JP6757704B2 - Method for manufacturing negative electrode active material for lithium ion capacitors - Google Patents

Method for manufacturing negative electrode active material for lithium ion capacitors Download PDF

Info

Publication number
JP6757704B2
JP6757704B2 JP2017167259A JP2017167259A JP6757704B2 JP 6757704 B2 JP6757704 B2 JP 6757704B2 JP 2017167259 A JP2017167259 A JP 2017167259A JP 2017167259 A JP2017167259 A JP 2017167259A JP 6757704 B2 JP6757704 B2 JP 6757704B2
Authority
JP
Japan
Prior art keywords
active material
negative electrode
carbon
electrode active
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017167259A
Other languages
Japanese (ja)
Other versions
JP2019046925A (en
Inventor
健一 本川
健一 本川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP2017167259A priority Critical patent/JP6757704B2/en
Publication of JP2019046925A publication Critical patent/JP2019046925A/en
Application granted granted Critical
Publication of JP6757704B2 publication Critical patent/JP6757704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、リチウムイオンキャパシタに用いられる負極活物質の製造方法に関する。 The present invention relates to a method for producing a negative electrode active material used in a lithium ion capacitor.

リチウムイオンキャパシタは、正極に活性炭、負極にプレドープした炭素材料を使用し、リチウムイオン電池と電気二重層キャパシタの特質を併せ持つデバイスであり、リチウムイオン電池に比べて出力密度が高く、電気二重層キャパシタに比べてエネルギー密度が高いことから、風力発電、太陽光発電における電力平準化、瞬時電圧低下補償装置、フォークリフト等の建設機械、交通・輸送関係の各種移動体などの分野で利用が期待されている。 A lithium-ion capacitor is a device that uses activated carbon for the positive electrode and a pre-doped carbon material for the negative electrode, and has the characteristics of a lithium-ion battery and an electric double-layer capacitor. It has a higher output density than a lithium-ion battery and is an electric double-layer capacitor. Since the energy density is higher than that of the above, it is expected to be used in fields such as wind power generation, power leveling in solar power generation, instantaneous voltage drop compensation device, construction machinery such as forklifts, and various moving objects related to transportation. There is.

交通・輸送分野の自動車用電源としてリチウムイオン電池が広く利用されているが、高出力特性に難点があり、また充放電を繰り返すと劣化するという問題がある。これ補完できると思われる電気二重層キャパシタは、出力特性や充放電の繰り返し特性は満足できるものの、エネルギー密度が十分に高くないという難点がある。
これに対し予め負極材料にリチウムイオンをドープ(プレドープ)した炭素材料を用いたリチウムイオンキャパシタは、負極を高容量化、低電位化できるため、エネルギー密度を従来の電気二重層キャパシタの4倍以上にでき、高温負荷や、長期の充放電サイクルなどにも優れた特性を発揮するとされている。
Lithium-ion batteries are widely used as a power source for automobiles in the transportation field, but they have a problem of high output characteristics and deterioration when charging and discharging are repeated. The electric double layer capacitor, which seems to be able to complement this, is satisfied with the output characteristics and the repetitive charge / discharge characteristics, but has a drawback that the energy density is not sufficiently high.
On the other hand, a lithium ion capacitor using a carbon material in which lithium ions are pre-doped into the negative electrode material in advance can increase the capacity and lower the potential of the negative electrode, so that the energy density is four times or more that of a conventional electric double layer capacitor. It is said that it exhibits excellent characteristics even in high temperature loads and long-term charge / discharge cycles.

リチウムイオンキャパシタの従来の負極活物質には、ハードカーボン、ソフトカーボン等の比較的結晶性の低い材料が使用されていたこともあり、負極活物質の内部抵抗を十分に低く抑えることは困難であり、期待される用途の内の一部の利用に止まっていた。 Since materials with relatively low crystallinity such as hard carbon and soft carbon have been used for the conventional negative electrode active material of lithium ion capacitors, it is difficult to keep the internal resistance of the negative electrode active material sufficiently low. Yes, it was limited to some of the expected uses.

リチウムイオンキャパシタの普及を図るうえでも負極活物質の内部抵抗を十分に低く抑えることが必要であり、その手段の一つとして負極活物質である炭素材料の電気抵抗値を低く抑えることも必要である。 In order to popularize lithium ion capacitors, it is necessary to keep the internal resistance of the negative electrode active material sufficiently low, and as one of the means, it is also necessary to keep the electrical resistance value of the carbon material, which is the negative electrode active material, low. is there.

特開2008−130890号公報JP-A-2008-130890 特許第5041351号公報Japanese Patent No. 5041351 特開2015−70032号公報Japanese Unexamined Patent Publication No. 2015-70032

炭素学 基礎物性から応用展開まで、田中和義他、化学同人(2011)From basic physical properties to application development, Kazuyoshi Tanaka et al., Kagaku-Dojin (2011) 新・炭素工業 石川敏功、長沖 通、近代編集社(昭和55年)New Carbon Industry Toshinori Ishikawa, Michi Nagaoki, Modern Editing Company (1980) 新・炭素材料入門 炭素材料学会編(1996)Introduction to New Carbon Materials Society of Carbon Materials (1996) 炭素材料工学 稲垣道夫、日刊工業社(昭和60年)Carbon Materials Engineering Michio Inagaki, Nikkan Kogyosha (1985)

従来、リチウムイオンキャパシタの負極活物質として用いられてきたのは、フェノール樹脂、フラン樹脂、及び光学的等方性ピッチの溶融時に空気を吹き込む等して架橋構造を付加した後に炭素化して得たハードカーボン、ピッチを炭素化して得たソフトカーボン、もしくはカーボンブラックやこれらの複合物等の高速充放電に対応可能な結晶性の低い材料である。高速充放電に対応する効果を高めるため、活物質の粒子径を小さくしたり、比表面積を大きくする工夫もとられている。ところが結晶性が低く比較的電気抵抗値が高い材料であるため、リチウムイオンキャパシタの内部抵抗が高いものとなる。
本発明は、これに対して、リチウムイオンキャパシタの性能に影響を与えずにリチウムイオンキャパシタの内部抵抗を低下させ、リチウムイオンキャパシタの高容量化とエネルギー密度の向上をもたらすリチウムイオンキャパシタの負極活物質を提供することを目的とする。
Conventionally, the negative electrode active material of a lithium ion capacitor has been obtained by carbonizing after adding a crosslinked structure by blowing air when melting a phenol resin, a furan resin, and an optically isotropic pitch. It is a material having low crystallinity capable of high-speed charging and discharging such as hard carbon, soft carbon obtained by carbonizing pitch, carbon black, and composites thereof. In order to enhance the effect of high-speed charging and discharging, measures have been taken to reduce the particle size of the active material and increase the specific surface area. However, since the material has low crystallinity and a relatively high electrical resistance value, the internal resistance of the lithium ion capacitor is high.
On the other hand, the present invention reduces the internal resistance of the lithium ion capacitor without affecting the performance of the lithium ion capacitor, and brings about an increase in the capacity of the lithium ion capacitor and an improvement in energy density. The purpose is to provide the substance.

X線回折による炭素結晶網面層の面間距離d(002)が0.3400〜0.3770nmの低結晶炭素粒子の内部にd(002)が0.3354〜0.3360nm、平均粒子径が0.8〜3.0μmの黒鉛粒子を少なくとも一粒子包含する複合粒子で、平均粒子径2.0〜6.0μm、最大粒子径50μm以下、BET法比表面積5.0〜15.0m/g、孔径2nm以下のマイクロ孔の細孔容積が全細孔容積の2%以下、液体窒素温度における窒素の吸脱着による窒素ガスの最大吸着量10cm/g以上、亜麻仁油吸油量90〜150ml/100g、タップ密度0.25g/cm以上であるリチウムイオンキャパシタ用負極活物質である。 The interplanetary distance d (002) of the carbon crystal network layer by X-ray diffraction is 0.3400 to 0.3770 nm inside the low crystal carbon particles, d (002) is 0.3354 to 0.3360 nm, and the average particle diameter is A composite particle containing at least one graphite particle of 0.8 to 3.0 μm, having an average particle diameter of 2.0 to 6.0 μm, a maximum particle diameter of 50 μm or less, and a BET method specific surface area of 5.0 to 15.0 m 2 /. g, The pore volume of micropores with a pore diameter of 2 nm or less is 2% or less of the total pore volume, the maximum adsorption amount of nitrogen gas by adsorption and desorption of nitrogen at liquid nitrogen temperature is 10 cm 3 / g or more, and flaxseed oil absorption amount 90 to 150 ml It is a negative electrode active material for a lithium ion capacitor having a tap density of 0.25 g / cm 3 or more and a tap density of 0.25 g / cm.

