JP6754932B2 - Methods and kits for detecting stem cells - Google Patents

Methods and kits for detecting stem cells Download PDF

Info

Publication number
JP6754932B2
JP6754932B2 JP2017506034A JP2017506034A JP6754932B2 JP 6754932 B2 JP6754932 B2 JP 6754932B2 JP 2017506034 A JP2017506034 A JP 2017506034A JP 2017506034 A JP2017506034 A JP 2017506034A JP 6754932 B2 JP6754932 B2 JP 6754932B2
Authority
JP
Japan
Prior art keywords
antibody
sugar chain
lectin
group
culture supernatant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017506034A
Other languages
Japanese (ja)
Other versions
JPWO2016147514A1 (en
Inventor
浩章 舘野
浩章 舘野
雅岐 藁科
雅岐 藁科
雅和 福田
雅和 福田
平安 一成
一成 平安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Fujifilm Wako Pure Chemical Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Fujifilm Wako Pure Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Fujifilm Wako Pure Chemical Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2016147514A1 publication Critical patent/JPWO2016147514A1/en
Application granted granted Critical
Publication of JP6754932B2 publication Critical patent/JP6754932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5073Stem cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H5/00Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium
    • C07H5/04Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium to nitrogen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Zoology (AREA)
  • Virology (AREA)

Description

本発明は、幹細胞を検出するための方法及びキットに関する。より詳しくは、細胞の培養上清又は溶解物に含まれるポドカリキシンをレクチン−抗体サンドイッチ法により検出することによって幹細胞を検出する方法等に関する。 The present invention relates to methods and kits for detecting stem cells. More specifically, the present invention relates to a method for detecting stem cells by detecting podocalyxin contained in a cell culture supernatant or lysate by a lectin-antibody sandwich method.

人工多能性幹細胞(iPS細胞)及び胚性幹細胞(ES細胞)等の多分化能幹細胞(以下、単に「幹細胞」とも称する)を用いる再生医療技術の課題のひとつは、幹細胞を所望のタイプの細胞に分化させた後に患者の体内に移植する際に、幹細胞が未分化状態のまま残存し、分化した細胞とともに患者の体内に移植され、患者の体内で腫瘍化又は癌化する危険を如何に防止するかである。 One of the challenges of regenerative medicine technology using pluripotent stem cells (hereinafter, also simply referred to as “stem cells”) such as artificial pluripotent stem cells (iPS cells) and embryonic stem cells (ES cells) is to obtain stem cells of the desired type. When transplanted into the patient's body after differentiation into cells, how is the risk that stem cells remain undifferentiated and are transplanted into the patient's body together with the differentiated cells to become tumorous or cancerous in the patient's body? Is it to prevent?

造腫瘍性を持つおそれのある未分化な幹細胞の混入を評価するために利用可能な技術として、特許文献1には、幹細胞に特異的な糖鎖を、当該糖鎖に結合性を有するレクチンを用いて検出することにより、細胞の分化状態を判定する方法が開示されている。この方法は、BC2LCNレクチンと称されるレクチンの組換えタンパク(rBC2LCNレクチン)を用いて、「Fucα1−2Galβ1−3GlcNAc」及び/又は「Fucα1−2Galβ1−3GalNAc」の糖鎖構造を有する未分化糖鎖マーカーを検出するものである。なお、rBC2LCNレクチンは、グラム陰性細菌(Burkholderia cenocepacia)由来のBC2L−Cタンパク質のN末端ドメインに対応したBC2LCNレクチン(GenBank Accession No. YP_002232818)を形質転換大腸菌で発現させた組換えタンパクであり、上記糖鎖構造を認識するものである。 As a technique that can be used to evaluate contamination of undifferentiated stem cells that may have tumorigenicity, Patent Document 1 describes stem cell-specific sugar chains and lectins having binding properties to the sugar chains. A method for determining the differentiation state of a cell by detecting it using a method is disclosed. In this method, an undifferentiated sugar chain having a sugar chain structure of "Fucα1-2Galβ1-3GlcNAc" and / or "Fucα1-2Galβ1-3GalNAc" is used by using a recombinant protein (rBC2LCN lectin) of a lectin called BC2LCN lectin. It detects markers. The rBC2LCN lectin is a recombinant protein in which BC2LCN lectin (GenBank Accession No. YP_002232818) corresponding to the N-terminal domain of the BC2L-C protein derived from Gram-negative bacteria (Burkholderia cenocepacia) is expressed in transformed Escherichia coli. It recognizes the sugar chain structure.

また、特許文献2には、幹細胞の培養上清中の上記糖鎖を、rBC2LCNレクチンを用いて検出することにより、分化誘導処理後に残存する未分化な幹細胞を検出する方法が開示されている。特許文献2は、「Fucα1−2Galβ1−3GlcNAc」及び/又は「Fucα1−2Galβ1−3GalNAc」の糖鎖構造を有する未分化糖鎖マーカーとして、複合糖質であるポドカリキシン(Podocalyxin)を同定している。 Further, Patent Document 2 discloses a method for detecting undifferentiated stem cells remaining after differentiation induction treatment by detecting the above-mentioned sugar chains in the culture supernatant of stem cells using rBC2LCN lectin. Patent Document 2 identifies Podocalixin, which is a complex carbohydrate, as an undifferentiated sugar chain marker having a sugar chain structure of "Fucα1-2Galβ1-3GlcNAc" and / or "Fucα1-2Galβ1-3GalNAc".

国際公開第2013/128914号International Publication No. 2013/128914 国際公開第2013/065302号International Publication No. 2013/065302 国際公開第2012/147992号International Publication No. 2012/147992

J. Am. Soc. Nephrol., 2009, Vol.20, No.8, p.1669-1676.J. Am. Soc. Nephrol., 2009, Vol.20, No.8, p.1669-1676. Structure, 2010, Vol.18, No.1, p.59-72.Structure, 2010, Vol.18, No.1, p.59-72. Glycobiology, 2013, Vol.23, No.3, p.322-336.Glycobiology, 2013, Vol.23, No.3, p.322-336. J. Biol. Chem., 2011, Vol.286, No.23, p.20345-20353.J. Biol. Chem., 2011, Vol.286, No.23, p.20345-20353. Stem Cells, 2007, Vol.25, p.723-730.Stem Cells, 2007, Vol.25, p.723-730. Cancer Research, 1999, Vol.59, p.4715-4719.Cancer Research, 1999, Vol.59, p.4715-4719. Glycobiology, 2011, Vol.21, No.9, p.1125-1130.Glycobiology, 2011, Vol.21, No.9, p.1125-1130. Scientific Reports, 2014, Vol.4, p.4069.Scientific Reports, 2014, Vol.4, p.4069.

上記特許文献2には、好適な一実施形態として、幹細胞の培養上清中の未分化糖鎖マーカーを、基板に固定化したレクチン(rBC2LCNレクチン)により捕捉して、レクチンと未分化糖鎖マーカーの複合体を形成させ、この複合体にラベル化した他のレクチン又は抗体を反応させることにより未分化糖鎖マーカーの検出を行う「サンドイッチ法」が開示されている。 In Patent Document 2, as a preferred embodiment, an undifferentiated sugar chain marker in a culture supernatant of stem cells is captured by a lectin (rBC2LCN lectin) immobilized on a substrate, and the lectin and the undifferentiated sugar chain marker are captured. A "sandwich method" is disclosed in which an undifferentiated sugar chain marker is detected by forming a complex of the above and reacting the complex with another lectin or antibody labeled.

特許文献2は、rBC2LCNレクチンとの組み合わせで「レクチン−レクチンサンドイッチ法」に供することが可能なレクチンとしてSRL、CGL2、ABA、XCLと称される4つのレクチンを挙げている。 Patent Document 2 cites four lectins called SRL, CGL2, ABA, and XCL as lectins that can be used in the "lectin-lectin sandwich method" in combination with rBC2LCN lectins.

本発明は、「Fucα1−2Galβ1−3GlcNAc」及び/又は「Fucα1−2Galβ1−3GalNAc」の糖鎖構造を有する未分化糖鎖マーカー(ポドカリキシン)に基づいて幹細胞を検出する方法において、レクチンと抗体との組み合わせによる、高感度な「レクチン−抗体サンドイッチ法」を提供することを主な目的とする。 The present invention relates to a lectin and an antibody in a method for detecting stem cells based on an undifferentiated sugar chain marker (podocalyxin) having a sugar chain structure of "Fucα1-2Galβ1-3GlcNAc" and / or "Fucα1-2Galβ1-3GalNAc". The main purpose is to provide a highly sensitive "lectin-antibody sandwich method" by combination.

上記課題解決のため、本発明は、以下の[1]〜[17]を提供する。
[1]細胞の培養上清又は溶解物に含まれるポドカリキシンを検出することにより、幹細胞を検出する方法であって、
前記培養上清又は溶解物と、下記(式1):
In order to solve the above problems, the present invention provides the following [1] to [17].
[1] A method for detecting stem cells by detecting podocalyxin contained in a cell culture supernatant or lysate.
The culture supernatant or lysate and the following (Formula 1):

(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
又は下記(式2):
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
Or the following (Equation 2):

(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
で表される糖鎖に結合性を有するレクチンと、ケラタン硫酸に結合性を有する抗体と、を接触させて、前記レクチンとポドカリキシンと前記抗体とから構成される複合体を形成させる手順と、
前記複合体を検出する手順と、を含む方法。
[2]前記抗体が、低硫酸化ケラタン硫酸に結合性を有する抗体である、[1]の方法。[3]前記抗体が、Gal−GlcNAc(6S)又はそのタンデムリピートをエピトープに含む、[1]又は[2]の方法。
[4]前記抗体が、ハイブリドーマR−10G(寄託番号:FERM BP−11301)が産生する抗体又は該抗体と競合する抗体である、[1]〜[3]のいずれかの方法。[5]前記細胞が、血清含有培地で培養された細胞である、[1]〜[4]のいずれかの方法。
[6]前記レクチンが、
配列番号1に示されるアミノ酸配列を含んでなるタンパク質、又は
当該アミノ酸配列の1若しくは数個のアミノ酸が欠失、置換、挿入、もしくは付加されたアミノ酸配列を含んでなり、前記(式1)又は(式2)で表される糖鎖に結合性を有するタンパク質である、[1]〜[5]のいずれかの方法。
[7]前記培養上清又は溶解物と前記レクチンとを接触させて、該レクチンと前記培養上清又は溶解物に含まれるポドカリキシンとから構成される第一の複合体を形成させる手順と、
第一の複合体と前記抗体とを接触させて、前記レクチンとポドカリキシンと該抗体とから構成される第二の複合体を形成させる手順と、を含む、[1]〜[6]の方法。
[8]前記レクチンが不溶性担体に結合される、[7]の方法。
[9]細胞の培養上清又は溶解物に含まれる下記(式1):
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
A procedure for contacting a lectin having a binding property to a sugar chain represented by (1) and an antibody having a binding property to keratan sulfate to form a complex composed of the lectin, podocalyxin, and the antibody.
A method comprising a procedure for detecting the complex.
[2] The method of [1], wherein the antibody is an antibody having binding property to hyposulfated keratan sulfate. [3] The method of [1] or [2], wherein the antibody comprises Gal-GlcNAc (6S) or a tandem repeat thereof in an epitope.
[4] The method according to any one of [1] to [3], wherein the antibody is an antibody produced by hybridoma R-10G (deposit number: FERM BP-11301) or an antibody that competes with the antibody. [5] The method according to any one of [1] to [4], wherein the cells are cells cultured in a serum-containing medium.
[6] The lectin is
A protein comprising the amino acid sequence shown in SEQ ID NO: 1, or an amino acid sequence in which one or several amino acids of the amino acid sequence are deleted, substituted, inserted, or added, as described in (Formula 1) or The method according to any one of [1] to [5], which is a protein having a binding property to a sugar chain represented by (Formula 2).
[7] A procedure for contacting the culture supernatant or lysate with the lectin to form a first complex composed of the lectin and the podocalyxin contained in the culture supernatant or lysate.
The method of [1] to [6], which comprises a procedure of contacting the first complex with the antibody to form a second complex composed of the lectin, podocalyxin and the antibody.
[8] The method of [7], wherein the lectin is bound to an insoluble carrier.
[9] The following (Formula 1) contained in the cell culture supernatant or lysate:

(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
又は下記(式2):
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
Or the following (Equation 2):

(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
で表される糖鎖を検出することにより、幹細胞を検出する方法であって、
前記培養上清又は溶解物と、前記糖鎖に結合性を有するレクチンと、ケラタン硫酸に結合性を有する抗体と、を接触させて、前記レクチンと前記糖鎖と前記抗体とを含んでなる複合体を形成させる手順と、
前記複合体を検出する手順と、を含む方法。
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
It is a method of detecting stem cells by detecting the sugar chain represented by.
A composite comprising the lectin, the sugar chain, and the antibody by contacting the culture supernatant or lysate with a lectin having a binding property to the sugar chain and an antibody having a binding property to keratan sulfate. The procedure for forming the body and
A method comprising a procedure for detecting the complex.

