前記溶滴が前記溶接ワイヤから離脱するまでの移行周期が所定の範囲に収まるように、前記ピーク電流と前記極小値との差分である電流変動幅を調整するステップと、
を含むアーク溶接制御方法。
An arc welding control method for constant voltage control in a spray transition state using an arc welding apparatus for generating a welding output including a welding current and a welding voltage on a welding wire to generate an arc from the welding wire,
The welding current has a peak current when the droplet formed by melting the welding wire is detached from the welding wire and a minimum value by curving into a concave shape when starting and promoting melting of the welding wire. Controlling the arc welding apparatus to repeat a continuously changing melting current to have
A current fluctuation width that is a difference between the peak current and the minimum value is set so that a transition period from the start of the melting of the welding wire to the time when the droplet is detached from the welding wire is within a predetermined range. Adjusting steps,
An arc welding control method including:
前記移行周期は15msec以上35msec以下である、請求項11に記載のアーク溶接制御方法。The arc welding control method according to claim 11, wherein the transition period is 15 msec or more and 35 msec or less. 前記電流変動幅を調整するステップは、前記電流変動幅が所定の値になるように、前記溶接出力に関係するインダクタンス値と、前記溶接電流と前記溶接電圧との関係を示す外部特性との少なくとも一つを用いて前記アーク溶接装置を制御するステップを含む、請求項11に記載のアーク溶接制御方法。The step of adjusting the current fluctuation range includes at least an inductance value related to the welding output and an external characteristic indicating a relationship between the welding current and the welding voltage so that the current fluctuation width becomes a predetermined value. The arc welding control method according to claim 11, comprising the step of controlling the arc welding apparatus using one. 溶接ワイヤに溶接電流と溶接電圧とを含む溶接出力を出力して前記溶接ワイヤからアークを発生させるアーク溶接装置を用いた、スプレー移行状態の定電圧制御のアーク溶接制御方法であって、
前記溶接電流が、前記溶接ワイヤが溶融して形成された溶滴が前記溶接ワイヤから離脱する際のピーク電流と、溶接ワイヤの溶融を開始して促進する際の凹状に湾曲して極小値を有するように連続的に変化する溶融電流とを繰り返すように前記アーク溶接装置を制御するステップと、
前記溶接電圧の所定の電圧しきい値、または、前記溶接電圧の単位時間当たりの変化量を用いて、前記溶接ワイヤの前記溶融を開始してから前記溶滴が前記溶接ワイヤから離脱するまでの移行周期を検出するステップと、
検出した前記移行周期が予め求めた前記アークの安定領域内での所定の値となるように、前記ピーク電流と前記極小値との差分である電流変動幅を調整するステップと、
を含むアーク溶接制御方法。
An arc welding control method for constant voltage control in a spray transition state using an arc welding apparatus for generating a welding output including a welding current and a welding voltage on a welding wire to generate an arc from the welding wire,
The welding current has a peak current when the droplet formed by melting the welding wire is detached from the welding wire and a minimum value by curving into a concave shape when starting and promoting melting of the welding wire. Controlling the arc welding apparatus to repeat a continuously changing melting current to have
Using the predetermined voltage threshold value of the welding voltage or the amount of change per unit time of the welding voltage until the droplet is detached from the welding wire after the melting of the welding wire is started. Detecting a transition period;
Adjusting the current fluctuation range, which is the difference between the peak current and the minimum value, so that the detected transition period is a predetermined value within the stable region of the arc determined in advance;
An arc welding control method including:
前記電流変動幅を調整するステップは、前記電流変動幅が所定の値になるように、前記溶接出力に関係するインダクタンス値と、前記溶接電流と前記溶接電圧との関係を示す外部特性との少なくとも一つを用いて前記アーク溶接装置を制御するステップを含む、請求項14に記載のアーク溶接制御方法。The step of adjusting the current fluctuation range includes at least an inductance value related to the welding output and an external characteristic indicating a relationship between the welding current and the welding voltage so that the current fluctuation width becomes a predetermined value. The arc welding control method according to claim 14, comprising the step of controlling the arc welding apparatus using one.
JP2017511456A 2015-04-07 2016-03-14 Arc welding control method Active JP6596675B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015078181 2015-04-07
JP2015078181 2015-04-07
PCT/JP2016/001425 WO2016163073A1 (en) 2015-04-07 2016-03-14 Arc welding control method