黒鉛のd(002)は、0.3354〜0.3360nmであり、電気抵抗率は0.1mΩcm(1μΩm)と低く、金属と言ってよいほどの値を示す。人造黒鉛の場合は、一般に炭素化温度(黒鉛化温度)が2800℃以上では、d(002)は0.3354〜0.3360nmとなり低い電気抵抗値を示すが、逆に炭素化温度が2800℃より低くなるに従い、得られた黒鉛の結晶化度は低下していき、これに従ってd(002)は、0.3360nmより大きくなり、これに応じて電気抵抗値も増大する。
低結晶炭素とは、炭化温度が800〜1300℃であり、d(002)は0.3400〜0.3770nmとなり電気抵抗値は高くなる。
従来用いられてきた低結晶炭素にd(002)が0.3354〜0.3360nmである黒鉛粉末を包含させることによって表面状態を変えることなく低抵抗化を達成したものである。
The d (002) of graphite is 0.3354 to 0.3360 nm, and the electrical resistivity is as low as 0.1 mΩcm (1 μΩm), which is a value that can be said to be a metal. In the case of artificial graphite, generally, when the carbonization temperature (graphiteization temperature) is 2800 ° C. or higher, d (002) is 0.3354 to 0.3360 nm, which shows a low electrical resistance value, but conversely, the carbonization temperature is 2800 ° C. As the value becomes lower, the crystallinity of the obtained graphite decreases, and d (002) becomes larger than 0.3360 nm accordingly, and the electric resistance value increases accordingly.
Low crystalline carbon has a carbonization temperature of 800 to 1300 ° C., d (002) of 0.3400 to 0.3770 nm, and a high electrical resistance value.
By including graphite powder having d (002) of 0.3354 to 0.3360 nm in the conventionally used low crystalline carbon, low resistance is achieved without changing the surface state.

低結晶炭素の内部に包含される人造黒鉛又は天然黒鉛の粒子は、負極活物質である炭素材料の電気抵抗値を低く抑える目的のため、結晶化度が高いほど好ましい。即ち炭素網面層の面間距離d(002)が小さいほど良く、0.3354〜0.3360nmであるものが適宜選択される。
0.3354nm未満のものは、黒鉛の結晶構造上ありえず、0.3360nmより大きいものは、結晶化度が十分に高いとは言えず好ましくない。なお、d(002)が0.3354〜0.3360nmの場合、多くは炭素網面層が積層した厚さを示すLc、及び炭素網面の広がりを示すLaは、100nmより大となり好ましい。ただし、LcあるいはLaのどちらか、又はLc及びLa共に100nmに満たない場合でも使用することは可能である。
The particles of artificial graphite or natural graphite contained inside the low crystalline carbon are preferably those having a high degree of crystallinity for the purpose of suppressing the electric resistance value of the carbon material which is the negative electrode active material. That is, the smaller the interplanetary distance d (002) of the carbon network layer is, the better, and those having 0.3354 to 0.3360 nm are appropriately selected.
If it is less than 0.3354 nm, it is impossible due to the crystal structure of graphite, and if it is larger than 0.3360 nm, the crystallinity cannot be said to be sufficiently high and it is not preferable. When d (002) is 0.3354 to 0.3360 nm, Lc indicating the thickness of the laminated carbon network layer and La indicating the spread of the carbon network surface are preferably larger than 100 nm in most cases. However, it is possible to use either Lc or La, or even when both Lc and La are less than 100 nm.

人造黒鉛又は天然黒鉛粒子の粒径は、体積累積平均粒子径が、0.8〜3.0μmであることが好ましい。0.8μmより小さいものは工業的に量産するのが難しいため入手困難であり、3.0μmより大きいと焼成後の粉砕で目的の粒径を得るために低結晶炭素に包含されている黒鉛粒子自体までも粉砕してしまい、活性な粉砕面が露出し、電解液の分解、ガス発生を促すので好ましくない。また用いる黒鉛粒子の形状については特に限定するものではなく、扁平状、破砕状、球状、繊維状、及びその他の形状のものを使用しても特に問題になることはない。黒鉛粒子の形状により吸油量や比表面積が異なるので、ピッチと黒鉛粒子の配合量を適宜調整する必要がある。
また黒鉛粒子は、人造黒鉛、天然黒鉛それぞれ単独で用いても、併用しても、粒度の異なる2種以上を併用しても、粒形及び種類の異なる2種以上を併用してもよい。
The particle size of the artificial graphite or natural graphite particles preferably has a volume cumulative average particle size of 0.8 to 3.0 μm. Those smaller than 0.8 μm are difficult to obtain because it is difficult to mass-produce them industrially, and those larger than 3.0 μm are graphite particles contained in low crystalline carbon in order to obtain the desired particle size by pulverization after firing. Even itself is crushed, the active crushed surface is exposed, and decomposition of the electrolytic solution and gas generation are promoted, which is not preferable. Further, the shape of the graphite particles to be used is not particularly limited, and flat, crushed, spherical, fibrous, and other shapes may be used without any particular problem. Since the oil absorption amount and the specific surface area differ depending on the shape of the graphite particles, it is necessary to appropriately adjust the pitch and the blending amount of the graphite particles.
Further, as the graphite particles, artificial graphite and natural graphite may be used alone, in combination, two or more kinds having different particle sizes may be used in combination, or two or more kinds having different grain shapes and types may be used in combination.

低結晶炭素の前駆体として用いるピッチは、人造黒鉛電極等の一般的な人造黒鉛材を製造する場合に用いるバインダーピッチが適当であり、密度は1.26〜1.30g/cm、軟化点が80〜120℃、含有するキノリン不溶分が7〜15%、トルエン不溶分が25〜40%、固定炭素は53〜65%である。
また、一般に軟化点が80〜120℃のバインダーピッチを800〜1200℃で炭化した場合の残炭率は、概ね65〜70%である。
As the pitch used as a precursor of low crystalline carbon, the binder pitch used when producing a general artificial graphite material such as an artificial graphite electrode is suitable, the density is 1.26 to 1.30 g / cm 3 , and the softening point. The temperature is 80 to 120 ° C., the quinoline insoluble content is 7 to 15%, the toluene insoluble content is 25 to 40%, and the fixed carbon content is 53 to 65%.
Further, in general, when a binder pitch having a softening point of 80 to 120 ° C. is carbonized at 800 to 1200 ° C., the residual carbonization ratio is approximately 65 to 70%.

ピッチと黒鉛粒子の配合については、重量換算で、炭化後のピッチの残炭率を考慮するとピッチ100重量部に対して黒鉛粒子が250〜500重量部が好ましく、より好ましくは300〜400重量部である。黒鉛粒子が500重量部より多いと低結晶炭素中に黒鉛粒子を十分に包含させることが難しい。黒鉛粒子の一部でも露出したまま負極を作成した場合、負極上で電解液の分解を十分に抑制することが難しくガス発生を防ぎにくくなるので好ましくなく、250重量部より少ないと焼成品が硬い大きな塊となり、粉砕しづらくなるとともに粉砕により目的の粒径を得るために低結晶炭素中に包含された黒鉛粒子自体までも粉砕され、また、ピッチ由来の低結晶炭素の粉砕頻度も高くなり、比表面積が大きくなるなどして電解液の分解を促すので好ましくない。 Regarding the composition of the pitch and the graphite particles, in terms of weight, 250 to 500 parts by weight of the graphite particles is preferable with respect to 100 parts by weight of the pitch, and more preferably 300 to 400 parts by weight, considering the residual carbonization ratio of the pitch after carbonization. Is. If the number of graphite particles is more than 500 parts by weight, it is difficult to sufficiently include the graphite particles in the low crystalline carbon. When the negative electrode is prepared with even a part of the graphite particles exposed, it is difficult to sufficiently suppress the decomposition of the electrolytic solution on the negative electrode and it is difficult to prevent gas generation. Therefore, if it is less than 250 parts by weight, the baked product is hard. It becomes a large lump, which makes it difficult to crush, and even the graphite particles themselves contained in the low crystal carbon are crushed in order to obtain the desired particle size by crushing, and the frequency of crushing the low crystal carbon derived from the pitch increases. It is not preferable because it promotes the decomposition of the electrolytic solution by increasing the specific surface area.