[10]前記複合体の有無又は検出量に基づいて前記細胞に含まれる幹細胞の有無又は存在量を判定する手順をさらに含む、[1]〜[9]のいずれかの方法。
[11]前記複合体の有無又は検出量に基づいて前記細胞の分化状態を判定する手順をさらに含む、[1]〜[9]のいずれかの方法。
[10] The method according to any one of [1] to [9], further comprising a procedure for determining the presence / absence or abundance of stem cells contained in the cells based on the presence / absence or detection amount of the complex.
[11] The method according to any one of [1] to [9], further comprising a procedure for determining the differentiation state of the cells based on the presence or absence of the complex or the detected amount.

[12]細胞の培養上清又は溶解物に含まれるポドカリキシンを検出する方法であって、前記培養上清又は溶解物と、下記(式1): [12] A method for detecting podocalyxin contained in a cell culture supernatant or lysate, wherein the culture supernatant or lysate and the following (Formula 1):

(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
又は下記(式2):
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
Or the following (Equation 2):

(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
で表される糖鎖に結合性を有するレクチンと、ケラタン硫酸に結合性を有する抗体と、を接触させて、前記レクチンとポドカリキシンと前記抗体とから構成される複合体を形成させる手順と、
前記複合体を検出する手順と、を含む方法。
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
A procedure for contacting a lectin having a binding property to a sugar chain represented by (1) and an antibody having a binding property to keratan sulfate to form a complex composed of the lectin, podocalyxin, and the antibody.
A method comprising a procedure for detecting the complex.

[13]細胞の培養上清又は溶解物に含まれるポドカリキシンを検出することにより、該細胞に含まれる幹細胞を検出するためのキットであって、
下記(式1):
[13] A kit for detecting stem cells contained in cells by detecting podocalyxin contained in the cell culture supernatant or lysate.
The following (Equation 1):

(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
又は下記(式2):
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
Or the following (Equation 2):

(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
で表される糖鎖に結合性を有するレクチンと、
ケラタン硫酸に結合性を有する抗体と、を含むキット。
[14]前記抗体が、低硫酸化ケラタン硫酸に結合性を有する抗体である、[13]のキット。
[15]前記抗体が、Gal−GlcNAc(6S)又はそのタンデムリピートをエピトープに含む、[13]又は[14]のキット。
[16]前記抗体が、ハイブリドーマR−10G(寄託番号:FERM BP−11301)が産生する抗体又は該抗体と競合する抗体である、[13]〜[15]のいずれかのキット。
[17]前記レクチンが不溶性担体に結合されている、[13]〜[16]のいずれかのキット。
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
Lectins that have binding properties to sugar chains represented by
A kit containing an antibody having binding property to keratan sulfate.
[14] The kit of [13], wherein the antibody is an antibody having binding property to hyposulfated keratan sulfate.
[15] The kit of [13] or [14], wherein the antibody comprises Gal-GlcNAc (6S) or a tandem repeat thereof in an epitope.
[16] The kit according to any one of [13] to [15], wherein the antibody is an antibody produced by hybridoma R-10G (deposit number: FERM BP-11301) or an antibody that competes with the antibody.
[17] The kit according to any one of [13] to [16], wherein the lectin is bound to an insoluble carrier.

ポドカリキシン(Podocalyxin)は、1型膜貫通型糖タンパク質で、上皮性糸球体細胞(足細胞)から同定され、糸球体の機能及び形態の保持において重要な役割をしているほか、種々の癌の発達にも関係していることが知られている(非特許文献1参照)。本発明において「ポドカリキシン」の用語は、上記(式1)及び/又は(式2)の糖鎖構造を有する限りにおいて、ポドカリキシンの全長タンパク質及びその部分断片のいずれをも包含するものとする。 Podocalixin is a type 1 transmembrane glycoprotein that has been identified in epithelial glomerular cells (podocytes) and plays an important role in maintaining glomerular function and morphology, as well as in various cancers. It is known to be related to development (see Non-Patent Document 1). In the present invention, the term "podocalyxin" includes any of the full-length protein of podocalyxin and a partial fragment thereof as long as it has the sugar chain structure of the above (formula 1) and / or (formula 2).

また、本発明において「糖鎖」とは、単糖がグリコシド結合によって鎖状(直鎖あるいは樹状に分枝した分岐鎖)につながった構造を有する一群の化合物を意味する。糖鎖を構成する単糖としては、グルコース(Glc),ガラクトース(Gal),マンノース等のヘキソース;L−フコース(Fuc)等のデオキシキソース;N−アセチルグルコサミン(GlcNAc),N−アセチルガラクトサミン(GalNAc)等のヘキソサミン;N−アセチルノイラミン酸,N−グリコリルノイラミン酸等のシアル酸;キシロ−ス,L−アラビノース等のペントース等が挙げられる。「糖鎖」を構成する単糖の数は、特に限定されず、2〜数万程度である。 Further, in the present invention, the "sugar chain" means a group of compounds having a structure in which monosaccharides are linked in a chain (straight or dendritic branched chain) by glycosidic bonds. Examples of the monosaccharides constituting the sugar chain include hexoses such as glucose (Glc), galactose (Gal), and mannose; deoxyxose sources such as L-fucose (Fuc); N-acetylglucosamine (GlcNAc), N-acetylgalactosamine ( Hexosemin such as GalNAc); sialic acid such as N-acetylneuraminic acid and N-glycolylneuraminic acid; pentose such as xylose and L-arabinose can be mentioned. The number of monosaccharides constituting the "sugar chain" is not particularly limited, and is about 20,000 to tens of thousands.

本発明において「レクチン」とは、糖タンパク質、糖脂質、プロテオグリカン、グリコペプチド、リポ多糖、ペプチドグリカン、及びステロイド化合物等の配糖体などの複合糖質に結合した糖鎖の部分構造あるいは全体構造を認識し、結合するタンパク質を意味する。 In the present invention, the "lectin" refers to a partial structure or an entire structure of a sugar chain bound to a complex sugar such as a glycoprotein, a glycolipid, a proteoglycan, a glycopeptide, a lipopolysaccharide, a peptidoglycan, and a glycoside such as a steroid compound. Means a protein that recognizes and binds.

本発明により、「Fucα1−2Galβ1−3GlcNAc」及び/又は「Fucα1−2Galβ1−3GalNAc」の糖鎖構造を有する未分化糖鎖マーカー(ポドカリキシン)に基づいて幹細胞を検出する方法において、レクチンと抗体との組み合わせによる、高感度な「レクチン−抗体サンドイッチ法」が提供される。 According to the present invention, in a method for detecting stem cells based on an undifferentiated sugar chain marker (podocalyxin) having a sugar chain structure of "Fucα1-2Galβ1-3GlcNAc" and / or "Fucα1-2Galβ1-3GalNAc", a lectin and an antibody are used. The combination provides a highly sensitive "lectin-antibody sandwich method".

本発明に係るレクチン−抗体サンドイッチ法による幹細胞の検出方法を、従来技術に係るレクチン−レクチンサンドイッチ法と比較して、評価した結果を示すグラフである(試験例1)。It is a graph which shows the result of having evaluated the method of detecting the stem cell by the lectin-antibody sandwich method which concerns on this invention in comparison with the lectin-lectin sandwich method which concerns on a prior art (Test Example 1). 本発明に係るレクチン−抗体サンドイッチ法による幹細胞の検出方法を、種々の抗体を用いたレクチン−抗体サンドイッチ法と比較して、評価した結果を示すグラフである(試験例1)。It is a graph which shows the evaluation result by comparing the method of detecting stem cells by the lectin-antibody sandwich method which concerns on this invention with the lectin-antibody sandwich method using various antibodies (Test Example 1). 本発明に係るレクチン−抗体サンドイッチ法による幹細胞の検出方法を評価した結果を示すグラフである(試験例1)。It is a graph which shows the result of having evaluated the detection method of the stem cell by the lectin-antibody sandwich method which concerns on this invention (Test Example 1). 本発明に係るレクチン−抗体サンドイッチ法により、異なる種類の培地で培養した幹細胞の検出を行った結果(StemSure hPSC培地Δ)を示すグラフである(試験例2)。It is a graph which shows the result (StemSure hPSC medium Δ) of the detection of the stem cells cultured in different kinds of media by the lectin-antibody sandwich method which concerns on this invention (Test Example 2). 本発明に係るレクチン−抗体サンドイッチ法により、異なる種類の培地で培養した幹細胞の検出を行った結果(mTeSR1培地)を示すグラフである(試験例2)。It is a graph which shows the result (mTeSR1 medium) of detecting the stem cell culture | cultivated in a different kind of culture medium by the lectin-antibody sandwich method which concerns on this invention (Test Example 2). 本発明に係るレクチン−抗体サンドイッチ法により、異なる種類の培地で培養した幹細胞の検出を行った結果(MEF−CM)を示すグラフである(試験例2)。It is a graph which shows the result (MEF-CM) of detecting the stem cell cultured in the culture medium of a different kind by the lectin-antibody sandwich method which concerns on this invention (Test Example 2). 本発明に係るレクチン−抗体サンドイッチ法により、異なる種類の培地で培養した幹細胞の検出を行った結果(TeSR−E8培地)を示すグラフである(試験例2)。It is a graph which shows the result (TeSR-E8 medium) of detecting the stem cell culture | cultivated in a different kind of culture medium by the lectin-antibody sandwich method which concerns on this invention (Test Example 2). 本発明に係るレクチン−抗体サンドイッチ法による幹細胞の検出方法を評価した結果を示すグラフである(試験例3)。It is a graph which shows the result of having evaluated the detection method of the stem cell by the lectin-antibody sandwich method which concerns on this invention (Test Example 3).

以下、本発明を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。 Hereinafter, suitable embodiments for carrying out the present invention will be described. It should be noted that the embodiments described below show an example of typical embodiments of the present invention, and the scope of the present invention is not narrowly interpreted by this.

1.幹細胞の検出方法
本発明に係る幹細胞の検出方法は、細胞の培養上清又は溶解物に含まれる下記(式1):
1. 1. Stem cell detection method The stem cell detection method according to the present invention is contained in the cell culture supernatant or lysate as follows (Formula 1):

(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
又は下記(式2):
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
Or the following (Equation 2):

(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
で表される糖鎖を検出することにより、幹細胞の検出を行うものである。
具体的には、前記培養上清又は溶解物と、前記糖鎖に結合性を有するレクチンと、ケラタン硫酸に結合性を有する抗体と、を接触させて、前記レクチンと前記糖鎖と前記抗体とを含んでなる複合体を形成させる手順と、前記複合体を検出する手順と、により、幹細胞の検出を行う。
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
Stem cells are detected by detecting the sugar chain represented by.
Specifically, the culture supernatant or lysate, a lectin having a binding property to the sugar chain, and an antibody having a binding property to keratan sulfate are brought into contact with the lectin, the sugar chain, and the antibody. Stem cells are detected by a procedure for forming a complex containing the above-mentioned complex and a procedure for detecting the complex.

(式1)及び(式2)で表される糖鎖構造は、未分化細胞の細胞表面及び培養上清中に特異的に存在し、ポドカリキシンに由来することが明らかにされている(特許文献1,2参照)。よって、本発明に係る幹細胞の検出方法は、さらに具体的には、細胞の培養上清又は溶解物に含まれるポドカリキシンを検出することにより、幹細胞を検出する方法であって、前記培養上清又は溶解物と、(式1)又は(式2)で表される糖鎖に結合性を有するレクチンと、ケラタン硫酸に結合性を有する抗体と、を接触させて、前記レクチンとポドカリキシンと前記抗体とから構成される複合体を形成させる手順と、前記複合体を検出する手順と、を含む方法である。 It has been clarified that the sugar chain structures represented by (Formula 1) and (Formula 2) are specifically present on the cell surface of undifferentiated cells and in the culture supernatant and are derived from podocalyxin (Patent Document). See 1 and 2). Therefore, the method for detecting stem cells according to the present invention is, more specifically, a method for detecting stem cells by detecting podocalyxin contained in a cell culture supernatant or lysate, which is the culture supernatant or the above-mentioned method. The lysate, a lectin having a binding property to a sugar chain represented by (Formula 1) or (Formula 2), and an antibody having a binding property to keratin sulfate are brought into contact with each other to obtain the lectin, podocalyxin, and the antibody. It is a method including a procedure for forming a complex composed of, and a procedure for detecting the complex.

[糖鎖構造]
上記(式1)は、「Fucα1−2Galβ1−3GlcNAc」の糖鎖構造を表す。GlcNAcの4位の位置の水酸基は、単糖(好ましくはフコース)又は分岐した若しくは分岐していないオリゴ糖鎖(好ましくは2〜5の糖からなる糖鎖)で置換されていてもよい。また、当該糖鎖構造は、幹細胞表面では、膜構成成分として、GlcNAcの1位の位置で糖タンパク質、糖脂質及び糖類などの非還元末端に結合している糖鎖であるから、GlcNAcの1位の位置に、OH基、又は他の糖類、タンパク質、脂質、若しくはその他の分子の非還元末端が結合していてもよい。
[Sugar chain structure]
The above (formula 1) represents the sugar chain structure of "Fucα1-2Galβ1-3GlcNAc". The hydroxyl group at the 4-position of GlcNAc may be replaced with a monosaccharide (preferably fucose) or a branched or unbranched oligosaccharide chain (preferably a sugar chain consisting of 2 to 5 sugars). Further, since the sugar chain structure is a sugar chain that is bound to non-reducing terminals such as glycoproteins, glycolipids and sugars at the 1-position position of GlcNAc as a membrane constituent on the surface of stem cells, it is 1 of GlcNAc. The OH group or the non-reducing end of another sugar, protein, lipid, or other molecule may be attached to the position.

