JP6757041B2 - Measurement method of anti-DNA antibody - Google Patents

Measurement method of anti-DNA antibody Download PDF

Info

Publication number
JP6757041B2
JP6757041B2 JP2019006475A JP2019006475A JP6757041B2 JP 6757041 B2 JP6757041 B2 JP 6757041B2 JP 2019006475 A JP2019006475 A JP 2019006475A JP 2019006475 A JP2019006475 A JP 2019006475A JP 6757041 B2 JP6757041 B2 JP 6757041B2
Authority
JP
Japan
Prior art keywords
dna
labeled
dna fragment
measuring
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019006475A
Other languages
Japanese (ja)
Other versions
JP2020076725A (en
Inventor
元気 保科
元気 保科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamasa Corp
Original Assignee
Yamasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamasa Corp filed Critical Yamasa Corp
Publication of JP2020076725A publication Critical patent/JP2020076725A/en
Application granted granted Critical
Publication of JP6757041B2 publication Critical patent/JP6757041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、非放射性化合物で標識化されたDNA断片と検体とを反応させ、標識化DNA断片量を測定することで抗DNA抗体の測定法であって、(a)非放射性化合物で標識化されたDNA断片と検体とを反応させ、(b)反応後、反応液に沈殿剤を添加し、液相と沈殿相を分離し(B/F分離)、(c)B/F分離後、液相中の標識化DNA断片量を測定し、(d)DNA断片量の測定結果から抗DNA抗体量を算出する、工程を含み、かつ(e)使用するDNA断片の濃度をY(μg/mL)、鎖長をX(bp)としたとき、以下の[数1]で表される範囲内のものを使用し、
[数1]
400≦X≦2000
Y≧0.1
0.0006X−0.4595≦Y≦0.0005X+0.3744
(f)得られた測定結果と、同一検体を公知のFarr−RIA法で測定した結果を比較した際、両測定結果の相関係数が0.93以上を示す、ことを特徴とする、抗DNA抗体の測定法に関するものである。
The present invention is a method for measuring an anti-DNA antibody by reacting a DNA fragment labeled with a non-radioactive compound with a sample and measuring the amount of the labeled DNA fragment. (a) Labeling with a non-radioactive compound The DNA fragment was reacted with the sample, (b) after the reaction, a precipitant was added to the reaction solution, the liquid phase and the precipitated phase were separated (B / F separation), and (c) after the B / F separation, The amount of the labeled DNA fragment in the liquid phase is measured, (d) the amount of anti-DNA antibody is calculated from the measurement result of the amount of DNA fragment, and (e) the concentration of the DNA fragment to be used is Y (μg / μg /). mL), when the chain length is X (bp), use the one within the range represented by the following [Equation 1].
[Number 1]
400 ≤ X ≤ 2000
Y ≧ 0.1
0.0006X-0.4595 ≤ Y ≤ 0.0005X + 0.3744
(F) When the obtained measurement result is compared with the result of measuring the same sample by a known Farr-RIA method, the correlation coefficient between the two measurement results is 0.93 or more. It relates to a method for measuring a DNA antibody.

自己免疫疾患の一つである全身性エリテマトーデス(SLE)の患者血清中にはDNAと結合する自己抗体である抗DNA抗体が存在し、この自己抗体がSLEの患者に多発する糸球体腎炎の主な原因物質ではないかと考えられている。したがって、抗DNA抗体の測定は、SLEの診断および活動性評価のための重要な指標とされている。
従来、抗DNA抗体を測定する代表的な方法としては、DNA断片を125Iで標識して標識化DNAを調製し、この標識化DNAを抗原として用い、検体中の抗DNA抗体との間で抗原抗体反応させ、反応後、抗原抗体複合体と結合していない標識化DNAとを硫安沈殿法により分離し(B/F分離)、沈殿中に含まれる放射能を測定することにより検体中の抗DNA抗体量を測定するFarr−RIA法(特許文献1)が知られている。
また、RIA法以外にも、Non−RIA法も数々知られており、担体にDNAを固定化した固相化DNAを用いたELISA法・FEIA法(特許文献2、特許文献3、特許文献4、非特許文献1)、CLIA法・CLEIA法(非特許文献2)などが報告されている。
上記Farr−RIA法は、高親和性の抗DNA抗体を検出するが抗体クラスの区別ができない。一方で上記Non−RIA法は低親和性と高親和性の抗DNA抗体をどちらも検出するが、抗体クラスの区別ができるといった違いがある。このことからFarr−RIA法とNon−RIA法は相関が低いことが知られており、求める用途(診断・病勢把握)や患者によって使い分けがなされている(非特許文献4)。
Patients with systemic lupus erythematosus (SLE), one of the autoimmune diseases Anti-DNA antibody, which is an autoantibody that binds to DNA, is present in the serum, and this autoantibody is the main cause of glomerulonephritis that frequently occurs in patients with SLE. It is thought that it is a causative substance. Therefore, the measurement of anti-DNA antibody is regarded as an important index for the diagnosis and activity evaluation of SLE.
Conventionally, as a typical method for measuring an anti-DNA antibody, a DNA fragment is labeled with 125 I to prepare a labeled DNA, and this labeled DNA is used as an antigen with the anti-DNA antibody in the sample. After the antigen-antibody reaction, the labeled DNA that is not bound to the antigen-antibody complex is separated by the ammonium sulfate precipitation method (B / F separation), and the radioactivity contained in the precipitate is measured in the sample. The Farr-RIA method (Patent Document 1) for measuring the amount of anti-DNA antibody is known.
In addition to the RIA method, many Non-RIA methods are also known, and the ELISA method and the FEIA method (Patent Document 2, Patent Document 3, Patent Document 4) using immobilized DNA in which DNA is immobilized on a carrier. , Non-Patent Document 1), CLIA method, CLEIA method (Non-Patent Document 2) and the like have been reported.
The Farr-RIA method detects high-affinity anti-DNA antibodies, but cannot distinguish between antibody classes. On the other hand, the Non-RIA method detects both low-affinity and high-affinity anti-DNA antibodies, but there is a difference that the antibody class can be distinguished. From this, it is known that the Farr-RIA method and the Non-RIA method have a low correlation, and they are used properly depending on the desired use (diagnosis / disease grasping) and the patient (Non-Patent Document 4).

特許第2649100号公報Japanese Patent No. 2649100 特開平9−33529号公報Japanese Unexamined Patent Publication No. 9-33529 特公平4−40662号公報Special Fair 4-40662 Gazette 特開昭60−253869号公報Japanese Unexamined Patent Publication No. 60-253869

Ann Rheum Dis, 61:1099-1102(2002)Ann Rheum Dis, 61: 1099-1102 (2002) Clinica Chimica Acta 424: 141-147 (2013)Clinica Chimica Acta 424: 141-147 (2013) Arthritis Rheum. 26(1):52-62. (1983)Arthritis Rheum. 26 (1): 52-62. (1983) 日本内科学会雑誌 第94巻 第10号・平成17年10月10日Journal of the Japanese Society of Internal Medicine Vol. 94, No. 10, October 10, 2005 薬食発0120第1号 体外診断用医薬品の承認基準について 別添1Yaksik No. 0120 No. 1 Approval criteria for in-vitro diagnostic drugs Attachment 1

数々の測定法の中でも、臨床的には、Farr−RIA法がSLEの疾患活動性をより正確に反映していると認識されており(非特許文献1、非特許文献3)、Farr−RIA法の測定値を追跡することによって、SLE患者への治療の有効性を判断し、治療方針等を決定するために利用されている。
しかしながら、Farr−RIA法は、専用の測定機器が必要となり、放射性同位体の厳重な管理が要求され、コスト高となるなどの多くの課題を有している。
一方、Non−RIA法は、Farr−RIA法の問題を克服できるものの、Farr−RIA法と良好な相関性を示さず、SLEの病態を正確に把握できないなどの問題が指摘されていた。
一般に、SLEの診断に限らず、体外診断用医薬品等の分野においては、既存の測定法から新規測定法への置換を検討する際に、既存の測定法と新規測定法が相関を有するというためには、規定の統計処理を行った場合に両者間の相関係数が0.90以上であるという非常に高い相関性が申請上要求され(非特許文献5)、実務上では相関係数0.93以上という非常に高い相関係数がないとユーザーの要望を満足させることはできない。
したがって、本発明は、Non−RIA法でありながら、Farr−RIA法と良好な相関を示す測定法の提供を課題とする。
Among the many measurement methods, clinically, the Farr-RIA method is recognized to more accurately reflect the disease activity of SLE (Non-Patent Document 1, Non-Patent Document 3), and Farr-RIA. By tracking the measured values of the method, it is used to judge the effectiveness of treatment for SLE patients and to determine the treatment policy and the like.
However, the Farr-RIA method requires a dedicated measuring device, requires strict control of radioisotopes, and has many problems such as high cost.
On the other hand, although the Non-RIA method can overcome the problems of the Farr-RIA method, it does not show a good correlation with the Farr-RIA method, and problems such as the inability to accurately grasp the pathological condition of SLE have been pointed out.
In general, not only in the diagnosis of SLE, but also in the field of in-vitro diagnostic drugs, etc., when considering replacement of an existing measurement method with a new measurement method, the existing measurement method and the new measurement method have a correlation. Is required to have a very high correlation that the correlation coefficient between the two is 0.90 or more when the prescribed statistical processing is performed (Non-Patent Document 5), and the correlation coefficient is 0 in practice. Without a very high correlation coefficient of .93 or higher, the user's request cannot be satisfied.
Therefore, it is an object of the present invention to provide a measurement method that shows a good correlation with the Farr-RIA method while being a Non-RIA method.

本発明者らは、Non−RIA法でありながら、検体中の抗DNA抗体をFarr−RIA法との相関良く測定するための測定法を開発すべく、相関を高めるためのポイントに関し、様々な観点から検討した結果、(1)抗原として用いるDNA断片は、DNA断片の濃度をY(μg/mL)、鎖長をX(bp)としたときに前記[数1]式で表されるものを用いることが必須であり、(2)抗原抗体反応後、液相と沈殿相を分離するB/F分離工程が必須であり、(3)非放射性化合物で標識化されたDNA断片を用いた場合には、B/F分離後、沈殿相ではなく液相中の標識化DNA断片量を測定することで、相関が良くなることを見出した。
このような知見を更にブラッシュアップすることで、Farr−RIA法と同等の抗DNA抗体濃度の範囲において測定が可能であり、かつ、Farr−RIA法と良好な相関性を示す結果が得られることを確認した。本発明はかかる新規の知見に基づき完成されたものであって、以下の発明を提供するものである。
The present inventors have various points regarding the points for enhancing the correlation in order to develop a measurement method for measuring the anti-DNA antibody in the sample with good correlation with the Farr-RIA method, although it is a Non-RIA method. As a result of examination from the viewpoint, (1) the DNA fragment used as an antigen is represented by the above formula [Equation 1] when the concentration of the DNA fragment is Y (μg / mL) and the strand length is X (bp). It is essential to use (2) a B / F separation step that separates the liquid phase and the precipitated phase after the antigen-antibody reaction, and (3) a DNA fragment labeled with a non-radioactive compound was used. In the case, it was found that the correlation was improved by measuring the amount of labeled DNA fragment in the liquid phase instead of the precipitated phase after the B / F separation.
By further brushing up these findings, it is possible to measure in the range of anti-DNA antibody concentration equivalent to that of the Farr-RIA method, and it is possible to obtain a result showing a good correlation with the Farr-RIA method. It was confirmed. The present invention has been completed based on such novel findings, and provides the following inventions.