炭化によりピッチは、熱分解と重縮合が進行し、有機物であるピッチが無機物である炭素に変化する。用いるピッチの性状及び炭化温度により残炭率は変動するが、一般に軟化点が80〜120℃のバインダーピッチを800〜1200℃で炭化した場合の残炭率は、概ね65〜70%である。予め残炭率を考慮してピッチと黒鉛粒子の配合量を適宜調整すればよい。低結晶炭素中に本発明において使用する体積累積平均粒子径が、0.8〜3.0μmの黒鉛粒子を十分に包含させるためには、低結晶炭素と黒鉛粒子の重量比が1対3.5〜1対7.2である。 Due to carbonization, the pitch undergoes thermal decomposition and polycondensation, and the pitch, which is an organic substance, changes to carbon, which is an inorganic substance. The residual carbonization rate varies depending on the properties of the pitch used and the carbonization temperature, but in general, the residual carbonization rate when a binder pitch having a softening point of 80 to 120 ° C. is carbonized at 800 to 1200 ° C. is approximately 65 to 70%. The pitch and the blending amount of the graphite particles may be appropriately adjusted in consideration of the residual coal ratio in advance. In order to sufficiently include graphite particles having a volume cumulative average particle diameter of 0.8 to 3.0 μm used in the present invention in the low crystalline carbon, the weight ratio of the low crystalline carbon to the graphite particles is 1: 3. It is 5 to 1 to 7.2.

本発明は、リチウムイオンキャパシタの内部抵抗を低くすることを目的とするものであり、結晶性が高く電気抵抗値が低い黒鉛粒子を主体の低結晶炭素内に包含させることにより、リチウムイオンキャパシタの内部抵抗の低下をもたらすものである。黒鉛粒子は、その表面でリチウムのプレドープ時に電解液の分解を促進させ、ガス発生の原因となるので、低結晶炭素の内部に包含させて表面に露出することがないようにしたものである。 An object of the present invention is to reduce the internal resistance of a lithium ion capacitor, and by including graphite particles having high crystallinity and a low electric resistance value in the main low crystal carbon, the lithium ion capacitor can be provided. It brings about a decrease in internal resistance. Graphite particles promote the decomposition of the electrolytic solution at the time of pre-doping lithium on the surface thereof and cause gas generation. Therefore, the graphite particles are included inside the low crystalline carbon so as not to be exposed on the surface.

炭素材料における組織は、炭素原子で構成された小さな六角網面が面配向し、その領域がどの程度の大きさで、どのような集合状態であるかで表され、偏光顕微鏡下で異方性を持つ面配向領域の集合体として観察される。具体的には偏光顕微鏡下で観察すれば、光学的異方性の部分は試料台を回転させながら観察すると黄色、ピンク色、青色、再び黄色の順に色が変化するが、等方性の部分はピンク色のままである。
本発明においては、ピッチ由来の低結晶炭素は光学的等方性を示し、これに包含される黒鉛粒子は光学的異方性を示す。本発明により得られた負極活物質粉末を硬化剤が添加されたエポキシ樹脂に分散させた後、放置・硬化・研磨により黒鉛粒子の断面を観察することによって粒子の構造、低結晶炭素中に包含された黒鉛粒子を粒子毎に確認することができる。
The structure of a carbon material is represented by the plane orientation of a small hexagonal network composed of carbon atoms, the size of the region, and the aggregated state, and is anisotropic under a polarizing microscope. It is observed as an aggregate of plane orientation regions with. Specifically, when observed under a polarizing microscope, the optically anisotropic part changes color in the order of yellow, pink, blue, and yellow again when observed while rotating the sample table, but the isotropic part. Remains pink.
In the present invention, the low crystalline carbon derived from the pitch exhibits optical isotropic properties, and the graphite particles included therein exhibit optical anisotropy. The negative electrode active material powder obtained by the present invention is dispersed in an epoxy resin to which a curing agent has been added, and then the structure of the particles is included in the low crystalline carbon by observing the cross section of the graphite particles by leaving, curing, and polishing. The graphite particles can be confirmed for each particle.

高速充放電に対応する効果を高めるため、有効な大きさの細孔が寄与する比表面積が大きいことも大切である。
本発明の負極活物質の細孔構造は、図1に示されるように、液体窒素温度における窒素ガスの吸脱着における等温吸着線において、窒素ガスの相対圧(P/P)が、0.8前後までは窒素ガスの吸着量が少なく、0.8を超えると急激に増大する。
窒素ガスの吸脱着における等温吸着線において、窒素ガスの相対圧(P/P)が、0.99付近で窒素ガスの吸着量が10cm/g以上である。
BET法比表面積は、5.0〜15.0m/gである。
細孔直径2nm以下のマイクロ孔の比表面積0.5m/g以下、マイクロ孔の細孔容積が、全細孔容積の2%以下である。
It is also important that the specific surface area contributed by the pores of effective size is large in order to enhance the effect corresponding to high-speed charging and discharging.
In the pore structure of the negative electrode active material of the present invention, as shown in FIG. 1, the relative pressure (P / P 0 ) of nitrogen gas is 0 in the isotherm adsorption isotherm in the adsorption / desorption of nitrogen gas at the liquid nitrogen temperature. The amount of nitrogen gas adsorbed is small up to around 8, and increases sharply when it exceeds 0.8.
In the isotherm adsorption line for adsorption and desorption of nitrogen gas, the relative pressure (P / P 0 ) of nitrogen gas is around 0.99, and the adsorption amount of nitrogen gas is 10 cm 3 / g or more.
The BET method specific surface area is 5.0 to 15.0 m 2 / g.
The specific surface area of the micropores having a pore diameter of 2 nm or less is 0.5 m 2 / g or less, and the pore volume of the micropores is 2% or less of the total pore volume.

本発明の負極活物質の粒度分布は、体積累積平均粒子径が、0.8〜3.0μmの黒鉛粒子を低結晶炭素に包含させて成る複合粒子として、より効果的に高速充放電に対応させるため、製造可能な粒子径を考慮すると、D10が1.0〜3.5μm、D50(平均粒子径)が2.0〜6.0μm、D90が4.0〜15.0μm、D100(最大粒子径)が50μm以下である。 The particle size distribution of the negative electrode active material of the present invention corresponds to high-speed charging and discharging more effectively as composite particles formed by including graphite particles having a volume cumulative average particle diameter of 0.8 to 3.0 μm in low crystalline carbon. Considering the particle size that can be produced, D 10 is 1.0 to 3.5 μm, D 50 (average particle size) is 2.0 to 6.0 μm, and D 90 is 4.0 to 15.0 μm. D 100 (maximum particle size) is 50 μm or less.

本発明の負極活物質は、バインダー、導電助剤、及び分散媒を混合してスラリーを調製後金属箔の集電体に塗布するが、この際分散安定性の良いスラリーを作ることが大切である。また活物質に求められる特性指標としては吸油量が挙げられ、スラリーの分散安定性や、塗布直後の塗膜のエッジ部の変形を防ぐためには適当な吸油量範囲があり、亜麻仁油吸油量90〜150ml/100gが好ましい。また、この時活物質のタップ密度は、0.25g/cm以上である。 In the negative electrode active material of the present invention, a binder, a conductive auxiliary agent, and a dispersion medium are mixed to prepare a slurry, which is then applied to a metal leaf current collector. At this time, it is important to prepare a slurry having good dispersion stability. is there. In addition, the characteristic index required for the active material is the oil absorption amount, and there is an appropriate oil absorption amount range in order to prevent the dispersion stability of the slurry and the deformation of the edge portion of the coating film immediately after application, and the linseed oil oil absorption amount is 90. ~ 150 ml / 100 g is preferable. At this time, the tap density of the active material is 0.25 g / cm 3 or more.

本発明のリチウムイオンキャパシタ用負極活物質の製造方法について以下に述べるが、一例を挙げるものであって、必ずしもこの方法に依らずともピッチの内部に黒鉛粒子が少なくとも1粒包含された前駆体が得られるのであれば他の方法を用いても構わない。 The method for producing the negative electrode active material for a lithium ion capacitor of the present invention will be described below, but only an example is given, and a precursor containing at least one graphite particle inside the pitch is not necessarily used by this method. Other methods may be used as long as they can be obtained.