Publications (2)

Publication Number Publication Date
JPWO2016163073A1 JPWO2016163073A1 (en) 2018-02-08
JP6596675B2 true JP6596675B2 (en) 2019-10-30

Family

ID=57072315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017511456A Active JP6596675B2 (en) 2015-04-07 2016-03-14 Arc welding control method

Country Status (3)

Country Link
JP (1) JP6596675B2 (en)
CN (1) CN107206528B (en)
WO (1) WO2016163073A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6757892B2 (en) * 2015-08-17 2020-09-23 パナソニックIpマネジメント株式会社 Arc welding control method
JP7048382B2 (en) * 2018-03-28 2022-04-05 株式会社神戸製鋼所 Control method and control device for gas shielded arc welding
WO2020246416A1 (en) * 2019-06-06 2020-12-10 パナソニックIpマネジメント株式会社 Welding condition setting assistance device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157574A (en) * 1982-03-15 1983-09-19 Hitachi Seiko Ltd Stabilizing of arc in pulse arc welding
JPS6068173A (en) * 1983-09-22 1985-04-18 Mitsubishi Heavy Ind Ltd Detection of profiling for welding
EP0148315A1 (en) * 1984-07-05 1985-07-17 Jiluan Pan Method of controlling the output characteristic of a welding power source, apparatus for arc welding and electrical circuit to be used for such apparatus
JP4128725B2 (en) * 2000-05-15 2008-07-30 株式会社神戸製鋼所 Welding power supply control device and consumable electrode gas shield arc welding device
US8242410B2 (en) * 2006-07-14 2012-08-14 Lincoln Global, Inc. Welding methods and systems
US10500667B2 (en) * 2009-04-08 2019-12-10 Panasonic Intellectual Property Management Co., Ltd. Arc welding method and arc welding apparatus for adjusting a welding current waveform responsive to a setting voltage adjustment
JP2011235348A (en) * 2010-05-13 2011-11-24 Daihen Corp Method of controlling short-circuit current of mag welding
US9616514B2 (en) * 2012-11-09 2017-04-11 Lincoln Global, Inc. System and method to detect droplet detachment

Also Published As

Publication number Publication date
CN107206528A (en) 2017-09-26
CN107206528B (en) 2019-07-05
JPWO2016163073A1 (en) 2018-02-08
WO2016163073A1 (en) 2016-10-13

Similar Documents

Publication Publication Date Title
JP5927433B2 (en) Arc welding method and arc welding apparatus
JP6695030B2 (en) Control method of arc welding
WO2012032703A1 (en) Arc welding control method
US20210031293A1 (en) Arc welding control method
US11813704B2 (en) Pulsed arc welding control method and pulsed arc welding device
US9296057B2 (en) Welding device and carbon dioxide gas shielded arc welding method
JP6757892B2 (en) Arc welding control method
JP6596675B2 (en) Arc welding control method
CN105750695A (en) Pulsed arc welding arcing control method
JP6524412B2 (en) Arc welding control method
JP2013059793A (en) Welding equipment
JP2013043213A (en) Welding device
WO2020075791A1 (en) Arc welding control method
JP6994623B2 (en) Arc start method
JP5822565B2 (en) Welding equipment
JP6754935B2 (en) Arc welding control method
JP2019155418A (en) Arc-welding control method
JP6948528B2 (en) Arc welding method and arc welding equipment
JP2019188434A (en) Control method of ac arc-welding
JPH0557071B2 (en)
JP2019093403A (en) Arc-welding method
EP4155019A1 (en) Direct current arc welding control method
JP2023062718A (en) Welding completion control method of pulse arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181011

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R151 Written notification of patent or utility model registration

Ref document number: 6596675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151