[1]
非放射性化合物で標識化されたDNA断片と検体とを反応させ、標識化DNA断片量を測定することによる抗DNA抗体の測定法であって、
(a)非放射性化合物で標識化されたDNA断片と検体とを反応させ、
(b)反応後、反応液に沈殿剤を添加し、液相と沈殿相を分離し(B/F分離)、
(c)B/F分離後、液相中の標識化DNA断片量を測定し、
(d)DNA断片量の測定結果から抗DNA抗体量を算出する、
工程を含み、かつ
(e)使用するDNA断片の濃度をY(μg/mL)、鎖長をX(bp)としたとき、以下の[数1]で表される範囲内のものを使用し、
[数1]
400≦X≦2000
Y≧0.1
0.0006X−0.4595≦Y≦0.0005X+0.3744
(f)得られた測定結果と、同一検体を公知のFarr−RIA法で測定した結果を比較した際、両測定結果の相関係数が0.93以上を示す、
ことを特徴とする、抗DNA抗体の測定法。
[2]
非放射性化合物で標識化されたDNA断片と検体とを反応させ、標識化DNA断片量を測定することによる抗DNA抗体の測定法であって、
(a)非放射性化合物で標識化されたDNA断片と検体とを反応させ、
(b)反応後、反応液に沈殿剤を添加し、液相と沈殿相を分離し(B/F分離)、
(c)B/F分離後、液相中の標識化DNA断片量を測定し、
(d)DNA断片量の測定結果から抗DNA抗体量を算出する、
工程を含み、かつ
(e’)使用するDNA断片の濃度をY(μg/mL)、鎖長をX(bp)としたとき、以下の[数2]で表される範囲内のものを使用し、
[数2]
700≦X≦2000
Y≧0.1
0.0006X−0.3595≦Y≦0.0005X+0.3744
(f’)得られた測定結果と、同一検体を公知のFarr−RIA法で測定した結果を比較した際、両測定結果の相関係数が0.95以上を示す、
ことを特徴とする、抗DNA抗体の測定法。
[3]
DNA断片の標識に用いる非放射性化合物が、ビオチン(Biotin)、2,4−ジニトロフェノール(2,4-Dinitrophenol:DNP)、ジゴキシゲニン(Digoxigenin:DIG)、フルオロセイン(Fluorescein)、HiBiTタグ、およびそれらの誘導体より選ばれる、[1]又は[2]に記載の測定方法。
[4]
使用する沈殿剤が、硫酸アンモニウムである、[1]〜[3]のいずれか一項に記載の測定法。
[5]
(g)DNA断片の濃度をY(μg/mL)、鎖長をX(bp)としたとき、以下の[数1]で表される範囲内である、非放射性化合物で標識化されたDNA断片、
[数1]
400≦X≦2000
Y≧0.1
0.0006X−0.4595≦Y≦0.0005X+0.3744
(h)液相と沈殿相を分離(B/F分離)するための沈殿剤、及び
(i)B/F分離後、液相中の標識化DNA断片量を測定するための試薬
からなり、[1]から[4]のいずれかに記載の測定法によって検体中の抗DNA抗体量を測定するための試薬キット。
[1]
A method for measuring an anti-DNA antibody by reacting a DNA fragment labeled with a non-radioactive compound with a sample and measuring the amount of the labeled DNA fragment.
(A) The DNA fragment labeled with the non-radioactive compound is reacted with the sample,
(B) After the reaction, a precipitant is added to the reaction solution to separate the liquid phase and the precipitate phase (B / F separation).
(C) After B / F separation, the amount of labeled DNA fragment in the liquid phase was measured.
(D) Calculate the amount of anti-DNA antibody from the measurement result of the amount of DNA fragment,
When the concentration of the DNA fragment to be used is Y (μg / mL) and the chain length is X (bp), the DNA fragment used is within the range represented by the following [Equation 1]. ,
[Number 1]
400 ≤ X ≤ 2000
Y ≧ 0.1
0.0006X-0.4595 ≤ Y ≤ 0.0005X + 0.3744
(F) When the obtained measurement results and the results of measuring the same sample by the known Farr-RIA method are compared, the correlation coefficient between the two measurement results shows 0.93 or more.
A method for measuring an anti-DNA antibody.
[2]
A method for measuring an anti-DNA antibody by reacting a DNA fragment labeled with a non-radioactive compound with a sample and measuring the amount of the labeled DNA fragment.
(A) The DNA fragment labeled with the non-radioactive compound is reacted with the sample,
(B) After the reaction, a precipitant is added to the reaction solution to separate the liquid phase and the precipitate phase (B / F separation).
(C) After B / F separation, the amount of labeled DNA fragment in the liquid phase was measured.
(D) Calculate the amount of anti-DNA antibody from the measurement result of the amount of DNA fragment,
When the concentration of the DNA fragment to be used is Y (μg / mL) and the chain length is X (bp), which includes the step and (e') is used, the one within the range represented by the following [Equation 2] is used. And
[Number 2]
700 ≤ X ≤ 2000
Y ≧ 0.1
0.0006X-0.3595 ≤ Y ≤ 0.0005X + 0.3744
(F') When the obtained measurement result and the result of measuring the same sample by the known Farr-RIA method are compared, the correlation coefficient of both measurement results shows 0.95 or more.
A method for measuring an anti-DNA antibody.
[3]
The non-radioactive compounds used to label DNA fragments are biotin, 2,4-Dinitrophenol (DNP), digoxigenin (DIG), Fluorescein, HiBiT tags, and theirs. The measuring method according to [1] or [2], which is selected from the derivatives of.
[4]
The measuring method according to any one of [1] to [3], wherein the precipitant used is ammonium sulfate.
[5]
(G) When the concentration of the DNA fragment is Y (μg / mL) and the chain length is X (bp), the DNA labeled with a non-radioactive compound within the range represented by [Equation 1] below. fragment,
[Number 1]
400 ≤ X ≤ 2000
Y ≧ 0.1
0.0006X-0.4595 ≤ Y ≤ 0.0005X + 0.3744
It consists of (h) a precipitant for separating the liquid phase and the precipitated phase (B / F separation), and (i) a reagent for measuring the amount of labeled DNA fragment in the liquid phase after B / F separation. A reagent kit for measuring the amount of anti-DNA antibody in a sample by the measuring method according to any one of [1] to [4].

本発明の測定法は、(1)抗原として非放射性化合物で標識化された、DNA断片の濃度をY(μg/mL)、鎖長をX(bp)としたときに前記[数1]式で表されるDNA断片を用い、(2)抗原抗体反応後、液相と沈殿相を分離するB/F分離を行い、(3)B/F分離後、沈殿相ではなく液相中の標識化DNA断片量を測定する、という3つの要素を同時に実行するものである。上記要素を同時に実行することにより、Non−RIA法では初めてFarr−RIA法と相関が高い測定値を得ることができる様になった。
このため、本発明は従来のNon−RIA法とはその性能的に一線を画し、Farr−RIA法から置き換えることが可能な臨床診断においてSLEの疾患活動性をより正確に反映している抗DNA抗体のNon−RIA的測定方法を提供することができる。
さらに、(1)抗原として非放射性化合物で標識化された、DNA断片の濃度をY(μg/mL)、鎖長をX(bp)としたときに前記[数2]式で表されるDNA断片を用い、(2)抗原抗体反応後、液相と沈殿相を分離するB/F分離を行い、(3)B/F分離後、沈殿相ではなく液相中の標識化DNA断片量を測定する、という3つの要素を同時に実行することにより、検体中の抗DNA抗体濃度が低濃度であっても感度良く検出でき、抗DNA抗体濃度が高濃度であっても感度良く測り分けることができ、Farr−RIA法とより良い相関性を示す、抗DNA抗体のNon−RIA的測定方法を提供することができる。
The measurement method of the present invention is described in the above formula [Equation 1] when (1) the concentration of the DNA fragment labeled with a non-radioactive compound as an antigen is Y (μg / mL) and the chain length is X (bp). Using the DNA fragment represented by, (2) after the antigen-antibody reaction, B / F separation is performed to separate the liquid phase and the precipitated phase, and (3) after the B / F separation, labeling in the liquid phase instead of the precipitated phase The three elements of measuring the amount of DNA fragment are simultaneously executed. By executing the above elements at the same time, it has become possible to obtain a measured value having a high correlation with the Farr-RIA method for the first time in the Non-RIA method.
For this reason, the present invention is different from the conventional Non-RIA method in terms of performance, and more accurately reflects the disease activity of SLE in clinical diagnosis that can replace the Farr-RIA method. A non-RIA-like method for measuring a DNA antibody can be provided.
Further, (1) DNA represented by the above formula [Equation 2] when the concentration of the DNA fragment labeled with a non-radioactive compound as an antigen is Y (μg / mL) and the strand length is X (bp). Using the fragments, (2) after the antigen-antibody reaction, perform B / F separation to separate the liquid phase and the precipitated phase, and (3) after the B / F separation, determine the amount of labeled DNA fragment in the liquid phase instead of the precipitated phase. By simultaneously executing the three elements of measurement, it is possible to detect with high sensitivity even if the anti-DNA antibody concentration in the sample is low, and to measure with high sensitivity even if the anti-DNA antibody concentration is high. It is possible to provide a Non-RIA-like method for measuring an anti-DNA antibody, which shows a better correlation with the Farr-RIA method.

図1は、免疫学的測定法によるBiotin・DNP標識化DNAの測定感度を示した図である。グラフの横軸は標識化DNA濃度(ng/mL)を、縦軸はRLUを表している。FIG. 1 is a diagram showing the measurement sensitivity of Biotin / DNP-labeled DNA by an immunological measurement method. The horizontal axis of the graph represents the labeled DNA concentration (ng / mL), and the vertical axis represents RLU. 図2は、B/F分離上清中標識化DNA(418bp)測定による抗DNA抗体の測定において、検体と反応させる標識化DNA濃度の影響をB/B%で示した図である。検討に供する標識化DNAの濃度として、0.1μg/mL、0.2μg/mL、0.4μg/mL、0.8μg/mL、1.6μg/mL、3.2μg/mLを用いた。グラフの横軸が抗DNA抗体濃度(IU/mL)、縦軸がシグナル測定値(B/B%)を表している。FIG. 2 is a diagram showing the effect of the labeled DNA concentration to react with the sample at B / B 0 % in the measurement of the anti-DNA antibody by the measurement of the labeled DNA (418 bp) in the B / F separation supernatant. The concentrations of labeled DNA to be examined were 0.1 μg / mL, 0.2 μg / mL, 0.4 μg / mL, 0.8 μg / mL, 1.6 μg / mL, and 3.2 μg / mL. The horizontal axis of the graph represents the anti-DNA antibody concentration (IU / mL), and the vertical axis represents the signal measurement value (B / B 0 %). 図3は、本発明の測定系において好適な標識化DNA濃度及び鎖長の範囲を表した図である。グラフ中、横軸がDNA鎖長(bp)を、縦軸がDNA濃度(μg/mL)を表している。グラフ中にプロットされた点は、各点における測定系が、(i)0〜200IU/mLにおいて濃度依存的なシグナル低下が観察される、(ii)13.7IU/mLのB/B%が90%以下となる、(iii)218.2IU/mLのB/B%が抗DNA抗体131.8IU/mLのB/B%の2倍以上となる、の3つの評価基準で評価した場合に、「●:(i)〜(iii)の全ての基準を満たした」、「▲:(i)を満たしたが、(ii)、(iii)のいずれか(あるいは両方)を満たさなかった」、「×:(i)を満たさなかった」のいずれであるかを表している。グラフ中色つきの部分が、評価として▲以上、かつ相関係数0.93以上を示す、すなわち本発明の測定系において好適な標識化DNA濃度及び鎖長の範囲であることを表している。FIG. 3 is a diagram showing a range of labeled DNA concentration and chain length suitable for the measurement system of the present invention. In the graph, the horizontal axis represents the DNA strand length (bp) and the vertical axis represents the DNA concentration (μg / mL). The points plotted in the graph show that the measurement system at each point is (i) B / B 0 % of 13.7 IU / mL, where a concentration-dependent signal decrease is observed from 0 to 200 IU / mL. There is 90% or less, rated at (iii) 218.2IU / mL of B / B 0% is anti-DNA antibodies 131.8IU / mL of B / B 0% more than twice, three criteria In the case of, "●: All the criteria of (i) to (iii) were satisfied" and "▲: (i) was satisfied, but either (ii) or (iii) (or both) was satisfied. It indicates whether it was "not" or "x: did not satisfy (i)". The colored part in the graph shows an evaluation of ▲ or more and a correlation coefficient of 0.93 or more, that is, a range of labeled DNA concentration and chain length suitable for the measurement system of the present invention. 図4は、SLE患者血清のFarr−RIA法とB/F分離上清中標識化DNA測定法(本発明)の相関図である。横軸に市販Farr−RIA法測定キットで測定した場合のサンプルの測定値を、縦軸に本発明(標識化DNA長1159bp、濃度0.8μg/mL)の測定値をプロットし、両者の相関係数を算出している。FIG. 4 is a correlation diagram between the Farr-RIA method for SLE patient serum and the labeled DNA measurement method in B / F separation supernatant (the present invention). The horizontal axis plots the measured value of the sample when measured with the commercially available Farr-RIA method measuring kit, and the vertical axis plots the measured value of the present invention (labeled DNA length 1159 bp, concentration 0.8 μg / mL), and the phases of both. The number of relationships is calculated. 図5は、本発明の測定系において特に好適な標識化DNA濃度及び鎖長の範囲を表した図である。グラフ中、横軸がDNA鎖長(bp)を、縦軸がDNA濃度(μg/mL)を表している。グラフ中にプロットされた点は、各点における測定系が、(i)0〜200IU/mLにおいて濃度依存的なシグナル低下が観察される、(ii)13.7IU/mLのB/B%が90%以下となる、(iii)218.2IU/mLのB/B%が抗DNA抗体131.8IU/mLのB/B%の2倍以上となる、の3つの評価基準で評価した場合に、「●:(i)〜(iii)の全ての基準を満たした」、「▲:(i)を満たしたが、(ii)、(iii)のいずれか(あるいは両方)を満たさなかった」、「×:(i)を満たさなかった」のいずれであるかを表している。グラフ中色つきの部分が、評価として●以上、かつ、相関係数0.95以上を示す、すなわち本発明の測定系において特に好適な標識化DNA濃度及び鎖長の範囲であることを表している。FIG. 5 is a diagram showing a range of labeled DNA concentration and chain length that is particularly suitable for the measurement system of the present invention. In the graph, the horizontal axis represents the DNA strand length (bp) and the vertical axis represents the DNA concentration (μg / mL). The points plotted in the graph show that the measurement system at each point is (i) B / B 0 % of 13.7 IU / mL, where a concentration-dependent signal decrease is observed from 0 to 200 IU / mL. There is 90% or less, rated at (iii) 218.2IU / mL of B / B 0% is anti-DNA antibodies 131.8IU / mL of B / B 0% more than twice, three criteria In the case of, "●: All the criteria of (i) to (iii) were satisfied" and "▲: (i) was satisfied, but either (ii) or (iii) (or both) was satisfied. It indicates whether it was "not" or "x: did not satisfy (i)". The colored part in the graph shows ● or more as an evaluation and a correlation coefficient of 0.95 or more, that is, it indicates that it is in the range of the labeled DNA concentration and the chain length which are particularly suitable in the measurement system of the present invention. .. 図6は、SLE患者血清のFarr−RIA法とFEIA法との相関図である。横軸に市販Farr−RIA法測定キットで測定した場合のサンプルの測定値を、縦軸に市販FEIA法測定キットで測定した場合のサンプルの測定値をプロットし、両者の相関係数を算出している。FIG. 6 is a correlation diagram between the Farr-RIA method and the FEIA method of SLE patient serum. The horizontal axis plots the measured value of the sample measured by the commercially available Farr-RIA method measuring kit, and the vertical axis plots the measured value of the sample measured by the commercially available FEIA method measuring kit, and the correlation coefficient between the two is calculated. ing. 図7は、B/F分離上清中標識化DNA測定による抗DNA抗体の測定において、Biotin・DNP標識化DNAとBiotin・DIG標識化DNAを用いた際の反応性について、B/B%で示した図である。グラフの横軸が抗DNA抗体濃度(IU/mL)を、縦軸がシグナル測定値(B/B%)を表している。FIG. 7 shows the reactivity of Biotin / DNP-labeled DNA and Biotin / DIG-labeled DNA in the measurement of anti-DNA antibody by the measurement of labeled DNA in the B / F separation supernatant with respect to B / B 0 %. It is a figure shown by. The horizontal axis of the graph represents the anti-DNA antibody concentration (IU / mL), and the vertical axis represents the signal measurement value (B / B 0 %). 図8は、SLE患者血清のFarr−RIA法とB/F分離沈殿中標識化DNA測定法(参考例2)の相関図である。横軸に市販Farr−RIA法測定キットで測定した場合のサンプルの測定値を、縦軸にB/F分離沈殿中標識化DNA測定法(標識化DNA鎖長1159bpおよび1274bp、濃度0.8μg/mL)をプロットし、両者の相関係数を算出している。FIG. 8 is a correlation diagram between the Farr-RIA method of SLE patient serum and the labeled DNA measurement method during B / F separation and precipitation (Reference Example 2). The horizontal axis shows the measured values of the sample measured with the commercially available Farr-RIA method measurement kit, and the vertical axis shows the labeled DNA measurement method during B / F separation and precipitation (labeled DNA chain lengths 1159 bp and 1274 bp, concentration 0.8 μg / mL) is plotted and the correlation coefficient between the two is calculated. 図9は、HiBiTシステムによるHiBiT標識化DNAの測定感度を示した図である。グラフの横軸は標識化DNA濃度(ng/mL)を、縦軸はRLUを表している。FIG. 9 is a diagram showing the measurement sensitivity of HiBiT-labeled DNA by the HiBiT system. The horizontal axis of the graph represents the labeled DNA concentration (ng / mL), and the vertical axis represents RLU. 図10は、B/F分離上清中HiBiT標識化DNA測定による抗DNA抗体の測定において、検体と反応させる標識化DNA濃度の影響をB/B%で示した図である。検討に供する標識化DNAの濃度として、0.2μg/mL、0.4μg/mL、0.8μg/mLを用いた。グラフの横軸が抗DNA抗体濃度(IU/mL)、縦軸がシグナル測定値(B/B%)を表している。FIG. 10 is a diagram showing the effect of the labeled DNA concentration to react with the sample at B / B 0 % in the measurement of the anti-DNA antibody by the measurement of HiBiT-labeled DNA in the B / F separation supernatant. 0.2 μg / mL, 0.4 μg / mL, and 0.8 μg / mL were used as the concentrations of the labeled DNA to be examined. The horizontal axis of the graph represents the anti-DNA antibody concentration (IU / mL), and the vertical axis represents the signal measurement value (B / B 0 %). 図11は、SLE患者血清のFarr−RIA法とB/F分離上清中HiBiT標識化DNA測定法の相関図である。横軸に市販Farr−RIA法測定キットで測定した場合のサンプルの測定値を、縦軸に本発明(HiBiT標識化DNA長1159bp、濃度0.8μg/mL)の測定値をプロットし、両者の相関係数を算出している。FIG. 11 is a correlation diagram between the Farr-RIA method of SLE patient serum and the HiBiT-labeled DNA measurement method in the B / F separation supernatant. The horizontal axis plots the measured value of the sample when measured with the commercially available Farr-RIA method measurement kit, and the vertical axis plots the measured value of the present invention (HiBiT-labeled DNA length 1159 bp, concentration 0.8 μg / mL). The correlation coefficient is calculated.

