JP6756995B1 - Copper-based sintered alloy and its manufacturing method - Google Patents

Copper-based sintered alloy and its manufacturing method Download PDF

Info

Publication number
JP6756995B1
JP6756995B1 JP2019568128A JP2019568128A JP6756995B1 JP 6756995 B1 JP6756995 B1 JP 6756995B1 JP 2019568128 A JP2019568128 A JP 2019568128A JP 2019568128 A JP2019568128 A JP 2019568128A JP 6756995 B1 JP6756995 B1 JP 6756995B1
Authority
JP
Japan
Prior art keywords
alloy
mass
powder
phase
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019568128A
Other languages
Japanese (ja)
Other versions
JPWO2020054671A1 (en
Inventor
潤一 結城
潤一 結城
北村 幸三
幸三 北村
斉藤 実
実 斉藤
宏爾 林
宏爾 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Die Co Ltd
Original Assignee
Fuji Die Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Die Co Ltd filed Critical Fuji Die Co Ltd
Application granted granted Critical
Publication of JP6756995B1 publication Critical patent/JP6756995B1/en
Publication of JPWO2020054671A1 publication Critical patent/JPWO2020054671A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00

Abstract

本発明の、比較的硬くて高靱性のαFe‐Fe2Mo‐Fe7Mo6 粒子内に潤滑性の優れるMnS を反応焼結により微細に分散保持させた硬質潤滑粒子を含む黄銅で作製した部材を用いることで、その硬質粒子の耐摩耗性及び自己潤滑効果で、摺動部材の摩耗量を著しく低下させ、例えばターボチャージャの回転部分の軸受に用いると、さらなる出力向上と、高効率化および高寿命化を図ることができて、より低燃費化、排ガス浄化が可能となる。By using the member of the present invention made of brass containing hard lubricating particles in which MnS having excellent lubricity is finely dispersed and held by reaction sintering in αFe-Fe2Mo-Fe7Mo6 particles which are relatively hard and have high toughness. Due to the wear resistance and self-lubrication effect of the hard particles, the amount of wear of the sliding members is significantly reduced. For example, when used for bearings of rotating parts of turbochargers, further improvement in output, higher efficiency and longer life are achieved. This makes it possible to reduce fuel consumption and purify exhaust gas.

Description

本発明は、自動車用エンジン向けのターボチャージャで使用する浮動ブッシュ軸受やスラスト軸受に好適に用いられ、自動車の燃料ポンプ用の軸受等の常時潤滑油が供給される摺動部材や家電用軸受等の潤滑油を合金内部に含浸させた含油摺動部材等にも利用可能な銅基焼結合金及びその製造方法に関する。 The present invention is suitably used for floating bush bearings and thrust bearings used in turbochargers for automobile engines, and sliding members such as bearings for automobile fuel pumps and bearings for home appliances, which are constantly supplied with lubricating oil. The present invention relates to a copper-based sintered alloy that can be used for oil-impregnated sliding members and the like impregnated with the lubricating oil of the above, and a method for producing the same.

自動車用エンジンに採用されるターボチャージャは、当初、エンジンへ圧縮空気を送り込むことにより高出力を得ることが目的であった。しかし、1990年頃から、燃費向上を目的としたエンジン軽量化(小排気量化)に伴い、エンジンの出力低下を補いつつ排ガス浄化機能も備えたダウンサイジングターボが主流となってきた。小排気量のエンジンほど回転速度の上昇率が大きく、排気温度が上昇しやすいため、エンジンルーム内の雰囲気温度も上昇する。そのため燃費向上を求めると、使用する潤滑油及び軸受が曝される温度がより高まる。 Initially, turbochargers used in automobile engines were aimed at obtaining high output by sending compressed air into the engine. However, since around 1990, downsizing turbos that have an exhaust gas purification function while compensating for the decrease in engine output have become mainstream along with the reduction of engine weight (smaller exhaust volume) for the purpose of improving fuel efficiency. The smaller the displacement of an engine, the greater the rate of increase in rotational speed and the easier it is for the exhaust temperature to rise, so the ambient temperature in the engine room also rises. Therefore, if fuel efficiency is required to be improved, the temperature at which the lubricating oil and bearings used are exposed becomes higher.

ターボチャージャはエンジンからの燃焼排気ガスにより回転するタービン翼と、その回転により空気を圧縮してエンジンに送風するコンプレッサ翼とを備え、両翼はクロムモリブデン鋼材等からなる回転軸により接続されている。ターボチャージャの回転軸は、回転軸に対して垂直な方向の荷重を受ける浮動ブッシュ軸受と平行な方向の荷重を受けるスラスト軸受とにより支持されている。いずれの軸受にも摺動特性に優れる鉛青銅や高力黄銅をベースとした合金が使用されてきた。 The turbocharger includes a turbine blade that rotates by combustion exhaust gas from the engine and a compressor blade that compresses air by the rotation and blows air to the engine, and both blades are connected by a rotating shaft made of chrome molybdenum steel or the like. The rotating shaft of the turbocharger is supported by a floating bush bearing that receives a load in a direction perpendicular to the rotating shaft and a thrust bearing that receives a load in a direction parallel to the rotating shaft. Alloys based on lead bronze and high-strength brass, which have excellent sliding characteristics, have been used for all bearings.

鉛青銅は、耐焼付き性や摺動特性に優れるものの耐硫化腐食性に劣るため、硫黄を含んだ高温の潤滑油に曝されると合金表面に脆弱な黒色の銅硫化物層が生成し、軸受面の摩耗が促進される。そのため、高温に曝されるターボチャージャの回転軸を受ける浮動ブッシュ軸受やスラスト軸受等に用いると、長期間安定して使用することが困難であった(岩間由華、山根正明、飯塚清和、和田山勝也:「自動車用潤滑油による車両用過給機の軸受材の黒色化現象に関する研究」、自動車技術会論文集、47(2016)、p.615‐619参照)。 Although lead bronze has excellent seizure resistance and sliding characteristics, it is inferior in sulfide corrosion resistance. Therefore, when exposed to high-temperature lubricating oil containing sulfur, a fragile black copper sulfide layer is formed on the alloy surface. Wear of the bearing surface is promoted. Therefore, when used for floating bush bearings and thrust bearings that receive the rotating shaft of a turbocharger exposed to high temperatures, it was difficult to use it stably for a long period of time (Yuka Iwama, Masaaki Yamane, Kiyokazu Iizuka, Mt. Wada). Katsuya: "Study on the blackening phenomenon of bearing materials for vehicle turbochargers by automobile lubricating oil", Proceedings of the Society of Automotive Engineers of Japan, 47 (2016), p.615-619).

高力黄銅は、耐硫化腐食性が優れるため、硫黄を含んだ高温の潤滑油に曝されても黒色の硫化物層が生成されない。しかし、耐摩耗性に問題があり、そのためターボチャージャの軸受と比べると低速回転で使用する摺動部材に多く使用されてきた(特許第3718147号公報の段落[0052]参照)。 Since high-strength brass has excellent sulfurization and corrosion resistance, a black sulfide layer is not formed even when exposed to a high-temperature lubricating oil containing sulfur. However, there is a problem in abrasion resistance, and therefore, it has been widely used for sliding members used at low speed rotation as compared with bearings of turbochargers (see paragraph [0052] of Japanese Patent No. 3718147).

特許第2745696号公報は、従来の銅基溶製合金の問題を解決するため、Zn:5〜25質量%、Si:0.1〜2質量%、Fe、Ni及びCoのうち1種又は2種以上:0.1〜3質量%、酸素:0.01〜0.5質量%、Al:0.1〜0.3質量%、Cr、Mo及びWのうち1種または2種以上:0.1〜2質量%を含有し、残部がCu及び不可避不純物からなる組成を有し、素地中に1〜40μmの粒度範囲内に分布した酸化物が0.1〜7%の面積率で均一分散し、かつ同じく1〜25μmの粒度範囲内に分布した金属間化合物が1〜8%の面積率で均一分散し、さらに素地中に微細な酸化物及び金属間化合物が均一に分散し、かつ空孔が1〜15体積%分布した組織を有する銅基焼結合金を開示している。 Japanese Patent No. 2745696 discloses one or more of Zn: 5 to 25% by mass, Si: 0.1 to 2% by mass, Fe, Ni and Co in order to solve the problem of conventional copper-based molten alloys. : 0.1 to 3% by mass, oxygen: 0.01 to 0.5% by mass, Al: 0.1 to 0.3% by mass, one or more of Cr, Mo and W: 0.1 to 2% by mass, and the balance is Cu and A metal having a composition consisting of unavoidable impurities, in which oxides distributed in a particle size range of 1 to 40 μm are uniformly dispersed in an area ratio of 0.1 to 7%, and also distributed in a particle size range of 1 to 25 μm. Copper base firing having a structure in which intermetallic compounds are uniformly dispersed at an area ratio of 1 to 8%, fine oxides and intermetallic compounds are uniformly dispersed in the substrate, and pores are distributed by 1 to 15% by volume. The bond money is disclosed.

ダウンサイジングターボ化した自動車用エンジンで、より低燃費化及び排ガス浄化を可能とするためにさらなる出力向上と高効率化を図ろうとすると、ターボチャージャの軸受のあるエンジンルーム内雰囲気は180℃以上の高温となる場合が多い(特許第3718147号公報の段落[0013]参照)。その結果、特許第2745696号公報の軸受用焼結合金はZn量が25%以下の黄銅であるため、180℃以上の高温で使用されるターボチャージャの軸受に応用すると、潤滑油に含まれる硫黄により腐食が進行しやすく、軸受部に異常摩耗を生じる(特許第3718147号公報の段落[0012]参照)。 When trying to further improve output and efficiency in order to enable lower fuel consumption and exhaust gas purification with a downsized turbocharged automobile engine, the atmosphere inside the engine room with turbocharger bearings is 180 ° C or higher. In many cases, the temperature becomes high (see paragraph [0013] of Japanese Patent No. 3718147). As a result, since the sintered alloy for bearings of Japanese Patent No. 2745696 is brass having a Zn content of 25% or less, when applied to bearings of turbochargers used at high temperatures of 180 ° C or higher, sulfur contained in lubricating oil As a result, corrosion easily progresses, causing abnormal wear in the bearing portion (see paragraph [0012] of Japanese Patent No. 3718147).

そこで、特許第3718147号では、ターボチャージャの軸受用焼結合金として、硫化腐食し難いZn量40%程度の黄銅とし、さらに黄銅中に針状の硬質のMnSi相粒子を回転軸方向に配向分散させた合金とし、腐食を防止しつつMnSi相による耐摩耗性向上を狙った。 Therefore, in Patent No. 3718147, brass with a Zn content of about 40%, which is resistant to sulfide corrosion, is used as the sintered alloy for bearings of the turbocharger, and needle-shaped hard MnSi phase particles are oriented and dispersed in the brass in the direction of rotation axis. The aim was to improve the wear resistance of the MnSi phase while preventing corrosion.

しかし、特開2016‐169434号公報によると、長期使用した際に、MnSi相が破壊して軸受面から脱落し摺動面を傷つけ、それが原因となり焼付きを生じるという問題が発生した(段落[0004]参照)。これを緩和するため、特開2016‐169434号公報では、MnSi相の硬質粒子を分散させた銅亜鉛合金(α‐β二相合金)のα相に着目し、β相よりも硬さが低いα相に内包されるようにBi粒子を分散させて、α相が摩耗して生じた凹部にBiを残存させ、Biにより摺動性を付与して、耐焼付き性を改善している。 However, according to Japanese Patent Application Laid-Open No. 2016-169434, when used for a long period of time, the MnSi phase breaks down and falls off from the bearing surface, damaging the sliding surface, which causes a problem of seizure (paragraph). (See [0004]). In order to alleviate this, Japanese Patent Application Laid-Open No. 2016-169434 focuses on the α phase of a copper-zinc alloy (α-β two-phase alloy) in which hard particles of the MnSi phase are dispersed, and has a lower hardness than the β phase. Bi particles are dispersed so as to be encapsulated in the α phase, Bi remains in the recess formed by the wear of the α phase, and slidability is imparted by Bi to improve seizure resistance.