上記(式2)は、「Fucα1−2Galβ1−3GalNAc」の糖鎖構造を表す。GalNAcの1位の位置の水酸基は、単糖(好ましくはフコース)又は分岐した若しくは分岐していないオリゴ糖鎖(好ましくは2〜5の糖からなる糖鎖)で置換されていてもよい。また、当該糖鎖構造は、幹細胞表面では、膜構成成分として、GalNAcの1位の位置で糖タンパク質、糖脂質及び糖類などの非還元末端に結合している糖鎖であるから、GalNAcの1位の位置に、OH基、又は他の糖類、タンパク質、脂質、若しくはその他の分子の非還元末端が結合していてもよい。 The above (formula 2) represents the sugar chain structure of "Fucα1-2Galβ1-3GalNAc". The hydroxyl group at the 1-position position of GalNAc may be replaced with a monosaccharide (preferably fucose) or a branched or unbranched oligosaccharide chain (preferably a sugar chain consisting of 2 to 5 sugars). Further, since the sugar chain structure is a sugar chain that is bound to non-reducing terminals such as glycoproteins, glycolipids and sugars at the 1-position position of GalNAc as a membrane constituent on the surface of stem cells, it is 1 of GalNAc. A non-reducing end of an OH group or other sugar, protein, lipid, or other molecule may be attached to the position of the position.

[レクチン]
(式1)又は(式2)で表される糖鎖に結合性を有するレクチンには、BC2LCNレクチン又はその改変体が好ましく用いられる。BC2LCNレクチンのアミノ酸配列を配列番号1に示す。レクチンには、配列番号1に示されるアミノ酸配列を含んでなるタンパク質に加えて、当該アミノ酸配列の1若しくは数個のアミノ酸が欠失、置換、挿入、もしくは付加されたアミノ酸配列を含んでなり、(式1)又は(式2)で表される糖鎖に結合性を有するタンパク質(BC2LCNレクチン改変体)も好ましく用いられる。さらに、これらのレクチンに加えて、(式1)及び/又は(式2)で表される糖鎖を認識するレクチンであれば特に限定されることなく用いられ得る。
[Lectin]
BC2LCN lectin or a variant thereof is preferably used as the lectin having a binding property to the sugar chain represented by (Formula 1) or (Formula 2). The amino acid sequence of BC2LCN lectin is shown in SEQ ID NO: 1. The lectin comprises, in addition to the protein comprising the amino acid sequence set forth in SEQ ID NO: 1, an amino acid sequence in which one or several amino acids of the amino acid sequence have been deleted, substituted, inserted or added. A protein (BC2LCN lectin variant) having a binding property to a sugar chain represented by (Formula 1) or (Formula 2) is also preferably used. Further, in addition to these lectins, any lectin that recognizes a sugar chain represented by (Formula 1) and / or (Formula 2) can be used without particular limitation.

BC2LCNレクチンは、グラム陰性細菌(Burkholderia cenocepacia)由来のBC2L−Cタンパク質のN末端ドメインである(非特許文献2参照)。(式1)又は(式2)で表される糖鎖に結合性を有するレクチンには、このBC2LCNレクチンを大腸菌で発現させた組換えタンパク質(rBC2LCNレクチン)を好適に用いることができる。rBC2LCNレクチンは、形質転換細菌によって大量生産可能である。具体的には、配列番号1のアミノ酸配列をコードするBC2LCN遺伝子を発現ベクターに組み込んで宿主細胞に導入し発現させ、必要に応じてタンパク質の精製を行うことによってrBC2LCNレクチンを調製する。 BC2LCN lectin is the N-terminal domain of BC2LC protein derived from Gram-negative bacteria (Burkholderia cenocepacia) (see Non-Patent Document 2). A recombinant protein (rBC2LCN lectin) expressing this BC2LCN lectin in Escherichia coli can be preferably used as the lectin having a binding property to the sugar chain represented by (Formula 1) or (Formula 2). The rBC2LCN lectin can be mass-produced by transforming bacteria. Specifically, the BC2LCN gene encoding the amino acid sequence of SEQ ID NO: 1 is incorporated into an expression vector, introduced into a host cell for expression, and if necessary, the protein is purified to prepare rBC2LCN lectin.

BC2LCNレクチン及びrBC2LCNレクチン並びにこれらの改変体は、(式1)又は(式2)で表される糖鎖への結合を有する限り、配列番号1のアミノ酸配列の全長を含むことを要せず、また配列番号1において1若しくは数個のアミノ酸が欠失、置換、挿入、付加されていてもよい。ここで、数個とは20個以下、好ましくは10個以下、より好ましくは5個以下の自然数を表す。 The BC2LCN lectin and the rBC2LCN lectin and their variants do not need to include the full length of the amino acid sequence of SEQ ID NO: 1 as long as they have a bond to the sugar chain represented by (Formula 1) or (Formula 2). Further, one or several amino acids may be deleted, substituted, inserted or added in SEQ ID NO: 1. Here, the number represents a natural number of 20 or less, preferably 10 or less, and more preferably 5 or less.

[抗体]
ケラタン硫酸に結合性を有する抗体には、ハイブリドーマR−10G(寄託番号:FERM BP−11301)が産生するIgG抗体が好ましく用いられる。ハイブリドーマR−10Gが産生する抗体(以下、「R−10G抗体」とも称する)は、特許文献3に記載されている。R−10G抗体は、ヒトiPS細胞を免疫原として作製したハイブリドーマを、ヒトiPS細胞陽性かつヒト胎児性癌細胞陰性を指標としてスクリーニングして得られたモノクロナール抗体である。R−10G抗体のエピトープは、硫酸化度の低いケラタン硫酸であり(硫酸化度の高いケラタン硫酸には反応しない)、当該エピトープのポリペプチド部分は、ポドカリキシンであることが明らかにされている(非特許文献3参照)。また、非特許文献3によれば、R−10G抗体のエピトープには、「Gal−GlcNAc(6S)」又はそのタンデムリピートが含まれるとされている。R−10G抗体は、特許文献3に記載の方法に従って調製することもできるが、市販のもの(例えば、コスモ・バイオ株式会社、RIT−M001)を用いてもよい。
[antibody]
As the antibody having binding property to keratan sulfate, an IgG antibody produced by hybridoma R-10G (deposit number: FERM BP-11301) is preferably used. An antibody produced by the hybridoma R-10G (hereinafter, also referred to as "R-10G antibody") is described in Patent Document 3. The R-10G antibody is a monoclonal antibody obtained by screening a hybridoma prepared using human iPS cells as an immunogen, using human iPS cell positive and human fetal cancer cell negative as an index. The epitope of the R-10G antibody is low-sulfation keratan sulfate (which does not react with high-sulfation keratan sulfate), and the polypeptide portion of the epitope has been shown to be podocalyxin (). See Non-Patent Document 3). Further, according to Non-Patent Document 3, the epitope of the R-10G antibody includes "Gal-GlcNAc (6S)" or a tandem repeat thereof. The R-10G antibody can be prepared according to the method described in Patent Document 3, but a commercially available antibody (for example, Cosmo Bio Co., Ltd., RIT-M001) may be used.

なお、ケラタン硫酸は、「Gal−GlcNAc(6S)」の繰り返し構造を含み、「Gal−GlcNAc(6S)」中のGalが硫酸化部位となる。上記硫酸化度は、このGalの硫酸化の度合いを意味するものである。 Keratan sulfate contains a repeating structure of "Gal-GlcNAc (6S)", and Gal in "Gal-GlcNAc (6S)" is a sulfation site. The above-mentioned degree of sulfation means the degree of sulfation of Gal.

ケラタン硫酸に結合性を有する抗体には、R−10G抗体に加えて、該抗体と競合する抗体も用いることができる。R−10G抗体と競合する抗体とは、ケラタン硫酸との結合においてR−10G抗体と競合する抗体、すなわちR−10G抗体が結合するエピトープに結合することができる抗体を意味する。R−10G抗体と競合する抗体は、従来公知の競合的結合アッセイを用いて、R−10G抗体のポドカリキシンへの結合に対して候補抗体が競合する(すなわち、候補抗体がR−10G抗体とポドカリキシンとの結合を妨げる)ことを確認することによって取得できる。この競合的結合アッセイによれば、R−10G抗体の具体的なエピトープが決定されていなくても競合抗体を取得することができるが、競合抗体は、低硫酸化ケラタン硫酸をエピトープとし、特にGal−GlcNAc(6S)又はそのタンデムリピートをエピトープに含む抗体であることが好ましい。 As an antibody having binding property to keratan sulfate, in addition to the R-10G antibody, an antibody that competes with the antibody can also be used. An antibody that competes with an R-10G antibody means an antibody that competes with an R-10G antibody in binding to keratan sulfate, that is, an antibody capable of binding to an epitope to which the R-10G antibody binds. Antibodies that compete with the R-10G antibody use a conventionally known competitive binding assay to compete for binding of the R-10G antibody to podocalyxin (ie, the candidate antibody competes with the R-10G antibody for podocalyxin). It can be obtained by confirming that it interferes with the combination with. According to this competitive binding assay, a competitive antibody can be obtained even if a specific epitope of the R-10G antibody has not been determined, but the competitive antibody uses hyposulfated keratan sulfate as an epitope, and in particular Gal. -Preferably an antibody containing GlcNAc (6S) or a tandem repeat thereof in the epitope.

さらに、ケラタン硫酸に結合性を有する抗体には、R−10G抗体及び該抗体と競合する抗体に加えて、ケラタン硫酸、好ましくは低硫酸化ケラタン硫酸を認識する抗体であれば特に限定されることなく用いられ得る。 Further, the antibody having binding property to keratan sulfate is particularly limited as long as it is an antibody that recognizes keratan sulfate, preferably hyposulfated keratan sulfate, in addition to the R-10G antibody and an antibody that competes with the antibody. Can be used without.

ここで、本発明において「抗体」の用語には、「抗体の機能性断片」も含まれるものとする。「抗体の機能性断片」とは、抗原との結合活性を有する抗体の部分断片を意味しており、Fab、F(ab')2、scFv等を含む。また、F(ab')2を還元条件下で処理した抗体の可変領域の一価の断片であるFab'も抗体の機能性断片に含まれる。ただし抗原との結合能を有している限りこれらの分子に限定されない。機能性断片には、抗体タンパク質の全長分子を適当な酵素で処理したもののみならず、遺伝子工学的に改変された抗体遺伝子を用いて適当な宿主細胞において産生されたタンパク質も含まれる。 Here, in the present invention, the term "antibody" also includes "functional fragment of antibody". The “functional fragment of an antibody” means a partial fragment of an antibody having an antigen-binding activity, and includes Fab, F (ab') 2, scFv and the like. In addition, Fab', which is a monovalent fragment of the variable region of the antibody obtained by treating F (ab') 2 under reducing conditions, is also included in the functional fragment of the antibody. However, it is not limited to these molecules as long as it has the ability to bind to an antigen. Functional fragments include not only full-length molecules of antibody proteins treated with suitable enzymes, but also proteins produced in suitable host cells using genetically modified antibody genes.

[幹細胞]
「幹細胞」は、一般に、未分化状態を保持したまま増殖できる「自己再生能」と、三胚葉系列すべてに分化できる「分化多能性」とを有する未分化細胞と定義されている。本発明に係る検出方法が検出の対象とする幹細胞(多分化能幹細胞)は、自己再生能及び分化多能性を有する未分化細胞であって、少なくとも多能性幹細胞(pluripotent stem cell)及び複能性幹細胞(multipotent stem cell)を包含する。幹細胞としては、特に、胚性幹細胞(Embryonic stem cell:ES細胞)及び体細胞に初期化因子を導入して得られる誘導性多能性幹細胞(induced pluripotent cell:iPS細胞)等の多能性幹細胞が挙げられる。なお、複能性幹細胞は、間葉系幹細胞、造血系幹細胞、神経系幹細胞、骨髄幹細胞及び生殖幹細胞等の体性幹細胞等を含む。本発明において、単に「細胞」と記載する場合は、幹細胞と分化細胞(体細胞)の両方を含む意味で用いるものとする。
[Stem cells]
A "stem cell" is generally defined as an undifferentiated cell having "self-renewal ability" capable of proliferating while maintaining an undifferentiated state and "pluripotency" capable of differentiating into all three germ layer lines. The stem cells (pluripotent stem cells) to be detected by the detection method according to the present invention are undifferentiated cells having self-renewal ability and pluripotency, and are at least pluripotent stem cells and multiple stem cells. Includes multipotent stem cells. Examples of stem cells include pluripotent stem cells such as embryonic stem cells (ES cells) and induced pluripotent cells (iPS cells) obtained by introducing a reprogramming factor into somatic cells. Can be mentioned. The pluripotent stem cells include somatic stem cells such as mesenchymal stem cells, hematopoietic stem cells, neural stem cells, bone marrow stem cells and reproductive stem cells. In the present invention, the term "cell" is used to include both stem cells and differentiated cells (somatic cells).