本発明の一態様は、抗DNA抗体のNon−RIA的測定方法である。 One aspect of the present invention is a Non-RIA-like method for measuring an anti-DNA antibody.

本発明で測定対象とする検体は、ヒトの血清、血漿である。特に、SLEなどの自己免疫疾患患者の検体が測定の対象である。 The samples to be measured in the present invention are human serum and plasma. In particular, specimens of patients with autoimmune diseases such as SLE are the targets of measurement.

本発明で用いる非放射性化合物で標識化されたDNA断片とは、非放射性の標識(化合物)が付加されたDNA断片のことを指す。
本発明で用いるDNA断片は二本鎖である。
また、1種類の長さのDNA断片のみを用いても良く、長さの異なる2種類以上のDNA断片の混合物を使用してもかまわない。
このようなDNA断片は、PCR法やプラスミドからの制限酵素処理等、公知の方法に従って目的の長さのDNA断片を調製することができる。また、DNA断片の配列に制限はない。
The DNA fragment labeled with the non-radioactive compound used in the present invention refers to a DNA fragment to which a non-radioactive label (compound) is added.
The DNA fragment used in the present invention is double-stranded.
Further, only one type of DNA fragment may be used, or a mixture of two or more types of DNA fragments having different lengths may be used.
For such a DNA fragment, a DNA fragment having a desired length can be prepared according to a known method such as a PCR method or a restriction enzyme treatment from a plasmid. Moreover, there is no limitation on the sequence of the DNA fragment.

本発明に用いる非放射性の標識化合物の種類は、用いる測定法の測定原理によって適宜選択可能である。また、標識種別数としては、一重標識ないし二重標識されていることが好ましい。ここで、一重標識とは一種の非放射性標識化合物によって標識された状態を、二重標識とは二種の非放射性標識化合物によって標識された状態を指す。
標識数は、1つのDNA断片に一箇所以上導入されていればよく、複数箇所導入されていてもよい。
二重標識DNAを用いる場合には、各DNA末端につき一種の標識がされていることが好ましい。さらに、同種の標識によって、両端が標識されていてもよい。
The type of the non-radioactive labeling compound used in the present invention can be appropriately selected depending on the measurement principle of the measurement method used. In addition, the number of labeling types is preferably single labeling or double labeling. Here, the single label refers to a state labeled with one kind of non-radiolabeled compound, and the double label means a state labeled with two kinds of non-radiolabeled compounds.
The number of labels may be introduced at one or more locations in one DNA fragment, and may be introduced at a plurality of locations.
When double-labeled DNA is used, it is preferable that each DNA end is labeled with a kind. In addition, both ends may be labeled with the same type of label.

本発明に用いる標識としては、ビオチン(Biotin)、2,4−ジニトロフェノール(2,4-Dinitrophenol:DNP)、ジゴキシゲニン(Digoxigenin:DIG)、フルオロセイン(Fluorescein)、5−ブロモデオキシウリジン(Bromodeoxyuridine)などの低分子化合物、His−tag、FLAG−tag、HA−tag、Myc−tag、HiBiTタグなどのペプチドタグ、ペルオキシダーゼ、アルカリフォスファターゼなどの酵素、およびそれらの誘導体の中から選択することができる。
上記化合物の中でも、B/F分離工程にて沈殿しにくいという点から、ビオチン(Biotin)、2,4−ジニトロフェノール(2,4-Dinitrophenol:DNP)、ジゴキシゲニン(Digoxigenin:DIG)、フルオロセイン(Fluorescein)、HiBiTタグ、およびそれらの誘導体が好ましい。
当該標識を用いてDNAを標識する方法としては、それぞれの標識化合物で通常使用されている常法によって調製することができる。たとえば、実施例において例示されているビオチン・DNPによる二重標識化DNAを例に挙げると、5’−ビオチン標識Fプライマーと5’−DNP標識Rプライマーを用いてDNA断片をPCRで増幅し、取得する方法を例示できる。ただし、調製方法は上記方法に制限されない。
Labels used in the present invention include biotin, 2,4-Dinitrophenol (DNP), digoxigenin (DIG), fluorescein, 5-bromodeoxyuridine (Bromodeoxyuridine). It can be selected from low molecular weight compounds such as His-tag, FLAG-tag, HA-tag, Myc-tag, peptide tags such as HiBiT tag, enzymes such as peroxidase and alkaline phosphatase, and derivatives thereof.
Among the above compounds, biotin, 2,4-Dinitrophenol (DNP), digoxigenin (DIG), and fluorescein (Digoxigenin: DIG) are difficult to precipitate in the B / F separation step. Fluorescein), HiBiT tags, and derivatives thereof are preferred.
As a method for labeling DNA using the label, it can be prepared by a conventional method usually used for each labeled compound. For example, taking the biotin-DNP double-labeled DNA exemplified in the examples as an example, a DNA fragment is amplified by PCR using a 5'-biotin-labeled F primer and a 5'-DNP-labeled R primer. An example of how to obtain it. However, the preparation method is not limited to the above method.

標識化DNAと検体との反応は、通常の抗原抗体反応を行い得る公知の条件を用いればよい。測定対象検体と接触させる標識化DNAの濃度は、用いるDNA断片長に応じて適宜選択可能である。 For the reaction between the labeled DNA and the sample, known conditions capable of carrying out a normal antigen-antibody reaction may be used. The concentration of the labeled DNA to be brought into contact with the sample to be measured can be appropriately selected according to the length of the DNA fragment used.

より具体的に標識化DNA断片の鎖長と濃度の関係を説明すれば、本発明に用いる標識化DNAは、量及び鎖長が特定の範囲内であることが好ましい。特定の範囲内とは、標識化DNAの濃度をY(μg/mL)、鎖長をX(bp)としたとき、以下の[数1]で規定される範囲である。
[数1]
400≦X≦2000
Y≧0.1
0.0006X−0.4595≦Y≦0.0005X+0.3744
なお、長さの異なる2種類以上のDNA断片の混合物を使用した場合、上記の鎖長とは、平均鎖長のことを指す。また、長さの異なる2種以上のDNA断片の混合物を使用する場合でも、それぞれのDNA断片の長さは上記の範囲内であることが好ましい。
More specifically, the relationship between the chain length and the concentration of the labeled DNA fragment will be described. The labeled DNA used in the present invention preferably has an amount and a chain length within a specific range. The specific range is the range defined by the following [Equation 1] when the concentration of the labeled DNA is Y (μg / mL) and the strand length is X (bp).
[Number 1]
400 ≤ X ≤ 2000
Y ≧ 0.1
0.0006X-0.4595 ≤ Y ≤ 0.0005X + 0.3744
When a mixture of two or more types of DNA fragments having different lengths is used, the above-mentioned strand length refers to the average strand length. Further, even when a mixture of two or more kinds of DNA fragments having different lengths is used, the length of each DNA fragment is preferably within the above range.

標識化DNA断片の濃度及び鎖長が上記範囲であることによって、抗DNA抗体濃度が低濃度である場合であっても感度良く検出することができ、抗DNA抗体濃度が高濃度である場合であっても、感度良く測り分けることができる。そして、上記標識化DNAを用いた場合の本発明は、既存のFarr−RIA法と高い相関性、具体的には相関係数0.93以上を示す。 When the concentration and chain length of the labeled DNA fragment are within the above ranges, it can be detected with high sensitivity even when the anti-DNA antibody concentration is low, and when the anti-DNA antibody concentration is high. Even if there is, it can be measured with high sensitivity. When the labeled DNA is used, the present invention shows a high correlation with the existing Farr-RIA method, specifically, a correlation coefficient of 0.93 or more.

標識化DNA断片の濃度及び鎖長は、より好ましくは、以下の[数2]で規定される範囲である。
[数2]
700≦X≦2000
Y≧0.1
0.0006X−0.3595≦Y≦0.0005X+0.3744
用いる標識化DNA断片の濃度及び鎖長が上記範囲内であることにより、本発明は検体中の抗DNA抗体濃度が低濃度であっても感度良く検出でき、抗DNA抗体濃度が高濃度であっても感度良く測り分けることができ、さらに、既存のFarr−RIA法とより高い相関性、具体的には相関係数0.95以上を示す。
The concentration and strand length of the labeled DNA fragment are more preferably in the range specified in [Equation 2] below.
[Number 2]
700 ≤ X ≤ 2000
Y ≧ 0.1
0.0006X-0.3595 ≤ Y ≤ 0.0005X + 0.3744
When the concentration and chain length of the labeled DNA fragment used are within the above ranges, the present invention can detect with high sensitivity even if the anti-DNA antibody concentration in the sample is low, and the anti-DNA antibody concentration is high. However, it can be measured with high sensitivity, and further, it shows a higher correlation with the existing Farr-RIA method, specifically, a correlation coefficient of 0.95 or more.

上記[数1]ないし[数2]に規定する範囲内であれば良好な感度で測定できることについては、明確な理由づけは不明であるが、測定系中の標識化DNAの物質量が重要であることが推測される。しかし、後述の実施例の結果からも分かる通り、たとえ同程度の物質量であっても、鎖長によって測定系の感度等が変動する。これは、標識化DNA長が長くなるにつれて、1つの断片に2つの抗体が結合するなど、測定系中での振る舞いに変化が生じるためであると推測される。
上記のような理由から、本発明に用いる好適な標識化DNA条件については、測定系中の最終モル濃度等で規定できず、前記[数1]のような複雑な形式でしか記述できない。
なお、長さの異なる2種類以上のDNA断片の混合物を使用した場合、上記の鎖長とは、平均鎖長のことを指す。
The clear reason for the fact that measurement can be performed with good sensitivity within the range specified in [Equation 1] to [Equation 2] above is unclear, but the amount of substance of the labeled DNA in the measurement system is important. It is presumed that there is. However, as can be seen from the results of the examples described later, the sensitivity of the measurement system and the like vary depending on the chain length even if the amount of substance is the same. It is presumed that this is because the behavior in the measurement system changes as the labeled DNA length increases, such as binding of two antibodies to one fragment.
For the above reasons, the suitable labeled DNA conditions used in the present invention cannot be defined by the final molar concentration in the measurement system or the like, and can only be described in a complicated format as in [Equation 1].
When a mixture of two or more types of DNA fragments having different lengths is used, the above-mentioned strand length refers to the average strand length.