しかし、MnSi相の脱落自体はなんら防止されていないため、摩耗が進行した際にMnSi相が破壊して軸受面から脱落し摺動面を傷つけ、それが原因となり焼付きが生じる問題は解決できていない。 However, since the MnSi phase itself is not prevented from falling off at all, the problem that the MnSi phase breaks down and falls off from the bearing surface and damages the sliding surface as the wear progresses, which causes seizure, can be solved. Not done.

以上のように、より厳しい使用環境向けのターボチャージャの軸受用の焼結合金についての提案がなされてきたが、耐摩耗性を有する相の脱落を防止できる軸受用合金を開示した先行技術は見当たらない。そこで本願発明者らは、ターボチャージャの軸受に好適となるように銅基焼結合金の性能を改善するためには、具体的には以下の二点を同時に解決することが重要であると考えた。 As described above, proposals have been made for sintered alloys for turbocharger bearings for harsher operating environments, but if there is any prior art that discloses bearing alloys that can prevent wear-resistant phases from falling off. Absent. Therefore, the inventors of the present application consider that it is important to solve the following two points at the same time in order to improve the performance of the copper-based sintered alloy so as to be suitable for the bearing of the turbocharger. It was.

第一に、軸受部材に分散させる硬質粒子は、摺動時の微視的な衝撃による破壊や脱落を防止するために、摺動時に生じる応力に耐える高い靱性と銅合金基材から脱落しない高い界面強度を有する必要がある。 First, the hard particles dispersed in the bearing member have high toughness to withstand the stress generated during sliding and high toughness that does not fall off from the copper alloy base material in order to prevent destruction and falling off due to microscopic impact during sliding. Must have interfacial strength.

第二に、軸受材料は、過酷な摺動時においても低摩擦係数を維持している必要がある。ターボチャージャの駆動時には潤滑油が常時供給されるが、過酷な条件では軸受/回転軸界面の油膜形成が十分でなくなり、軸受材料と回転軸材料同士が微視的に直接接触するため、回転軸材料によって軸受の黄銅部(硬さ:黄銅<鋼)に傷が発生し、摩擦係数が急激に増大して焼付きの原因となる。ターボチャージャ用の軸受に限らず、軸受材料の境界潤滑下での摺動特性はポンプやモーター等の製品性能や寿命を左右することになる。そのため、過酷な摺動環境下においても低摩擦係数を維持できる軸受材料が必要である。 Second, the bearing material needs to maintain a low coefficient of friction even during harsh sliding. Lubricating oil is always supplied when driving the turbocharger, but under harsh conditions, the oil film at the bearing / rotating shaft interface is not sufficiently formed, and the bearing material and rotating shaft material come into direct microscopic contact with each other. Depending on the material, the brass part of the bearing (hardness: brass <steel) may be scratched, and the friction coefficient may increase sharply, causing seizure. Not limited to bearings for turbochargers, the sliding characteristics of bearing materials under boundary lubrication affect the performance and life of products such as pumps and motors. Therefore, a bearing material that can maintain a low coefficient of friction even in a harsh sliding environment is required.

解決する手段として、軸受部材に分散する硬質粒子が自己潤滑性を有していれば、一時的に油切れとなっても、軸受/回転軸界面における摩擦係数の増大を防ぎ、安定した摺動を維持することができる。 As a means to solve the problem, if the hard particles dispersed in the bearing member have self-lubricating property, even if the oil runs out temporarily, the friction coefficient at the bearing / rotating shaft interface is prevented from increasing and stable sliding is performed. Can be maintained.

以上から、軸受部材等の過酷な環境で使用される摺動材料に用いる銅基焼結合金に分散する硬質粒子は、靱性が高く、銅合金基材との界面強度が高く、かつ自己潤滑性を有することが望ましい。 From the above, the hard particles dispersed in the copper-based sintered alloy used for sliding materials used in harsh environments such as bearing members have high toughness, high interfacial strength with the copper alloy base material, and self-lubricating property. It is desirable to have.

特許第5229862号公報は、Fe粉末が55〜60原子%で残りがMo粉末となるようにFe粉末とMo粉末を混合し、加圧焼結して得たFe7Mo6金属間化合物相、Fe‐7原子%Mo相及びMo相の三相から構成される低摩擦・低摩耗を示すFe7Mo基合金(以下、「合金A」とする。)を開示している。特許第5229862号公報はさらに、合金Aを構成する三相のうち、Fe7Mo6金属間化合物相は低摩擦・低摩耗に寄与し、Fe‐7原子%Mo相は破壊靱性強化相として機能する旨を記載している。従って、合金Aは加圧焼結により作製するため生産性はやや劣る欠点はあるものの、硬質潤滑粒子として有望である。Japanese Patent No. 5229862 describes a Fe 7 Mo 6 intermetallic compound phase obtained by mixing Fe powder and Mo powder so that Fe powder is 55 to 60 atomic% and the rest is Mo powder, and pressure sintering. A Fe 7 Mo 6-element alloy (hereinafter referred to as "alloy A") which is composed of three phases of Fe-7 atomic% Mo phase and Mo phase and exhibits low friction and low wear is disclosed. Patent No. 5229862 further states that, of the three phases constituting Alloy A, the Fe 7 Mo 6 intermetallic compound phase contributes to low friction and low wear, and the Fe-7 atomic% Mo phase functions as a fracture toughness strengthening phase. It states that it will be done. Therefore, although the alloy A is produced by pressure sintering and has a drawback that the productivity is slightly inferior, it is promising as a hard lubricating particle.

特開平10‐317002号は、Fe‐Mo‐S三元系合金粉末を用いて作製した自動車部品等の機械構造部品は摩擦係数が低いことを明らかにしている。すなわち、本合金粉末粒子自体の内部にMoxSy型の化合物(FeMoxSy)が微細に析出し、そのMoxSy型化合物の潤滑作用に基づいて粉末粒子自体、ひいては粉末焼結体の摩擦係数を効果的に低減することができるとしている。本願発明者らは、この考え方を用いれば、前述の特許第5229862号公報に開示の合金Aの摺動特性をさらに改善できると考えた。Japanese Patent Application Laid-Open No. 10-317002 clarifies that mechanical structural parts such as automobile parts manufactured by using Fe-Mo-S ternary alloy powder have a low coefficient of friction. That is, a Mo x S y- type compound (FeMo x S y ) is finely precipitated inside the alloy powder particles themselves, and the powder particles themselves, and thus powder sintering, are based on the lubricating action of the Mo x S y- type compound. It is said that the coefficient of friction of the body can be effectively reduced. The inventors of the present application thought that the sliding characteristics of the alloy A disclosed in Japanese Patent No. 5229862 could be further improved by using this concept.

すなわち、本発明の一態様は、Cu、Zn及びMnを含む黄銅合金基材にαFe、Fe2Mo、Fe7Mo6及びMnSを含む硬質粒子を分散させた焼結合金において、焼結合金全体の質量を100%としたとき、FeとMoの合計含有量が7〜25質量%であり、Fe、Mo、Mn及びSの含有量(質量%)をそれぞれCFe、CMo、CMn及びCSとすると、CMn/(CFe+CMo)が0.15〜0.47であり、CMo/(CFe+CMo)が0.20〜0.30であり、CS/(CFe+CMo)が0.01〜0.04であり、前記硬質粒子は、硬質粒子全体の体積を100%としたとき、40〜60体積%のαFe相、10〜30体積%のFe 2 Mo相、10〜30体積%のFe 7 Mo 6 相、10〜20体積%のMnS相、及び4体積%未満のZnS相を有し、前記硬質粒子の平均粒径は10〜40μmの範囲内である銅基焼結合金である。
That is, one aspect of the present invention is a sintered alloy in which hard particles containing αFe, Fe 2 Mo, Fe 7 Mo 6 and MnS are dispersed in a brass alloy base material containing Cu, Zn and Mn. The total content of Fe and Mo is 7 to 25% by mass, and the contents of Fe, Mo, Mn and S (% by mass) are C Fe , C Mo , C Mn and C Mn , respectively. Assuming C S , C Mn / (C Fe + C Mo ) is 0.15 to 0.47, C Mo / (C Fe + C Mo ) is 0.20 to 0.30, and C S / (C Fe + C Mo ) is 0.01 to 0.04. der is, the hard particles, when the volume of the entire hard particles is 100%, 40 to 60 vol% of αFe phase, 10-30 vol% of Fe 2 Mo phase, 10-30 vol% of Fe 7 Mo It is a copper-based sintered alloy having 6 phases, 10 to 20% by volume MnS phase, and less than 4% by volume ZnS phase, and the average particle size of the hard particles is in the range of 10 to 40 μm .

前記黄銅合金基材におけるCu及びZnの合計含有量に対するZnの含有量の比が0.38〜0.42であるのが好ましい。 The ratio of the Zn content to the total Cu and Zn content in the brass alloy base material is preferably 0.38 to 0.42.

前記黄銅合金基材が6.0質量%以下のAl及び1.0質量%以下のSnをさらに含むか、1.2質量%以下のAl1.0質量%以下のSn及び1.0質量%以下のNiをさらに含むのが好ましい。
It is preferable that the brass alloy base material further contains 6.0% by mass or less of Al and 1.0% by mass or less of Sn, or 1.2% by mass or less of Al , 1.0% by mass or less of Sn and 1.0% by mass or less of Ni. ..

銅基焼結合金の相対密度は96%以上であるのが好ましい。また含油軸受として用いるときは銅基焼結合金の相対密度が82%以上88%以下であるのが好ましい。 The relative density of the copper-based sintered alloy is preferably 96% or more. When used as an oil-impregnated bearing, the relative density of the copper-based sintered alloy is preferably 82% or more and 88% or less.

前記硬質粒子の出発原料粉末として、Fe‐Mo‐S合金粉末と、Mn粉末及び/又はMnを含む銅合金粉末とを用いるのが好ましい。 As the starting raw material powder for the hard particles, it is preferable to use Fe—Mo—S alloy powder and Mn powder and / or copper alloy powder containing Mn.

本発明の焼結合金は、比較的硬くて高靱性のαFe‐Fe2Mo‐Fe7Mo6粒子内に潤滑性の優れるMnSが微細に分散保持された硬質粒子Mを含む黄銅合金である。本発明の焼結合金で摺動部材を製造すると、硬質粒子Mの耐摩耗性及び自己潤滑効果により、摺動部材の摩耗量を著しく低下させる。そのため、例えばターボチャージャの浮動ブッシュ軸受やスラスト軸受等のエンジン補器用摺動部材又は軸受に用いると、出力向上と高効率化を図ることができ、さらなる低燃費化・排ガス浄化が可能となる。なお本発明の焼結合金は、ターボチャージャ用軸受等のエンジン補器用、産業機器用、コンプレッサ用、家電用、OA機器用の摺動部材又は軸受等の鉛青銅や高力黄銅を用いる他の用途においても代替できることは自明である。The sintered alloy of the present invention is a brass alloy containing hard particles M in which MnS having excellent lubricity is finely dispersed and held in αFe-Fe 2 Mo-Fe 7 Mo 6 particles, which are relatively hard and have high toughness. When a sliding member is manufactured from the sintered alloy of the present invention, the amount of wear of the sliding member is significantly reduced due to the wear resistance and self-lubricating effect of the hard particles M. Therefore, for example, when it is used for a sliding member or a bearing for an engine auxiliary such as a floating bush bearing or a thrust bearing of a turbocharger, it is possible to improve the output and the efficiency, and further reduce the fuel consumption and purify the exhaust gas. The sintered alloy of the present invention uses lead bronze or high-strength brass for sliding members or bearings for engine accessories such as bearings for turbochargers, industrial equipment, compressors, home appliances, and OA equipment. It is self-evident that it can be used as an alternative.