細胞の由来種は特に限定されず、ヒト、サル、ブタ、ウシ、ヤギ、ヒツジ、マウス、ラットなどであってよい。 The cell origin is not particularly limited and may be human, monkey, pig, cow, goat, sheep, mouse, rat or the like.

[培養上清・溶解物]
(式1)及び/又は(式2)で表される糖鎖構造は、未分化細胞の細胞表面及び培養上清中に特異的に存在することが明らかとなっているため(特許文献1,2参照)、本発明に係る幹細胞の検出方法において、幹細胞の検出のために用いられるサンプルは、細胞の溶解物であっても培養上清であってもよい。
[Culture supernatant / lysate]
Since it has been clarified that the sugar chain structure represented by (Formula 1) and / or (Formula 2) is specifically present on the cell surface of undifferentiated cells and in the culture supernatant (Patent Documents 1 and 1). 2) In the method for detecting stem cells according to the present invention, the sample used for detecting stem cells may be a lysate of cells or a culture supernatant.

細胞の培養上清及び溶解物は、従来公知の手法に従って調製することができる。溶解物は、物理的に細胞を破砕する方法又は化学的に細胞を可溶化させる方法により調製できる。タンパク質が熱変性を起こさない、タンパク質が失活しない、タンパク質の回収率がよい、操作が簡便である等の点から、界面活性剤を用いて細胞を可溶化させる方法が好ましい。 Cell culture supernatants and lysates can be prepared according to conventionally known methods. The lysate can be prepared by physically disrupting the cells or chemically solubilizing the cells. A method of solubilizing cells using a surfactant is preferable from the viewpoints that the protein does not undergo heat denaturation, the protein is not inactivated, the protein recovery rate is good, and the operation is simple.

例えば、5×106〜5×107細胞の細胞ペレットに、界面活性剤を含有する細胞溶解剤を添加し、細胞を懸濁させた後1〜10分間氷上で反応させる。その後20,000×gで15分間程度遠心処理し、得られた上清を細胞ライセートとして用いればよい。For example, a cell lysate containing a surfactant is added to cell pellets of 5 × 10 6 to 5 × 10 7 cells, and the cells are suspended and then reacted on ice for 1 to 10 minutes. Then, it may be centrifuged at 20,000 × g for about 15 minutes, and the obtained supernatant may be used as a cell lysate.

細胞溶解剤には、通常この分野で用いられる細胞溶解剤としての界面活性剤を添加した、適当な塩(KCl、NaCl等)やDTT等の還元剤を含む緩衝液が用いられる。緩衝液としては、pH 5.0〜10.0、好ましくはpH 7.0〜8.0の中性付近に緩衝作用を有する、リン酸緩衝液、トリス緩衝液、グッド緩衝液、グリシン緩衝液、ホウ酸緩衝液等が好ましい。また、緩衝液中の緩衝剤濃度は、通常10〜500 mM、好ましくは10〜100 mMの範囲から適宜選択される。塩の濃度は、通常100〜200 mMである。界面活性剤は、細胞の種類や使用する緩衝液のpHや塩濃度、等の条件に従って適宜選択すればよい。例えばNP-40、ポリ(オキシエチレン)ノニルフェニルエーテル(和光純薬工業株式会社)、TritonX-100、ジギトニン等が挙げられる。濃度は、緩衝液全量に対して通常0.01〜1.0%程度とされる。 As the cell lysing agent, a buffer solution containing a suitable salt (KCl, NaCl, etc.) or a reducing agent such as DTT, to which a surfactant as a cell lysing agent usually used in this field is added, is used. As the buffer solution, a phosphate buffer solution, a Tris buffer solution, a good buffer solution, a glycine buffer solution, a boric acid buffer solution, etc., which have a buffering action at pH 5.0 to 10.0, preferably around pH 7.0 to 8.0, are preferable. .. The buffer concentration in the buffer solution is usually appropriately selected from the range of 10 to 500 mM, preferably 10 to 100 mM. The salt concentration is usually 100-200 mM. The surfactant may be appropriately selected according to conditions such as the type of cells and the pH and salt concentration of the buffer solution used. Examples thereof include NP-40, poly (oxyethylene) nonylphenyl ether (Wako Pure Chemical Industries, Ltd.), TritonX-100, digitonin and the like. The concentration is usually about 0.01 to 1.0% with respect to the total amount of the buffer solution.

培養上清及び溶解物は血清を含有していてもよい。本発明に係る幹細胞の検出方法によれば、血清含有培地で培養された細胞の培養上清及び溶解物を用いた場合にも、幹細胞の存在を高感度に検出することが可能である(試験例1参照)。 The culture supernatant and lysate may contain serum. According to the method for detecting stem cells according to the present invention, the presence of stem cells can be detected with high sensitivity even when the culture supernatant and lysate of cells cultured in a serum-containing medium are used (test). See Example 1).

培地には、従来、幹細胞の未分化維持及び分化誘導のために用いられている培地を用いればよい。例えば、StemSure(登録商標)hPSC medium(和光純薬工業株式会社)、Nutristem(登録商標)(Biological Industries Ltd)、ReproFF(ReproCELL)、TeSRTM−E8TM(STEMCELL Technologies)、Essential 8TM Medium(LifeTechnologies)、StemPro(登録商標)hESC SFM(LifeTechnologies)及びmTeSR1(STEMCELL Technologies)等を用いることができる。As the medium, a medium conventionally used for maintaining undifferentiation of stem cells and inducing differentiation may be used. For example, StemSure (registered trademark) hPSC medium (Wako Pure Chemical Industries, Ltd.), Nutristem (registered trademark) (Biological Industries Ltd), ReproFF (ReproCELL), TeSR TM- E8 TM (STEMCELL Technologies), Essential 8 TM Medium (Life Technologies). ), StemPro (registered trademark) hESC SFM (Life Technologies), mTeSR1 (STEMCELL Technologies) and the like can be used.

血清は、特に限定されず、例えば、仔牛血清(CS)、牛胎児血清(FBS)、ヒト由来血清、牛由来血清、羊由来血清、ヤギ由来血清、サル由来血清、馬由来血清、ラット由来血清、マウス由来血清、ウサギ由来血清、ハムスター由来血清、モルモット由来血清、豚由来血清、鳥(鶏)由来血清、犬由来血清、猫由来血清等が用いられる。培養上清及び溶解物中の血清濃度は、培地への血清の添加濃度に応じて変化し得る。通常の幹細胞の維持培養又は分化培養における、培地への血清の添加濃度は、0.5〜20%(v/v)程度である。 The serum is not particularly limited, and for example, calf serum (CS), cow fetal serum (FBS), human-derived serum, cow-derived serum, sheep-derived serum, goat-derived serum, monkey-derived serum, horse-derived serum, and rat-derived serum. , Mouse-derived serum, rabbit-derived serum, hamster-derived serum, guinea pig-derived serum, pig-derived serum, bird (chicken) -derived serum, dog-derived serum, cat-derived serum and the like are used. Serum concentrations in culture supernatants and lysates can vary depending on the concentration of serum added to the medium. The concentration of serum added to the medium in normal maintenance culture or differentiation culture of stem cells is about 0.5 to 20% (v / v).

培養上清及び溶解物は、精製工程を経ることなくそのまま、又は希釈して、あるいは予め抗体やレクチン等で濃縮して用いることができる。 The culture supernatant and the lysate can be used as they are, diluted, or concentrated in advance with an antibody, lectin, or the like without going through a purification step.

本発明に係る幹細胞の検出方法は高感度であるため、培養上清で0.1〜10μl程度の量で、ピコモーラー(pM)又はナノモーラー(nM)レベルの(式1)及び(式2)で表される糖鎖を検出することができる。 Since the method for detecting stem cells according to the present invention is highly sensitive, the amount of the culture supernatant is about 0.1 to 10 μl, and the picomolar (pM) or nanomolar (nM) level (formula 1) and (formula 2) are used. The represented sugar chain can be detected.

[レクチン−抗体サンドイッチ法]
本発明に係る幹細胞の検出方法の手順には、培養上清又は溶解物(以下「培養上清等」とも称する)とレクチンとケラタン硫酸に結合性を有する抗体とを接触させてレクチンとポドカリキシンと抗体とから構成される複合体を形成させる複合体形成手順と、複合体を検出する検出手順と、が含まれる。以下、rBC2LCNレクチン及びR−10G抗体を用いる場合を例に具体的に説明する。
[Lectin-antibody sandwich method]
In the procedure of the method for detecting stem cells according to the present invention, a culture supernatant or a lysate (hereinafter, also referred to as “culture supernatant or the like”) is brought into contact with an antibody having binding property to lectin and keratin sulfate to form a lectin and podocalyxin. A complex formation procedure for forming a complex composed of an antibody and a detection procedure for detecting the complex are included. Hereinafter, a case where rBC2LCN lectin and R-10G antibody are used will be specifically described as an example.

複合体形成手順では、rBC2LCNレクチンとR−10G抗体を同時に培養上清等と接触させてもよいが、培養上清等とrBC2LCNレクチンとを接触させた後にR−10G抗体を反応させることがより好ましい。すなわち、複合体形成手順は、培養上清等とレクチンとを接触させて、rBC2LCNレクチンと培養上清等に含まれるポドカリキシンとから構成される第一の複合体を形成させる第一手順と、第一の複合体とR−10G抗体とを接触させて、rBC2LCNレクチンとポドカリキシンとR−10G抗体とから構成される第二の複合体を形成させる第二手順と、からなることが好ましい。 In the complex formation procedure, the rBC2LCN lectin and the R-10G antibody may be brought into contact with the culture supernatant or the like at the same time, but it is more possible to react the R-10G antibody after contacting the culture supernatant or the like with the rBC2LCN lectin. preferable. That is, the complex formation procedure includes the first procedure of bringing the culture supernatant and the like into contact with the lectin to form the first complex composed of the rBC2LCN lectin and the podocalyxin contained in the culture supernatant and the like. It preferably comprises a second procedure of contacting one complex with an R-10G antibody to form a second complex composed of rBC2LCN lectin, podocalyxin and R-10G antibody.

複合体形成手順は、B/F分離を行わないホモジニアスな方法で行ってもよいが、不溶性担体を用いてB/F分離を行うヘテロジニアスな方法で行うことがより好ましい。 The complex formation procedure may be carried out by a homogeneous method without B / F separation, but more preferably with a heterogeneous method in which B / F separation is carried out using an insoluble carrier.

培養上清等の量、及びこれらと反応させるレクチン及び抗体の量(濃度)は、細胞の種類、要求される測定感度、用いる測定方法や測定装置などに応じて適宜設定される。 The amount of the culture supernatant and the like, and the amount (concentration) of the lectin and antibody to react with them are appropriately set according to the cell type, the required measurement sensitivity, the measurement method to be used, the measurement device, and the like.

不溶性担体を用いてB/F分離を行う方法は、例えば、不溶性担体に結合したrBC2LCNレクチンと、不溶性担体に結合していないR−10G抗体と、培養上清等とを接触させて複合体を形成させることにより行われる。より具体的には、B/F分離を行う方法は、培養上清等と、不溶性担体に結合したrBC2LCNレクチンとを接触させて、rBC2LCNレクチンとポドカリキシンとから構成される第一の複合体を得る第一手順と、第一の複合体と遊離のR−10G抗体とを接触させて、rBC2LCNレクチンとポドカリキシンとR−10G抗体とから構成される第二の複合体を得る第二手順と、によって行われる。 In the method of performing B / F separation using an insoluble carrier, for example, the rBC2LCN lectin bound to the insoluble carrier, the R-10G antibody not bound to the insoluble carrier, and the culture supernatant or the like are brought into contact with each other to form a complex. It is done by forming. More specifically, in the method of performing B / F separation, a culture supernatant or the like is brought into contact with rBC2LCN lectin bound to an insoluble carrier to obtain a first complex composed of rBC2LCN lectin and podocalyxin. By the first step and the second step of contacting the first complex with a free R-10G antibody to obtain a second complex composed of rBC2LCN lectin, podocalyxin and R-10G antibody. Will be done.

B/F分離のための不溶性担体には、スライドグラス、ELISAプレート(マイクロプレート)、磁気ビーズ、フィルター、フィルム、メンブレンなど、通常のタンパク質固定化法に用いられる基材を使用できる。基材の材料には、通常、ガラス、シリコン、ポリカーボネート、ポリスチレン又はポリウレタンなどが用いられる。 As the insoluble carrier for B / F separation, a substrate such as a slide glass, an ELISA plate (microplate), magnetic beads, a filter, a film, or a membrane, which is used in a usual protein immobilization method, can be used. As the material of the base material, glass, silicon, polycarbonate, polystyrene, polyurethane and the like are usually used.