反応後に添加する沈殿剤としては、硫酸アンモニウム、ポリエチレングリコール、ポリアミノ酸、トリクロロ酢酸、アセトン、エタノールなどが挙げられる。上記沈殿剤の中でも硫酸アンモニウム、ポリエチレングリコールが好ましく、硫酸アンモニウムが特に好ましい。沈殿剤の添加量は、選択する沈殿剤に応じて適宜設定可能である。例えば沈殿剤として硫酸アンモニウムを選択した場合、硫安沈殿の方法は自体公知であり、反応溶液中の濃度が40〜60%飽和、特に45〜55%飽和となるように硫酸アンモニウムを添加するのが好ましい。40%飽和以上であれば沈殿が生じ、60%以下であればFarr−RIA法と良好な相関性を有する。
B/F分離は、静置、デカンテーション、ろ過、遠心分離等の公知の方法によって行うことができる。たとえば遠心分離であれば、1800×g、4℃、30分の条件で実施することができるが、当該条件は適宜設定可能である。
Examples of the precipitant added after the reaction include ammonium sulfate, polyethylene glycol, polyamino acid, trichloroacetic acid, acetone, ethanol and the like. Among the above-mentioned precipitants, ammonium sulfate and polyethylene glycol are preferable, and ammonium sulfate is particularly preferable. The amount of the precipitant added can be appropriately set according to the precipitant to be selected. For example, when ammonium sulfate is selected as the precipitating agent, the method of ammonium sulfate precipitation is known by itself, and it is preferable to add ammonium sulfate so that the concentration in the reaction solution is 40 to 60% saturated, particularly 45 to 55% saturated. If it is 40% saturated or more, precipitation occurs, and if it is 60% or less, it has a good correlation with the Farr-RIA method.
B / F separation can be performed by a known method such as standing, decantation, filtration, or centrifugation. For example, in the case of centrifugation, it can be carried out under the conditions of 1800 × g, 4 ° C. and 30 minutes, and the conditions can be appropriately set.

次に、B/F分離後の液相(上清)中の標識化DNA断片量を測定する。当該上清は、そのまま測定に供してもよく、必要に応じて適宜希釈、濃縮、pH調整等の操作を行ってもよい。後述の実施例から明らかなように、B/F分離後の液相(上清)中の標識化DNA断片量を測定することによって、本発明の求める相関係数0.93以上を達成することができ、一方で、B/F分離後の沈殿中では相関係数0.93以上を達成することができない。 Next, the amount of labeled DNA fragment in the liquid phase (supernatant) after B / F separation is measured. The supernatant may be subjected to measurement as it is, or may be appropriately diluted, concentrated, pH adjusted or the like as necessary. As will be clear from the examples described later, by measuring the amount of labeled DNA fragment in the liquid phase (supernatant) after B / F separation, the correlation coefficient of 0.93 or more required by the present invention can be achieved. On the other hand, the correlation coefficient of 0.93 or more cannot be achieved in the precipitation after B / F separation.

標識化DNA断片量を測定する方法としては、標識化合物に対応した自体公知の方法であればよく、特に限定されない。特に、操作性が簡便で、低コストな方法として、分子間の特異的親和性を利用した手法が好適であり、具体的にはEIA、ELISA、CLEIA、FEIA、CLIA、ECLIA、FIA、ラテックス凝集法、免疫比濁法、免疫比ろう法、表面プラズモン共鳴法、HiBiTシステムなどが例示される。
上記測定法の中でも、標識剤に対応した検出システム、具体的にはビオチン-ストレプトアビジン系、DNP−抗DNP抗体系、DIG−抗DIG抗体系、などを利用したEIA、ELISA、CLEIA、FEIA、CLIA、ECLIA、FIAや、高親和性ペプチド(HiBiTペプチドタグ:アミノ酸配列VSGWRLFKKIS)と相補的ルシフェラーゼによるホモジニアス発光測定系であるHiBiTシステムが好ましいものとして例示されるが、これらに限定されない。
The method for measuring the amount of the labeled DNA fragment may be any method known per se that corresponds to the labeled compound, and is not particularly limited. In particular, as a method that is easy to operate and low in cost, a method that utilizes the specific affinity between molecules is preferable. Specifically, EIA, ELISA, CLEIA, FEIA, CLIA, ECLIA, FIA, and latex agglutination. Examples thereof include a method, an immunoturbidimetric method, an immunoreduction wax method, a surface plasmon resonance method, and a HiBiT system.
Among the above measurement methods, EIA, ELISA, CLEIA, FEIA, which utilize a detection system corresponding to a labeling agent, specifically, a biotin-streptavidin system, a DNP-anti-DNP antibody system, a DIG-anti-DIG antibody system, etc. CLIA, ELISA, FIA, and the HiBiT system, which is a homogenius luminescence measurement system using a luciferase complementary to a high affinity peptide (HiBiT peptide tag: amino acid sequence VSGWRLFKKIS), are exemplified as preferable, but are not limited thereto.

測定した液相中の標識化DNA断片量から検体中の抗DNA抗体量を算出する。すなわち、任意の濃度の抗DNA抗体と標識化DNA断片を反応させ、B/F分離により抗DNA抗体と結合しなかった標識化DNA断片の量を測定することで、抗DNA抗体濃度と反比例したシグナルが得られることを利用して検量線を描き、この検量線を用いて抗DNA抗体濃度を算出することができる。
また、測定した液相中の標識化DNA断片量から検体中の抗DNA抗体量を算出する本発明の副次的な利点として、既存のFarr−RIA法よりも高濃度、たとえば200IU/mL以上の抗DNA抗体高濃度条件下において、感度よく測定可能となることが挙げられる。これは、既存Farr−RIA法の放射性標識化DNAのシグナル増加を測定し抗DNA抗体量を算出する方法では、抗DNA抗体高濃度条件下ではシグナルがプラトーに達し感度よく測り分けできなくなるのに対し、本発明においては、シグナルの低下より抗DNA抗体量を算出するため、Farr−RIA法よりも抗DNA抗体高濃度条件下で測り分けが容易であることに起因する。
The amount of anti-DNA antibody in the sample is calculated from the measured amount of labeled DNA fragment in the liquid phase. That is, by reacting an anti-DNA antibody of an arbitrary concentration with a labeled DNA fragment and measuring the amount of the labeled DNA fragment that did not bind to the anti-DNA antibody by B / F separation, it was inversely proportional to the anti-DNA antibody concentration. A calibration curve can be drawn by utilizing the fact that a signal is obtained, and the anti-DNA antibody concentration can be calculated using this calibration curve.
Further, as a secondary advantage of the present invention for calculating the amount of anti-DNA antibody in a sample from the measured amount of labeled DNA fragment in the liquid phase, the concentration is higher than that of the existing Farr-RIA method, for example, 200 IU / mL or more. It is possible to measure with high sensitivity under the condition of high concentration of anti-DNA antibody. This is because the existing Farr-RIA method, which measures the signal increase of radiolabeled DNA and calculates the amount of anti-DNA antibody, causes the signal to reach a plateau under high anti-DNA antibody concentration conditions and cannot be measured with high sensitivity. On the other hand, in the present invention, since the amount of anti-DNA antibody is calculated from the decrease in signal, it is easier to measure under the condition of high concentration of anti-DNA antibody than the Farr-RIA method.

同一検体に対する既存Farr−RIA法の測定結果をX軸、本発明の測定結果をY軸に取り、測定値(X,Y)をプロットし、統計処理を行うことで、相関係数を求めることができる。本発明の相関係数は、0.93以上であることが求められる。 The correlation coefficient is obtained by plotting the measured values (X, Y) on the X-axis and the measurement result of the present invention on the X-axis and statistically processing the measurement result of the existing Farr-RIA method for the same sample. Can be done. The correlation coefficient of the present invention is required to be 0.93 or more.

本発明の一態様は、抗DNA抗体量を測定するための試薬キットである。 One aspect of the present invention is a reagent kit for measuring the amount of anti-DNA antibody.

本発明の試薬キットは、
(g)非放射性化合物で標識化された、DNA断片の濃度をY(μg/mL)、鎖長をX(bp)としたとき、以下の[数1]で表される範囲内のDNA断片、
[数1]
400≦X≦2000
Y≧0.1
0.0006X−0.4595≦Y≦0.0005X+0.3744
(h)液相と沈殿相を分離(B/F分離)するための沈殿剤、及び
(i)B/F分離後、液相中の標識化DNA断片量を測定するための試薬
からなり、上述した本発明の測定法によって検体中の抗DNA抗体量を測定するための試薬キットである。
このようなキットの中で、標識化DNA断片量を測定するための試薬としては、使用した標識の検出に常用されている試薬を用いることができ、その中から最良の組み合わせを適宜選択すればよい。一例として、標準液、標識化DNA液、B/F分離剤、希釈液、ALP標識DNP抗体液、ストレプトアビジン磁性粒子液、発光試薬、洗浄液のようなキット構成が考えられる。
The reagent kit of the present invention
(G) When the concentration of the DNA fragment labeled with a non-radioactive compound is Y (μg / mL) and the strand length is X (bp), the DNA fragment within the range represented by the following [Equation 1] ,
[Number 1]
400 ≤ X ≤ 2000
Y ≧ 0.1
0.0006X-0.4595 ≤ Y ≤ 0.0005X + 0.3744
It consists of (h) a precipitant for separating the liquid phase and the precipitated phase (B / F separation), and (i) a reagent for measuring the amount of labeled DNA fragment in the liquid phase after B / F separation. This is a reagent kit for measuring the amount of anti-DNA antibody in a sample by the measurement method of the present invention described above.
In such a kit, as a reagent for measuring the amount of labeled DNA fragment, a reagent commonly used for detecting the label used can be used, and the best combination thereof can be appropriately selected. Good. As an example, a kit configuration such as a standard solution, a labeled DNA solution, a B / F separator, a diluent, an ALP-labeled DNP antibody solution, a streptavidin magnetic particle solution, a luminescent reagent, and a cleaning solution can be considered.

本発明のNon−RIA的抗DNA抗体の測定方法は、(1)抗原として非放射性化合物で標識化された、DNA断片の濃度をY(μg/mL)、鎖長をX(bp)としたときに前記[数1]式で表されるDNA断片を用い、(2)抗原抗体反応後、液相と沈殿相を分離するB/F分離を行い、(3)B/F分離後、沈殿相ではなく液相中の標識化DNA断片量を測定すること、を最大の特徴としている。この3つの要素を同時に実行することにより、後述する実施例で実証されているように、検体中の抗DNA抗体濃度を既存のFarr−RIA法と高い相関性、すなわち相関係数0.93以上で、好ましくは0.95以上、さらに好ましくは相関係数0.97以上で測定することができる。この高い相関が得られるため、本発明を用いて、既存のFarr−RIA法に基づくSLEの診断法の代わりに被験者がSLEであるかを診断すること、また疾患活動性評価を行うことができる。 The method for measuring a Non-RIA anti-DNA antibody of the present invention is as follows: (1) The concentration of a DNA fragment labeled with a non-radioactive compound as an antigen is Y (μg / mL), and the chain length is X (bp). Sometimes, using the DNA fragment represented by the above formula [Equation 1], (2) after the antigen-antibody reaction, B / F separation is performed to separate the liquid phase and the precipitation phase, and (3) B / F separation and then precipitation. The biggest feature is to measure the amount of labeled DNA fragment in the liquid phase instead of the phase. By simultaneously executing these three elements, the anti-DNA antibody concentration in the sample is highly correlated with the existing Farr-RIA method, that is, the correlation coefficient is 0.93 or more, as demonstrated in the examples described later. Therefore, the measurement can be preferably performed with a correlation coefficient of 0.95 or more, more preferably a correlation coefficient of 0.97 or more. Since this high correlation can be obtained, the present invention can be used to diagnose whether a subject has SLE instead of the existing diagnostic method for SLE based on the Farr-RIA method, and to evaluate disease activity. ..

なお、本発明において採用されうるEIA、ELISA、CLEIA、FEIA、CLIA、ECLIA、FIAなどの分子間の特異的親和性を利用した測定法などの詳細については、たとえば下記の文献を参照すればよい。
(b)石川栄治ら編「酵素免疫測定法」(第2版)((株)医学書院、1982年12月15日発行)
(c)臨床病理 臨時増刊 特集第53号「臨床検査のためのイムノアッセイ−技術と応用−」(臨床病理刊行会、1983年発行)
(d)「バイオテクノロジー事典」((株)シーエムシー、1986年10月9日発行)
(e)「Methods in ENZYMOLOGY Vol.70」(Immunochemical techniques (Part A))
(f)「Methods in ENZYMOLOGY Vol.73」(Immunochemical techniques (Part B))
(g)「Methods in ENZYMOLOGY Vol.74」(Immunochemical techniques (Part C))
(h)「Methods in ENZYMOLOGY Vol.84」(Immunochemical techniques (Part D:Selected Immunoassay))
(i)「Methods in ENZYMOLOGY Vol.92」(Immunochemical techniques (Part E:Monoclonal Antibodies and General Immunoassay Methods))
[(e)〜(i)はアカデミックプレス社発行]
(j)生物化学的測定研究会(小林典裕ら)編「免疫測定法」((株)講談社、2014年12月20日発行)
For details of the measurement method utilizing the specific affinity between molecules such as EIA, ELISA, CLEIA, FEIA, CLIA, ECLIA, and FIA that can be adopted in the present invention, for example, the following documents may be referred to. ..
(b) "Enzyme Immunoassay" edited by Hideharu Ishikawa et al. (2nd edition) (Igaku-Shoin Co., Ltd., published on December 15, 1982)
(c) Extra edition of clinical pathology Special issue No. 53 "Immunoassay for clinical examination-technology and application-" (Clinical Pathology Publishing Association, published in 1983)
(d) "Biotechnology Encyclopedia" (CMC Co., Ltd., published on October 9, 1986)
(e) "Methods in ENZYMOLOGY Vol.70" (Immunochemical techniques (Part A))
(f) "Methods in ENZYMOLOGY Vol.73" (Immunochemical techniques (Part B))
(g) "Methods in ENZYMOLOGY Vol.74" (Immunochemical techniques (Part C))
(h) "Methods in ENZYMOLOGY Vol.84" (Immunochemical techniques (Part D: Selected Immunoassay))
(i) "Methods in ENZYMOLOGY Vol.92" (Immunochemical techniques (Part E: Monoclonal Antibodies and General Immunoassay Methods))
[(E)-(i) are published by Academic Press]
(j) Biochemical Measurement Study Group (Norihiro Kobayashi et al.), "Immunometry" (Kodansha Co., Ltd., published on December 20, 2014)

以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be further described with reference to Examples, but the present invention is not limited thereto.