Fe‐Mo‐S三元系状態図のFe‐MoS2の垂直断面図である。It is a vertical sectional view of Fe-MoS 2 of the Fe-Mo-S ternary phase diagram. Cu‐Zn‐Mn三元系状態図である。It is a Cu-Zn-Mn ternary phase diagram. 比較合金6及び7及び発明合金2及び4の相対密度を示すグラフである。It is a graph which shows the relative density of the comparative alloys 6 and 7 and the invention alloys 2 and 4. SEM‐EDXにより分析した比較合金6及び7及び発明合金2及び4中の各元素の分布を示す図である。It is a figure which shows the distribution of each element in comparative alloys 6 and 7 and invention alloys 2 and 4 analyzed by SEM-EDX. 比較合金6及び発明合金4のX線回折図である。It is an X-ray diffraction pattern of the comparative alloy 6 and the invention alloy 4. 図4及び5を比較し、分散粒子の化合物/金属相を判定し、画像処理した分布を示す図である。It is a figure which compares FIGS. 4 and 5, determined the compound / metal phase of the dispersed particle, and shows the image-processed distribution. 比較合金6及び発明合金4の出発原料粉末をそれぞれ成形し、Arフロー(大気圧)雰囲気で室温から1,000℃まで10℃/分で加熱したときのTG‐DTA曲線を示す図である。It is a figure which shows the TG-DTA curve when the starting material powder of the comparative alloy 6 and the invention alloy 4 was formed, respectively, and heated from room temperature to 1,000 degreeC at 10 degreeC / min in an Ar flow (atmospheric pressure) atmosphere. 100質量%粉末Fと粉末Fに16.7質量%Mn添加した混合粉末とをそれぞれ成形し、Arフロー(大気圧)雰囲気で室温から1,000℃まで10℃/分で加熱したときのTG‐DTA曲線を示す図である。The TG-DTA curve when 100% by mass powder F and mixed powder with 16.7% by mass Mn added to powder F were molded and heated from room temperature to 1,000 ° C at 10 ° C / min in an Ar flow (atmospheric pressure) atmosphere. It is a figure which shows.

本発明の銅基焼結合金(以下、「発明合金」と呼ぶ。)は粉末冶金法により作製することができる。発明合金は、Cu、Zn及びMnからなる黄銅合金基材に、反応焼結でαFe相、Fe 2Mo相、Fe7Mo6相及びMnS相を主成分とする硬質粒子Mを分散させた焼結合金である。銅合金基材の原料粉末としては、銅や銅亜鉛合金の粉末を銅合金が所定の亜鉛量になるように配合してなる混合粉末を用いることができる。硬質潤滑粒子の原料粉末としては、アトマイズ法等で作製したαFe、Fe2Mo及びFeMo3S4からなる粉末F(組成:Fe‐24質量%Mo‐2.7質量%S)と、Mn粉末とを配合してなる混合粉末を用いることができ、Mn粉末の代わりにMnを含む銅合金の粉末を用いても良い。 The copper-based sintered alloy of the present invention (hereinafter referred to as "invention alloy") can be produced by a powder metallurgy method. The invented alloy is a brass alloy base material composed of Cu, Zn and Mn, and αFe phase and Fe by reaction sintering. 2Mo phase, Fe7Mo6It is a sintered alloy in which hard particles M containing a phase and an MnS phase as main components are dispersed. As the raw material powder of the copper alloy base material, a mixed powder obtained by blending copper or copper-zinc alloy powder so that the copper alloy has a predetermined zinc amount can be used. As raw material powders for hard lubricating particles, αFe and Fe produced by the atomization method or the like2Mo and FeMo3SFourA mixed powder composed of a mixture of powder F (composition: Fe-24% by mass Mo-2.7% by mass S) and Mn powder can be used, and a copper alloy powder containing Mn can be used instead of Mn powder. You may use it.

上記の原料粉末を所定の組成になるように配合しボールミルで混合し出発原料粉末を得る。この出発原料粉末を金型で成形したのち、反応焼結させてMnSを硬質粒子内部に形成させて発明合金を得る。焼結は、所定の型に出発原料粉末又はその成形体を充填してホットプレス焼結や通電焼結しても良く、焼結時に加圧する焼結HIPでも良いが、普通焼結が望ましい。普通焼結の場合は、焼結条件により焼結体の気孔率を変化させることができ、コスト的にも有利である。普通焼結を減圧下で行うと銅合金中の亜鉛の揮発量が多くなるため、雰囲気ガスとしてAr等の不活性ガスを用いて大気圧以上とするのが良い。 The above raw material powders are blended to have a predetermined composition and mixed with a ball mill to obtain a starting raw material powder. This starting material powder is molded with a mold and then reaction-sintered to form MnS inside the hard particles to obtain an invention alloy. Sintering may be performed by filling a predetermined mold with the starting material powder or a molded product thereof and hot-press sintering or energization sintering, or sintering HIP which pressurizes at the time of sintering, but ordinary sintering is preferable. In the case of ordinary sintering, the porosity of the sintered body can be changed depending on the sintering conditions, which is advantageous in terms of cost. Since the amount of zinc volatilized in the copper alloy increases when ordinary sintering is performed under reduced pressure, it is preferable to use an inert gas such as Ar as the atmospheric gas to increase the pressure to atmospheric pressure or higher.

FeとMoとを合わせた含有量は、焼結合金全体の質量を100%としたとき、7〜25質量%とする。合計量が7質量%未満であると分散させる硬質粒子Mの量が十分でないことから耐摩耗性が低下し、25質量%超であると強度が低下し、軸受として使用するとき焼付きを発生しやすくなる。 The total content of Fe and Mo is 7 to 25% by mass when the total mass of the sintered alloy is 100%. If the total amount is less than 7% by mass, the amount of hard particles M to be dispersed is insufficient and the wear resistance is lowered. If the total amount is more than 25% by mass, the strength is lowered and seizure occurs when used as a bearing. It will be easier to do.

発明合金に分散する硬質粒子Mの平均粒径は10〜40μmの範囲内である硬質粒子Mの平均粒径が10μm未満であると摺動時の硬質粒子Mの自己潤滑効果を十分に発揮できず、耐摩耗性向上が十分でない。硬質粒子Mの平均粒径が40μm超であると本材料の強度が低下して軸受として使用する際に欠けや割れ等が起きる場合があり信頼性が低下する。硬質粒子Mの平均粒径は300倍のSEM組織写真を9視野撮影し、画像解析することにより求めることができる。また硬質粒子Mの粒径は2μmから90μmの範囲にあるのが望ましい。粒径が2μm未満の硬質粒子Mは自己潤滑効果が十分でなく、粒径が90μm超の硬質粒子Mがあると軸受として使用する際に欠けや割れ等の原因となる。
The average particle size of the hard particles M dispersed in the alloy of the invention is in the range of 10 to 40 μm . If the average particle size of the hard particles M is less than 10 μm, the self-lubricating effect of the hard particles M during sliding cannot be sufficiently exhibited, and the wear resistance is not sufficiently improved. If the average particle size of the hard particles M is more than 40 μm, the strength of this material is reduced and chipping or cracking may occur when used as a bearing, resulting in reduced reliability. The average particle size of the hard particles M can be obtained by taking a 300-fold SEM microstructure photograph in 9 fields and analyzing the image. The particle size of the hard particles M is preferably in the range of 2 μm to 90 μm. Hard particles M having a particle size of less than 2 μm do not have a sufficient self-lubricating effect, and hard particles M having a particle size of more than 90 μm may cause chipping or cracking when used as a bearing.

発明合金のFe、Mo、Mn及びSの含有量(質量%)をそれぞれCFe、CMo、CMn及びCSとしたとき、FeとMoの合計含有量に対するMnの含有量の比CMn/(CFe+CMo)は0.15〜0.47である。Mnは硬質粒子M内のSと結合してMnS相を微細に分散して形成し、反応するSが無くなると黄銅合金基材中に固溶する。CMn/(CFe+CMo)が0.15未満であるとMnS相の量が少ないため硬質粒子Mの自己潤滑効果が十分でなく、0.47超であると黄銅合金基材中に固溶するMn量が多くなることにより、黄銅合金の液相出現温度が降下し、焼結中に液相過多となり変形を生じる。CMn/(CFe+CMo)は0.46以下であるのが好ましく、0.20以上であるのが好ましい。When the contents (% by mass) of Fe, Mo, Mn and S of the invented alloy are C Fe , C Mo , C Mn and C S , respectively, the ratio of the content of Mn to the total content of Fe and Mo C Mn / (C Fe + C Mo ) is 0.15 to 0.47. Mn is formed by finely dispersing the MnS phase by combining with S in the hard particles M, and when the reacting S disappears, it dissolves in the brass alloy base material. If C Mn / (C Fe + C Mo ) is less than 0.15, the amount of MnS phase is small, so the self-lubricating effect of hard particles M is not sufficient, and if it exceeds 0.47, the amount of Mn that dissolves in the brass alloy base material. As a result, the temperature at which the liquid phase of the brass alloy appears decreases, and the liquid phase becomes excessive during sintering, causing deformation. C Mn / (C Fe + C Mo ) is preferably 0.46 or less, and preferably 0.20 or more.

FeとMoの合計含有量に対するSの含有量の比CS/(CFe+CMo)は0.01〜0.04である。Sは黄銅合金基材中にほとんど固溶せず、硬質粒子M内にMnS相と後述するZnS相を形成する。C S/(CFe+CMo)が0.01未満であると硬質粒子M内でMnと結合して十分な量のMnS相を生成させることができず、0.04超であると脆弱な硫化物相が増加して使用状況によっては硬質粒子Mの割れや破壊等により耐摩耗性を維持できない。 Ratio of S content to total Fe and Mo content CS/ (CFe+ CMo) Is 0.01 to 0.04. S hardly dissolves in the brass alloy base material, and forms an MnS phase and a ZnS phase described later in the hard particles M. C S/ (CFe+ CMo) Is less than 0.01, it cannot combine with Mn in the hard particles M to generate a sufficient amount of MnS phase, and if it is more than 0.04, the fragile sulfide phase increases and it is hard depending on the usage situation. Abrasion resistance cannot be maintained due to cracking or breakage of particles M.

FeとMoの合計含有量に対するMoの含有量の比CMo/(CFe+CMo)は0.20〜0.30である。Moは黄銅合金基材中にほとんど固溶せず、硬質粒子M内にFe7Mo6相及びFe2Mo相を形成する。CMo/(CFe+CMo)が0.20未満であるとFe7Mo6相やFe2Mo相の量が少なすぎるため硬質粒子Mの自己潤滑効果が低下し、0.30超であると靱性の低いFe7Mo6相やFe2Mo相の量が多すぎるため機械加工性が低下する。The ratio of the Mo content to the total Fe and Mo content C Mo / (C Fe + C Mo ) is 0.20 to 0.30. Mo hardly dissolves in the brass alloy base material and forms Fe 7 Mo 6 phase and Fe 2 Mo phase in the hard particles M. If C Mo / (C Fe + C Mo ) is less than 0.20, the amount of Fe 7 Mo 6 phase or Fe 2 Mo phase is too small, so the self-lubricating effect of hard particles M is reduced, and if it is more than 0.30, the toughness is low. Machinability is reduced because the amount of Fe 7 Mo 6 phase and Fe 2 Mo phase is too large.

なお、黄銅合金基材中の各成分の含有量と硬質粒子M内の各成分の含有量とを合わせた焼結合金全体の各成分の含有量は、出発原料粉末に含まれる各成分の添加量にほぼ一致しているので、上述の焼結合金の各成分の含有量比は、出発原料粉末の配合時の添加量を元に計算により求めることができる。その計算値は、焼結合金をICP発光分光分析装置(例えば、島津製作所製ICPV‐1017)で分析した結果と基本的に同様となる。 The content of each component in the entire sintered alloy, which is the sum of the content of each component in the brass alloy base material and the content of each component in the hard particles M, is the addition of each component contained in the starting material powder. Since the amounts are almost the same, the content ratio of each component of the above-mentioned sintered alloy can be calculated by calculation based on the amount added at the time of blending the starting material powder. The calculated value is basically the same as the result of analyzing the sintered alloy with an ICP emission spectroscopic analyzer (for example, ICPV-1017 manufactured by Shimadzu Corporation).