レクチンを不溶性担体に固定化させる方法は、特に限定されず、化学的結合法(共有結合により固定化する方法)、物理的に吸着させる方法などの公知の方法を適用できる。アビジン−ビオチン反応のような非常に強固な結合反応を利用してレクチンを不溶性担体に固定化することも可能である。この場合、レクチンにビオチンを結合したビオチン化レクチンを、ストレプトアビジンをコーティングしたストレプトアビジンプレートに固定化すればよい。また、この分野で通常使用される各種リンカーを介して、レクチンを不溶性担体に固定化させてもよい。 The method for immobilizing the lectin on the insoluble carrier is not particularly limited, and known methods such as a chemical bond method (a method for immobilizing by covalent bond) and a method for physically adsorbing can be applied. It is also possible to immobilize the lectin on an insoluble carrier using a very strong binding reaction such as the avidin-biotin reaction. In this case, the biotinylated lectin in which biotin is bound to the lectin may be immobilized on a streptavidin plate coated with streptavidin. In addition, the lectin may be immobilized on an insoluble carrier via various linkers commonly used in this field.

不溶性担体を用いてB/F分離を行う方法では、培養上清等と不溶性担体に固定化されたrBC2LCNレクチンとを反応させる第一手順の後、第一の複合体と遊離のR−10G抗体とを反応させる第二手順を行う前に、固相表面上から不要な物質を除去するための洗浄手順を含んでもよい。また、第二手順の後、検出手順を行う前にも、洗浄手順を含んでもよい。洗浄手順によって、固相表面上から試料中の夾雑物や未反応のR−10G抗体を除去し、第二の複合体のみを固相表面上に分離できる。 In the method of performing B / F separation using an insoluble carrier, after the first step of reacting the culture supernatant or the like with the rBC2LCN lectin immobilized on the insoluble carrier, the first complex and the free R-10G antibody are used. A cleaning procedure for removing unwanted substances from the surface of the solid phase may be included before performing the second step of reacting with. In addition, a cleaning procedure may be included after the second procedure and before performing the detection procedure. By the washing procedure, impurities and unreacted R-10G antibody in the sample can be removed from the surface of the solid phase, and only the second complex can be separated on the surface of the solid phase.

B/F分離を行わない方法では、rBC2LCNレクチンとポドカリキシンとR−10G抗体との複合体を分離するための方法として、例えばクロマトグラフィー法、高速液体クロマトグラフィー法、電気泳動法、キャピラリー電気泳動法、キャピラリーチップ電気泳動法、例えばLiBASys(島津製作所株式会社製)等の自動免疫分析装置を用いた方法等を適用できる。 In the method without B / F separation, as a method for separating the complex of rBC2LCN lectin, podocalyxin and R-10G antibody, for example, chromatography method, high performance liquid chromatography method, electrophoresis method, capillary electrophoresis method , Capillary chip electrophoresis, for example, a method using an automatic immunoassay device such as LiBAsys (manufactured by Shimadzu Corporation) can be applied.

検出手順は、標識物質を用いてrBC2LCNレクチンとポドカリキシンとR−10G抗体とから構成される第二の複合体を検出することにより行うことができる。標識物質としては、例えば、通常の免疫測定法等において用いられる酵素類、放射性同位元素、蛍光性物質、発光性物質、DNA、RNA、補酵素又は補酵素と特異的に結合するもの(ビオチン、アビジン)、タグ、紫外部〜赤外部に吸収を有する物質、発色性微粒子、蛍光性微粒子、金属性微粒子、磁性物質、スピンラベル化剤としての性質を有する物質など、通常この分野で用いられている標識物質が挙げられる。 The detection procedure can be carried out by detecting a second complex composed of rBC2LCN lectin, podocalyxin and R-10G antibody using a labeling substance. As the labeling substance, for example, a substance that specifically binds to enzymes, radioactive isotopes, fluorescent substances, luminescent substances, DNA, RNA, coenzymes or coenzymes used in ordinary immunoassays, etc. (biotin, Avidin), tags, substances that absorb in the ultraviolet to infrared regions, color-developing fine particles, fluorescent fine particles, metallic fine particles, magnetic substances, substances that have properties as spin labeling agents, etc., are usually used in this field. Examples include labeling substances.

標識物質をrBC2LCNレクチン及び/又はR−10G抗体、好ましくはR−10G抗体に結合させるには、例えば、通常の免疫測定法等において行われている標識方法を適宜利用して行えばよい。また、1個又は数個のアミノ酸を介して、又は1個又は数個のアミノ酸とリンカーを介して、抗体に標識物質を結合させる方法も採用できる。さらに、標識物質をタンパク質に結合させるキットも各種市販されているので、それらを用い、キットに添付の取扱説明書に従って標識を行ってもよい。 In order to bind the labeling substance to the rBC2LCN lectin and / or the R-10G antibody, preferably the R-10G antibody, for example, the labeling method used in ordinary immunoassays or the like may be appropriately used. In addition, a method of binding the labeling substance to the antibody via one or several amino acids or via a linker with one or several amino acids can also be adopted. Further, since various kits for binding the labeling substance to the protein are commercially available, they may be used for labeling according to the instruction manual attached to the kit.

例えば、不溶性担体に固定化したrBC2LCNレクチンと、標識物質として西洋ワサビペルオキシダーゼ(HRP)を標識した遊離のR−10G抗体とを用いてB/F分離を行う方法は、概略以下の通りである。 For example, a method for performing B / F separation using rBC2LCN lectin immobilized on an insoluble carrier and a free R-10G antibody labeled with horseradish peroxidase (HRP) as a labeling substance is roughly as follows.

培養上清等を、rBC2LCNレクチンを固定化した不溶性担体に接触させ、4〜40℃で3分〜20時間、反応を行って、固相表面上にrBC2LCNレクチンとポドカリキシンとの第一の複合体を生成させる。次に、HRPで標識したR−10G抗体を含有する溶液を固相表面上に加え4〜40℃で3分〜16時間反応させて、固定化rBC2LCNレクチン−ポドカリキシン−標識R−10G抗体の第二の複合体を生成させる。続いて、適当な濃度のTMB(3,3'5,5'-テトラメチルベンジジン)溶液を添加し、一定時間反応させる。その後、1M硫酸等の反応停止液を加えて反応を停止させ、450nmの吸光度を測定する。得られた測定値と、予め濃度既知のポドカリキシンの溶液について同様の測定を行って得た検量線とから、培養上清等中のポドカリキシン(あるいは、ポドカリキシン上の(式1)又は(式2)で表される糖鎖)の量を求めることができる。 The culture supernatant or the like is brought into contact with an insoluble carrier on which the rBC2LCN lectin is immobilized, and the reaction is carried out at 4 to 40 ° C. for 3 minutes to 20 hours to allow the first complex of the rBC2LCN lectin and podocalyxin on the solid phase surface. To generate. Next, a solution containing the HRP-labeled R-10G antibody was added onto the surface of the solid phase and reacted at 4 to 40 ° C. for 3 minutes to 16 hours to obtain the first immobilized rBC2LCN lectin-podocalyxin-labeled R-10G antibody. Generate two complexes. Subsequently, a TMB (3,3'5,5'-tetramethylbenzidine) solution having an appropriate concentration is added and reacted for a certain period of time. Then, a reaction terminator such as 1M sulfuric acid is added to terminate the reaction, and the absorbance at 450 nm is measured. From the obtained measured value and the calibration curve obtained by performing the same measurement on a solution of podocalyxin whose concentration is known in advance, podocalyxin in a culture supernatant or the like (or (formula 1) or (formula 2) on podocalyxin). The amount of sugar chain represented by) can be obtained.

また、例えばAlexa Fluor-488 tetrafluorophenyl ester等で標識したrBC2LCNレクチンと、例えばAlexa Fluor-647 succinimidyl ester等で標識したR−10G抗体を用い、公知の蛍光相互相関分光法(Fluorescence Correlation Spectroscopy, FCCS)に従って(式1)又は上記(式2)で表される糖鎖を測定することもできる。 Further, for example, using rBC2LCN lectin labeled with Alexa Fluor-488 tetrafluorophenyl ester or the like and R-10G antibody labeled with Alexa Fluor-647 succinimidyl ester or the like, according to a known fluorescence cross-correlation spectroscopy (FCCS). The sugar chain represented by (formula 1) or the above (formula 2) can also be measured.

また、「rBC2LCNレクチン−ポドカリキシン−R−10G抗体」の複合体の検出は、標識物質を用いることなく、例えば複合体に由来する性質を利用して測定する方法、具体的には表面プラズモン共鳴などのホモジニアスイムノアッセイ系等の方法によっても行うことが可能である。 Further, the detection of the complex of "rBC2LCN lectin-podocalyxin-R-10G antibody" is carried out without using a labeling substance, for example, a method of measuring by utilizing the property derived from the complex, specifically, surface plasmon resonance and the like. It is also possible to carry out by a method such as the homogenia swimnoassay system of.

なお、本発明に係るレクチン‐抗体サンドイッチ法は、用手法に限らず、自動分析装置を用いた測定系に適用して容易かつ迅速に測定を行うこともできる。用手法又は自動分析装置を用いて測定を行う場合の試薬類等の組み合わせなどについては、特に制限はなく、適用する自動分析装置の環境や機種に合わせて、あるいは他の要因を考慮に入れて最もよいと思われる試薬類等の組み合わせを選択して用いればよい。さらに、本発明に係るレクチン‐抗体サンドイッチ法は、Micro−TAS(Micro-Total Analysis Systems:μ-TAS、μ総合分析システム)への応用も可能である。 The lectin-antibody sandwich method according to the present invention is not limited to the method used, and can be easily and quickly measured by applying it to a measurement system using an automatic analyzer. There are no particular restrictions on the combination of reagents, etc. when measuring using the method or automatic analyzer, depending on the environment and model of the automatic analyzer to be applied, or taking other factors into consideration. The best combination of reagents and the like may be selected and used. Furthermore, the lectin-antibody sandwich method according to the present invention can also be applied to Micro-TAS (Micro-Total Analysis Systems: μ-TAS, μ comprehensive analysis system).

[応用]
(式1)及び(式2)で表される糖鎖構造は、未分化細胞の細胞表面及び培養上清中に特異的に存在することから、本発明に係る検出方法により、細胞の培養上清等に含まれるポドカリキシン上の当該糖鎖を検出することで、細胞中に存在する幹細胞の有無を検出することができる。また、当該糖鎖を定量的に検出すれば、細胞中の幹細胞の存在量を判定することもできる。
[application]
Since the sugar chain structures represented by (Formula 1) and (Formula 2) are specifically present on the cell surface of undifferentiated cells and in the culture supernatant, the detection method according to the present invention can be used to culture cells. By detecting the sugar chain on podocalyxin contained in Qing dynasty, the presence or absence of stem cells present in the cells can be detected. Further, by quantitatively detecting the sugar chain, the abundance of stem cells in the cells can be determined.

例えば、未分化状態を維持する培養(維持培養)を行っている幹細胞の培養上清等をマイクロピペットなどで一定量採取し、本発明に係る検出方法により、ポドカリキシン上の(式1)及び/又は(式2)で表される糖鎖の検出を行う。糖鎖が検出されれば、細胞が未分化状態を維持していることを確認でき、これにより分化細胞の混入のない高品質な幹細胞を取得することが可能となる。あるいは、糖鎖の定量値に基づいて、全細胞のうちどの程度の割合の細胞が未分化状態を維持しているか(逆に、どの程度の割合が分化しているか)を判定することもできる。 For example, a certain amount of culture supernatant of stem cells that are being cultured to maintain an undifferentiated state (maintenance culture) is collected with a micropipette or the like, and according to the detection method according to the present invention, (formula 1) and / / on podocalyxin. Alternatively, the sugar chain represented by (Equation 2) is detected. If the sugar chain is detected, it can be confirmed that the cells maintain the undifferentiated state, which makes it possible to obtain high-quality stem cells without contamination of the differentiated cells. Alternatively, it is also possible to determine how much of the total cells maintain the undifferentiated state (conversely, how much is differentiated) based on the quantitative value of the sugar chain. ..

培養上清等を一定量採取する手段としては、手作業でも良いが、自動培養装置などにより自動的に採取することもできる。 As a means for collecting a certain amount of the culture supernatant or the like, manual work may be used, but it can also be automatically collected by an automatic culture device or the like.