(実施例1)
(1−1)非放射性標識化DNA断片を用いたNon−RIA測定系の構築
[試薬調製]
5’−Biotin標識Forwardプライマー(5’末端にBiotin標識を有する配列1:5’−GCGCCATTCGCCATTCAGG−3’のプライマー)と5’−Dinitrophenol(DNP)標識Reverseプライマー(5’末端にDNP標識を有する配列2:5’−ATTTTTGTGATGCTCGTCAGGG−3’のプライマー)を発注、pUC19から418bpをPCRで増幅させ、Biotin・DNP標識化DNAを約100μg取得した。Biotin・DNP標識化DNAを50mM Tris(pH8), 1mM EDTAで0.0001〜100000ng/mLに調製した。Goat anti−DNP Affinity Purified(BETHYL,A150−117A) をALP標識キット(Alkaline Phosphatase Labeling Kit−SH, 同仁化学、LK13) にて標識し、ALP標識抗DNP抗体を取得した。
(Example 1)
(1-1) Construction of Non-RIA measurement system using non-radioactive labeled DNA fragment
[Reagent preparation]
5'-Biotin-labeled Forward primer (sequence 1: 5'-GCGCCATTCGCCCATTCAG-3'primer with Biotin-labeled at the 5'end) and 5'-Ditintrophenol (DNP) -labeled Reverse primer (sequence with DNP-labeled at the 5'end) A primer for 2: 5'-ATTTTTGTGATGCTCGTCAGGGG-3') was ordered, pUC19 to 418 bp were amplified by PCR, and about 100 μg of Biotin / DNP-labeled DNA was obtained. Biotin / DNP-labeled DNA was prepared at 0.0001 to 100,000 ng / mL with 50 mM Tris (pH 8) and 1 mM EDTA. Goat anti-DNP Affinity Purified (BETHYL, A150-117A) was labeled with an ALP labeling kit (Alkaline phosphatase Labeling Kit-SH, Dojin Kagaku, LK13) to obtain an ALP-labeled anti-DNP antibody.

[標識化DNA測定]
検体の代わりに、様々な濃度のBiotin・DNP標識化DNAを含有する第1試薬(50mM HEPES(pH7.2))30μLと第2試薬(ALP標識抗DNP抗体)30μLを37℃で十分に反応させた後、第3試薬(ストレプトアビジン磁性粒子)30μLを加え混合し、更に37℃で十分に反応させた。反応後、洗浄し、発光基質を100μL加えて発光強度を測定することで、Biotin・DNP標識化DNAを検出した。
[Measurement of labeled DNA]
Sufficient reaction of 30 μL of the first reagent (50 mM HEPES (pH 7.2)) containing various concentrations of Biotin / DNP-labeled DNA and 30 μL of the second reagent (ALP-labeled anti-DNP antibody) instead of the sample at 37 ° C. After that, 30 μL of the third reagent (streptavidin magnetic particles) was added and mixed, and the reaction was further carried out at 37 ° C. After the reaction, the cells were washed, 100 μL of a luminescent substrate was added, and the luminescence intensity was measured to detect Biotin / DNP-labeled DNA.

結果を図1に示す。図1に示されているように、DNA 0ng/mLと0.32ng/mLでRLU差を認めたことから、Biotin・DNP標識化DNA量が0.32 ng/mL以上であれば検出可能と判断した。また、200ng/mL程度までは、DNA量に対してRLU値が良好な直線性を示した。以上の結果より、反応溶液中のBiotin・DNP標識化DNA濃度が0.32〜200 ng/mLの範囲内であれば、測定可能であることが示された。 The results are shown in FIG. As shown in FIG. 1, since an RLU difference was observed between DNA 0 ng / mL and 0.32 ng / mL, it was possible to detect if the amount of Biotin / DNP-labeled DNA was 0.32 ng / mL or more. It was judged. Further, up to about 200 ng / mL, the RLU value showed good linearity with respect to the amount of DNA. From the above results, it was shown that measurement is possible if the concentration of Biotin / DNP-labeled DNA in the reaction solution is within the range of 0.32 to 200 ng / mL.

(1−2)B/F分離後の上清中の標識化DNAの測定
Farr−RIA法の測定原理に基づく市販キット(セティ社)で値付け済みの、ウシ血清で適宜希釈したSLE患者血清を標準液として、これを試験管に25μL加え、0.2〜3.2μg/mLのBiotin・DNP標識化DNA溶液(418bp)を200μL加えて混和し、37℃2時間インキュベートした。
反応後、冷えた硫酸アンモニウム(61.25%飽和)を反応溶液中の硫酸アンモニウム濃度が50%となるように1000μL加え、混和した。2000×g, 4℃, 15分間遠心分離した。
(1-2) Measurement of labeled DNA in supernatant after B / F separation SLE patient serum appropriately diluted with bovine serum, which has been priced with a commercially available kit (Seti) based on the measurement principle of the Farr-RIA method. As a standard solution, 25 μL of this was added to a test tube, 200 μL of a 0.2 to 3.2 μg / mL Biotin / DNP-labeled DNA solution (418 bp) was added, mixed, and incubated at 37 ° C. for 2 hours.
After the reaction, 1000 μL of cold ammonium sulfate (61.25% saturated) was added so that the concentration of ammonium sulfate in the reaction solution was 50%, and the mixture was mixed. Centrifuge at 2000 xg, 4 ° C. for 15 minutes.

得られた遠心分離後上清 10μLと第1試薬(50mM HEPES(pH7.2)) 30μL及び第2試薬(ALP標識抗DNP抗体)30μLを混合し、37℃で十分に反応させた後、第3試薬(ストレプトアビジン磁性粒子)30μLを加え混合、37℃で十分に反応させた。反応後、洗浄し、発光基質を100μL加えて発光強度を測定することで、上清中の標識化DNAを検出した。 10 μL of the obtained supernatant after centrifugation, 30 μL of the first reagent (50 mM HEPES (pH 7.2)) and 30 μL of the second reagent (ALP-labeled anti-DNP antibody) were mixed, and the mixture was sufficiently reacted at 37 ° C. 30 μL of 3 reagents (streptavidin magnetic particles) were added and mixed, and the mixture was sufficiently reacted at 37 ° C. After the reaction, the cells were washed, 100 μL of a luminescent substrate was added, and the luminescence intensity was measured to detect labeled DNA in the supernatant.

図2及び表1に結果を示す。
なお、以下の表1における「評価」とは、(i)0〜200IU/mLにおいて濃度依存的なシグナル低下が観察される、(ii)13.7IU/mLのB/B%が90%以下となる、(iii)218.2IU/mLのB/B%が抗DNA抗体131.8IU/mLのB/B%の2倍以上となる、の3つの評価基準で評価した場合に、「○:(i)〜(iii)の全ての基準を満たした」、「△:(i)を満たしたが、(ii)、(iii)のいずれか(あるいは両方)を満たさなかった」、「×:(i)を満たさなかった」、の基準によって評価を行っている。
表1中「○」は後述する図3中「●」に、表1中「△」は図3中「▲」に、表1中「×」は図3中「×」に、それぞれ対応している。
△(ないし▲)は、グラフ中で○(ないし●)と差別化するために選択された記号であり、実際には実用的な水準を満たしていることを意味している。そのため、○評価と×評価の中間的評価であること以外に、否定的な意味を有していないことを明記する。
The results are shown in FIG. 2 and Table 1.
In addition, "evaluation" in Table 1 below means that (i) concentration-dependent signal decrease is observed from 0 to 200 IU / mL, and (ii) B / B 0 % of 13.7 IU / mL is 90%. hereinafter become, when evaluated in (iii) 218.2IU / mL of B / B 0% is anti-DNA antibodies 131.8IU / mL of B / B 0% more than twice, three criteria , "○: All the criteria of (i) to (iii) were satisfied", "Δ: (i) was satisfied, but either (ii) or (iii) (or both) was not satisfied" , "X: (i) was not satisfied", the evaluation is performed.
"○" in Table 1 corresponds to "●" in Fig. 3, which will be described later, "△" in Table 1 corresponds to "▲" in Fig. 3, and "×" in Table 1 corresponds to "×" in Fig. 3. ing.
△ (or ▲) is a symbol selected to differentiate from ○ (or ●) in the graph, and actually means that it meets a practical level. Therefore, it should be clearly stated that it has no negative meaning other than being an intermediate evaluation between ○ evaluation and × evaluation.

Figure 0006757041
Figure 0006757041

Biotin・DNP標識化DNA濃度が0.1〜0.4μg/mLの場合、0〜200IU/mLの全体において、抗DNA抗体の濃度依存的なシグナル低下が観察された。このことから、本発明によって抗DNA抗体を測定可能である旨が明らかとなった。
標識化DNA濃度が0.2μg/mL以上の場合、抗DNA抗体218.2IU/mLのB/B%が抗DNA抗体131.8IU/mLのB/B%の2倍以上となり、抗DNA抗体高濃度域においても測り分けできることが明らかとなった。
Biotin・DNP標識化DNA濃度が0.2μg/mL以下の場合、抗DNA抗体13.7IU/mLのB/B%が90%以下となり、抗DNA抗体濃度が低濃度域であっても、良好な感度で測り分けられることが明らかとなった。
以上総合すると、標識化DNA長418bpの場合、Biotin・DNP標識化DNA濃度が0.1〜0.4μg/mLの場合において抗DNA抗体の測定が可能であり、中でも0.2μg/mLが好適であることが明らかとなった。
When the biotin / DNP-labeled DNA concentration was 0.1-0.4 μg / mL, a concentration-dependent signal decrease of the anti-DNA antibody was observed in the whole range of 0 to 200 IU / mL. From this, it was clarified that the anti-DNA antibody can be measured by the present invention.
If labeled DNA concentration is more than 0.2μg / mL, B / B 0 % of anti-DNA antibodies 218.2IU / mL become anti-DNA antibody 131.8IU / mL of B / B 0% of 2 times or more, anti It was clarified that it can be measured even in the high concentration range of DNA antibody.
When the Biotin / DNP-labeled DNA concentration is 0.2 μg / mL or less, the B / B 0 % of the anti-DNA antibody 13.7 IU / mL is 90% or less, and even if the anti-DNA antibody concentration is in the low concentration range, It became clear that it can be measured with good sensitivity.
Taken together, the anti-DNA antibody can be measured when the labeled DNA length is 418 bp and the biotin / DNP-labeled DNA concentration is 0.1-0.4 μg / mL, with 0.2 μg / mL being preferable. It became clear that.

(実施例1−3)DNA断片の濃度及び鎖長の関係の検討
5’−Biotin標識Forwardプライマー(5’末端にBiotin標識を有する配列1:5’−GCGCCATTCGCCATTCAGG−3’のプライマー)と5’−Dinitrophenol(DNP)標識Reverseプライマー(5’末端にDNP標識を有する配列3:5’−GCACCTATCTCAGCGATCTGTC−3’のプライマー)を用いて、pUC19から1159bpをPCRで増幅させ、Biotin・DNP標識化DNAを約100μg取得した。Farr−RIA法の測定原理に基づく市販キット(セティ社)で値付け済みの、ウシ血清で適宜希釈したSLE患者血清を標準液として、これを試験管に25μL加え、0.2〜0.8μg/mLのBiotin・DNP標識化DNA溶液(1159bp)を200μL加えて混和し、37℃2時間インキュベートした。
反応後、冷えた硫酸アンモニウム(61.25%飽和)を反応溶液中の硫酸アンモニウム濃度が50%となるように1000μL加え、混和した。2000×g, 4℃, 15分間遠心分離した。
(Example 1-3) Examination of relationship between DNA fragment concentration and strand length 5'-Biotin-labeled Forward primer (primer of sequence 1: 5'-GCGCCATTTCGCCATTCAG-3' having Biotin-labeled at the 5'end) and 5' -Diintrophenol (DNP) -labeled Reverse primer (primer of sequence 3: 5'-GCACCCATCTCAGCGATCTGTC-3' with DNP-labeled at the 5'end) was used to amplify pUC19 to 1159bp by PCR to obtain Biotin / DNP-labeled DNA. About 100 μg was obtained. Using a SLE patient serum appropriately diluted with bovine serum, which has been priced with a commercial kit (Seti) based on the measurement principle of the Farr-RIA method, as a standard solution, add 25 μL to a test tube, and 0.2 to 0.8 μg. 200 μL of / mL Biotin / DNP-labeled DNA solution (1159 bp) was added, mixed, and incubated at 37 ° C. for 2 hours.
After the reaction, 1000 μL of cold ammonium sulfate (61.25% saturated) was added so that the concentration of ammonium sulfate in the reaction solution was 50%, and the mixture was mixed. Centrifuge at 2000 xg, 4 ° C. for 15 minutes.

得られた遠心分離後上清 10μLと第1試薬(50mM HEPES(pH7.2)) 30μL及び第2試薬(ALP標識抗DNP抗体)30μLを混合し、37℃で十分に反応させた後、第3試薬(ストレプトアビジン磁性粒子)30μLを加え混合、37℃で十分に反応させた。反応後、洗浄し、発光基質を100μL加えて発光強度を測定することで、上清中の標識化DNAを検出した。 10 μL of the obtained supernatant after centrifugation, 30 μL of the first reagent (50 mM HEPES (pH 7.2)) and 30 μL of the second reagent (ALP-labeled anti-DNP antibody) were mixed, and the mixture was sufficiently reacted at 37 ° C. 30 μL of 3 reagents (streptavidin magnetic particles) were added and mixed, and the mixture was sufficiently reacted at 37 ° C. After the reaction, the cells were washed, 100 μL of a luminescent substrate was added, and the luminescence intensity was measured to detect labeled DNA in the supernatant.