Fe7Mo6相及びFe2Mo相は優れた耐摩耗性と同時に自己潤滑効果を示すので、Fe7Mo6相及びFe2Mo相は硬質粒子M全体に対して合計で20〜46体積%含有するのが良い。Fe7Mo6相及びFe2Mo相の体積比がこの範囲内にあると、優れた耐摩耗性及び強度が得られる。また硬質粒子M全体に対してFe7Mo6相は10〜30体積%含有するのが好ましく、Fe2Mo相は10〜30体積%含有するのが好ましい。Since the Fe 7 Mo 6 phase and the Fe 2 Mo phase exhibit excellent wear resistance as well as a self-lubricating effect, the Fe 7 Mo 6 phase and the Fe 2 Mo phase have a total of 20 to 46% by volume with respect to the total hard particle M. Good to contain. When the volume ratio of Fe 7 Mo 6 phase and Fe 2 Mo phase is within this range, excellent wear resistance and strength can be obtained. The Fe 7 Mo 6 phase is preferably contained in an amount of 10 to 30% by volume, and the Fe 2 Mo phase is preferably contained in an amount of 10 to 30% by volume based on the total amount of the hard particles M.

MnS相は、硬質粒子M全体に対して10〜20体積%含有させるのが良い。MnS相の体積比がこの範囲内にあると、硬質粒子Mが良好な自己潤滑性及び界面強度を有するとともに、摺動特性に優れ、過酷な摺動環境下でも焼付きを生じない。 The MnS phase is preferably contained in an amount of 10 to 20% by volume based on the total amount of the hard particles M. When the volume ratio of the MnS phase is within this range, the hard particles M have good self-lubricating property and interfacial strength, are excellent in sliding characteristics, and do not seize even in a harsh sliding environment.

硬質粒子MにZnS相が含まれると、MnS相の量が十分でないことを示すため、焼結性等で問題が生じる。そのため、硬質粒子MにZnS相は含まれるとしても4体積%未満であることが望ましい。 When the hard particles M contain a ZnS phase, it indicates that the amount of the MnS phase is not sufficient, which causes a problem in sinterability and the like. Therefore, even if the hard particles M contain the ZnS phase, it is desirable that the amount is less than 4% by volume.

硬質粒子Mを分散させる黄銅合金基材は、銅亜鉛合金(黄銅)をベースとする。CuとZnの合計量に対するZn量の比は0.38〜0.42であるのが好ましい。この組成範囲では、高温下で硫黄を含む潤滑油に合金が接したとき表面に緻密なZnSを主成分とする被膜を形成させてCuS形成反応を抑止し、あたかもステンレス鋼が水溶液中で緻密な不働態被膜を形成させて優れた耐食性を示すように、硫黄を含む高温の潤滑油下で優れた耐硫化腐食性を示す。またβ相形成を促進して硬さも高くなり耐摩耗性も向上する。 The brass alloy base material in which the hard particles M are dispersed is based on a copper-zinc alloy (brass). The ratio of the amount of Zn to the total amount of Cu and Zn is preferably 0.38 to 0.42. In this composition range, when the alloy comes into contact with a sulfur-containing lubricating oil at high temperature, a dense film containing ZnS as the main component is formed on the surface to suppress the CuS formation reaction, as if stainless steel is dense in an aqueous solution. It exhibits excellent sulfurization and corrosion resistance under high temperature lubricating oil containing sulfur, just as it forms a passivation film and exhibits excellent corrosion resistance. In addition, β-phase formation is promoted to increase hardness and wear resistance.

黄銅合金基材に含まれるMnの量は0.1〜5質量%の範囲であるのが好ましい。黄銅にMnを添加するとZnの効果と同様にβ相が増加し、硬度が上昇して耐摩耗性を向上させることができる。その量が0.1質量%以下だと硬度上昇が十分でなく、5質量%より多いと機械加工性が低下する。 The amount of Mn contained in the brass alloy base material is preferably in the range of 0.1 to 5% by mass. When Mn is added to brass, the β phase increases as in the effect of Zn, the hardness increases, and the wear resistance can be improved. If the amount is 0.1% by mass or less, the increase in hardness is not sufficient, and if it is more than 5% by mass, the machinability is lowered.

黄銅合金基材は、6.0質量%以下のAl及び1.0質量%以下のSnをさらに含んでも良く、1.2質量%以下のAl1.0質量%以下のSn及び1.0質量%以下のNiをさらに含んでも良い。また、各原料由来の不可避不純物を含む。
The brass alloy base material may further contain 6.0% by mass or less of Al and 1.0% by mass or less of Sn, and may further contain 1.2% by mass or less of Al , 1.0% by mass or less of Sn, and 1.0% by mass or less of Ni. .. It also contains unavoidable impurities derived from each raw material.

発明合金は、ターボチャージャ用軸受などの厳しい使用環境で使用する場合には相対密度96%以上であるのが良い。96%未満の場合には摺動中に形成する油膜が破壊されやすく焼付きを生じやすい。また焼結合金に一定量の気孔を形成させ、その中に油を含浸させることで含油軸受としても用いることができる。このとき発明合金の相対密度は82%以上88%以下であるのが好ましい。88%を超える場合には合金から排出される油量が不足することにより、82%未満の場合には相手材との接触面積が減少することにより面圧が高くなり焼付きやすくなる。 The invention alloy should have a relative density of 96% or more when used in a harsh usage environment such as a turbocharger bearing. If it is less than 96%, the oil film formed during sliding is easily broken and seizure is likely to occur. Further, it can also be used as an oil-impregnated bearing by forming a certain amount of pores in the sintered alloy and impregnating the pores with oil. At this time, the relative density of the invention alloy is preferably 82% or more and 88% or less. If it exceeds 88%, the amount of oil discharged from the alloy is insufficient, and if it is less than 82%, the contact area with the mating material decreases, resulting in a high surface pressure and easy seizure.

本発明を実施例により更に詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

(実施例1)
合金AよりもFe量を増加させてαFe相の比率を高め、特開平10‐317002号のFe‐Mo‐S系合金粉末よりもS量を減少させてMoxSy型化合物を少なくした粉末F(組成:Fe‐24質量%Mo‐2.7質量%S)を作製した。粉末Fの構成相をX線回折で調べたところ、αFe、Fe2Mo及びFeMo3S4からなることが分かった。
(Example 1)
A powder in which the amount of Fe is increased as compared with alloy A to increase the ratio of αFe phase, and the amount of S is decreased as compared with the Fe-Mo-S alloy powder of JP-A-10-317002 to reduce the amount of Mo x S y- type compounds. F (composition: Fe-24% by mass Mo-2.7% by mass S) was prepared. When the constituent phase of powder F was examined by X-ray diffraction, it was found to consist of αFe, Fe 2 Mo and Fe Mo 3 S 4 .

粉末F及び粉末Fを黄銅に添加した焼結体を下記の手順により作製した。黄銅粉末(平均粒度10μm)、粉末F(平均粒度25μm)、Mn粉末(平均粒度10μm)を表1に示す比較合金1〜9及び発明合金1〜6の組成に配合し、乾式のボールミル(粉末:ボール=1:1)により30分混合して出発原料粉末を得た。続いてこの出発原料粉末を成形(5 t/cm2)し、最後に不活性ガス中(Ar)で焼結(900℃‐1時間)を行った。なお、市販合金1(黄銅C2801)及び市販合金2(高力黄銅C6782)は、市中から得た。A sintered body obtained by adding powder F and powder F to brass was prepared by the following procedure. A dry ball mill (powder) in which brass powder (average particle size 10 μm), powder F (average particle size 25 μm), and Mn powder (average particle size 10 μm) are blended into the compositions of Comparative Alloys 1 to 9 and Invention Alloys 1 to 6 shown in Table 1. : Ball = 1: 1) was mixed for 30 minutes to obtain a starting material powder. Subsequently, this starting material powder was molded (5 t / cm 2 ), and finally sintered (900 ° C.-1 hour) in an inert gas (Ar). The commercially available alloy 1 (brass C2801) and the commercially available alloy 2 (high-strength brass C6782) were obtained from the market.

*1: Cu及びZnはCu‐40質量%Zn黄銅合金として添加する。
*2: Fは粉末Fを指す。
*3: その他の元素はFe、Al、Pbである。
*4: Nは普通焼結、Hはホットプレス焼結、Cは鋳造である。
* 1: Cu and Zn are added as Cu-40 mass% Zn brass alloy.
* 2: F refers to powder F.
* 3: Other elements are Fe, Al, and Pb.
* 4: N is normal sintering, H is hot press sintering, and C is casting.

表1(続き)
*5: 焼結中、液相過多のためダレた。
*6: 焼結中、液相過多で、所定の形状が得られなかったため、試験せず。
*7: 「破断せず」は、曲がってちぎれなかったことを示し、曲げ強度が大きいわけではない。
*8: エンジンオイルS中(200℃)での変色を示し、○は変色なし、●は黒く変色し、△は灰色に変色することを示す。
*9: ピンオンディスク試験機を用いた試験。
*10: ◎は、市販合金1の焼付かない面圧に対し20%以上優れるもの。○は同等より優れ〜20%未満優れるもの。△は同等のもの。○△はばらついて両方の結果があるもの。
Table 1 (continued)
* 5: During sintering, it drips due to excessive liquid phase.
* 6: Not tested because the specified shape could not be obtained due to excessive liquid phase during sintering.
* 7: "Not broken" indicates that the product was not bent and torn, and the bending strength is not high.
* 8: Discoloration in engine oil S (200 ° C), ○ indicates no discoloration, ● indicates discoloration to black, and △ indicates discoloration to gray.
* 9: Test using a pin-on disk tester.
* 10: ◎ is 20% or more superior to the non-seizure surface pressure of commercially available alloy 1. ○ is better than equivalent to less than 20%. △ is equivalent. ○ △ is the one that varies and has both results.

表1は、配合成分、作製方法及び合金の特性を示す。相対密度、曲げ強さ及び腐食試験に用いた各合金試験片の寸法は幅×厚さ×長さを8 mm×4 mm×25 mmとした。耐硫化腐食性を調べる腐食試験では、200℃に加熱した硫黄を含むエンジンオイルS(出光興産株式会社製ゼプロエコメダリストSN/GF5 0W‐20)中に試験片を20時間浸漬し、試験片の色調変化を観察した。○は変色なし、●は黒く変色、△は灰色に変色。○のみが耐食性があるとみなすことができ、本用途に適する。 Table 1 shows the ingredients, fabrication methods and alloy properties. The dimensions of each alloy test piece used for the relative density, flexural strength and corrosion test were width x thickness x length of 8 mm x 4 mm x 25 mm. In the corrosion test to examine the sulfurization corrosion resistance, the test piece was immersed in engine oil S (Zepro Ecomedalist SN / GF5 0W-20 manufactured by Idemitsu Kosan Co., Ltd.) containing sulfur heated to 200 ° C for 20 hours. The color change was observed. ○ indicates no discoloration, ● indicates discoloration to black, and △ indicates discoloration to gray. Only ○ can be considered to be corrosion resistant and suitable for this application.

摺動試験及び実用模擬試験にはピンオンディスク試験機を使用し、相手材をSCM435(HRC47)製ディスク(φ35 mm×15 mm)とし、ピンを各合金試験片(8 mm×8 mm×16 mm、角は0.2 R)とした。 A pin-on disk tester is used for the sliding test and the practical mock test, the mating material is a disk made of SCM435 (HRC47) (φ35 mm × 15 mm), and the pin is each alloy test piece (8 mm × 8 mm × 16). The mm and the angle were 0.2 R).