<混合撹拌>
ピッチの内部に黒鉛粒子が少なくとも1粒包含された前駆体を得るため、所定量のピッチと黒鉛粒子をピッチの軟化点以上の温度で加熱ニーダー等を用い混合撹拌を行う。軟化点が80〜120℃のピッチが好適に用いられるため、この場合は軟化点以上の温度140〜180℃で加熱しながら1〜3時間混合撹拌を行う。
<Mixing and stirring>
In order to obtain a precursor in which at least one graphite particle is contained in the pitch, a predetermined amount of pitch and graphite particles are mixed and stirred at a temperature equal to or higher than the softening point of the pitch using a heating kneader or the like. Since a pitch having a softening point of 80 to 120 ° C. is preferably used, in this case, mixing and stirring are performed for 1 to 3 hours while heating at a temperature of 140 to 180 ° C. above the softening point.

<炭化>
ピッチと黒鉛粒子の混合撹拌物を炭化するため、金属容器に仕込んで、非酸化性雰囲気中で5〜10℃/hで昇温しながら最終的に800〜1200℃で1〜10時間保持して焼成する。焼成時の雰囲気は、非酸化性雰囲気であれば問題なく、例えば窒素雰囲気、炭酸ガス雰囲気、アルゴン雰囲気、ピッチの熱分解により生じた非酸化性の自己雰囲気が挙げられる。
<Carbonization>
In order to carbonize the mixed mixture of pitch and graphite particles, it is placed in a metal container and held at 800 to 1200 ° C. for 1 to 10 hours while raising the temperature at 5 to 10 ° C./h in a non-oxidizing atmosphere. And bake. The atmosphere at the time of firing has no problem as long as it is a non-oxidizing atmosphere, and examples thereof include a nitrogen atmosphere, a carbon dioxide gas atmosphere, an argon atmosphere, and a non-oxidizing self-atmosphere generated by thermal decomposition of pitch.

<粉砕>
焼成により炭化された後、金属容器から取り出して粉砕を行う。最終的にはジェットミル、インペラーミル、ターボミル、ピンミル、ACMパルベライザー等を使用して時間当たりの投入量、粉砕歯の回転数、連続式またはジェットミルの場合は空気量等を適宜調節して粉砕し、所定に仕上げるが、金属容器から取り出したものが大きな塊である場合は、必要に応じてジョークラッシャー、ロートプレックス、オリエントミル、ハンマークラッシャー等を用いて予備粉砕を行うことができる。
本発明では、株式会社セイシン企業製のインペラーミルIMP−400型を粉砕機として使用し、原料投入速度は、35kg/h、インペラーの回転数3560rpm、風量35m/minで実施した。
粉砕時のパワーが不足していると所定の粒度が得られず、逆にパワーが過剰で過粉砕となると低結晶炭素内に包含させた黒鉛粒子の表面あるいは断面が露出するので好ましくない。
<Crushing>
After being carbonized by firing, it is taken out of a metal container and crushed. Finally, use a jet mill, impeller mill, turbo mill, pin mill, ACM palberizer, etc. to appropriately adjust the input amount per hour, the number of rotations of the crushed teeth, and the amount of air in the case of a continuous type or jet mill. However, if the product is a large lump taken out from the metal container, it can be pre-crushed by using a jaw crusher, a rotoplex, an Orient mill, a hammer crusher or the like, if necessary.
In the present invention, an impeller mill IMP-400 manufactured by Seishin Enterprise Co., Ltd. was used as a crusher, and the raw material input speed was 35 kg / h, the impeller rotation speed was 3560 rpm, and the air volume was 35 m 3 / min.
If the power at the time of pulverization is insufficient, a predetermined particle size cannot be obtained, and conversely, if the power is excessive and over-pulverization occurs, the surface or cross section of the graphite particles contained in the low crystal carbon is exposed, which is not preferable.

<篩>
粉砕物は、粗粉を含んでいるので、粗粉除去のため目開き32乃至38μmの網を張った振動篩、超音波篩等により処理を行う。なお、気流式の分級機を使うこともできるが、得率の観点からは好ましくない。
<Sieve>
Since the pulverized product contains coarse powder, it is treated with a vibrating sieve, an ultrasonic sieve, or the like having a mesh with an opening of 32 to 38 μm in order to remove the coarse powder. Although an airflow type classifier can be used, it is not preferable from the viewpoint of profitability.

本発明に使用する原料であるピッチ、黒鉛粒子、及び本発明品である低結晶炭素の中に黒鉛粒子を内包するリチウムイオンキャパシタ用負極活物質の各物性、性能はそれぞれ後述する方法により測定した。 The physical properties and performance of the pitch, graphite particles, which are the raw materials used in the present invention, and the negative electrode active material for a lithium ion capacitor, which contains graphite particles in the low crystalline carbon of the present invention, were measured by the methods described below. ..

<粒度>
平均粒径、及び粒度分布の測定は、日機装株式会社製レーザー回折式粒度分布測定装置MT3300EXを用いて水に分散剤として微量の界面活性剤を添加し、試料を超音波分散させた状態で測定した。試験に供される粉体の全体積を100%として累積カーブを求め、その累積カーブが小粒子径側から大粒子径側に向けて積算したときの10、50、90、及び100%となる点の粒子径をそれぞれD10、D50、D90、D100(μm)とした。なお、D50が平均粒径、D100が最大粒子径を表す。
<Particle size>
The average particle size and particle size distribution are measured by adding a small amount of surfactant as a dispersant to water using the laser diffraction type particle size distribution measuring device MT3300EX manufactured by Nikkiso Co., Ltd. and ultrasonically dispersing the sample. did. The cumulative curve is calculated with the total volume of the powders used in the test as 100%, and the cumulative curve is 10, 50, 90, and 100% when integrated from the small particle diameter side to the large particle diameter side. The particle diameters of the points were D 10 , D 50 , D 90 , and D 100 (μm), respectively. Note that D 50 represents the average particle size and D 100 represents the maximum particle size.

<ピッチの密度>
ピッチの密度測定法は、JIS K 2425に示されている。軟化点が70〜90℃のピッチの密度は、20℃において、1.26〜1.27g/cmである。本発明で用いたピッチは、軟化点が105℃であり、密度は1.30g/cmである。
<Pitch density>
A method for measuring pitch density is shown in JIS K 2425. The density of pitches with softening points of 70 to 90 ° C. is 1.26 to 1.27 g / cm 3 at 20 ° C. The pitch used in the present invention has a softening point of 105 ° C. and a density of 1.30 g / cm 3 .

<ピッチの軟化点>
JIS K 2207「石油アスファルト」あるいはJIS K 2425「クレオソート油・加工タール・タールピッチ試験方法(環球法)」に規定された軟化点試験法によりグリセリンを使用して測定した。
環球法では、熱媒体として80℃までは水、それ以上はグリセリンを使用する。軟化点を測定する自動測定装置も普及していて例えば、田中科学機器製作株式会社製asp−6、アントンパールジャパン株式会社製RKA5、第一理化株式会社製EX−719PD4等がある。その他の方法として、JIS法とのバイアスを補正したメトラー軟化点測定法による測定も行われている。装置としてはメトラートレド株式会社のDP70、DP90がある。
<Pitch softening point>
Measurement was performed using glycerin by the softening point test method specified in JIS K 2207 "Petroleum asphalt" or JIS K 2425 "Creosote oil / processed tar / tar pitch test method (ring ball method)".
In the ring-and-ball method, water is used as a heat medium up to 80 ° C., and glycerin is used above that. Automatic measuring devices for measuring softening points are also widespread, and examples thereof include asp-6 manufactured by Tanaka Kagaku Kikai Seisakusho Co., Ltd., RKA5 manufactured by Anton Paar Japan K.K., and EX-719PD4 manufactured by Daiichi Rika Co., Ltd. As another method, the measurement by the meterer softening point measurement method in which the bias with the JIS method is corrected is also performed. As the device, there are DP70 and DP90 of METTLER TOLEDO Co., Ltd.

<負極活物質及び黒鉛粒子の真密度>
Micromeritics社製真密度測定装置AccuPyc1330−1を用いた低容積膨張法(ヘリウムガス置換法)により求めた。
<True density of negative electrode active material and graphite particles>
It was determined by a low volume expansion method (helium gas substitution method) using the true density measuring device AccuPyc1330-1 manufactured by Micromeritics.