また、例えば、幹細胞の分化誘導を行った後、細胞の培養上清等をマイクロピペットなどで一定量採取し、本発明に係る検出方法により、ポドカリキシン上の(式1)及び/又は(式2)で表される糖鎖の検出を行う。糖鎖が検出されれば、細胞中に未分化状態の幹細胞が残存していることを確認できる。逆に、糖鎖が検出されなくなれば(バックグラウンド値と同レベルになれば)、細胞が全て分化してことを確認でき、これにより未分化細胞の混入のおそれのない分化細胞を取得することが可能となる。あるいは、糖鎖の定量値に基づいて、全細胞のうちどの程度の割合が分化しているか(逆に、どの程度の細胞が未分化状態にとどまっているか)を判定することもできる。 Further, for example, after inducing differentiation of stem cells, a certain amount of cell culture supernatant or the like is collected with a micropipette or the like, and according to the detection method according to the present invention, (formula 1) and / or (formula 2) on podocalyxin. ) Is detected. If the sugar chain is detected, it can be confirmed that undifferentiated stem cells remain in the cells. Conversely, if sugar chains are no longer detected (at the same level as the background value), it can be confirmed that all cells are differentiated, thereby obtaining differentiated cells that are not likely to be contaminated with undifferentiated cells. Is possible. Alternatively, it is also possible to determine how much of the total cells are differentiated (conversely, how many cells remain undifferentiated) based on the quantitative value of the sugar chain.

本発明に係る検出方法に細胞の培養上清を供する場合には、(式1)又は(式2)の糖鎖が検出可能量分泌された後の培養上清を用いるとされる必要がある。交換後、培養液中に検出可能量の糖鎖が出現するまでに要する時間は、細胞の種類や培養条件によって異なり適宜設定され得るが、例えば18〜30時間程度とされる。通常は24時間程度毎に培地交換を行うので、その際に廃棄する培養上清の一部を利用することが好ましい。 When a cell culture supernatant is used for the detection method according to the present invention, it is necessary to use the culture supernatant after a detectable amount of the sugar chain of (Formula 1) or (Formula 2) has been secreted. .. The time required for a detectable amount of sugar chains to appear in the culture solution after the exchange varies depending on the cell type and culture conditions and can be appropriately set, but is, for example, about 18 to 30 hours. Since the medium is usually changed every 24 hours, it is preferable to use a part of the culture supernatant to be discarded at that time.

ここで、幹細胞を分化誘導する方法としては、どのような手法であってもよい。例えば、幹細胞をレチノイン酸存在下で培養して神経系細胞に分化する方法、増殖をストップさせたNIH3T3細胞表面を土台として表皮細胞を形成させる方法などの手法を適用できる。 Here, any method may be used as a method for inducing differentiation of stem cells. For example, a method of culturing stem cells in the presence of retinoic acid to differentiate into nervous system cells, a method of forming epidermal cells based on the surface of NIH3T3 cells whose proliferation has been stopped can be applied.

2.幹細胞の検出キット
本発明に係る幹細胞の検出キットは、上記の幹細胞検出方法に用いられるものであって、下記(式1):
2. 2. Stem cell detection kit The stem cell detection kit according to the present invention is used in the above-mentioned stem cell detection method, and has the following (Formula 1):

(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
又は下記(式2):
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
Or the following (Equation 2):

(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
で表される糖鎖に結合性を有するレクチンと、ケラタン硫酸に結合性を有する抗体と、を含む。
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
Includes a lectin having a binding property to a sugar chain represented by, and an antibody having a binding property to keratan sulfate.

キットの構成の好ましい態様と具体例は、上記の幹細胞検出方法において説明した通りである。具体的には、ケラタン硫酸に結合性を有する抗体は、特に低硫酸化ケラタン硫酸に結合性を有する抗体であることが好ましい。また、該抗体は、Gal−GlcNAc(6S)又はそのタンデムリピートをエピトープに含むことが好ましい。具体的には、ハイブリドーマR−10G(寄託番号:FERM BP−11301)が産生する抗体又は該抗体と競合する抗体が用いられ得る。 Preferred embodiments and specific examples of the configuration of the kit are as described in the above-mentioned method for detecting stem cells. Specifically, the antibody having binding property to keratan sulfate is particularly preferably an antibody having binding property to hyposulfated keratan sulfate. In addition, the antibody preferably contains Gal-GlcNAc (6S) or a tandem repeat thereof in the epitope. Specifically, an antibody produced by hybridoma R-10G (deposit number: FERM BP-11301) or an antibody that competes with the antibody can be used.

また、キットに含まれる試薬中には、通常この分野で用いられる試薬類、例えば緩衝剤、反応促進剤、糖類、タンパク質、塩類、界面活性剤等の安定化剤、防腐剤等であって、共存する試薬等の安定性を阻害したりせず、ポドカリキシンとレクチン及び抗体との反応を阻害しないものが含まれていてもよい。また、その濃度も、通常この分野で通常用いられる濃度範囲から適宜選択すればよい。さらに、キットは、ポドカリキシンについて検量線を作成するために用いられる標準品を含んでいてもよい。 In addition, the reagents included in the kit include reagents usually used in this field, such as buffers, reaction promoters, sugars, proteins, salts, stabilizers such as surfactants, preservatives and the like. Those that do not inhibit the stability of coexisting reagents and the like and do not inhibit the reaction of podocalyxin with lectins and antibodies may be included. In addition, the concentration may be appropriately selected from the concentration range usually used in this field. In addition, the kit may include a standard used to create a calibration curve for podocalyxin.

本発明に係る幹細胞の検出キットにおいて、(式1)又は(式2)で表される糖鎖に結合性を有するレクチンは、不溶性担体に結合されていることが好ましい。ケラタン硫酸に結合性を有する抗体は予め標識されていることが好ましいが、ユーザが用時に抗体の標識を行うための試薬がキットに含まれていてもよい。 In the stem cell detection kit according to the present invention, the lectin having binding to the sugar chain represented by (Formula 1) or (Formula 2) is preferably bound to an insoluble carrier. The antibody having binding property to keratan sulfate is preferably pre-labeled, but the kit may include a reagent for the user to label the antibody at the time of use.

本発明における用語や概念は、当該分野において慣用的に使用される用語の意味に基づくものであり、本発明を実施するために使用する様々な技術は、特にその出典を明示した技術を除いては、公知の文献等に基づいて当業者であれば容易かつ確実に実施可能である。
また、各種の分析などは、使用した分析機器又は試薬、キットの取り扱い説明書、カタログなどに記載の方法を準用して行った。
なお、本明細書中に引用した技術文献、特許公報及び特許出願明細書中の記載内容は、本発明の記載内容として参照されるものとする。
The terms and concepts in the present invention are based on the meanings of terms commonly used in the art, and the various techniques used to carry out the present invention are excluding those techniques for which the source is specified. Can be easily and reliably carried out by those skilled in the art based on known documents and the like.
In addition, various analyzes were performed by applying the methods described in the analytical instruments or reagents used, the instruction manuals for the kits, catalogs, and the like mutatis mutandis.
The technical documents, patent gazettes and patent application specifications cited in the present specification shall be referred to as the description contents of the present invention.

[試験例1:レクチン−抗体サンドイッチ法による幹細胞の検出]
本発明に係るレクチン−抗体サンドイッチ法による幹細胞の検出方法を評価するため、iPS細胞の培養上清の希釈溶液を用いてポドカリキシンの定量的な測定を行った。測定は、マイクロプレートを用いたELISA検出系で行った。
[Test Example 1: Detection of stem cells by lectin-antibody sandwich method]
In order to evaluate the method for detecting stem cells by the lectin-antibody sandwich method according to the present invention, quantitative measurement of podocalyxin was performed using a diluted solution of the culture supernatant of iPS cells. The measurement was performed by an ELISA detection system using a microplate.

ストレプトアビジンプレート(住友ベークライト株式会社)のウェルにビオチン化rBC2LCNレクチン(0.5μg当量)を加え、37度で1時間、固定化した。リコンビナントレクチンの作成は、非特許文献4に記載の方法に従った。ウェルを緩衝液(1%TritonX−100、リン酸緩衝液)で洗浄後、mTeSR1培地で24時間培養したiPS細胞(201B7株)の培養上清を培地(2%FBS、DMEM)で段階希釈した溶液50μlをウェルに添加し、37℃で1時間反応させた。iPS細胞(201B7株)は、理化学研究所バイオリソースセンターから分譲を受けた。 Biotinylated rBC2LCN lectin (0.5 μg equivalent) was added to the wells of a streptavidin plate (Sumitomo Bakelite Co., Ltd.) and immobilized at 37 ° C. for 1 hour. The recombinant lectin was prepared according to the method described in Non-Patent Document 4. After washing the wells with a buffer solution (1% Triton X-100, phosphate buffer solution), the culture supernatant of iPS cells (201B7 strain) cultured in mTeSR1 medium for 24 hours was serially diluted with medium (2% FBS, DMEM). 50 μl of the solution was added to the wells and reacted at 37 ° C. for 1 hour. The iPS cells (201B7 strain) were sold by RIKEN BioResource Center.

ウェルを緩衝液で洗浄後、ペルオキシダーゼを標識したR10G抗体(0.1μg/ml)をウェルに添加し、37℃で1時間反応させた。ウェルを緩衝液で洗浄後、基質溶液(TMB、和光純薬株式会社)100μlをウェルに添加し、室温で30分反応を行った。1M硫酸をウェルに添加して反応を停止させた後、各ウェルの吸光度(450nm)を測定した。比較のため、R10G抗体にかえて、rABAレクチン(Agaricus bisporus由来、特許文献2参照)、抗SSEA3抗体、抗SSEA4抗体、抗Tra−1−60抗体、抗Tra−1−81抗体、抗ポドカリキシン抗体を同濃度で用いた。 After washing the wells with a buffer solution, a peroxidase-labeled R10G antibody (0.1 μg / ml) was added to the wells, and the mixture was reacted at 37 ° C. for 1 hour. After washing the wells with a buffer solution, 100 μl of a substrate solution (TMB, Wako Pure Chemical Industries, Ltd.) was added to the wells, and the reaction was carried out at room temperature for 30 minutes. After stopping the reaction by adding 1M sulfuric acid to the wells, the absorbance (450 nm) of each well was measured. For comparison, instead of R10G antibody, rABA lectin (derived from Agaricus bisporus, see Patent Document 2), anti-SSEA3 antibody, anti-SSEA4 antibody, anti-Tra-1-60 antibody, anti-Tra-1-81 antibody, anti-podocalyxin antibody. Was used at the same concentration.

(1)R10G抗体:低硫酸化ケラタン抗体(コスモ・バイオ株式会社、RIT−M001)。ポドカリキシン上の硫酸化度の低いケラタン硫酸(低硫酸化ケラタン硫酸)を認識する。
(2)rABAレクチン:アミノ酸配列を配列番号2に示す(RCSB Protein Data Bank Accession No. 1Y2Vも参照)。
(3)抗SSEA3抗体:ラットモノクローナルIgM抗体(Millipore、MAB4303)。ヒトEC細胞(Tetracarcinoma stem cell)、ヒトEG細胞(Embryonic germ cell)及びヒトES細胞の表面に発現するSSEA3抗原(Stage-specific embryonic antigen 3)を認識する。
(4)抗SSEA4抗体:マウスモノクローナルIgG抗体(Millipore、MAB4304)。ヒトEC細胞、ヒトEG細胞及びヒトES細胞の表面に発現するSSEA4抗原(Stage-specific embryonic antigen 4)を認識する。
(5)抗Tra−1−60抗体:マウスモノクローナルIgM抗体(Millipore、MAB4360)。ポドカリキシン上のケラタン硫酸を認識する(非特許文献5,6参照)。
(6)抗Tra−1−81抗体:マウスモノクローナルIgM抗体(Millipore、MAB4381)。ポドカリキシン上のケラタン硫酸を認識する(非特許文献5,6参照)。
(7)抗ポドカリキシン抗体:ヤギポリクローナルIgG抗体(R&D System。AF1658)。ヒトポドカリキシンを認識する。
(1) R10G antibody: hyposulfated keratan antibody (Cosmo Bio Co., Ltd., RIT-M001). Recognize low-sulfation keratan sulfate (low-sulfated keratan sulfate) on podocalyxin.
(2) rABA lectin: The amino acid sequence is shown in SEQ ID NO: 2 (see also RCSB Protein Data Bank Accession No. 1Y2V).
(3) Anti-SSEA3 antibody: Rat monoclonal IgM antibody (Millipore, MAB4303). It recognizes SSEA3 antigen (Stage-specific embryonic antigen 3) expressed on the surface of human EC cells (Tetracarcinoma stem cells), human EG cells (Embryonic germ cells), and human ES cells.
(4) Anti-SSEA4 antibody: Mouse monoclonal IgG antibody (Millipore, MAB4304). It recognizes the SSEA4 antigen (Stage-specific embryonic antigen 4) expressed on the surface of human EC cells, human EG cells, and human ES cells.
(5) Anti-Tra-1-60 antibody: Mouse monoclonal IgM antibody (Millipore, MAB4360). Recognize keratan sulfate on podocalyxin (see Non-Patent Documents 5 and 6).
(6) Anti-Tra-1-81 antibody: Mouse monoclonal IgM antibody (Millipore, MAB4381). Recognize keratan sulfate on podocalyxin (see Non-Patent Documents 5 and 6).
(7) Anti-podocalyxin antibody: Goat polyclonal IgG antibody (R & D System. AF1658). Recognize human podocalyxin.