摺動試験では、室温で、摺動速度を0.4 m/sとし、エンジンオイルSをディスクの摺動面上に最初のみ0.5 cc塗布し、面圧20 MPaとして1時間摺動させた。摩擦係数は定常状態での値であり、摩耗寸法は1時間摺動後の値である。「-*6」は、合金が焼結時に液相過多で変形したため、試験していないことを示す。なお、エンジンオイルを常時供給しなかったのは過酷な条件となるようにしたためである。In the sliding test, the sliding speed was set to 0.4 m / s at room temperature, 0.5 cc of engine oil S was applied only to the sliding surface of the disc for the first time, and the surface pressure was 20 MPa and the mixture was slid for 1 hour. The coefficient of friction is the value in the steady state, and the wear dimension is the value after sliding for 1 hour. "- * 6 " indicates that the alloy was not tested because it was deformed due to excessive liquid phase during sintering. The reason why the engine oil was not supplied all the time was that the conditions were harsh.

実用模擬試験は、実用した場合の使用環境をシミュレーションした焼付き試験である。室温で、摺動速度を0.4 m/sとし、エンジンオイルSをディスクの摺動面上に最初のみ0.2 cc塗布し、面圧を徐々に増加して焼付く直前の負荷を求めた。焼付く直前の負荷が市販合金1の値と同等のものを△とし、同等以上20%未満優れるものを○とし、20%以上優れるものを◎とする。「-」は、合金の緻密化不足や焼結時の変形が大きいため、試験しなかったことを示す。なお、エンジンオイルをディスクに最初のみ0.2 cc塗布としたのは摩擦係数測定と同じく過酷な条件となるようにしたためである。 The practical practice test is a seizure test that simulates the usage environment when it is put into practical use. At room temperature, the sliding speed was 0.4 m / s, and 0.2 cc of engine oil S was applied only to the sliding surface of the disc at the beginning, and the surface pressure was gradually increased to determine the load immediately before seizure. If the load immediately before seizure is equivalent to the value of the commercially available alloy 1, it is marked with Δ, if it is equal to or more than 20%, it is marked with ○, and if it is 20% or more superior, it is marked with ◎. “-” Indicates that the test was not performed due to insufficient densification of the alloy and large deformation during sintering. The reason why 0.2 cc of engine oil was applied to the disc only at the beginning was because the conditions were as harsh as the friction coefficient measurement.

試験温度を室温としたのは以下の理由による。実用試験で焼付くとされるエンジンルーム内の温度は180℃以上であるが、本模擬試験においてディスクの反対に接触させた熱電対で焼付いた時の温度を測定したところ、その温度は約200℃であった。そのため、室温での模擬試験でも実環境の再現ができていると判断した。 The test temperature was set to room temperature for the following reasons. The temperature inside the engine room, which is said to be seized in the practical test, is 180 ° C or higher, but when the temperature when seized with a thermocouple in contact with the opposite side of the disk was measured in this mock test, the temperature was about 200. It was ° C. Therefore, it was judged that the actual environment could be reproduced even in the mock test at room temperature.

比較合金1は粉末Fのみからなり、難焼結性であって普通焼結では相対密度が低く、また耐食性も不足した。黄銅に粉末Fを40質量%添加した比較合金2も難焼結性を示し、普通焼結では相対密度が75.6%と低かった。そこでホットプレス焼結で緻密化させたのが比較合金3である。比較合金3は耐食性が改善されたので、実用模擬試験を行ったところ〇と△の両方の判定結果が得られた。しかし、ホットプレス焼結では生産コストが高くなりすぎるので実用的ではない。 Comparative Alloy 1 was composed of powder F only, was difficult to sinter, had a low relative density in ordinary sintering, and lacked corrosion resistance. Comparative Alloy 2 in which 40% by mass of powder F was added to brass also showed difficulty in sintering, and the relative density was as low as 75.6% in normal sintering. Therefore, Comparative Alloy 3 was densified by hot press sintering. Since the corrosion resistance of Comparative Alloy 3 was improved, a practical mock test was conducted and both judgment results of 〇 and △ were obtained. However, hot press sintering is not practical because the production cost becomes too high.

そのため、普通焼結における焼結性の改善について検討した。黄銅自体の焼結性が悪いことに加えて、黄銅に添加した粉末Fも焼結性を低下させていると考えられたので、粉末Fの添加量を徐々に減少させた比較合金4〜6を作製して評価を行った。その結果、比較合金6は相対密度が約90%に向上したため、粉末Fの添加量は10質量%とした。 Therefore, the improvement of sinterability in ordinary sintering was examined. In addition to the poor sinterability of brass itself, it was thought that the powder F added to brass also reduced the sinterability, so comparative alloys 4 to 6 in which the amount of powder F added was gradually reduced. Was prepared and evaluated. As a result, the relative density of Comparative Alloy 6 was improved to about 90%, so the amount of powder F added was set to 10% by mass.

普通焼結においてさらに焼結性が改善できないかを状態図から考察した。図1に示すFe‐Mo‐S三元系状態図のFe‐MoS2の垂直断面図(P. Villars, A. Prince, H. Okamoto : Handbook of Ternary Alloy Phase Diagrams, Volume 1-10, ASM International, 1995, p.10480参照)より、焼結温度(〜900℃)では粉末Fは固相であることから、粉末Fそのままでは焼結性の向上は見込めない。従って、焼結性の改善には、この焼結温度でいかにして黄銅自体の焼結性を向上させるか、を考えることが先決である。図2はCu‐Zn‐Mn三元系状態図(P. Villars, A. Prince, H. Okamoto : Handbook of Ternary Alloy Phase Diagrams, Volume 1-10, ASM International, 1995, p.9710参照)であり、図中の数字は液相出現温度を示す。Cu‐39.3原子%Znの近くに示した2つの小さな○は、表1の比較合金6及び7の組成のうち粉末Fを除いた各元素の位置を示す。これより、1質量%Mn添加で液相出現温度は約5℃低下すると見積もられる。すなわち、Mnを添加することによって液相出現温度が降下し、黄銅自体の焼結性が向上すると考えられる。It was considered from the phase diagram whether the sinterability could be further improved in ordinary sintering. Vertical section of Fe-MoS 2 in the Fe-Mo-S ternary phase diagram shown in Fig. 1 (P. Villars, A. Prince, H. Okamoto: Handbook of Ternary Alloy Phase Diagrams, Volume 1-10, ASM International From 1995, p.10480), since powder F is a solid phase at the sintering temperature (~ 900 ° C), improvement in sinterability cannot be expected with powder F as it is. Therefore, in order to improve the sinterability, it is the first priority to consider how to improve the sinterability of the brass itself at this sintering temperature. Figure 2 is a Cu-Zn-Mn ternary phase diagram (see P. Villars, A. Prince, H. Okamoto: Handbook of Ternary Alloy Phase Diagrams, Volume 1-10, ASM International, 1995, p.9710). , The numbers in the figure indicate the temperature at which the liquid phase appears. Two small circles near Cu-39.3 atomic% Zn indicate the positions of each element in the compositions of Comparative Alloys 6 and 7 in Table 1, excluding powder F. From this, it is estimated that the liquid phase appearance temperature drops by about 5 ° C with the addition of 1% by mass Mn. That is, it is considered that the addition of Mn lowers the liquid phase appearance temperature and improves the sinterability of brass itself.

またMnの添加は、粉末Fに対しても以下の効果をもたらすと考えられる。焼結温度(〜900℃)下ではFeS及びMoS2のいずれよりもMnSの方がエネルギー的に低く安定であるため(社団法人日本鉄鋼協会編:第3版 鉄鋼便覧 第I巻 基礎、丸善株式会社、1981年、p.12のエリンガム図参照)、同様にFe‐Mo‐S系化合物であるFeMo3S4よりもMnSの方が安定であると考えられる。従って、Mnを添加して焼結すれば、粉末F内のFeMo3S4と反応してMnSが生成すると推察でき、仮にMnSの生成が発熱反応であれば粉末Fの周囲の温度が上がるため、黄銅との濡れ性が良くなり焼結性を改善できると考えられる。The addition of Mn is also considered to have the following effects on powder F. Under the sintering temperature (~ 900 ° C), MnS is energetically lower and more stable than both FeS and MoS 2 (The Iron and Steel Institute of Japan: 3rd Edition, Steel Handbook, Volume I, Basic, Maruzen Co., Ltd.) Company, 1981, see Ellingham diagram on p.12), MnS is also considered to be more stable than FeMo 3 S 4, which is also a Fe-Mo-S compound. Therefore, if Mn is added and sintered, it can be inferred that MnS is produced by reacting with FeMo 3 S 4 in the powder F, and if the production of MnS is an exothermic reaction, the temperature around the powder F rises. , It is considered that the wettability with brass is improved and the sinterability can be improved.

以上より、Mnの添加は焼結性の改善に有効と思われた。さらに、Mnの添加によって粉末F内のFeMo3S4がαFeとFe7Mo6とMnSになれば、分散粒子の構成相は合金Aにより近づく。そして、潤滑性に優れるMnS(特許第4823183号公報の段落[0060]参照)が分散粒子内に微細に生成すれば、摺動特性の向上も図れると考えた。From the above, it was considered that the addition of Mn was effective in improving the sinterability. Furthermore, if Fe Mo 3 S 4 in the powder F becomes α Fe, Fe 7 Mo 6 and Mn S by the addition of Mn, the constituent phases of the dispersed particles are closer to the alloy A. Then, it was considered that the sliding characteristics could be improved if MnS having excellent lubricity (see paragraph [0060] of Japanese Patent No. 4823183) was finely generated in the dispersed particles.

そこで、所定の混合方法でCu‐40質量%Zn黄銅合金粉末に粉末Fを10質量%添加し、さらに0〜5質量%Mn添加した組成の混合粉末を成形(5 t/cm2)し、不活性ガス中(大気圧下)で900℃、1時間の普通焼結を行い、比較合金6〜8及び発明合金1〜5を作製した。Therefore, 10% by mass of powder F was added to the Cu-40% by mass Zn brass alloy powder by a predetermined mixing method, and a mixed powder having a composition of 0 to 5% by mass Mn was further formed (5 t / cm 2 ). Normal sintering was carried out in an inert gas (under atmospheric pressure) at 900 ° C. for 1 hour to prepare comparative alloys 6 to 8 and invention alloys 1 to 5.

焼結合金の相対密度とMn添加量との関係を理解しやすくするため、比較合金6及び7及び発明合金2及び4の相対密度を図3に示す。Mnを1質量%添加すると相対密度が96.0%に達し、その後は緩やかに上昇する傾向にあることが分かる。Mn添加によって焼結性の改善が期待通り成功した。 In order to make it easier to understand the relationship between the relative density of the sintered alloy and the amount of Mn added, the relative densities of the comparative alloys 6 and 7 and the invention alloys 2 and 4 are shown in FIG. It can be seen that the relative density reaches 96.0% when 1% by mass of Mn is added, and then tends to increase gradually. The addition of Mn succeeded in improving the sinterability as expected.

分散粒子内でMnS生成が起きているかを確かめるため、焼結合金のX線回折分析と断面組織のSEM観察及びEDX分析を行った。X線回折では、物質が少量しか含まれない場合検出されないことが多いので、はじめにMnを0〜4質量%添加した焼結合金(比較合金6及び7及び発明合金2及び4)を研削・研磨した後、SEM(株式会社日立ハイテクノロジーズ製Regulus8100)付属のEDX(ブルカー製FlatQUAD)で分析(加速電圧15 kV、2次電子検出時間30分一定)した。得られた結果を図4に示す。各段の左端にMn添加量を示した。最左列がSEMの2次電子像で、その右側は各図の最下段に示した元素の分布を白色〜灰色で示している。白色ほど検出エネルギーが強く、その元素成分がより多いことを示す。Mnの分布に着目すると、1質量%Mn添加では大部分が黄銅合金基材中に分布していたが、分散粒子の周囲にも僅かに生じていた。 In order to confirm whether MnS formation occurred in the dispersed particles, X-ray diffraction analysis of the sintered alloy, SEM observation of the cross-sectional structure, and EDX analysis were performed. In X-ray diffraction, it is often not detected when only a small amount of substance is contained, so first, a sintered alloy (comparative alloys 6 and 7 and invention alloys 2 and 4) to which 0 to 4% by mass of Mn is added is ground and polished. After that, it was analyzed by EDX (FlatQUAD manufactured by Bruker) attached to SEM (Regulus8100 manufactured by Hitachi High-Technologies Corporation) (acceleration voltage 15 kV, secondary electron detection time constant for 30 minutes). The results obtained are shown in Fig. 4. The amount of Mn added is shown at the left end of each stage. The leftmost column is the secondary electron image of SEM, and the right side shows the distribution of elements shown at the bottom of each figure in white to gray. The whiter the color, the stronger the detection energy, indicating that the elemental component is higher. Focusing on the distribution of Mn, most of it was distributed in the brass alloy base material when 1% by mass Mn was added, but it was also slightly generated around the dispersed particles.