<X線回折試験結果>
炭素網面層の面間距離d(002)、炭素網面層が積層した厚さを示すLc及び炭素網面の広がりを示すLaは、株式会社リガク製Ultima3システムにより、CuKα線を用い、X線管球への印加電圧は40kV、電流は20mAとした。計数管の走査速度は2°/分、走査範囲は10°から90°で、0.02°間隔で測定した。d(002)の値は、回折角2θが26°付近の(002)面のピークの位置(角度)と、内部標準として予め加えた回折角2θが28°付近の金属ケイ素の(111)面のピーク位置(角度)とから、Lcの値は、回折角2θが26°付近の(002)面のピークの半値幅と、内部標準として予め加えた回折角2θが28°付近の金属ケイ素の(111)面のピークの半値幅とから、Laの値は、回折角2θが77.6°付近の(110)面のピークの半値幅と、内部標準として予め加えた回折角2θは76.4°付近の金属ケイ素の(331)面のピークの半値幅とから、それぞれ学振法に基づいて計算して求めた。
<X-ray diffraction test results>
The interplanetary distance d (002) of the carbon network layer, Lc indicating the thickness of the laminated carbon network layer, and La indicating the extent of the carbon network surface are X-rays using CuKα rays by the Ultra3 system manufactured by Rigaku Co., Ltd. The voltage applied to the wire tube was 40 kV, and the current was 20 mA. The scanning speed of the counter was 2 ° / min, the scanning range was 10 ° to 90 °, and measurements were taken at 0.02 ° intervals. The value of d (002) is the position (angle) of the peak of the (002) plane whose diffraction angle 2θ is near 26 ° and the (111) plane of metallic silicon whose diffraction angle 2θ is about 28 °, which is added in advance as an internal standard. From the peak position (angle) of, the Lc value is the half width of the peak of the (002) plane whose diffraction angle 2θ is near 26 ° and the metal silicon whose diffraction angle 2θ is about 28 °, which is added in advance as an internal standard. From the half width of the peak of the (111) plane, the value of La is the half width of the peak of the peak of the (110) plane where the diffraction angle 2θ is around 77.6 °, and the diffraction angle 2θ added in advance as an internal standard is 76. It was calculated from the half width of the peak of the (331) plane of metallic silicon near 4 °, respectively, based on the Gakushin method.

<比表面積、細孔容積、及び最大吸着量>
比表面積、細孔容積、及び最大吸着量は、窒素ガスの吸脱着により測定し、測定装置は、Micromeritics社製の自動比表面積/細孔分布測定装置TriStar3000を用いて液体窒素温度にて実施した。
<Specific surface area, pore volume, and maximum adsorption amount>
The specific surface area, pore volume, and maximum adsorption amount were measured by adsorption and desorption of nitrogen gas, and the measuring device was carried out at liquid nitrogen temperature using an automatic specific surface area / pore distribution measuring device TriStar3000 manufactured by Micromeritics. ..

比表面積は、吸着等温線から得られた窒素ガス吸着量を、単分子層として評価して計算するBETの多点法によって求めた。
P/V(P−P)=(1/VmC)+{(C−1)/VmC}(P/P)・・(1)
S=kVm ・・・・・・・・・・・・・・・・・・・・・・・・・・・(2)
0 :飽和蒸気圧
P :吸着平衡圧
V :吸着平衡圧Pにおける吸着量
Vm :単分子層吸着量
C :吸着熱などに関するパラメーター
S :比表面積
k :窒素単分子占有面積:0.162nm
The specific surface area was determined by the multipoint method of BET, which is calculated by evaluating the amount of nitrogen gas adsorbed from the adsorption isotherm as a monolayer.
P / V (P 0- P) = (1 / VmC) + {(C-1) / VmC} (P / P 0 ) ... (1)
S = kVm ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (2)
P 0 : Saturated vapor pressure P: Adsorption equilibrium pressure V: Adsorption amount at adsorption equilibrium pressure P Vm: Adsorption amount of monolayer layer C: Parameters related to heat of adsorption, etc. S: Specific surface area k: Nitrogen single molecule occupied area: 0.162 nm 2

全細孔容積は、吸着等温線から得られた平衡相対圧P/P0=0.99付近の飽和吸着ガス量から求めた。
孔径2nm以下のマイクロポア容積は、窒素ガスの吸着膜の厚さtに対して吸着量をプロットしたt-プロット法により求めた。吸着膜の厚さは、0.35〜0.50nmの範囲でHarkins&Juraの式
t=〔13.99/{0.034-log(P/P)}〕0.5 ・・・・・・・(3)
により求めた。
:飽和蒸気圧
P :吸着平衡圧
The total pore volume was determined from the amount of saturated adsorbed gas near the equilibrium relative pressure P / P 0 = 0.99 obtained from the adsorption isotherm.
The micropore volume having a pore size of 2 nm or less was determined by a t-plot method in which the adsorption amount was plotted against the thickness t of the nitrogen gas adsorption film. The thickness of the adsorption membrane is in the range of 0.35 to 0.50 nm, and the Harkins & Jura formula t = [13.99 / {0.034-log (P / P 0 )}] 0.5 ... 3)
Obtained by.
P 0 : Saturated vapor pressure P: Adsorption equilibrium pressure

<吸油量>
吸油量は、株式会社あさひ総研製の吸収量測定器S−410型を使用し、亜麻仁油を用いてJIS K6217に従って測定した。試料粉末を撹拌しながら亜麻仁油を供給し、その時のトルクの変化を測定する。トルクは、試料粉末のストラクチャーによって変化するが、最大トルクの70%を終点として読み取り、試料100g当たりの亜麻仁油量に換算して求めた。
<Oil absorption>
The oil absorption was measured according to JIS K6217 using flaxseed oil using an absorption measuring device S-410 manufactured by Asahi Soken Co., Ltd. Linseed oil is supplied while stirring the sample powder, and the change in torque at that time is measured. The torque varies depending on the structure of the sample powder, but 70% of the maximum torque was read as the end point and converted into the amount of linseed oil per 100 g of the sample.

<タップ密度>
100mlのメスシリンダーに試料を正確に30g量り取って投入し、ストローク10mmで700回タッピングした後の体積から計算した。
<Tap density>
It was calculated from the volume after exactly 30 g of the sample was weighed and put into a 100 ml graduated cylinder and tapped 700 times with a stroke of 10 mm.

<初回充放電容量>
初回充電容量は、負極活物質100重量部に対して結着剤としてSBRとCMCとをそれぞれ2重量部ずつ併せて水系スラリーを調製し、銅箔上にドクターブレードを用いて塗布し、120℃で乾燥し、ロールプレスを掛けた後、φ12に打ち抜き厚さ60μmの電極とした。これに対極としてリチウム金属を用い、セパレーターを介して対向させ、電極群とした後、1M LiPF/EC:DEC(3:7)の電解液を加えてコインセルを形成し、電流値0.5mA/cmで電圧値が0.01Vになるまで定電流充電を行った後、電流値が0.01mA/cmになるまで定電圧充電を行った。充電終了後、電流値0.5mA/cm2で定電流放電を行い、電圧値が1.5Vとなったところで放電を終了した。
<Initial charge / discharge capacity>
For the initial charge capacity, prepare an aqueous slurry by combining 2 parts by weight each of SBR and CMC as a binder with respect to 100 parts by weight of the negative electrode active material, and apply it on a copper foil using a doctor blade at 120 ° C. After drying with, and applying a roll press, an electrode having a thickness of 60 μm was punched into φ12. A lithium metal is used as a counter electrode, and the electrodes are opposed to each other via a separator to form an electrode group, and then an electrolytic solution of 1M LiPF 6 / EC: DEC (3: 7) is added to form a coin cell, and a current value of 0.5 mA is formed. After constant current charging at / cm 2 until the voltage value reached 0.01 V, constant current charging was performed until the current value reached 0.01 mA / cm 2 . After the charging was completed, a constant current discharge was performed at a current value of 0.5 mA / cm2, and the discharge was completed when the voltage value reached 1.5 V.