結果を図1及び図2に示す。rABAレクチンを用いた場合には、希釈倍率40倍(図中、dilution factor:0.025)以下の高希釈溶液を用いた場合にバックグランドの影響が顕著で、定量性の低下が生じた(線形回帰直線の決定係数:0.6387)。その原因として、培地中の血清成分と、rBC2LCNレクチン及びrABAレクチンとの非特異的な結合によるバックグランドの上昇が考えられた。 The results are shown in FIGS. 1 and 2. When rABA lectin was used, the influence of the background was remarkable when a highly diluted solution having a dilution factor of 40 times (in the figure, dilution factor: 0.025) or less was used, and the quantitativeness was lowered (). The coefficient of determination of the linear regression line: 0.6387). It was considered that the cause was an increase in background due to non-specific binding of serum components in the medium to rBC2LCN lectins and rABA lectins.

一方、R10G抗体を用いた場合には、いずれの希釈倍率においても上記のような非特異的な結合によるバックグランドの上昇はみられず、高精度な定量測定が可能であった(線形回帰直線の決定係数:0.9988)。 On the other hand, when the R10G antibody was used, the background did not increase due to the non-specific binding as described above at any dilution ratio, and highly accurate quantitative measurement was possible (linear regression line). The coefficient of determination of: 0.9988).

また、抗SSEA3抗体及び抗SSEA4抗体は、抗原との反応性の欠如のため、測定は不能であった(図2参照)。ポドカリキシン上のケラタン硫酸を認識する抗Tra−1−60抗体及び抗Tra−1−81抗体を用いた場合にも、抗原にほとんど結合しないか全く結合せず、測定は不能であった(図2参照)。その原因として、以下が考えられた。
抗Tra−1−60抗体及び抗Tra−1−81抗体は、いずれもポドカリキシン上のケラタン硫酸をエピトープとする抗体であるが、「Galβ1−3GlcNAcβ1−3Galβ1−4GlcNAc」をエピトープに含むとされており(非特許文献7参照)、「Gal−GlcNAc(6S)」又はそのタンデムリピートをエピトープに含むとされるR−10G抗体とはエピトープが異なる。
抗Tra−1−60抗体及び抗Tra−1−81抗体は、高硫酸化ケラタン硫酸をエピトープとするとされており、低硫酸化ケラタン硫酸をエピトープとするR−10G抗体とはエピトープが異なる。
抗Tra−1−60抗体及び抗Tra−1−81抗体は、IgG抗体であるR−10G抗体とは異なり、IgM抗体である。
In addition, anti-SSEA3 antibody and anti-SSEA4 antibody could not be measured due to lack of reactivity with the antigen (see FIG. 2). Even when the anti-Tra-1-60 antibody and the anti-Tra-1-81 antibody that recognize keratan sulfate on podocalyxin were used, they hardly or not bound to the antigen, and the measurement was impossible (Fig. 2). reference). The following were considered as the causes.
The anti-Tra-1-60 antibody and the anti-Tra-1-81 antibody are both antibodies using keratan sulfate on podocalyxin as an epitope, but are said to contain "Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAc" as an epitope. (See Non-Patent Document 7), the epitope is different from that of the R-10G antibody, which is said to contain "Gal-GlcNAc (6S)" or its tandem repeat in the epitope.
The anti-Tra-1-60 antibody and the anti-Tra-1-81 antibody are said to have hypersulfated keratan sulfate as an epitope, and have different epitopes from the R-10G antibody having hyposulfated keratan sulfate as an epitope.
The anti-Tra-1-60 antibody and the anti-Tra-1-81 antibody are IgM antibodies, unlike the R-10G antibody, which is an IgG antibody.

さらに、抗ポドカリキシン抗体(R&D System。AF1658)を用いた場合にも、測定は不能であった。その原因として、同抗体は、ミエローマ細胞で発現させたリコンビナントポドカリキシンを抗原に用いて調製されたものであるため、幹細胞に発現するポドカリキシンに対して十分な反応性を有さなかったことが考えられる。幹細胞での発現に由来する、ポドカリキシンの特異的な構造(例えば、(式1)及び(式2)の糖鎖構造)によって、同抗体のエピトープへの結合が阻害された可能性が考えられる。 Furthermore, measurement was not possible when an anti-podocalyxin antibody (R & D System. AF1658) was used. The reason for this is that the antibody was prepared using recombinant podocalyxin expressed in myeloma cells as an antigen, and therefore did not have sufficient reactivity with podocalyxin expressed in stem cells. Conceivable. It is possible that the specific structure of podocalyxin (eg, the sugar chain structure of (formula 1) and (formula 2)) derived from its expression in stem cells inhibited the binding of the antibody to the epitope.

図3に、iPS細胞の培養時の血清濃度を2%から1%、5%、10%又は20%に変更した以外は上記と同様にして、培養上清希釈溶液を用いたポドカリキシンの定量測定を行った結果を示す。血清濃度1%〜20%の範囲において良好な定量性が確認できた。 FIG. 3 shows quantitative measurement of podocalyxin using a diluted culture supernatant solution in the same manner as above except that the serum concentration of iPS cells during culture was changed from 2% to 1%, 5%, 10% or 20%. The result of the above is shown. Good quantification was confirmed in the serum concentration range of 1% to 20%.

[試験例2:レクチン−抗体サンドイッチ法による幹細胞の検出下限量の算出]
異なる種類の培地で培養したiPS細胞(201B7株)の培養上清の希釈溶液を用いてポドカリキシンの定量的な測定を行った。培地には以下の4種類を用いた。各培地でiPS細胞(201B7株)を24時間培養後、回収した培養上清をそれぞれの培地で希釈し、希釈溶液を得た。
StemSure hPSC培地Δ(和光純薬工業株式会社)
mTeSR1培地(STEMCELL Technologies)
MEF−CM(Mouse Embryonic Fibroblast−conditioned Medium、マウス胚性繊維芽細胞を培養した培養上清)
TeSR−E8培地(STEMCELL Technologies)
[Test Example 2: Calculation of the lower limit of detection of stem cells by the lectin-antibody sandwich method]
Quantitative measurement of podocalyxin was performed using a diluted solution of the culture supernatant of iPS cells (201B7 strain) cultured in different types of media. The following four types of media were used. After culturing iPS cells (201B7 strain) in each medium for 24 hours, the collected culture supernatant was diluted with each medium to obtain a diluted solution.
StemSure hPSC Medium Δ (Wako Pure Chemical Industries, Ltd.)
mTeSR1 medium (STEMCELL Technologies)
MEF-CM (Mouse Embryonic Fibroblast-conditioned Medium, culture supernatant obtained by culturing mouse embryonic fibroblasts)
TeSR-E8 Medium (STEMCELL Technologies)

ストレプトアビジンプレートのウェルにビオチン化rBC2LCNレクチン(0.3μg/ml)を加え、室温(20℃〜25℃)で1時間、固定化した。ウェルを緩衝液(1%TritonX−100、リン酸緩衝液)で洗浄後、培養上清の希釈溶液50μlをウェルに添加し、室温で1時間反応させた。 Biotinylated rBC2LCN lectin (0.3 μg / ml) was added to the wells of the streptavidin plate and immobilized at room temperature (20 ° C. to 25 ° C.) for 1 hour. After washing the wells with a buffer solution (1% Triton X-100, phosphate buffer solution), 50 μl of a diluted solution of the culture supernatant was added to the wells, and the mixture was reacted at room temperature for 1 hour.

ウェルを緩衝液で洗浄後、ペルオキシダーゼを標識したR10G抗体(0.5μg/ml)をウェルに添加し、室温で1時間反応させた。ウェルを緩衝液で洗浄後、基質溶液(TMB)50μlをウェルに添加し、室温で30分反応させた。0.5M硫酸をウェルに添加して反応を停止させた後、各ウェルの吸光度(450nm−650nm)を測定した。 After washing the wells with a buffer solution, a peroxidase-labeled R10G antibody (0.5 μg / ml) was added to the wells, and the mixture was reacted at room temperature for 1 hour. After washing the wells with buffer, 50 μl of substrate solution (TMB) was added to the wells and allowed to react at room temperature for 30 minutes. After stopping the reaction by adding 0.5 M sulfuric acid to the wells, the absorbance (450 nm-650 nm) of each well was measured.

結果を図4〜図7に示す。図中、横軸は、培養上清の希釈倍率を示し、培地1mlあたりの培養細胞数が10,000個となる培養条件で得られた培養上清の希釈倍率を「培地1mlあたりの培養細胞相当数」で示す。すなわち、「10×10cells/ml」が希釈なしを意味し、例えば「5.0×10cells/ml」は2倍希釈、「2.5×10cells/ml」は4倍希釈、「1.25×10cells/ml」は8倍希釈を意味する。図中、線形回帰直線及び回帰式は、決定係数(R2乗)が最も良好な(1.0に近い)ときの直線及び式である。The results are shown in FIGS. 4 to 7. In the figure, the horizontal axis indicates the dilution ratio of the culture supernatant, and the dilution ratio of the culture supernatant obtained under the culture condition that the number of cultured cells per 1 ml of the medium is 10,000 is "cultured cells per 1 ml of medium". It is indicated by "equivalent number". That is, "10 x 10 3 cells / ml" means no dilution, for example, "5.0 x 10 3 cells / ml" is diluted 2-fold, and "2.5 x 10 3 cells / ml" is diluted 4-fold. , "1.25 x 10 3 cells / ml" means 8-fold dilution. In the figure, the linear regression line and the regression equation are the straight line and the equation when the coefficient of determination (R-squared) is the best (close to 1.0).

4種類の培地のいずれを用いた場合も、高希釈倍率においても良好な定量性が得られた。本発明に係るレクチン−抗体サンドイッチ法が、培地の種類の影響を受けないことが確認できた。 When any of the four types of media was used, good quantification was obtained even at a high dilution ratio. It was confirmed that the lectin-antibody sandwich method according to the present invention is not affected by the type of medium.

回帰式に基づき、検出下限値となる希釈倍率を求め、検出下限値を「培地1mlあたりの培養細胞相当数」で算出した結果を「表1」に示す。検出下限値は、培地のみの吸光度(吸光度の平均値に標準偏差の3.3倍を加算した値)を算出し、当該吸光度を示す希釈倍率を回帰式から求めた。 Based on the regression equation, the dilution ratio that is the lower limit of detection was obtained, and the result of calculating the lower limit of detection by "the number of cultured cells per 1 ml of medium" is shown in "Table 1". For the lower limit of detection, the absorbance of the medium alone (the value obtained by adding 3.3 times the standard deviation to the average value of the absorbance) was calculated, and the dilution ratio indicating the absorbance was obtained from the regression equation.

検出下限の「培地1mlあたりの培養細胞相当数」は、27〜321cell/mlであった。従来技術に係るrBC2LCNレクチンとrABAレクチンを組み合せた「レクチン−レクチンサンドイッチ法」での検出下限は、623〜4,753cell/mlと報告されている(非特許文献8参照)。rBC2LCNレクチンと低硫酸化ケラタン抗体R10G抗体を組み合わせた本発明に係る「レクチン−抗体サンドイッチ法」は、従来の「レクチン−レクチンサンドイッチ法」に比して、幹細胞を一層高感度に検出できることが明らかとなった。 The lower limit of detection, "equivalent number of cultured cells per 1 ml of medium", was 27 to 321 cell / ml. It has been reported that the lower limit of detection in the "lectin-lectin sandwich method" combining rBC2LCN lectin and rABA lectin according to the prior art is 623 to 4,753 cell / ml (see Non-Patent Document 8). It is clear that the "lectin-antibody sandwich method" according to the present invention, which combines rBC2LCN lectin and a hyposulfated keratin antibody R10G antibody, can detect stem cells with higher sensitivity than the conventional "lectin-lectin sandwich method". It became.

[試験例3:レクチン−抗体サンドイッチ法による幹細胞の検出2]
本発明に係るレクチン−抗体サンドイッチ法による幹細胞の検出方法を評価するため、iPS細胞の培養上清の希釈溶液を用いてポドカリキシンの定量的な測定を行った。測定は、スライドガラスを用いたアレイ検出系で行った。
[Test Example 3: Detection of stem cells by lectin-antibody sandwich method 2]
In order to evaluate the method for detecting stem cells by the lectin-antibody sandwich method according to the present invention, quantitative measurement of podocalyxin was performed using a diluted solution of the culture supernatant of iPS cells. The measurement was performed by an array detection system using a slide glass.

非接触型スポッター(MicroSys4000;Genomic Solutions)を用いて、rBC2LCNレクチンをエポキシ活性化スライドグラスに固定化した。試験例1と同様にして調製した培養上清の希釈溶液を、rBC2LCNレクチンを固定化したスライドグラスに滴下し、20℃で一晩反応させた。洗浄後、R10G抗体(1μg/mL)を滴下し、20℃で1時間反応させた。次に、Cy3標識抗マウスIgG抗体(JacksonImmunoResearch、1μg/mL)を滴下し、20℃で1時間反応させた。洗浄後、エバネッセント波励起蛍光型スキャナー(Bio−REX Scan 200、Rexxam)でスキャンした。 A non-contact spotter (MicroSystems 4000; Genomic Solutions) was used to immobilize rBC2LCN lectins on epoxy activated glass slides. A diluted solution of the culture supernatant prepared in the same manner as in Test Example 1 was added dropwise to a slide glass on which rBC2LCN lectin was immobilized, and the mixture was reacted at 20 ° C. overnight. After washing, R10G antibody (1 μg / mL) was added dropwise, and the mixture was reacted at 20 ° C. for 1 hour. Next, a Cy3-labeled anti-mouse IgG antibody (Jackson ImmunoResearch, 1 μg / mL) was added dropwise and reacted at 20 ° C. for 1 hour. After washing, it was scanned with an evanescent wave-excited fluorescence scanner (Bio-REX Scan 200, Rexxam).