上記0.2〜0.8μg/mLのBiotin・DNP標識化DNA溶液(1159bp)を0.2〜1.2μg/mLのBiotin・DNP標識化DNA溶液(1862bp)に替え、同様の検討を行った。PCRの増幅には、pUC19をテンプレートとし、5’−Biotin標識Forwardプライマー(5’末端にBiotin標識を有する配列1:5’−GCGCCATTCGCCATTCAGG−3’のプライマー)と5’−Dinitrophenol(DNP)標識Reverseプライマー(5’末端にDNP標識を有する配列4:5’−AACTGGATCTCAACAGCGGTAAG−3’のプライマー)を用いた。 The above 0.2 to 0.8 μg / mL Biotin / DNP labeled DNA solution (1159 bp) was replaced with a 0.2 to 1.2 μg / mL Biotin / DNP labeled DNA solution (1862 bp), and the same study was conducted. It was. For PCR amplification, pUC19 was used as a template, and 5'-Biotin-labeled Forward primer (primer of sequence 1: 5'-GCGCCATTCGCCATTCAGG-3'with Biotin-labeled at the 5'end) and 5'-Ditintrophenol (DNP) -labeled Reverse. Primers (primers of sequence 4: 5'-AACTGGATCTCAACAGCGGTAAG-3' having a DNP label at the 5'end) were used.

本実施例の結果、以下の表2に示す結果が得られた。なお、以下の表2における「評価」は、表1と同様に、(i)0〜200IU/mLにおいて濃度依存的なシグナル低下が観察される、(ii)13.7IU/mLのB/B%が90%以下となる、(iii)218.2IU/mLのB/B%が抗DNA抗体131.8IU/mLのB/B%の2倍以上となる、の3つの評価基準で評価した場合に、「○:(i)〜(iii)の全ての基準を満たした」、「△:(i)を満たしたが、(ii)、(iii)のいずれか(あるいは両方)を満たさなかった」、「×:(i)を満たさなかった」、の基準によって評価を行っている。 As a result of this example, the results shown in Table 2 below were obtained. As for the "evaluation" in Table 2 below, as in Table 1, (i) a concentration-dependent signal decrease is observed from 0 to 200 IU / mL, and (ii) 13.7 IU / mL B / B. Three evaluation criteria: 0 % is 90% or less, and (iii) 218.2 IU / mL B / B 0 % is more than twice the anti-DNA antibody 131.8 IU / mL B / B 0 %. When evaluated in, "○: Satisfied all the criteria of (i) to (iii)" and "Δ: (i) was satisfied, but either (ii) or (iii) (or both). The evaluation was made according to the criteria of "does not meet" and "x: did not meet (i)".

Figure 0006757041
Figure 0006757041

標識化DNA鎖長1159bpの場合、全ての標識化DNA濃度において、抗DNA抗体濃度依存的なシグナル低下が観察され、かつ、抗DNA抗体13.7IU/mLのB/B%が90%以下であり、良好な感度を示した。中でも、標識化DNA濃度が0.4μg/mL以上の場合、抗DNA抗体218.2IU/mLのB/B%が抗DNA抗体131.8IU/mLのB/B%の2倍以上となり、抗DNA抗体高濃度域においても良好に測り分けが可能であった。 In the case of labeled DNA strand length 1159 bp, a signal decrease dependent on anti-DNA antibody concentration was observed at all labeled DNA concentrations, and B / B 0 % of anti-DNA antibody 13.7 IU / mL was 90% or less. It showed good sensitivity. Above all, if the labeled DNA concentrations greater than 0.4 [mu] g / mL, anti-DNA antibody 218.2IU / mL of B / B 0% becomes anti-DNA antibody 131.8IU / mL of B / B 0% of 2 times or more , It was possible to measure well even in the high concentration range of anti-DNA antibody.

標識化DNA長1862bpの場合、標識化DNA濃度0.4μg/mL以下において、抗DNA抗体131.8IU/mLのB/B%と抗DNA抗体218.2IU/mLのB/B%が区別できず、抗DNA抗体高濃度域において濃度依存的なシグナル低下が観察できなかった。一方標識化DNA濃度0.8μg/mL以上において、抗DNA抗体濃度依存的なシグナル低下が観察され、抗DNA抗体13.7IU/mLのB/B%が90%以下、かつ抗DNA抗体218.2IU/mLのB/B%が抗DNA抗体131.8IU/mLのB/B%の2倍以上となり、良好な感度で測り分けすることができた。
なお、標識化DNA長1159bp・0.2μg/mLの結果及び標識化DNA長1159bp・0.4μg/mLの結果と、標識化DNA長1862bp・0.4μg/mLの結果とを比較すると、1159bpにおいてはどちらも良好な感度を示しているのに対し、1862bpでは感度が不良であることから、たとえ標識化DNAの物質量を同程度とした場合であっても、標識化DNAの鎖長が異なる場合には、感度等の面で差が生じることが明らかとなった。
When the labeled DNA length is 1862 bp, the anti-DNA antibody 131.8 IU / mL B / B 0 % and the anti-DNA antibody 218.2 IU / mL B / B 0 % are present at a labeled DNA concentration of 0.4 μg / mL or less. Indistinguishable, no concentration-dependent signal decrease could be observed in the high concentration range of anti-DNA antibody. On the other hand, at a labeled DNA concentration of 0.8 μg / mL or higher, an anti-DNA antibody concentration-dependent signal decrease was observed, and the B / B 0 % of the anti-DNA antibody 13.7 IU / mL was 90% or less, and the anti-DNA antibody 218. .2IU / mL of B / B 0% becomes anti-DNA antibody 131.8IU / mL of B / B 0% more than twice, it was possible to divide measure with good sensitivity.
Comparing the results of the labeled DNA length of 1159 bp and 0.2 μg / mL and the results of the labeled DNA length of 1159 bp and 0.4 μg / mL with the results of the labeled DNA length of 1862 bp and 0.4 μg / mL, 1159 bp. In 1862bp, the sensitivity is poor, whereas even if the amount of the labeled DNA is the same, the chain length of the labeled DNA is high. It was clarified that when they are different, there is a difference in terms of sensitivity and the like.

実施例1−2及び1−3の結果から、本発明に用いる標識化DNAの濃度及び鎖長の関係について、解析を行った。
各標識化DNAの濃度及び鎖長における結果を、(i)0〜200IU/mLにおいて濃度依存的なシグナル低下が観察される、(ii)13.7IU/mLのB/B%が90%以下となる、(iii)218.2IU/mLのB/B%が抗DNA抗体131.8IU/mLのB/B%の2倍以上となる、の3つの評価基準で評価し、「●:(i)〜(iii)の全ての基準を満たした」、「▲:(i)を満たしたが、(ii)、(iii)のいずれか(あるいは両方)を満たさなかった」、「×:(i)を満たさなかった」、の3つに分類し、当該結果を図3の表中にプロット点の形状として表した。
この結果から、本発明にあっては、標識化DNAの濃度をY(μg/mL)、鎖長をX(bp)としたとき、以下の[数1]で規定される範囲である場合に、抗DNA抗体0〜200IU/mLにおいて、濃度依存的に、感度よく測定することができることが明らかとなった。
[数1]
400≦X≦2000
Y≧0.1
0.0006X−0.4595≦Y≦0.0005X+0.3744
上記[数1]で規定される範囲を、図3の表中に色つきで示した。
From the results of Examples 1-2 and 1-3, the relationship between the concentration and the chain length of the labeled DNA used in the present invention was analyzed.
Results at concentration and strand length of each labeled DNA show that (i) concentration-dependent signal reduction is observed at 0-200 IU / mL, (ii) 90% B / B 0 % at 13.7 IU / mL. hereinafter become, evaluated by (iii) 218.2IU / mL of B / B 0% is anti-DNA antibodies 131.8IU / mL of B / B 0% more than twice, three criteria, " ●: All the criteria of (i) to (iii) were met "," ▲: (i) was met, but either (or both) of (ii) or (iii) was not met "," X: did not satisfy (i) ”, and the results were shown as the shape of the plot points in the table of FIG.
From this result, in the present invention, when the concentration of the labeled DNA is Y (μg / mL) and the chain length is X (bp), the range is defined by the following [Equation 1]. , It was clarified that the anti-DNA antibody 0 to 200 IU / mL can be measured with high sensitivity in a concentration-dependent manner.
[Number 1]
400 ≤ X ≤ 2000
Y ≧ 0.1
0.0006X-0.4595 ≤ Y ≤ 0.0005X + 0.3744
The range defined by the above [Equation 1] is shown in color in the table of FIG.

(1−4)本発明法とFarr−RIA法との相関試験
Farr−RIA法の測定原理に基づく市販キット(セティ社)で値付け済みの、ウシ血清で適宜希釈したSLE患者血清を標準液として、またSLE患者血清(Farr−RIA法、FEIA法にて値付け済み)を25μL加え、Biotin・DNP標識化DNA溶液(418bpは0.2μg/mL、1159bpは0.8μg/mL、1862bpは1.2μg/mL)を200μL加えて混和し、37℃2時間インキュベートした。反応後、冷えた硫酸アンモニウム(61.25%飽和)を反応溶液中の硫酸アンモニウム濃度が50%となるように1000μL加え、混和した。2000×g, 4℃, 15分間遠心分離した。
(1-4) Correlation test between the method of the present invention and the Farr-RIA method A standard solution of SLE patient serum appropriately diluted with bovine serum, which has been priced with a commercially available kit (Seti) based on the measurement principle of the Farr-RIA method. In addition, 25 μL of SLE patient serum (prescribed by Farr-RIA method and FEIA method) was added, and Biotin / DNP-labeled DNA solution (418 bp was 0.2 μg / mL, 1159 bp was 0.8 μg / mL, and 1862 bp was 1.2 μg / mL) was added and mixed, and the mixture was incubated at 37 ° C. for 2 hours. After the reaction, 1000 μL of cold ammonium sulfate (61.25% saturated) was added so that the concentration of ammonium sulfate in the reaction solution was 50%, and the mixture was mixed. Centrifuge at 2000 xg, 4 ° C. for 15 minutes.

得られた遠心分離後上清 10μLと第1試薬(50mM HEPES(pH7.2)) 30μL及び第2試薬(ALP標識抗DNP抗体)30μLを混合し、37℃で十分に反応させた後、第3試薬(ストレプトアビジン磁性粒子)30μLを加え混合、37℃で十分に反応させた。
反応後、洗浄し、発光基質を100μL加えて発光強度を測定することで、標識化DNAを検出した。
標識化DNA量より算出した本発明の抗DNA抗体量と、Farr−RIA法によって測定した抗DNA抗体量を統計処理によって比較することによって、本発明とFarr−RIA法との相関を算出した。算出方法の一例として1159bpの結果を図4に、各標識化DNA長における相関係数の結果をまとめて表3に示す。
After centrifugation, 10 μL of the obtained supernatant, 30 μL of the first reagent (50 mM HEPES (pH 7.2)) and 30 μL of the second reagent (ALP-labeled anti-DNP antibody) were mixed, and the mixture was sufficiently reacted at 37 ° C. 30 μL of 3 reagents (streptavidin magnetic particles) were added and mixed, and the mixture was sufficiently reacted at 37 ° C.
After the reaction, the cells were washed, 100 μL of a luminescent substrate was added, and the luminescence intensity was measured to detect labeled DNA.
The correlation between the present invention and the Farr-RIA method was calculated by comparing the amount of the anti-DNA antibody of the present invention calculated from the amount of labeled DNA with the amount of the anti-DNA antibody measured by the Farr-RIA method by statistical processing. As an example of the calculation method, the result of 1159 bp is shown in FIG. 4, and the result of the correlation coefficient at each labeled DNA length is summarized in Table 3.

Figure 0006757041
Figure 0006757041

SLE患者血清による測定の結果、表3の通り、本発明の測定系は、いずれの標識化DNA長であっても、0.93以上という高い相関を示した。特に、標識化DNA長が1159bpのとき、相関係数0.9758と最も良好な相関性であった。また、上記418bp及び1159bpの結果から、本発明において相関係数が0.95以上となるには、用いる標識化DNA長として、672bp以上が必要であることが分かった。
換言すると、本実施例の結果から、標識化DNAが標識化DNAの濃度をY(μg/mL)、鎖長をX(bp)としたとき、前記[数1]の関係式を満たす場合には、本発明の前記評価は△以上となり、かつ、本発明とFarr−RIA法との相関係数が0.93以上となり、さらに、下記 [数2] の関係式を満たす場合には、本発明の前記評価は○以上となり、かつ、相関係数が0.95以上となることが明らかとなった。
[数2]
700≦X≦2000
Y≧0.1
0.0006X−0.3595≦Y≦0.0005X+0.3744
なお、上記 [数2] の関係式を満たす範囲について、図5に示す。
As a result of measurement using SLE patient sera, as shown in Table 3, the measurement system of the present invention showed a high correlation of 0.93 or more regardless of the labeled DNA length. In particular, when the labeled DNA length was 1159 bp, the correlation coefficient was 0.9758, which was the best correlation. Further, from the results of 418 bp and 1159 bp above, it was found that the labeled DNA length to be used must be 672 bp or more in order for the correlation coefficient to be 0.95 or more in the present invention.
In other words, from the results of this example, when the labeled DNA has a concentration of the labeled DNA of Y (μg / mL) and a chain length of X (bp), the case where the relational expression of [Equation 1] is satisfied. If the evaluation of the present invention is Δ or more, the correlation coefficient between the present invention and the Farr-RIA method is 0.93 or more, and the relational expression of the following [Equation 2] is satisfied, the present invention It was clarified that the evaluation of the invention was ◯ or higher and the correlation coefficient was 0.95 or higher.
[Number 2]
700 ≤ X ≤ 2000
Y ≧ 0.1
0.0006X-0.3595 ≤ Y ≤ 0.0005X + 0.3744
The range satisfying the relational expression of the above [Equation 2] is shown in FIG.