従来用いられてきたフェノール樹脂、フラン樹脂、及び光学的等方性ピッチの溶融時に空気を吹き込む等して架橋構造を付加した後に炭素化して得たハードカーボンや、ピッチを炭素化して得たソフトカーボン、カーボンブラックを用いた結晶性が低くて比較的電気抵抗値が高い低結晶炭素材料の中に結晶性が高くて電気抵抗値が低い黒鉛粒子を包含させたことによりリチウムイオンキャパシタの内部抵抗を低下させることができた。 Hard carbon obtained by carbonizing the conventionally used phenol resin, furan resin, and optically isotropic pitch after adding a crosslinked structure by blowing air at the time of melting, or soft obtained by carbonizing the pitch. The internal resistance of a lithium-ion capacitor is obtained by including graphite particles with high crystallinity and low electrical resistance in a low-crystal carbon material using carbon and carbon black, which has low crystallinity and relatively high electrical resistance. Was able to be reduced.

実施例1の液体窒素温度における窒素ガスの等温吸着線図。The isotherm adsorption diagram of nitrogen gas at the liquid nitrogen temperature of Example 1. 比較例3の液体窒素温度における窒素ガスの等温吸着線図。FIG. 6 is an isothermal adsorption diagram of nitrogen gas at the liquid nitrogen temperature of Comparative Example 3.

以下に本発明の実施例及び比較例を述べる。
<実施例1>
密度1.30g/cm、軟化点105℃、キノリン不溶分11%の石炭系光学的等方性のバインダーピッチ100重量部とD10=1.55μm、D50=2.49μm、D90=4.23μm、D100=7.07μm、炭素網面の層間距離d(002)が0.3360nm、BET比表面積が22.61m/g、亜麻仁油吸油量106ml/100g、真密度が2.23g/cm、タップ密度が0.21g/cmの人造黒鉛粒子330重量部を加熱ニーダーに投入し160℃で3時間混捏した。この混捏物を金属製容器に移した後、非酸化性雰囲気中5℃/hで昇温し、1000℃で2時間保持して焼成した。次いで粉砕し、目開き38μmの篩を通すことによりD10=2.32μm、D50=4.26μm、D90=8.42μm、D100=16.58μmの低結晶炭素の内部に黒鉛粒子が包含された炭素粒子を得た。得られた炭素粒子のd(002)は、0.3360nm、BET比表面積は5.65m/g、亜麻仁油吸油量は119ml/100g、真密度は2.13g/cm、タップ密度は0.43g/cmであった。
実施例1の液体窒素温度における窒素ガスの吸脱着における等温吸着線図を図1に示す。窒素ガスの相対圧(P/P)が、0.8前後までは窒素ガスの吸着量が少なく、0.8を超えると急激に増大するのが認められ、窒素ガスの吸脱着における等温吸着線図において、窒素ガスの相対圧(P/P)が、0.99付近での窒素ガスの吸着量が40cm/gである。
Examples and comparative examples of the present invention will be described below.
<Example 1>
Density 1.30 g / cm 3 , softening point 105 ° C, quinoline insoluble content 11%, carbon-based optically isotropic binder pitch 100 parts by weight and D 10 = 1.55 μm, D 50 = 2.49 μm, D 90 = 4.23 μm, D 100 = 7.07 μm, carbon mesh surface interlayer distance d (002) is 0.3360 nm, BET specific surface area is 22.61 m 2 / g, flaxseed oil absorption is 106 ml / 100 g, true density is 2. 330 parts by weight of artificial graphite particles having a tap density of 23 g / cm 3 and a tap density of 0.21 g / cm 3 were put into a heating kneader and kneaded at 160 ° C. for 3 hours. After transferring this kneaded product to a metal container, the temperature was raised at 5 ° C./h in a non-oxidizing atmosphere, and the mixture was held at 1000 ° C. for 2 hours for firing. Then, by pulverizing and passing through a sieve having a mesh size of 38 μm, graphite particles are formed inside low crystalline carbon of D 10 = 2.32 μm, D 50 = 4.26 μm, D 90 = 8.42 μm, and D 100 = 16.58 μm. The encapsulated carbon particles were obtained. The d (002) of the obtained carbon particles was 0.3360 nm, the BET specific surface area was 5.65 m 2 / g, the linseed oil oil absorption was 119 ml / 100 g, the true density was 2.13 g / cm 3 , and the tap density was 0. It was .43 g / cm 3 .
FIG. 1 shows an isothermal adsorption diagram of nitrogen gas adsorption / desorption at the liquid nitrogen temperature of Example 1. When the relative pressure (P / P 0 ) of nitrogen gas is low up to around 0.8, the amount of nitrogen gas adsorbed is small, and when it exceeds 0.8, it is observed to increase rapidly, and isotherm adsorption during adsorption and desorption of nitrogen gas. In the diagram, the relative pressure (P / P 0 ) of nitrogen gas is around 0.99, and the amount of nitrogen gas adsorbed is 40 cm 3 / g.

<実施例2>
実施例1で用いた人造黒鉛粒子に代えて、D10=1.66μm、D50=2.74μm、D90=4.80μm、D100=8.39μm、炭素網面の層間距離d(002)が0.3354nm、BET比表面積が17.05m/g、亜麻仁油吸油量101ml/100g、真密度が2.23g/cm、タップ密度が0.27g/cmの天然黒鉛粒子にした他は、実施例1と同様に行った。
10=2.64μm、D50=5.08μm、D90=9.97μm、D100=19.66μm、d(002)は、0.3354nm、BET比表面積は7.48m/g、吸油量は133ml/100g真密度は2.19g/cm、タップ密度は0.37g/cmの低結晶炭素の内部に黒鉛粒子が包含された炭素粒子を得た。
<Example 2>
Instead of the artificial graphite particles used in Example 1, D 10 = 1.66 μm, D 50 = 2.74 μm, D 90 = 4.80 μm, D 100 = 8.39 μm, the interlayer distance d (002) of the carbon mesh surface. ) Is 0.3354 nm, BET specific surface area is 17.05 m 2 / g, flaxseed oil absorption amount is 101 ml / 100 g, true density is 2.23 g / cm 3 , and tap density is 0.27 g / cm 3 . Others were the same as in Example 1.
D 10 = 2.64 μm, D 50 = 5.08 μm, D 90 = 9.97 μm, D 100 = 19.66 μm, d (002) is 0.3354 nm, BET specific surface area is 7.48 m 2 / g, oil absorption. Carbon particles in which graphite particles were contained inside low crystalline carbon having an amount of 133 ml / 100 g and a true density of 2.19 g / cm 3 and a tap density of 0.37 g / cm 3 were obtained.

<比較例1>
実施例1で用いた人造黒鉛粒子をそのまま用いた。
<Comparative example 1>
The artificial graphite particles used in Example 1 were used as they were.

<比較例2>
実施例1で用いたピッチ100重量部とアセチレンブラック(BET比表面積:39.0m/g、d(002):0.3539nm、平均粒子径48nm、)74重量部とを用いて実施例1と同様の処理を行い、D10=1.56μm、D50=2.62μm、D90=4.73μm、D100=8.39μm、d(002)は0.3539nm、BET比表面積は24.48m/g、吸油量は79ml/100g、タップ密度は0.50g/cmの低結晶炭素の粒子を得た。
<Comparative example 2>
Example 1 using 100 parts by weight of the pitch used in Example 1 and 74 parts by weight of acetylene black (BET specific surface area: 39.0 m 2 / g, d (002) : 0.3539 nm, average particle size 48 nm). D 10 = 1.56 μm, D 50 = 2.62 μm, D 90 = 4.73 μm, D 100 = 8.39 μm, d (002) is 0.3539 nm, and the BET specific surface area is 24. Low crystalline carbon particles having a tap density of 48 m 2 / g, an oil absorption of 79 ml / 100 g, and a tap density of 0.50 g / cm 3 were obtained.