0質量%及び4質量%Mn添加焼結合金(比較合金6及び発明合金4)のX線回折パターンを図5に示す。株式会社リガク製RINT‐Ultima IIIを用い、測定条件を、管電圧:40 kV、管電流:30 mA、X線種:CuKα、発散スリット:2/3°、散乱スリット:2/3°、受光スリット:0.3 mm、ステップ幅:0.01°、スキャンスピード:0.25°/分、グラファイト湾曲結晶モノクロメータ使用とした。焼結合金の構成成分は、Mn無添加では(Cu‐Zn)‐αFe‐Fe2Mo‐Fe7Mo6‐ZnSであった。一方、4質量%Mn添加では(Cu‐Zn)‐αFe‐Fe2Mo‐Fe 7Mo6‐MnSとなった。すなわち、4質量%Mn添加によってZnSは無くなり、新たにMnSが生成した。 Figure 5 shows the X-ray diffraction patterns of the 0% by mass and 4% by mass Mn-added sintered alloys (comparative alloy 6 and invention alloy 4). Using RINT-Ultima III manufactured by Rigaku Co., Ltd., the measurement conditions are tube voltage: 40 kV, tube current: 30 mA, X-ray type: CuKα, divergence slit: 2/3 °, scattering slit: 2/3 °, light receiving. Slit: 0.3 mm, step width: 0.01 °, scan speed: 0.25 ° / min, graphite curved crystal monochromometer was used. The constituents of the sintered alloy are (Cu-Zn) -αFe-Fe without the addition of Mn.2Mo-Fe7Mo6-It was ZnS. On the other hand, with the addition of 4% by mass Mn, (Cu-Zn) -αFe-Fe2Mo-Fe 7Mo6-It became MnS. That is, ZnS disappeared by adding 4% by mass Mn, and MnS was newly generated.

図4及び5を比較し、分散粒子内の化合物/金属相を判定し、画像処理した分布を図6に示す。分かりやすくするため2値化をしている。黒色〜灰色部分が最下段に表示した各相の分布を示しており、黒色ほど、その成分の量が多いことを表わしている。図6に示すように、焼結後の合金の分散粒子の構成相は、Mn無添加ではαFe‐Fe2Mo‐Fe7Mo6‐ZnSであった。1質量%Mn添加で、分散粒子の周囲にMnSが認められ、やや分かり難いが、分散粒子内にも僅かに生成していた。2質量%Mn添加では、ZnSは消滅し、逆にMnSが明瞭となり、4質量%Mn添加も同様であった。なお、5質量%Mn添加合金(比較合金8)でも同様にMnSは生成していたが、前述したように焼結変形が著しいため各種の評価に用いることができなかった。そのため、図6には0〜4質量%Mn添加の結果のみを示した。いずれにしてもMnを添加することによって、分散粒子内に目的としたMnSを生成させることができた。Fig. 4 and 5 are compared, the compound / metal phase in the dispersed particles is determined, and the image-processed distribution is shown in FIG. It is binarized for easy understanding. The black to gray part shows the distribution of each phase displayed at the bottom, and the blacker the color, the larger the amount of the component. As shown in FIG. 6, the constituent phase of the dispersed particles of the alloy after sintering was αFe-Fe 2 Mo-Fe 7 Mo 6 -ZnS without Mn addition. With the addition of 1% by mass Mn, MnS was observed around the dispersed particles, which was a little difficult to understand, but was slightly generated in the dispersed particles. With the addition of 2% by mass Mn, ZnS disappeared, and conversely, MnS became clear, and the same was true with the addition of 4% by mass Mn. Although MnS was also produced in the 5 mass% Mn-added alloy (comparative alloy 8), it could not be used for various evaluations due to the remarkable sintering deformation as described above. Therefore, FIG. 6 shows only the results of addition of 0 to 4% by mass Mn. In any case, by adding Mn, the desired MnS could be produced in the dispersed particles.

前述したように、図6より1質量%以下のMn添加では分散粒子内にZnSが生成していることが分かる。これはFeS<ZnS<MnS(MnSが最も安定)の順にエネルギー的に安定であるため、Mn添加量が少ない場合はZnSが存在し、多くなるとMnSのみになると考えられる。また表1及び図3と合わせて考えるとMnS生成と異なりZnS生成は粉末Fの添加による焼結性劣化をほとんど改善しないと思われる。いずれにしても、ZnS生成は本願発明に対して大きな意味はないとして良い。 As described above, it can be seen from FIG. 6 that ZnS is generated in the dispersed particles when Mn is added in an amount of 1% by mass or less. Since this is energetically stable in the order of FeS <ZnS <MnS (MnS is the most stable), it is considered that ZnS is present when the amount of Mn added is small, and only MnS is present when the amount of Mn added is large. Considering this together with Table 1 and Fig. 3, it seems that ZnS formation, unlike MnS formation, hardly improves the sinterability deterioration due to the addition of powder F. In any case, ZnS generation may not have a great meaning for the present invention.

MnSの生成が発熱反応か否か確かめるため、株式会社リガク製示差熱分析装置TG8120を用いて熱重量(Thermo Gravimeter:TG)及び示差熱(Differential Thermal:DT)同時測定(以下、「TG‐DTA」と記す。)をArフロー雰囲気(大気圧)で室温〜1,000℃まで行った。 Simultaneous measurement of thermogravimetric (Thermo Gravimeter: TG) and differential thermal (DT) using a differential thermal analyzer TG8120 manufactured by Rigaku Co., Ltd. to confirm whether the formation of MnS is an exothermic reaction (hereinafter, "TG-DTA"). ”) Was carried out in an Ar flow atmosphere (atmospheric pressure) from room temperature to 1,000 ° C.

図7は、Mn無添加の比較合金6と4質量%Mn添加の発明合金4の出発原料粉末をそれぞれ成形し、Arフロー(大気圧)雰囲気で室温から1,000℃まで10℃/分で加熱した場合のTG‐DTA曲線を示す。出発原料粉末は5 t/cm2で成形し、基準物質はアルミナとした。図7に示すように、900℃付近に鋭い吸熱反応が見られた。これは、黄銅合金の液相出現温度を示しており、Mn無添加の場合は890℃であったが、4質量%Mnの場合は880℃であった。すなわち、図2のCu‐Zn‐Mn三元系状態図が示す通りMnの添加によって黄銅合金の液相出現温度が降下しており、黄銅自体の焼結性が向上したと考えられる。In Fig. 7, the starting material powders of the comparative alloy 6 without Mn added and the invention alloy 4 with 4 mass% Mn added were molded and heated from room temperature to 1,000 ° C at 10 ° C / min in an Ar flow (atmospheric pressure) atmosphere. The TG-DTA curve of the case is shown. The starting material powder was molded at 5 t / cm 2 , and the reference material was alumina. As shown in Fig. 7, a sharp endothermic reaction was observed around 900 ° C. This indicates the liquid phase appearance temperature of the brass alloy, which was 890 ° C. when Mn was not added, but was 880 ° C. when 4% by mass Mn was added. That is, as shown in the Cu-Zn-Mn ternary phase diagram of FIG. 2, it is considered that the addition of Mn lowered the temperature at which the liquid phase of the brass alloy appeared, and the sinterability of the brass itself was improved.

図8は、100質量%粉末Fと、F‐16.7質量%Mnの混合粉末について図7と同様に測定したTG‐DTA曲線を示す。16.7質量%Mnの値は、発明合金2のF+Mnの合計含有量に対するMn含有量の比に相当する。推定したとおりMnS生成は発熱反応であることが分かった。発熱反応すなわち反応焼結が起きると粉末Fの周囲の温度が上がるため、黄銅との濡れ性が良くなり、密着性が向上する。これにより、摺動時に硬質粒子(粉末Fと組成は変わっている)を脱落し難くすると思われる。 FIG. 8 shows the TG-DTA curve measured in the same manner as in FIG. 7 for a mixed powder of 100% by mass powder F and F-16.7% by mass Mn. The value of 16.7% by mass Mn corresponds to the ratio of the Mn content to the total F + Mn content of the invention alloy 2. As estimated, MnS formation was found to be an exothermic reaction. When an exothermic reaction, that is, reaction sintering occurs, the temperature around the powder F rises, so that the wettability with brass is improved and the adhesion is improved. This seems to make it difficult for hard particles (composition is different from that of powder F) to fall off during sliding.

なお粉末Fが難焼結性を有するのは、粉末Fが粗粒粉末であること、粉末の混合条件が軽粉砕であること等も大きな要因である。 It should be noted that the reason why the powder F has difficulty in sintering is that the powder F is a coarse-grained powder and the mixing conditions of the powder are light pulverization.

さらに、4.5質量%Mn添加の発明合金5と5質量%Mn添加の比較合金8の結果に示すように、4.5質量%よりもMn添加量が多いと、焼結で液相が多くなりすぎるため焼結体が変形してしまった。従って、焼結変形のない合金を得るには1.5質量%以上4.5質量%Mn以下が良いことになる。 Furthermore, as shown in the results of the invention alloy 5 with 4.5% by mass Mn added and the comparative alloy 8 with 5% by mass Mn added, if the amount of Mn added is larger than 4.5% by mass, the liquid phase will be too large due to sintering. The sintered body has been deformed. Therefore, in order to obtain an alloy without sintering deformation, 1.5% by mass or more and 4.5% by mass or less is preferable.

焼結体の質量変化が比較的大きいが、これは焼結中に焼結体表層の亜鉛が揮発するためである。しかし、その部分は軸受や摺動部材へ加工する際の取代の範疇であることから、生産上、特に問題とはならない。 The mass change of the sintered body is relatively large because the zinc on the surface layer of the sintered body volatilizes during sintering. However, since that part is in the category of replacement allowance when processing into bearings and sliding members, there is no particular problem in production.

図4の観察を行う際に基材の黄銅部分のEDXによる定量分析も行った結果、黄銅部分はMn添加により僅かにMnを含有することが確認され、4質量%Mn添加の発明合金4では約2質量%のMnの含有が認められた。これにより、黄銅をα‐β二相合金として硬さ及び強さが高まるので(根本正、鎌田充也、田野崎和夫:「Cu‐Zn‐Mn‐Al‐Fe系鋳造用銅合金の組織と機械的性質」、日立評論、44(1962)、1755‐1760参照)、耐摩耗性も向上していると思われる。 As a result of quantitative analysis by EDX of the brass part of the base material when observing Fig. 4, it was confirmed that the brass part contained a small amount of Mn by adding Mn, and in the invention alloy 4 with 4% by mass Mn added, it was confirmed. A content of about 2% by mass of Mn was observed. As a result, the hardness and strength of brass as an α-β two-phase alloy will increase (Masa Nemoto, Mitsuya Kamada, Kazuo Tanozaki: "Structure and Machinery of Cu-Zn-Mn-Al-Fe-based Copper Alloy for Casting" Properties ”, Hitachi Review, 44 (1962), 1755-1760), and wear resistance seems to be improved.