(参考例1)既存Non−RIA法とFarr−RIA法との相関試験
Farr−RIA法の測定原理に基づく市販キット(セティ社)で値付け済みの、ウシ血清で適宜希釈したSLE患者血清を標準液として、FEIA法の測定原理に基づく市販キット(エリアdsDNA、ファディア社)を用いて抗DNA抗体濃度を測定した。両者の測定値を統計処理によって比較し、FEIA法とFarr−RIA法との相関を算出した。その結果を図6に示す。
(Reference Example 1) Correlation test between existing Non-RIA method and Farr-RIA method SLE patient serum appropriately diluted with bovine serum, which has been priced with a commercially available kit (Seti) based on the measurement principle of Farr-RIA method, is used. As a standard solution, the anti-DNA antibody concentration was measured using a commercially available kit (Area dsDNA, Fadia) based on the measurement principle of the FEIA method. The measured values of both were compared by statistical processing, and the correlation between the FEIA method and the Farr-RIA method was calculated. The result is shown in FIG.

図6に示すように、FEIA法とFarr−RIA法との相関係数は0.67であり、良好な相関性を示しているとは言えなかった。 As shown in FIG. 6, the correlation coefficient between the FEIA method and the Farr-RIA method was 0.67, and it could not be said that a good correlation was shown.

(実施例2)標識の種類による反応性の比較
実施例1−3に記載の方法により、1159bpのBiotin・DIG標識化DNA断片をPCRで増幅させた。また、5’−Biotin標識Forwardプライマー(5’末端にBiotin標識を有する配列5:5’−CTCACTGATTAAGCATTGGTAACTGTC−3’のプライマー)と5’−Digoxigenin(DIG)標識Reverseプライマー(5’末端にDIG標識を有する配列6:5’−CTGATGCGGTATTTTCTCCTTACG−3’のプライマー)を用いてpUC19から1274bpのBiotin・DIG標識化DNA断片をPCRで増幅させた。
(Example 2) Comparison of reactivity by type of label A 1159 bp Biotin / DIG-labeled DNA fragment was amplified by PCR by the method described in Example 1-3. In addition, a 5'-Biotin-labeled Forward primer (a primer for a sequence having a Biotin-labeled at the 5'end, a primer of 5: 5'-CTCACTGATTAAGCATTGGTAACTGTC-3') and a 5'-Digoxigenin (DIG) -labeled Reverse primer (DIG-labeled at the 5'end). Biotin / DIG-labeled DNA fragments from pUC19 to 1274 bp were amplified by PCR using a primer of sequence 6: 5'-CTGATGCGGTATTTTTCCTTACG-3').

Farr−RIA法の測定原理に基づく市販キット(セティ社)で値付け済みの、ウシ血清で適宜希釈したSLE患者血清を標準液として、これを試験管に25μL加え、0.2〜0.8μg/mLのBiotin・DIG標識化DNA溶液(1159bpおよび1274bpの等物質量混合物)を200μL加えて混和し、37℃2時間インキュベートした。
反応後、冷えた硫酸アンモニウム(61.25%飽和)を反応溶液中の硫酸アンモニウム濃度が50%となるように1000μL加え、混和した。2000×g, 4℃, 15分間遠心分離した。
Using a SLE patient serum appropriately diluted with bovine serum, which has been priced with a commercial kit (Seti) based on the measurement principle of the Farr-RIA method, as a standard solution, add 25 μL to a test tube, and 0.2 to 0.8 μg. 200 μL of / mL Biotin / DIG-labeled DNA solution (a mixture of equal amounts of 1159 bp and 1274 bp) was added, mixed, and incubated at 37 ° C. for 2 hours.
After the reaction, 1000 μL of cold ammonium sulfate (61.25% saturated) was added so that the concentration of ammonium sulfate in the reaction solution was 50%, and the mixture was mixed. Centrifuge at 2000 xg, 4 ° C. for 15 minutes.

得られた遠心分離後上清 10μLと第1試薬(50mM HEPES(pH7.2)) 30μL及び第2試薬(ALP標識抗DIG抗体)30μLを混合し、37℃で十分に反応させた後、第3試薬(ストレプトアビジン磁性粒子)30μLを加え混合、37℃で十分に反応させた。反応後、洗浄し、発光基質を100μL加えて発光強度を測定することで、上清中の標識化DNAを検出した。 10 μL of the obtained supernatant after centrifugation, 30 μL of the first reagent (50 mM HEPES (pH 7.2)) and 30 μL of the second reagent (ALP-labeled anti-DIG antibody) were mixed, and the mixture was sufficiently reacted at 37 ° C. 30 μL of 3 reagents (streptavidin magnetic particles) were added and mixed, and the mixture was sufficiently reacted at 37 ° C. After the reaction, the cells were washed, 100 μL of a luminescent substrate was added, and the luminescence intensity was measured to detect labeled DNA in the supernatant.

本実施例の結果、0.4μg/mLのBiotin・DIG標識化DNAにおいて、0.8μg/mLのBiotin・DNP標識化DNAと同等の反応性を示した(図7)。
このことから、本発明は、用いる標識の種類に依存せず測定可能であることが明らかとなった。
As a result of this example, 0.4 μg / mL Biotin / DIG-labeled DNA showed the same reactivity as 0.8 μg / mL Biotin / DNP-labeled DNA (Fig. 7).
From this, it was clarified that the present invention can be measured regardless of the type of label used.

(参考例2)B/F分離後、上清ではなく、沈殿中の標識化DNAを測定したときの相関試験
Farr−RIA法の測定原理に基づく市販キット(セティ社)で値付け済みの、ウシ血清で適宜希釈したSLE患者血清を標準液として、またSLE患者血清(Farr−RIA法、FEIA法にて値付け済み)を25μL加え、Biotin・DNP標識化DNA溶液(1159bpおよび1274bp、0.8μg/mL)を200μL加えて混和し、37℃2時間インキュベートした。反応後、冷えた硫酸アンモニウム(61.25%飽和)を反応溶液中の硫酸アンモニウム濃度が50%となるように1000μL加え、混和した。2000×g, 4℃, 15分間遠心分離した。
(Reference Example 2) Correlation test when labeled DNA in the precipitate is measured instead of the supernatant after B / F separation. Priced with a commercially available kit (Seti) based on the measurement principle of the Farr-RIA method. SLE patient serum diluted appropriately with bovine serum was used as a standard solution, and 25 μL of SLE patient serum (valued by Farr-RIA method and FEIA method) was added to Biotin / DNP-labeled DNA solution (1159 bp and 1274 bp, 0. 8 μg / mL) was added and mixed, and the mixture was incubated at 37 ° C. for 2 hours. After the reaction, 1000 μL of cold ammonium sulfate (61.25% saturated) was added so that the concentration of ammonium sulfate in the reaction solution was 50%, and the mixture was mixed. Centrifuge at 2000 xg, 4 ° C. for 15 minutes.

得られた遠心分離後沈殿を第1試薬(50mM HEPES(pH7.2))で再溶解し、溶解液10μL、第1試薬(50mM HEPES(pH7.2)) 30μL及び第2試薬(ALP標識抗DNP抗体)30μLを混合し、37℃で十分に反応させた後、第3試薬(ストレプトアビジン磁性粒子)30μLを加え混合、37℃で十分に反応させた。 The obtained precipitate after centrifugation was redissolved with the first reagent (50 mM HEPES (pH 7.2)), 10 μL of the lysate, 30 μL of the first reagent (50 mM HEPES (pH 7.2)), and the second reagent (ALP-labeled antibody). 30 μL of DNP antibody) was mixed and reacted sufficiently at 37 ° C., then 30 μL of a third reagent (streptavidin magnetic particles) was added and mixed, and the reaction was sufficiently reacted at 37 ° C.

その結果を図8に示す。
図8に示されているように、遠心分離後の沈殿を測定したときのFarr−RIA法との相関係数は0.89であり、相関的には満足いく結果ではなかった。
(実施例3)
(3−1)HiBiT標識化DNA断片を用いたNon−RIA測定系の構築
[試薬調製]
アルキンを導入したDNA断片(pUC19由来、実施例1−3及び実施例2と同様の配列をもつプライマーのアルキン標識体を用いてPCRで1159bpおよび1274bpのDNA断片を作製)と末端アジド標識したHiBiTタグをクリック反応により結合、HiBiT標識化DNA断片を作製した。
The result is shown in FIG.
As shown in FIG. 8, the correlation coefficient with the Farr-RIA method when measuring the precipitation after centrifugation was 0.89, which was not a satisfactory result in terms of correlation.
(Example 3)
(3-1) Construction of Non-RIA measurement system using HiBiT-labeled DNA fragment
[Reagent preparation]
A DNA fragment into which an alkyne was introduced (from pUC19, DNA fragments of 1159 bp and 1274 bp were prepared by PCR using an alkyne-labeled primer having the same sequence as in Examples 1-3 and 2) and a terminal azide-labeled HiBiT. The tag was bound by a click reaction to prepare a HiBiT-labeled DNA fragment.

[標識化DNA測定]
96well half area white plate(Conring)に種々の濃度のHiBiT標識化DNA(1159bpおよび1274bpの等物質量混合物)を25μL分注した。Nano Glo HiBiT Lytic Detection System(Promega)のマニュアルに従って調製した検出試薬を25μL加え、600rpmで3分間攪拌した後、10分間遮光静置した。ルミノメーター(GloMax)で発光強度を検出した。
[Measurement of labeled DNA]
Twenty-five μL of HiBiT-labeled DNA (mixture of equal amount of 1159 bp and 1274 bp) of various concentrations was dispensed into 96-well half area white plate (Conring). 25 μL of the detection reagent prepared according to the manual of Nano Glo HiBiT Lytic Detection System (Promega) was added, and the mixture was stirred at 600 rpm for 3 minutes and then allowed to stand in the dark for 10 minutes. The emission intensity was detected with a luminometer (GloMax).

結果を図9に示す。図9に示されているように、DNA 0 ng/mLと1 ng/mLでRLU差を認めたことから、HiBiT標識化DNA量が1 ng/mL以上であれば検出可能と判断した。また、1000ng/mL程度までは、DNA量に対してRLU値が良好な直線性を示した。
以上の結果より、反応溶液中のHiBiT標識化DNA濃度が1〜1000 ng/mLの範囲内であれば、測定可能であることが示された。
The results are shown in FIG. As shown in FIG. 9, since an RLU difference was observed between DNA 0 ng / mL and 1 ng / mL, it was judged that detection was possible if the amount of HiBiT-labeled DNA was 1 ng / mL or more. In addition, the RLU value showed good linearity with respect to the amount of DNA up to about 1000 ng / mL.
From the above results, it was shown that measurement is possible if the concentration of HiBiT-labeled DNA in the reaction solution is in the range of 1 to 1000 ng / mL.

(3−2)B/F分離後の上清中のHiBiT標識化DNAの測定
Farr−RIA法の測定原理に基づく市販キット(セティ社)で値付け済みの、ウシ血清で適宜希釈したSLE患者血清を標準液として、これを試験管に25μL加え、0.2〜0.8μg/mLのHiBiT標識化DNA溶液を200μL加えて混和し、37℃2時間インキュベートした。
反応後、冷えた硫酸アンモニウム(61.25%飽和)を反応溶液中の硫酸アンモニウム濃度が50%となるように1000μL加え、混和した。2000×g, 4℃, 15分間遠心分離した。
(3-2) Measurement of HiBiT-labeled DNA in supernatant after B / F separation SLE patients appropriately diluted with bovine serum, priced with a commercially available kit (Seti) based on the measurement principle of the Farr-RIA method. Using serum as a standard solution, 25 μL of this was added to a test tube, 200 μL of 0.2 to 0.8 μg / mL HiBiT-labeled DNA solution was added, mixed, and incubated at 37 ° C. for 2 hours.
After the reaction, 1000 μL of cold ammonium sulfate (61.25% saturated) was added so that the concentration of ammonium sulfate in the reaction solution was 50%, and the mixture was mixed. Centrifuge at 2000 xg, 4 ° C. for 15 minutes.

得られた遠心分離後上清 25μLとNano Glo HiBiT Lytic Detection System(Promega)のマニュアルに従って調製した検出試薬を25μL加え、600rpmで3分間攪拌した後、10分間遮光静置した。 ルミノメーター(GloMax)で発光強度を検出した。 After centrifugation, 25 μL of the obtained supernatant and 25 μL of the detection reagent prepared according to the manual of Nano Glo HiBiT Lytic Detection System (Promega) were added, and the mixture was stirred at 600 rpm for 3 minutes and then allowed to stand in the dark for 10 minutes. The emission intensity was detected with a luminometer (GloMax).

図10及び表4に結果を示す。なお、表4における「評価」は、表1,2と同様に、(i)0〜200IU/mLにおいて濃度依存的なシグナル低下が観察される、(ii)13.7IU/mLのB/B%が90%以下となる、(iii)218.2IU/mLのB/B%が抗DNA抗体131.8IU/mLのB/B%の2倍以上となる、の3つの評価基準で評価した場合に、「○:(i)〜(iii)の全ての基準を満たした」、「△:(i)を満たしたが、(ii)、(iii)のいずれか(あるいは両方)を満たさなかった」、「×:(i)を満たさなかった」、の基準によって評価を行っている。 The results are shown in FIGS. 10 and 4. As for the "evaluation" in Table 4, similarly to Tables 1 and 2, (i) a concentration-dependent signal decrease is observed at 0 to 200 IU / mL, and (ii) 13.7 IU / mL B / B. Three evaluation criteria: 0 % is 90% or less, and (iii) 218.2 IU / mL B / B 0 % is more than twice the anti-DNA antibody 131.8 IU / mL B / B 0 %. When evaluated in, "○: Satisfied all the criteria of (i) to (iii)" and "Δ: (i) was satisfied, but either (ii) or (iii) (or both). The evaluation was made according to the criteria of "does not meet" and "x: did not meet (i)".