<比較例3>
実施例1で用いたピッチ100重量部とD10=2.60μm、D50=7.34μm、D90=15.90μm、D100=32.78μm、d(002)は0.3455nm、BET比表面積は8.67m/gの仮焼された石炭系コークス500重量部とを用いて実施例1と同様の処理を行い、D10=5.58μm、D50=11.22μm、D90=21.87μm、D100=38.86μm、d(002)は0.3455nm、BET比表面積は2.02m/g、吸油量84ml/100g、タップ密度は0.75g/cmの低結晶炭素の粒子を得た。
液体窒素温度における窒素ガスの吸脱着における比較例3の等温吸着線図を図2に示す。窒素ガスの相対圧(P/P)が、1.0付近で僅かに上昇するが、実施例のような急激な窒素ガスの吸着量の上昇は認められなかった。
<Comparative example 3>
100 parts by weight of pitch used in Example 1, D 10 = 2.60 μm, D 50 = 7.34 μm, D 90 = 15.90 μm, D 100 = 32.78 μm, d (002) is 0.3455 nm, BET ratio. The same treatment as in Example 1 was carried out using 500 parts by weight of calcined coal-based coke having a surface area of 8.67 m 2 / g, and D 10 = 5.58 μm, D 50 = 11.22 μm, D 90 =. 21.87 μm, D 100 = 38.86 μm, d (002) is 0.3455 nm, BET specific surface area is 2.02 m 2 / g, oil absorption is 84 ml / 100 g, tap density is 0.75 g / cm 3 low crystalline carbon Obtained particles of.
FIG. 2 shows an isothermal adsorption diagram of Comparative Example 3 in the adsorption / desorption of nitrogen gas at the liquid nitrogen temperature. The relative pressure of nitrogen gas (P / P 0 ) slightly increased around 1.0, but the rapid increase in the amount of nitrogen gas adsorbed as in the examples was not observed.

<比較例4>
実施例1で用いたピッチ100重量部と、人造黒鉛粒子220重量部を用いて実施例1と同様の処理を行ったが、焼成後は一体化した強固な塊となり、金属容器から取り出すこともできなかったため中止した。
<Comparative example 4>
The same treatment as in Example 1 was carried out using 100 parts by weight of the pitch used in Example 1 and 220 parts by weight of artificial graphite particles, but after firing, it became an integrated strong mass and could be taken out from the metal container. I couldn't do it, so I canceled it.

表1に実施例及び比較例のピッチ由来の低結晶炭素のd(002)、ピッチと混合した人造黒鉛粒子またはカーボンブラック等の炭素粒子のd(002)、焼成して得られた炭素粒子の平均粒子径、最大粒子径、吸油量、及びタップ密度を示す。
Table 1 Examples and the low-crystalline carbon from a pitch of Comparative Example d (002), carbon particles such as artificial graphite particles or carbon black mixed with a pitch d (002), carbon particles obtained by firing Shows average particle size, maximum particle size, oil absorption, and tap density.

表1において、比較例1は黒鉛粒子のみで低結晶炭素を含まないので、ピッチ由来の低結晶炭素のd(002)欄は空白としてあり、包含された粒子のd(002)の欄は、実施例1の人造黒鉛粒子のd(002)である。また、比較例2は、ピッチとアセチレンブラックを混合したものであり、包含された粒子のd(002)欄には、アセチレンブラックのd(002)の値が記入してあり、比較例3は仮焼コークスのd(002)の値である。 In Table 1, the Comparative Example 1 does not include a low crystalline carbon only graphite particles, the d (002) column of the low crystalline carbon from pitch have as a blank, column d (002) of the inclusion particles It is d (002) of the artificial graphite particle of Example 1. Further, Comparative Example 2 is a mixture of pitch and acetylene black, and the value of d (002) of acetylene black is entered in the d (002) column of the contained particles, and Comparative Example 3 is It is a value of d (002) of calcined coke.

表2は、実施例と比較例の炭素粒子の比表面積、全細孔容積、マイクロ孔容積、マイクロ孔容積の全細孔容積に対する割合、窒素ガス吸着量等の特性を示すものである。
Table 2 shows the characteristics such as the specific surface area of the carbon particles of Examples and Comparative Examples, the total pore volume, the micropore volume, the ratio of the micropore volume to the total pore volume, and the amount of nitrogen gas adsorbed.

表3は、実施例及び比較例の炭素粒子を負極活物質として用いたリチウムイオンキャパシタの特性を示すものである。
Table 3 shows the characteristics of lithium ion capacitors using carbon particles of Examples and Comparative Examples as a negative electrode active material.

表3に実施例1、2、比較例1、2、及び3の初回充放電容量測定結果を示す。
実施例1及び2は、初回放電容量が人造黒鉛のみからなる比較例1の360mAh/gより低いものの、335mAh/gを超え、充放電効率は、86%を超えて比較例1より高い値を示している。比較例2、3では充放電効率が低く、初回放電容量は250mAh/gを下回るものであった。
Table 3 shows the initial charge / discharge capacity measurement results of Examples 1 and 2, Comparative Examples 1, 2 and 3.
In Examples 1 and 2, although the initial discharge capacity is lower than 360 mAh / g of Comparative Example 1 composed of only artificial graphite, it exceeds 335 mAh / g, and the charge / discharge efficiency exceeds 86% and is higher than that of Comparative Example 1. Shown. In Comparative Examples 2 and 3, the charge / discharge efficiency was low, and the initial discharge capacity was less than 250 mAh / g.

<低炭素粒子内の黒鉛粒子の確認方法>
実施例1、2で得られた活物質粒子をフッ素樹脂板の上に内径φ25×外形φ30×高さ25mmのフッ素樹脂製リングを置き、このリング内に活物質粒子を投入し、埋込用樹脂のエポキシ樹脂の主剤と硬化剤を体積比9:1で混合して上部から流し入れた。活物質粒子とエポキシ樹脂主剤と硬化剤の体積比は、この時点において、1:9:1であった。これを室温(20〜25℃)にて10時間放置し、エポキシ樹脂を硬化させて樹脂中に活物質粒子が分散した樹脂硬化体を得た。次いで樹脂硬化体を複数個の活物質粒子の断面が露出するまで複数の研磨紙を使用して研磨して鏡面に仕上げた。
これを試料として偏光顕微鏡による観察を倍率の変更、及び試料台を回転することによる試料粉末断面に対する偏光の入射角度の変更をおこなって観察した。
観察の結果、光学的等方性を示すピンク色の低結晶炭素部分の内側に黄色、ピンク色、青色、再び黄色の順に色が変化する光学的異方性を示す黒鉛粒子部分が実施例1、2とも観察された。
<Method of confirming graphite particles in low carbon particles>
The active material particles obtained in Examples 1 and 2 are placed on a fluororesin plate with a fluororesin ring having an inner diameter of φ25 × an outer diameter of φ30 × a height of 25 mm, and the active material particles are put into the ring for embedding. The main agent of the epoxy resin and the curing agent were mixed at a volume ratio of 9: 1 and poured from above. The volume ratio of the active material particles to the epoxy resin main agent to the curing agent was 1: 9: 1 at this time. This was left at room temperature (20 to 25 ° C.) for 10 hours to cure the epoxy resin to obtain a cured resin product in which the active material particles were dispersed in the resin. The cured resin was then polished with a plurality of abrasive papers until the cross sections of the plurality of active material particles were exposed to give a mirror surface.
Using this as a sample, observation with a polarizing microscope was carried out by changing the magnification and changing the incident angle of polarized light with respect to the cross section of the sample powder by rotating the sample table.
As a result of observation, in Example 1 a graphite particle portion showing optical anisotropy in which the color changes in the order of yellow, pink, blue, and yellow again inside the pink low crystal carbon portion showing optical isotropicity. Both and 2 were observed.

比較例1、2、3の粒子に対して実施例と同様の観察を行ったところ、比較例1では、光学的異方性を示す粒子(黒鉛粒子)のみが観察された。比較例2については、光学的等方性を示すピンク色の中に、黒鉛やコークスを同様に観察した場合に認められる明白に青色や黄色と判別される光学的異方性部分と比べるとはるかに不鮮明で、注視することによってようやく青色や黄色と認識される光学的異方性の微小部位が観察された。比較例3については、実施例と同様に光学的等方性を示す低結晶炭素部分の内側に光学的異方性を示すコークス粒子部分が観察された。 When the same observations as in Examples were performed on the particles of Comparative Examples 1, 2 and 3, only the particles showing optical anisotropy (graphite particles) were observed in Comparative Example 1. In Comparative Example 2, it is far more than the optically anisotropic part that is clearly discriminated as blue or yellow, which is observed when graphite or coke is observed in the same pink color showing optical isotropicity. A minute part of optical anisotropy, which was unclear and was finally recognized as blue or yellow by gazing, was observed. In Comparative Example 3, a coke particle portion showing optical anisotropy was observed inside the low crystal carbon portion showing optical isotropicity as in the example.