表1より、粉末F及び粉末F添加合金の焼結体は、摩擦係数が0.07と極めて優れることが分かる。その場合の摩耗寸法は粉末Fを除いて相対密度が96%以上でないと20μmを下回らない。具体的には、相対密度が96%以上の粉末F添加合金の焼結体では、試験開始初期こそ相手材とのなじみにより大きい摩耗速度を示すものの、その後は硬質粒子Mの潤滑効果により摩耗は抑えられ、1時間摺動後でも摩耗寸法は20μmを下回り、ほとんど摩耗しないことを確かめた。なお比較合金9及び市販合金1及び2では、摩耗試験開始時から1時間経過するまで同じ摩耗速度で摩耗して最終的に摩耗寸法は大きくなった。 From Table 1, it can be seen that the sintered body of the powder F and the powder F-added alloy has an extremely excellent friction coefficient of 0.07. In that case, the wear size does not fall below 20 μm unless the relative density is 96% or more, excluding powder F. Specifically, in the sintered body of the powder F-added alloy having a relative density of 96% or more, the wear rate is higher than that of the mating material at the beginning of the test, but after that, the wear is caused by the lubrication effect of the hard particles M. It was suppressed, and even after sliding for 1 hour, the wear size was less than 20 μm, and it was confirmed that there was almost no wear. The comparative alloys 9 and the commercially available alloys 1 and 2 were worn at the same wear rate from the start of the wear test until 1 hour had passed, and the wear size was finally increased.

いずれにしても、ターボチャージャ用の軸受や燃料ポンプ用の軸受等が使用される過酷な環境を再現する実用模擬試験において、焼付く直前の負荷が市販合金より安定して上回ることが、実用化できるかどうかを判断する指標となる。これを達成したのは表1では発明合金1〜6であった。 In any case, in a practical mock test that reproduces a harsh environment where bearings for turbochargers and bearings for fuel pumps are used, it is practically used that the load immediately before seizure exceeds that of commercially available alloys. It is an index to judge whether it can be done. In Table 1, the invention alloys 1 to 6 achieved this.

上記の結果から下記のことが言える。Mn添加により粉末F中のFeMo3S4を分解して得たαFe、Fe2Mo、Fe7Mo6及びMnSを主成分とする硬質粒子Mは、耐摩耗性及び潤滑性を併せ持つ分散粒子であり、粉末Fから硬質粒子Mに変化する反応は発熱反応であるため周囲との密着性がよく、摺動する際にも脱落し難い。従って、硬質粒子Mが黄銅中に分散した発明合金1〜6は、ターボチャージャ用の軸受、燃料ポンプ用の軸受等に用いると、硫黄を含む高温の潤滑油存在下においても極めて安定した耐硫化腐食性及び摺動特性を示すことができる。From the above results, the following can be said. Hard particles M containing αFe, Fe 2 Mo, Fe 7 Mo 6 and Mn S as main components obtained by decomposing Fe Mo 3 S 4 in powder F by adding Mn are dispersed particles having both wear resistance and lubricity. Yes, the reaction that changes from powder F to hard particles M is an exothermic reaction, so it has good adhesion to the surroundings and does not easily fall off when sliding. Therefore, the invention alloys 1 to 6 in which the hard particles M are dispersed in brass are extremely stable in the presence of high-temperature lubricating oil containing sulfur when used in bearings for turbochargers, bearings for fuel pumps, etc. It can exhibit corrosiveness and sliding characteristics.

表2は、比較合金6〜8及び発明合金1〜6中に存在する硬質粒子全体を100体積%としたときのαFe相、Fe2Mo相、Fe7Mo6相、MnS相、ZnS相の体積率を示す。MnSの生成量は、Mnの含有量を0質量%から1質量%及び1.5質量%と増やすと(相対密度が96%を越すと)急激に増加し、Mnの含有量が2質量%以上では約15体積%一定となる。他の相もMnの含有量が2質量%以上でほぼ一定であるので、発明合金2〜6の組成が特に安定であり、工業的に有利であると言える。Table 2 shows the αFe phase, Fe 2 Mo phase, Fe 7 Mo 6 phase, MnS phase, and ZnS phase when the total amount of hard particles present in the comparative alloys 6 to 8 and the invention alloys 1 to 6 is 100% by volume. Indicates the volume fraction. The amount of MnS produced increases sharply when the Mn content is increased from 0% by mass to 1% by mass and 1.5% by mass (when the relative density exceeds 96%), and when the Mn content is 2% by mass or more. It becomes constant by about 15% by mass. Since the Mn content of the other phases is almost constant at 2% by mass or more, the composition of the invention alloys 2 to 6 is particularly stable and can be said to be industrially advantageous.

(実施例2)
表1の発明合金2〜6の中で摩耗寸法が最も大きい発明合金2と同じ組成を有する合金を選択し、含油合金の試験を行った。出発原料粉末は実施例1と同様の方法で得た。出発原料粉末を1〜5 t/cm2で成形したのち、800〜900℃で焼結し、相対密度が80%、82%、85%、88%及び90%の参考合金1,発明合金7〜9及び参考合金2をそれぞれ作製した。Cu‐10%Sn市販合金3(青銅合金P4013Z)は市中から得た。得られた合金を潤滑油に浸し、真空脱泡することで合金内に潤滑油を含浸させ含油合金を得た。相対密度の測定及び含油方法は日本工業規格:「焼結金属材料‐密度、含油率及び解放気孔率試験方法」、Z2501:2000、p.3‐6を参考とした。
(Example 2)
Among the invention alloys 2 to 6 in Table 1, an alloy having the same composition as the invention alloy 2 having the largest wear size was selected, and an oil-impregnated alloy test was conducted. The starting material powder was obtained in the same manner as in Example 1. The starting material powder is molded at 1 to 5 t / cm 2 , then sintered at 800 to 900 ° C, and the relative densities are 80%, 82%, 85%, 88% and 90%. Reference alloy 1, Invention alloy 7 ~ 9 and reference alloy 2 were prepared respectively. Cu-10% Sn commercial alloy 3 (bronze alloy P4013Z) was obtained from the market. The obtained alloy was immersed in lubricating oil and vacuum defoamed to impregnate the alloy with lubricating oil to obtain an oil-containing alloy. For the measurement of relative density and the oil impregnation method, Japanese Industrial Standards: "Sintered metal material-density, oil content and open porosity test method", Z2501: 2000, p.3-6 were referred to.

焼付き試験は、各合金の相手材にSUS304(HV250)、SUS440C(HV700)及びSCM435(HV470)を用いてピンオンディスク型試験機で行った。摺動速度は合金中に含油した潤滑油が摺動面に広がりにくく、境界潤滑となりやすい低速の0.1 m/s一定とし、その状態で面圧を徐々に増加させ、相手材に焼付く面圧を比較した。 The seizure test was performed with a pin-on disk type tester using SUS304 (HV250), SUS440C (HV700) and SCM435 (HV470) as the mating material of each alloy. The sliding speed is constant at 0.1 m / s, which is a low speed at which the lubricating oil impregnated in the alloy does not easily spread to the sliding surface and tends to be boundary lubrication. In that state, the surface pressure is gradually increased and the surface pressure seizure on the mating material. Was compared.

表3は、発明合金2と同組成で相対密度の異なる参考合金1及び2及び発明合金7〜9と市販合金3の配合組成、気孔率、相対密度、焼付き試験結果を示す。焼付き試験の結果判定は表1と同様とした。
Table 3 shows blend composition, porosity of the commercial and the invention alloy 2 different relative density in the same composition Reference Alloy 1 and 2 and invention alloy 7-9 alloy 3, the relative density, the seizure test results. The results of the seizure test were judged in the same manner as in Table 1.

試験の結果、発明合金7〜9は市販合金3と比べて1.8倍以上の高い面圧でも焼付きは起こらなかった。市販合金3の2倍の面圧でも焼付かない合金もあった。このことから、本発明の含油合金を青銅含油合金の代替とすることで長期間使用し境界潤滑が発生したとしても焼付かなくなり、発明合金を用いた製品の寿命を延ばすことが可能である。 As a result of the test, the invention alloys 7 to 9 did not seize even at a surface pressure 1.8 times higher than that of the commercially available alloy 3. Some alloys did not seize even at twice the surface pressure of commercially available alloy 3. From this, by substituting the oil-impregnated alloy of the present invention with the bronze oil-impregnated alloy, seizure does not occur even if boundary lubrication occurs after long-term use, and the life of the product using the invention alloy can be extended.

参考合金1及び2は市販合金3との面圧の差がほとんど現れなかった。原因として、参考合金1は気孔率が高いため、含油量は十分だが、見かけの接触面積より実際に相手材と接触している面積は小さく、面圧が高くなる。そのため境界潤滑になりやすく、焼付き面圧が低くなったと考えられる。参考合金2は気孔率が低いことから含油量が少なく、摺動面に十分な潤滑油の供給が行われなかったため焼付いたと考えられる。
Reference alloys 1 and 2 showed almost no difference in surface pressure from the commercially available alloy 3. As a cause, since the reference alloy 1 has a high porosity, the oil content is sufficient, but the area actually in contact with the mating material is smaller than the apparent contact area, and the surface pressure is high. Therefore, it is considered that boundary lubrication is likely to occur and the seizure surface pressure is lowered. Since the reference alloy 2 has a low porosity, the oil content is low, and it is probable that the alloy 2 was seized because sufficient lubricating oil was not supplied to the sliding surface.

上記の結果より、発明合金を含油合金とする場合、合金の含油量が十分にあり、機械的強度が優れている相対密度82%〜88%が適していることが明らかである。また発明合金2よりも摩耗寸法が少ない発明合金3〜6を発明合金8と同じ方法で含油合金とした場合、少なくとも発明合金7〜9と同等の性能が得られることは明らかである。 From the above results, it is clear that when the invention alloy is an oil-impregnated alloy, a relative density of 82% to 88%, which has a sufficient oil content and excellent mechanical strength, is suitable. Further, when the invention alloys 3 to 6 having less wear dimensions than the invention alloy 2 are made into oil-containing alloys by the same method as the invention alloy 8, it is clear that at least the same performance as the invention alloys 7 to 9 can be obtained.

*1: CuとZnは、Cu‐40質量%Zn黄銅合金として添加する。
*2: Fは、αFe‐Fe2Mo‐FeMo3S4合金粉末Fである(組成:Fe‐24質量%Mo‐2.7質量%S)。
*3: ◎は、市販合金3の焼付かない面圧に対し20%以上優れるもの。○は同等より優れ〜20%未満優れるもの。△は同等のもの。
*4: 相手材SUS304、SUS440C及びSCM435での焼付き試験の結果がいずれも同じ区分となったため、区分の表記を1つにまとめた。
* 1: Cu and Zn are added as a Cu-40 mass% Zn brass alloy.
* 2: F is αFe-Fe 2 Mo-FeMo 3 S 4 alloy powder F (composition: Fe-24 mass% Mo-2.7 mass% S).
* 3: ◎ is 20% or more superior to the non-seizure surface pressure of commercially available alloy 3. ○ is better than equivalent to less than 20%. △ is equivalent.
* 4: Since the results of the seizure test with the mating materials SUS304, SUS440C and SCM435 were all in the same category, the notation of the category was summarized into one.

以上の通り、硬質粒子M内に潤滑性に優れるMnSが微細に分散していることで、使用時にMnS粒子ごとの脱落が抑制され長期的な潤滑効果を示す。上記手法以外にもM内にMnSを微細に分散させる別の方法が無いか種々検討した。 As described above, since MnS having excellent lubricity is finely dispersed in the hard particles M, the MnS particles are prevented from falling off during use and exhibit a long-term lubrication effect. In addition to the above method, various studies were conducted to see if there was another method for finely dispersing MnS in M.