Figure 0006757041
Figure 0006757041

HiBiT標識化DNA濃度0.2〜0.8μg/mLの範囲において、抗DNA抗体の濃度依存的なシグナル低下が観察された。このことから、HiBiT標識化DNAによっても抗DNA抗体を測定可能である旨が明らかとなった。
中でも標識化DNA濃度が0.4及び0.8μg/mLの場合、抗DNA抗体13.7IU/mLのB/B%が90%以下となり、抗DNA抗体低度域においての測り分けが良好であり、かつ、抗DNA抗体218.2IU/mLのB/B%が抗DNA抗体131.8IU/mLのB/B%の2倍以上となり、抗DNA抗体高度域においても良好な感度で測り分けすることができることが明らかとなった。
A concentration-dependent signal reduction of anti-DNA antibody was observed in the range of 0.2 to 0.8 μg / mL of HiBiT-labeled DNA concentration. From this, it was clarified that the anti-DNA antibody can also be measured by HiBiT-labeled DNA.
Above all, when the labeled DNA concentration was 0.4 and 0.8 μg / mL, the B / B 0 % of the anti-DNA antibody 13.7 IU / mL was 90% or less, and the measurement in the low-level anti-DNA antibody region was good. , and the and, B / B 0% of anti-DNA antibodies 218.2IU / mL become anti-DNA antibody 131.8IU / mL of B / B 0% of 2 times or more, good sensitivity even in the anti-DNA antibody altitude zone It became clear that it can be measured with.

(3−3)HiBiT標識化DNAによる本発明法とFarr−RIA法との相関試験
Farr−RIA法の測定原理に基づく市販キット(セティ社)で値付け済みの、ウシ血清で適宜希釈したSLE患者血清を標準液として、またSLE患者血清(Farr−RIA法、FEIA法にて値付け済み)を25μL加え、HiBiT標識化DNA溶液(0.8μg/mL)を200μL加えて混和し、37℃2時間インキュベートした。反応後、冷えた硫酸アンモニウム(61.25%飽和)を反応溶液中の硫酸アンモニウム濃度が50%となるように1000μL加え、混和した。2000×g, 4℃, 15分間遠心分離した。
(3-3) Correlation test between the method of the present invention and the Farr-RIA method using HiBiT-labeled DNA SLE appropriately diluted with bovine serum, which has been priced with a commercially available kit (Seti) based on the measurement principle of the Farr-RIA method. Use patient serum as a standard solution, add 25 μL of SLE patient serum (valued by Farr-RIA method and FEIA method), add 200 μL of HiBiT-labeled DNA solution (0.8 μg / mL), mix, and mix at 37 ° C. Incubated for 2 hours. After the reaction, 1000 μL of cold ammonium sulfate (61.25% saturated) was added so that the concentration of ammonium sulfate in the reaction solution was 50%, and the mixture was mixed. Centrifuge at 2000 xg, 4 ° C. for 15 minutes.

得られた遠心分離後上清 25μLとNano Glo HiBiT Lytic Detection System(Promega)のマニュアルに従って調製した検出試薬を25μL加え、600rpmで3分間攪拌した後、10分間遮光静置した。 ルミノメーター(GloMax)で発光強度を検出した。
標識化DNA量より算出した本発明の抗DNA抗体量と、Farr−RIA法によって測定した抗DNA抗体量を統計処理によって比較することによって、本発明とFarr−RIA法との相関を算出した。結果を図11に示す。
After centrifugation, 25 μL of the obtained supernatant and 25 μL of the detection reagent prepared according to the manual of Nano Glo HiBiT Lytic Detection System (Promega) were added, and the mixture was stirred at 600 rpm for 3 minutes and then allowed to stand in the dark for 10 minutes. The emission intensity was detected with a luminometer (GloMax).
The correlation between the present invention and the Farr-RIA method was calculated by comparing the amount of the anti-DNA antibody of the present invention calculated from the amount of labeled DNA with the amount of the anti-DNA antibody measured by the Farr-RIA method by statistical processing. The results are shown in FIG.

相関試験の結果、HiBiT標識化DNAを用いても、本発明に規定するDNA断片の濃度と鎖長の関係式を満たしている場合には、0.98という高い相関を示すことが明らかとなった。 As a result of the correlation test, it was clarified that even if HiBiT-labeled DNA is used, a high correlation of 0.98 is shown when the relational expression between the concentration of the DNA fragment and the strand length specified in the present invention is satisfied. It was.

Claims (5)

非放射性化合物で標識化されたDNA断片と検体とを反応させ、標識化DNA断片量を測定することによる抗DNA抗体の測定法であって、
(a)非放射性化合物で標識化されたDNA断片と検体とを反応させ、
(b)反応後、反応液に沈殿剤を添加し、液相と沈殿相を分離し(B/F分離)、
(c)B/F分離後、液相中の標識化DNA断片量を測定し、
(d)DNA断片量の測定結果から抗DNA抗体量を算出する、
工程を含み、かつ
(e)使用するDNA断片の濃度をY(μg/mL)、鎖長をX(bp)としたとき、以下の[数1]で表される範囲内のものを使用し、
[数1]
400≦X≦2000
Y≧0.1
0.0006X−0.4595≦Y≦0.0005X+0.3744
(f)得られた測定結果と、同一検体を公知のFarr−RIA法で測定した結果を比較した際、両測定結果の相関係数が0.93以上を示す、
ことを特徴とする、抗DNA抗体の測定法。
A method for measuring an anti-DNA antibody by reacting a DNA fragment labeled with a non-radioactive compound with a sample and measuring the amount of the labeled DNA fragment.
(A) The DNA fragment labeled with the non-radioactive compound is reacted with the sample,
(B) After the reaction, a precipitant is added to the reaction solution to separate the liquid phase and the precipitate phase (B / F separation).
(C) After B / F separation, the amount of labeled DNA fragment in the liquid phase was measured.
(D) Calculate the amount of anti-DNA antibody from the measurement result of the amount of DNA fragment,
When the concentration of the DNA fragment to be used is Y (μg / mL) and the chain length is X (bp), the DNA fragment used is within the range represented by the following [Equation 1]. ,
[Number 1]
400 ≤ X ≤ 2000
Y ≧ 0.1
0.0006X-0.4595 ≤ Y ≤ 0.0005X + 0.3744
(F) When the obtained measurement results and the results of measuring the same sample by the known Farr-RIA method are compared, the correlation coefficient between the two measurement results shows 0.93 or more.
A method for measuring an anti-DNA antibody.
非放射性化合物で標識化されたDNA断片と検体とを反応させ、標識化DNA断片量を測定することによる抗DNA抗体の測定法であって、
(a)非放射性化合物で標識化されたDNA断片と検体とを反応させ、
(b)反応後、反応液に沈殿剤を添加し、液相と沈殿相を分離し(B/F分離)、
(c)B/F分離後、液相中の標識化DNA断片量を測定し、
(d)DNA断片量の測定結果から抗DNA抗体量を算出する、
工程を含み、かつ
(e’)使用するDNA断片の濃度をY(μg/mL)、鎖長をX(bp)としたとき、以下の[数2]で表される範囲内のものを使用し、
[数2]
700≦X≦2000
Y≧0.1
0.0006X−0.3595≦Y≦0.0005X+0.3744
(f’)得られた測定結果と、同一検体を公知のFarr−RIA法で測定した結果を比較した際、両測定結果の相関係数が0.95以上を示す、
ことを特徴とする、抗DNA抗体の測定法。
A method for measuring an anti-DNA antibody by reacting a DNA fragment labeled with a non-radioactive compound with a sample and measuring the amount of the labeled DNA fragment.
(A) The DNA fragment labeled with the non-radioactive compound is reacted with the sample,
(B) After the reaction, a precipitant is added to the reaction solution to separate the liquid phase and the precipitate phase (B / F separation).
(C) After B / F separation, the amount of labeled DNA fragment in the liquid phase was measured.
(D) Calculate the amount of anti-DNA antibody from the measurement result of the amount of DNA fragment,
When the concentration of the DNA fragment to be used is Y (μg / mL) and the chain length is X (bp), which includes the step and (e') is used, the one within the range represented by the following [Equation 2] is used. And
[Number 2]
700 ≤ X ≤ 2000
Y ≧ 0.1
0.0006X-0.3595 ≤ Y ≤ 0.0005X + 0.3744
(F') When the obtained measurement result and the result of measuring the same sample by the known Farr-RIA method are compared, the correlation coefficient of both measurement results shows 0.95 or more.
A method for measuring an anti-DNA antibody.
DNA断片の標識に用いる非放射性化合物が、ビオチン(Biotin)、2,4−ジニトロフェノール(2,4-Dinitrophenol:DNP)、ジゴキシゲニン(Digoxigenin:DIG)、フルオロセイン(Fluorescein)、HiBiTタグ、およびそれらの誘導体より選ばれる、請求項1又は2に記載の測定方法。 The non-radioactive compounds used to label DNA fragments are biotin, 2,4-Dinitrophenol (DNP), digoxigenin (DIG), Fluorescein, HiBiT tags, and theirs. The measuring method according to claim 1 or 2, which is selected from the derivatives of the above. 使用する沈殿剤が、硫酸アンモニウムである、請求項1〜3のいずれか一項に記載の測定法。 The measuring method according to any one of claims 1 to 3, wherein the precipitant used is ammonium sulfate. (g)DNA断片の濃度をY(μg/mL)、鎖長をX(bp)としたとき、以下の[数1]で表される範囲内である、非放射性化合物で標識化されたDNA断片、
[数1]
400≦X≦2000
Y≧0.1
0.0006X−0.4595≦Y≦0.0005X+0.3744
(h)液相と沈殿相を分離(B/F分離)するための沈殿剤、及び
(i)B/F分離後、液相中の標識化DNA断片量を測定するための試薬
からなり、請求項1から4のいずれかに記載の測定法によって検体中の抗DNA抗体量を測定するための試薬キット。
(G) When the concentration of the DNA fragment is Y (μg / mL) and the chain length is X (bp), the DNA labeled with a non-radioactive compound within the range represented by [Equation 1] below. fragment,
[Number 1]
400 ≤ X ≤ 2000
Y ≧ 0.1
0.0006X-0.4595 ≤ Y ≤ 0.0005X + 0.3744
It consists of (h) a precipitant for separating the liquid phase and the precipitated phase (B / F separation), and (i) a reagent for measuring the amount of labeled DNA fragment in the liquid phase after B / F separation. A reagent kit for measuring the amount of anti-DNA antibody in a sample by the measuring method according to any one of claims 1 to 4.
JP2019006475A 2018-11-01 2019-01-18 Measurement method of anti-DNA antibody Active JP6757041B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018206294 2018-11-01
JP2018206294 2018-11-01

Publications (2)

Publication Number Publication Date
JP2020076725A JP2020076725A (en) 2020-05-21
JP6757041B2 true JP6757041B2 (en) 2020-09-16

Family

ID=70724998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019006475A Active JP6757041B2 (en) 2018-11-01 2019-01-18 Measurement method of anti-DNA antibody

Country Status (1)

Country Link
JP (1) JP6757041B2 (en)

Also Published As

Publication number Publication date
JP2020076725A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
US20180224463A1 (en) Methods and means for diagnosing spondylarthritis using autoantibody markers
Satoh et al. Clinical implication of autoantibodies in patients with systemic rheumatic diseases
US20070207508A1 (en) Method and assay kit for simultaneously detecting multiple tumor markers with interference indication
EP2132339A1 (en) Method for the detection of an analyte in biological matrix
WO2021251504A1 (en) Method for predicting development of severe covid-19 utilizing blood rna
WO2012161288A1 (en) Immunoassay methods and reagents for decreasing nonspecific binding
WO2022071601A1 (en) Method of predicting progressive covid-19 severity by using protein markers in blood exosomes
EP3234601B1 (en) Methods for reducing interferences
JP2001504586A (en) Method for detecting protein by immunoRNA
EP3829759A1 (en) Method for detecting biomarkers
Matthews et al. Muscle-specific receptor tyrosine kinase autoantibodies—a new immunoprecipitation assay
JP3288041B2 (en) Anti-RNA antibody detection method
JP5191544B2 (en) Dermatomyositis detection method and diagnostic kit
JP6757041B2 (en) Measurement method of anti-DNA antibody
CN112166323A (en) Direct immunoassay measurement of autoantibodies
CN110168375B (en) Method for detecting risk of suffering from neurodegenerative disease in subject
US9372189B2 (en) Biomarker for lymphocytic infundibuloneurohypophysitis, and use applications thereof
González et al. Laboratory screening of connective tissue diseases by a new automated ENA screening assay (EliA Symphony) in clinically defined patients
Infantino et al. A new diagnostic algorithm for pattern-oriented autoantibody testing according to the ICAP nomenclature: A pilot study
JP3558645B2 (en) Use of polyclonal human anti-hTg autoantibodies as clinical diagnostics for thyroid autoimmune diseases and additives for the detection of anti-hTg autoantibodies in patient sera
CA2138536C (en) Chemiluminescent assay for dsdna antibodies
CN110632290B (en) Anti-double-chain DNA antibody detection reagent
EP2223122B1 (en) Endogenous morphine or a naturally occuring metabolite thereof as a marker for sepsis
Bounaud et al. Chemiluminescence immunoassay of thyrotropin with acridinium-ester-labeled antibody evaluated and compared with two other immunoassays.
KR20140056472A (en) Biomarkers indicative of leukemia and diagnosis using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200824

R150 Certificate of patent or registration of utility model

Ref document number: 6757041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250