Claims (2)

X線回折による炭素結晶網面層の面間距離d(002)が、0.3400〜0.3770nmの低結晶炭素の内部にd(002)が0.3354〜0.3360nm、平均粒子径が0.8〜3.0μmの黒鉛粒子を少なくとも一粒以上包含する平均粒子径2.0〜6.0μmであり、低結晶炭素と黒鉛粒子の重量比が1対3.5〜1対7.2であることを特徴とするリチウムイオンキャパシタ用負極活物質を得る製造方法であって、
所定量のピッチと黒鉛粒子を撹拌混合し、この混合物を非酸化性雰囲気中で5〜10℃/hで昇温して800〜1200℃で1〜10時間保持して焼成し、ピッチ内に包含させた黒鉛粒子が表面に露出しない程度に焼成物を粉砕し、この粉砕物活物質粒子をエポキシ樹脂で固め、得られた樹脂硬化体を研磨紙で研磨して鏡面に仕上げ、偏光顕微鏡によって黒鉛粒子の存在を確認するリチウムイオンキャパシタ用負極活物質の製造方法。
The interplanetary distance d (002) of the carbon crystal network layer by X-ray diffraction is 0.3400 to 0.3770 nm inside the low crystal carbon, d (002) is 0.3354 to 0.3360 nm, and the average particle size is The average particle size is 2.0 to 6.0 μm, which includes at least one graphite particle of 0.8 to 3.0 μm, and the weight ratio of low crystalline carbon to graphite particles is 1: 3.5 to 1: 7. A manufacturing method for obtaining a negative electrode active material for a lithium ion capacitor, which is characterized by being 2.
A predetermined amount of pitch and graphite particles are stirred and mixed, and the mixture is heated at 5 to 10 ° C./h in a non-oxidizing atmosphere and held at 800 to 1200 ° C. for 1 to 10 hours for firing. The fired product is crushed to the extent that the included graphite particles are not exposed on the surface, the crushed material active material particles are hardened with an epoxy resin, and the obtained cured resin is polished with abrasive paper to give a mirror surface, and then by a polarization microscope. A method for producing a negative electrode active material for a lithium ion capacitor for confirming the presence of graphite particles.
請求項1において、リチウムイオンキャパシタ用負極活物質をエポキシ樹脂で固めた試料の調製は、リチウムイオンキャパシタ用負極活物質粒子をフッ素樹脂板の上にフッ素樹脂製リングを置き、このリング内に活物質粒子を投入し、埋込用樹脂のエポキシ樹脂の主剤と硬化剤を体積比9:1で混合して得るものであるリチウムイオンキャパシタ用負極活物質の製造方法。 In claim 1, in the preparation of a sample in which the negative electrode active material for a lithium ion capacitor is hardened with an epoxy resin, a fluorine resin ring is placed on a fluorine resin plate and the negative electrode active material particles for a lithium ion capacitor are activated in the ring. A method for producing a negative electrode active material for a lithium ion capacitor, which is obtained by charging material particles and mixing a main agent of an epoxy resin for embedding resin and a curing agent at a volume ratio of 9: 1.
JP2017167259A 2017-08-31 2017-08-31 Method for manufacturing negative electrode active material for lithium ion capacitors Active JP6757704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017167259A JP6757704B2 (en) 2017-08-31 2017-08-31 Method for manufacturing negative electrode active material for lithium ion capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017167259A JP6757704B2 (en) 2017-08-31 2017-08-31 Method for manufacturing negative electrode active material for lithium ion capacitors

Publications (2)

Publication Number Publication Date
JP2019046925A JP2019046925A (en) 2019-03-22
JP6757704B2 true JP6757704B2 (en) 2020-09-23

Family

ID=65815692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017167259A Active JP6757704B2 (en) 2017-08-31 2017-08-31 Method for manufacturing negative electrode active material for lithium ion capacitors

Country Status (1)

Country Link
JP (1) JP6757704B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166812A1 (en) * 2020-02-21 2021-08-26 Jfeケミカル株式会社 Spheroidized graphite, coated spheroidized graphite, negative electrode for lithium-ion secondary battery, and lithium secondary battery
EP4212479A4 (en) * 2021-08-17 2024-07-24 Jfe Chemical Corp Coated spheroidized graphite, negative electrode for lithium ion secondary batteries and lithium ion secondary battery
CN116057734B (en) * 2022-11-16 2024-08-27 开封瑞丰新材料有限公司 Negative electrode material and battery
WO2024108587A1 (en) * 2022-11-25 2024-05-30 宁德时代新能源科技股份有限公司 Carbon material and preparation method therefor, rechargeable battery containing carbon material, and electric apparatus
CN115954472B (en) * 2023-03-10 2023-08-25 贝特瑞新材料集团股份有限公司 Negative electrode material and battery
CN118136841B (en) * 2024-05-10 2024-07-02 四川金汇能新材料股份有限公司 Soft carbon composite negative electrode material prepared by utilizing crushed tailings and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121066A (en) * 1991-10-29 1993-05-18 Asahi Chem Ind Co Ltd Negative electrode for nonaqueous battery
JP4045438B2 (en) * 1995-11-14 2008-02-13 大阪瓦斯株式会社 Double-layer carbon material for secondary battery and lithium secondary battery using the same
JP3481063B2 (en) * 1995-12-25 2003-12-22 シャープ株式会社 Non-aqueous secondary battery
JP3685364B2 (en) * 1999-03-23 2005-08-17 シャープ株式会社 Method for producing carbon-coated graphite particles and non-aqueous secondary battery
JP5197938B2 (en) * 2006-07-14 2013-05-15 日本カーボン株式会社 Method for producing negative electrode active material for lithium ion secondary battery and negative electrode active material for lithium ion secondary battery
JP5986035B2 (en) * 2013-02-05 2016-09-06 Jfeケミカル株式会社 Lithium ion secondary battery negative electrode material and method for producing the same, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP6630071B2 (en) * 2014-09-01 2020-01-15 Jsr株式会社 Electrode material, electrode and power storage device
JP2016201437A (en) * 2015-04-09 2016-12-01 Jmエナジー株式会社 Lithium ion capacitor and lithium ion capacitor negative electrode

Also Published As

Publication number Publication date
JP2019046925A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP6757704B2 (en) Method for manufacturing negative electrode active material for lithium ion capacitors
KR101618386B1 (en) Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
WO2017050260A1 (en) Method for preparing composite graphite, composite graphite and lithium ion battery
JP5041351B2 (en) Method for producing negative electrode active material for lithium ion secondary battery and negative electrode active material for lithium ion secondary battery
TWI418081B (en) Lithium ion secondary battery anode material and manufacturing method thereof
JP4844943B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JP5407196B2 (en) Non-aqueous secondary battery composite graphite particles, negative electrode material containing the same, negative electrode and non-aqueous secondary battery
JP5257740B2 (en) Composite carbon material for negative electrode material of lithium secondary battery and method for producing the same
US20210143425A1 (en) Method for producing negative electrode active material for lithium secondary battery, and lithium secondary battery including the same
WO2019124425A1 (en) Negative electrode material for lithium ion secondary battery, and method of manufacturing negative electrode material for lithium ion secondary battery
JPWO2017002959A1 (en) Negative electrode material for lithium ion battery and its use
WO2019218503A1 (en) Silicon-carbon composite material, preparation method for same, and applications thereof
JPWO2015016182A1 (en) Carbon material, battery electrode material, and battery
JP6543428B1 (en) Negative electrode active material for secondary battery and secondary battery
JPWO2019131861A1 (en) Anode material for lithium ion secondary battery
WO2019218504A1 (en) Composite carbon material, and preparation method therefor and application thereof
JP2001023637A (en) Graphite powder for lithium ion secondary battery negative electrode and manufacture of the graphite powder
KR20150138265A (en) Amorphous carbon material and graphite carbon material for negative electrodes of lithium ion secondary batteries, lithium ion secondary battery using same, and method for producing carbon material for negative electrodes of lithium ion secondary batteries
CN116686108A (en) Negative electrode material for lithium ion secondary battery, method for producing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6447013B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20090108740A (en) Carbon material, production method and use thereof
JP2013229343A (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
JP2018006271A (en) Carbon material for lithium ion secondary battery negative electrode, intermediate thereof, method for manufacturing the same, and negative electrode or battery arranged by use thereof
JP2022032057A (en) Graphite material for lithium ion secondary battery electrode
WO2019131863A1 (en) Negative electrode material for lithium-ion secondary cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R150 Certificate of patent or registration of utility model

Ref document number: 6757704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250