FeやMoを含む溶湯に予めMnS粒子を分散させてアトマイズ法などによりFe‐Mo‐MnS粒子粉末を作製してみたところ、Fe‐Mo系の共晶温度が1,450℃でMn‐S系の共晶温度が1,580℃と温度差が大きいためか、Fe‐Mo合金粉末中にMnS粒子が偏析して微細に分散させることはできなかった。 When MnS particles were dispersed in a molten metal containing Fe and Mo in advance to prepare Fe-Mo-MnS particle powder by an atomization method or the like, the eutectic temperature of the Fe-Mo system was 1,450 ° C and the eutectic temperature of the Fe-Mo system was 1,450 ° C. Due to the large temperature difference of 1,580 ° C., the MnS particles segregated in the Fe-Mo alloy powder and could not be finely dispersed.

混合粉末を作製する際に原料粉末としてMnS粉末(平均粒度約5μm)を用いて分散させることも検討したが、焼結合金の黄銅合金基材中にMnS相として粗大(約10μm以上)に分散し、硬質粒子内に微細に分散させることができなかった。 We also considered using MnS powder (average particle size of about 5 μm) as the raw material powder when preparing the mixed powder, but dispersed it coarsely (about 10 μm or more) as the MnS phase in the brass alloy base material of the sintered alloy. However, it could not be finely dispersed in the hard particles.

結局、MnS粉末ではなくMn粉末と粉末Fを混合して反応焼結させる方法が最も良いことが確認された。Mnを添加する際に使用する粉末は、Mn粉末でも良く、Mnを含んだ銅合金粉末でも良い。 After all, it was confirmed that the best method is to mix Mn powder and powder F instead of MnS powder and react-sinter. The powder used when adding Mn may be Mn powder or a copper alloy powder containing Mn.

上記のような特徴を有する本発明の焼結合金は、ターボチャージャに使用する軸受に限らず、常時潤滑油が供給される摺動部材又は潤滑油を合金内部に含ませた含油軸受材料にも用いることができる。潤滑油が供給される軸受の一例として、自動車エンジン補器用、産業機械用等の軸受がある。 The sintered alloy of the present invention having the above-mentioned characteristics is not limited to bearings used for turbochargers, but also for sliding members to which lubricating oil is constantly supplied or oil-impregnated bearing materials containing lubricating oil inside the alloy. Can be used. As an example of bearings to which lubricating oil is supplied, there are bearings for automobile engine auxiliary equipment, industrial machinery, and the like.

具体的には、自動車エンジン補器用としては、ターボチャージャ、燃料ポンプや燃料噴射ポンプ用の摺動部材又は軸受が挙げられる。産業用機械用としては、ギアポンプや工作機械の主軸支持用やエアコンプレッサ用の摺動部材又は軸受が挙げられる。 Specifically, examples of automobile engine auxiliary equipment include turbochargers, sliding members or bearings for fuel pumps and fuel injection pumps. Examples of industrial machines include sliding members or bearings for supporting spindles of gear pumps and machine tools and for air compressors.

合金内部に油を含ませた含油摺動部材の一例としては、家電用やOA機器用の摺動部材又は軸受が挙げられる。具体的には、家電用としては、冷蔵庫やエアコン等に用いられるコンプレッサ、HDDやBlu‐ray(登録商標)等の磁気式又は光学式記録装置、換気装置、洗濯機、電動調理器具等に組み込まれる摺動部材又は軸受が挙げられる。OA機器用としては、複合機等の摺動部材又は軸受が挙げられる。これらの摺動部材又は軸受に本発明の焼結合金を用いると、出力向上や効率化を図ることができ、長寿命化が可能となる。 An example of an oil-impregnated sliding member in which oil is contained inside an alloy is a sliding member or bearing for home appliances and OA equipment. Specifically, for home appliances, it is incorporated into compressors used in refrigerators and air conditioners, magnetic or optical recording devices such as HDDs and Blu-rays (registered trademarks), ventilation devices, washing machines, electric cookware, etc. Examples include sliding members or bearings. Examples of OA equipment include sliding members such as multifunction devices or bearings. When the sintered alloy of the present invention is used for these sliding members or bearings, the output and efficiency can be improved, and the life can be extended.

本発明の焼結合金からなる軸受を用いたターボチャージャは、エンジンのさらなるダウンサイジングを可能とし、出力向上と効率化を図ることができるので、低燃費化・排ガス清浄化を促進し、地球温暖化防止及び省エネルギーに貢献し得る。 The turbocharger using the bearing made of the sintered alloy of the present invention enables further downsizing of the engine, and can improve the output and efficiency, thus promoting low fuel consumption and exhaust gas purification, and global warming. It can contribute to the prevention of climate change and energy saving.

Claims (6)

Cu、Zn及びMnを含む黄銅合金基材にαFe、Fe2Mo、Fe7Mo6及びMnSを含む硬質粒子を分散させた焼結合金において、
焼結合金全体の質量を100%としたとき、FeとMoの合計含有量が7〜25質量%であり、Fe、Mo、Mn及びSの含有量(質量%)をそれぞれCFe、CMo、CMn及びCSとすると、CMn/(CFe+CMo)が0.15〜0.47であり、CMo/(CFe+CMo)が0.20〜0.30であり、CS/(CFe+CMo)が0.01〜0.04であり、
前記硬質粒子は、硬質粒子全体の体積を100%としたとき、40〜60体積%のαFe相、10〜30体積%のFe 2 Mo相、10〜30体積%のFe 7 Mo 6 相、10〜20体積%のMnS相、及び4体積%未満のZnS相を有し、
前記硬質粒子の平均粒径は10〜40μmの範囲内であることを特徴とする銅基焼結合金。
In a sintered alloy in which hard particles containing αFe, Fe 2 Mo, Fe 7 Mo 6 and MnS are dispersed in a brass alloy base material containing Cu, Zn and Mn.
When the total mass of the sintered alloy is 100%, the total content of Fe and Mo is 7 to 25 mass%, and the contents (mass%) of Fe, Mo, Mn and S are C Fe and C Mo , respectively. , C Mn and C S , C Mn / (C Fe + C Mo ) is 0.15 to 0.47, C Mo / (C Fe + C Mo ) is 0.20 to 0.30, and C S / (C Fe + C Mo ). There Ri der 0.01 to 0.04,
The hard particles are 40 to 60% by volume αFe phase, 10 to 30% by volume Fe 2 Mo phase, 10 to 30% by volume Fe 7 Mo 6 phase, 10 when the total volume of the hard particles is 100%. It has ~ 20% by volume MnS phase and less than 4% by volume ZnS phase.
A copper-based sintered alloy characterized in that the average particle size of the hard particles is in the range of 10 to 40 μm .
前記黄銅合金基材におけるCu及びZnの合計含有量に対するZnの含有量の比が0.38〜0.42であることを特徴とする請求項1に記載の銅基焼結合金。 The copper-based sintered alloy according to claim 1 , wherein the ratio of the Zn content to the total Cu and Zn content in the brass alloy base material is 0.38 to 0.42. 前記黄銅合金基材が6.0質量%以下のAl及び1.0質量%以下のSnをさらに含むか、1.2質量%以下のAl1.0質量%以下のSn及び1.0質量%以下のNiをさらに含むことを特徴とする請求項1又は2に記載の銅基焼結合金。 The brass alloy base material is characterized by further containing 6.0% by mass or less of Al and 1.0% by mass or less of Sn, or 1.2% by mass or less of Al , 1.0% by mass or less of Sn and 1.0% by mass or less of Ni. The copper-based sintered alloy according to claim 1 or 2 . 相対密度が96%以上であることを特徴とする請求項1〜3のいずれかに記載の銅基焼結合金。 The copper-based sintered alloy according to any one of claims 1 to 3 , wherein the relative density is 96% or more. 相対密度が82%以上88%以下であることを特徴とする請求項1〜3のいずれかに記載の含油軸受用の銅基焼結合金。 The copper-based sintered alloy for an oil-impregnated bearing according to any one of claims 1 to 3 , wherein the relative density is 82% or more and 88% or less. 請求項1〜5のいずれかに記載の銅基焼結合金を製造する方法であって、前記硬質粒子の出発原料粉末として、Fe‐Mo‐S合金粉末と、Mn粉末及び/又はMnを含む銅合金粉末とを用いることを特徴とする方法。
The method for producing a copper-based sintered alloy according to any one of claims 1 to 5 , wherein the starting raw material powder of the hard particles includes Fe—Mo—S alloy powder, Mn powder and / or Mn. A method characterized by using a copper alloy powder.
JP2019568128A 2018-09-10 2019-09-09 Copper-based sintered alloy and its manufacturing method Active JP6756995B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018168393 2018-09-10
JP2018168393 2018-09-10
PCT/JP2019/035396 WO2020054671A1 (en) 2018-09-10 2019-09-09 Copper-based sintered alloy and production method therefor

Publications (2)

Publication Number Publication Date
JP6756995B1 true JP6756995B1 (en) 2020-09-16
JPWO2020054671A1 JPWO2020054671A1 (en) 2020-10-22

Family

ID=69777635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019568128A Active JP6756995B1 (en) 2018-09-10 2019-09-09 Copper-based sintered alloy and its manufacturing method

Country Status (2)

Country Link
JP (1) JP6756995B1 (en)
WO (1) WO2020054671A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346417A (en) * 2003-05-26 2004-12-09 Komatsu Ltd Sprayed-coating sliding material, sliding member and sliding part, and apparatus to which these are applied
JP2008281613A (en) * 2007-05-08 2008-11-20 Olympus Corp Cooler for cooling endoscope, and endoscopic device
JP2016060922A (en) * 2014-09-16 2016-04-25 株式会社リケン Cu-BASED SINTERED ALLOY AND MANUFACTURING METHOD THEREFOR

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280613A (en) * 2001-07-12 2008-11-20 Komatsu Ltd Copper based sintered contact material and double-layered sintered contact member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346417A (en) * 2003-05-26 2004-12-09 Komatsu Ltd Sprayed-coating sliding material, sliding member and sliding part, and apparatus to which these are applied
JP2008281613A (en) * 2007-05-08 2008-11-20 Olympus Corp Cooler for cooling endoscope, and endoscopic device
JP2016060922A (en) * 2014-09-16 2016-04-25 株式会社リケン Cu-BASED SINTERED ALLOY AND MANUFACTURING METHOD THEREFOR

Also Published As

Publication number Publication date
WO2020054671A1 (en) 2020-03-19
JPWO2020054671A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
KR100814656B1 (en) Free copper alloy sliding material
JP5143827B2 (en) Method for producing Pb-free copper alloy sliding material
JP5783303B2 (en) Copper-based sintered sliding member
JP2003089831A (en) Copper-based sintered sliding material and multi-layer sintered sliding member
US20090311129A1 (en) Abrasion resistant sintered copper base cu-ni-sn alloy and bearing made from the same
JP2008202123A (en) Oil-impregnated sintered bearing and method for manufacturing the same
JP2012506494A (en) Sliding bearing with improved wear resistance and method for manufacturing the same
CN108026800B (en) Sintered valve seat
JPS6014093B2 (en) abrasive seal
EP2821514B1 (en) Sintered alloy having excellent abrasion resistance
JP6440297B2 (en) Cu-based sintered bearing
JP6760807B2 (en) Copper-based sintered alloy oil-impregnated bearing
KR102579560B1 (en) Sintered bearings and manufacturing methods of sintered bearings
JP2016125079A (en) Sintered bearing
JP6756995B1 (en) Copper-based sintered alloy and its manufacturing method
EP3686307B1 (en) Sintered oil-retaining bearing
JP6620391B2 (en) Cu-based sintered sliding material and manufacturing method thereof
JP5566394B2 (en) Bearing material
JP3298636B2 (en) Sliding material
JP2019065323A (en) Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing
JP6508611B2 (en) Sintered alloy and method of manufacturing the same
JP4427410B2 (en) Pb-free copper alloy sliding material with excellent seizure resistance
JP6536866B1 (en) Sintered bearing, sintered bearing device and rotating device
JPWO2003000946A1 (en) Sliding member and manufacturing method thereof
JP6222815B2 (en) Sintered member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191209

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191209

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200811

R150 Certificate of patent or registration of utility model

Ref document number: 6756995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250