結果を図8に示す。図中、横軸は、図1〜4と同様に、培養上清の希釈倍率を「培地1mlあたりの培養細胞相当数」で示す。図中、線形回帰直線及び回帰式は、決定係数(R2乗)が最も良好な(1.0に近い)ときの直線及び式である。 The results are shown in FIG. In the figure, the horizontal axis indicates the dilution ratio of the culture supernatant as "the number of cultured cells per 1 ml of the medium" as in FIGS. 1 to 4. In the figure, the linear regression line and the regression equation are the straight line and the equation when the coefficient of determination (R-squared) is the best (close to 1.0).

いずれの希釈倍率においても非特異的な結合によるバックグランドはみられず、高精度な定量測定が可能であった(線形回帰直線の決定係数:0.9997)。 No background due to non-specific binding was observed at any of the dilution ratios, and highly accurate quantitative measurement was possible (coefficient of determination of linear regression line: 0.9997).

試験例1〜3の結果から、rBC2LCNレクチンに低硫酸化ケラタン抗体R10G抗体を組み合わせたレクチン−抗体サンドイッチ法によれば、血清含有培地で培養された細胞の培養上清を用いた場合にも、ポドカリキシンを高精度に検出することができ、高感度な幹細胞検出が可能となることが明らかとなった。なお、mTeSR1培地で24時間培養したiPS細胞(201B7株)より、市販のキット(CelLytic MEM Protein Extraction Kit, Sigma-Aldrich)を用いて得られた水溶性分画を用いて同様の試験を行った場合も、培養上清を用いた場合と同様の結果が得られた。 From the results of Test Examples 1 to 3, according to the lectin-antibody sandwich method in which rBC2LCN lectin was combined with a hyposulfated keratane antibody R10G antibody, even when the culture supernatant of cells cultured in a serum-containing medium was used. It has been clarified that podocalyxin can be detected with high accuracy and highly sensitive stem cell detection is possible. A similar test was performed using a water-soluble fraction obtained from iPS cells (201B7 strain) cultured in mTeSR1 medium for 24 hours using a commercially available kit (CelLytic MEM Protein Extraction Kit, Sigma-Aldrich). In this case, the same results as when the culture supernatant was used were obtained.

配列番号1:BC2LCNレクチンのアミノ酸配列
配列番号2:ABAレクチンのアミノ酸配列
SEQ ID NO: 1: Amino acid sequence of BC2LCN lectin SEQ ID NO: 2: Amino acid sequence of ABA lectin

Claims (12)

細胞の培養上清又は溶解物に含まれるポドカリキシンを検出することにより、幹細胞を検出する方法であって、
血清成分を含む、培養上清又は溶解物と、下記(式1):
(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
又は下記(式2):
(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
で表される糖鎖に結合性を有するレクチンと、ハイブリドーマR−10G(寄託番号:FERM BP−11301)が産生する抗体又は該抗体と競合する抗体と、を接触させて、前記レクチンとポドカリキシンと前記抗体とから構成される複合体を形成させる手順と、
前記複合体を検出する手順と、を含む方法。
A method for detecting stem cells by detecting podocalyxin contained in a cell culture supernatant or lysate.
Culture supernatant or lysate containing serum components and the following (Formula 1):
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
Or the following (Equation 2):
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
The lectin having a binding property to the sugar chain represented by the above is brought into contact with an antibody produced by hybridoma R-10G (deposit number: FERM BP-11301) or an antibody competing with the antibody to obtain the lectin and podocalyxin. The procedure for forming a complex composed of the antibody and
A method comprising a procedure for detecting the complex.
前記抗体が、Gal−GlcNAc(6S)又はそのタンデムリピートをエピトープに含む、請求項1に記載の方法。 The method of claim 1, wherein the antibody comprises Gal-GlcNAc (6S) or a tandem repeat thereof in an epitope. 前記レクチンが、
配列番号1に示されるアミノ酸配列を含んでなるタンパク質、又は
当該アミノ酸配列の1若しくは数個のアミノ酸が欠失、置換、挿入、もしくは付加されたアミノ酸配列を含んでなり、前記(式1)又は(式2)で表される糖鎖に結合性を有するタンパク質である、請求項1又は2に記載の方法。
The lectin
A protein comprising the amino acid sequence shown in SEQ ID NO: 1, or an amino acid sequence in which one or several amino acids of the amino acid sequence are deleted, substituted, inserted, or added, as described in (Formula 1) or The method according to claim 1 or 2 , which is a protein having a binding property to a sugar chain represented by (formula 2).
前記培養上清又は溶解物と前記レクチンとを接触させて、該レクチンと前記培養上清又は溶解物に含まれるポドカリキシンとから構成される第一の複合体を形成させる手順と、
第一の複合体と前記抗体とを接触させて、前記レクチンとポドカリキシンと該抗体とから構成される第二の複合体を形成させる手順と、を含む、請求項1〜のいずれか一項に記載の方法。
A procedure for contacting the culture supernatant or lysate with the lectin to form a first complex composed of the lectin and the podocalyxin contained in the culture supernatant or lysate.
Any one of claims 1 to 3 , comprising a procedure of contacting the first complex with the antibody to form a second complex composed of the lectin, podocalyxin and the antibody. The method described in.
前記レクチンが不溶性担体に結合される、請求項記載の方法。 The method of claim 4 , wherein the lectin is bound to an insoluble carrier. 細胞の培養上清又は溶解物に含まれる下記(式1):
(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
又は下記(式2):
(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
で表される糖鎖を検出することにより、幹細胞を検出する方法であって、
血清成分を含む、培養上清又は溶解物と、前記糖鎖に結合性を有するレクチンと、ハイブリドーマR−10G(寄託番号:FERM BP−11301)が産生する抗体又は該抗体と競合する抗体と、を接触させて、前記レクチンと前記糖鎖と前記抗体とを含んでなる複合体を形成させる手順と、
前記複合体を検出する手順と、を含む方法。
The following (Formula 1) contained in the cell culture supernatant or lysate:
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
Or the following (Equation 2):
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
It is a method of detecting stem cells by detecting the sugar chain represented by.
A culture supernatant or lysate containing a serum component, a lectin having a binding property to the sugar chain, an antibody produced by hybridoma R-10G (deposit number: FERM BP-11301), or an antibody competing with the antibody . To form a complex containing the lectin, the sugar chain, and the antibody.
A method comprising a procedure for detecting the complex.
前記複合体の有無又は検出量に基づいて前記細胞に含まれる幹細胞の有無又は存在量を判定する手順をさらに含む、請求項1〜のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6 , further comprising a procedure for determining the presence / absence or abundance of stem cells contained in the cells based on the presence / absence or detection amount of the complex. 前記複合体の有無又は検出量に基づいて前記細胞の分化状態を判定する手順をさらに含む、請求項1〜のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6 , further comprising a procedure for determining the differentiation state of the cells based on the presence or absence of the complex or the detected amount. 細胞の培養上清又は溶解物に含まれるポドカリキシンを検出する方法であって、
血清成分を含む、培養上清又は溶解物と、下記(式1):
(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
又は下記(式2):
(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
で表される糖鎖に結合性を有するレクチンと、ハイブリドーマR−10G(寄託番号:FERM BP−11301)が産生する抗体又は該抗体と競合する抗体と、を接触させて、前記レクチンとポドカリキシンと前記抗体とから構成される複合体を形成させる手順と、
前記複合体を検出する手順と、を含む方法。
A method for detecting podocalyxin contained in a cell culture supernatant or lysate.
Culture supernatant or lysate containing serum components and the following (Formula 1):
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
Or the following (Equation 2):
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
The lectin having a binding property to the sugar chain represented by the above is brought into contact with an antibody produced by hybridoma R-10G (deposit number: FERM BP-11301) or an antibody competing with the antibody to obtain the lectin and podocalyxin. The procedure for forming a complex composed of the antibody and
A method comprising a procedure for detecting the complex.
血清成分を含む、細胞の培養上清又は溶解物に含まれるポドカリキシンを検出することにより、幹細胞を検出するためのキットであって、
下記(式1):
(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
又は下記(式2):
(R1はOH基、若しくは任意の糖鎖を表す。R2はOH基、又は任意の糖鎖、タンパク質、脂質、若しくは他の分子を表す。)
で表される糖鎖に結合性を有するレクチンと、ハイブリドーマR−10G(寄託番号:FERM BP−11301)が産生する抗体又は該抗体と競合する抗体と、を含むキット。
A kit for detecting stem cells by detecting podocalyxin contained in a cell culture supernatant or lysate containing a serum component .
The following (Equation 1):
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
Or the following (Equation 2):
(R1 represents an OH group or any sugar chain; R2 represents an OH group or any sugar chain, protein, lipid, or other molecule.)
A kit containing a lectin having a binding property to a sugar chain represented by the above, an antibody produced by hybridoma R-10G (deposit number: FERM BP-11301), or an antibody that competes with the antibody .
前記抗体が、Gal−GlcNAc(6S)又はそのタンデムリピートをエピトープに含む、請求項10に記載のキット。 The kit according to claim 10 , wherein the antibody comprises Gal-GlcNAc (6S) or a tandem repeat thereof in an epitope. 前記レクチンが不溶性担体に結合されている、請求項10又は11に記載のキット。 The kit according to claim 10 or 11 , wherein the lectin is bound to an insoluble carrier.
JP2017506034A 2015-03-17 2015-12-21 Methods and kits for detecting stem cells Active JP6754932B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015053802 2015-03-17
JP2015053802 2015-03-17
PCT/JP2015/085685 WO2016147514A1 (en) 2015-03-17 2015-12-21 Method and kit for detecting stem cell

Publications (2)

Publication Number Publication Date
JPWO2016147514A1 JPWO2016147514A1 (en) 2017-12-28
JP6754932B2 true JP6754932B2 (en) 2020-09-16

Family

ID=56919838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017506034A Active JP6754932B2 (en) 2015-03-17 2015-12-21 Methods and kits for detecting stem cells

Country Status (6)

Country Link
US (1) US10539553B2 (en)
EP (1) EP3273241B1 (en)
JP (1) JP6754932B2 (en)
KR (1) KR20170128457A (en)
CN (1) CN108064342A (en)
WO (1) WO2016147514A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201841935A (en) * 2017-04-11 2018-12-01 國立研究開發法人產業技術總合研究所 Method of lectin immobilization
JP2020025535A (en) * 2018-08-13 2020-02-20 東ソー株式会社 Fucose binding protein, production method thereof and use thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122410A (en) * 2000-10-27 2008-05-29 Masanori Hara Method of diagnosing nephropathy
WO2002037099A1 (en) * 2000-10-27 2002-05-10 International Reagents Corporation Method of diagnosing nephropathy
ATE488588T1 (en) 2003-03-10 2010-12-15 Japan Science & Tech Agency METHOD FOR LABELING MESENCHYMAL STEM CELLS USING VARIOUS MARKERS
SG160248A1 (en) 2008-09-18 2010-04-29 Agency Science Tech & Res Use of novel monoclonal antibodies targeting human embryonic stem cells to characterize and kill induced pluripotent stem cells
CN104634974B (en) * 2009-03-05 2017-08-08 独立行政法人产业技术综合研究所 Detection, the discriminating conduct of intrahepatic cholangiocarcinoma
WO2012147992A1 (en) * 2011-04-25 2012-11-01 The Ritsumeikan Trust ANTI-iPS/ES CELL-SPECIFIC ANTIBODY AND USE THEREOF
JP5846599B2 (en) * 2011-08-11 2016-01-20 国立研究開発法人産業技術総合研究所 Galactose 6 sulfate binding protein
KR101924673B1 (en) * 2011-11-01 2018-12-03 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Undifferentiated cell detection method and complex carbohydrate detection method
JP6176738B2 (en) 2012-02-28 2017-08-09 国立研究開発法人産業技術総合研究所 Method for cell differentiation determination, cell separation, and production of inducible pluripotent stem cells and differentiated cells
WO2014098243A1 (en) * 2012-12-21 2014-06-26 学校法人立命館 iPS/ES CELL-SPECIFIC ANTIBODY HAVING CYTOTOXICITY TO TARGET CELLS AND USE THEREOF

Also Published As

Publication number Publication date
EP3273241A1 (en) 2018-01-24
KR20170128457A (en) 2017-11-22
JPWO2016147514A1 (en) 2017-12-28
US20180038847A1 (en) 2018-02-08
EP3273241B1 (en) 2019-10-30
CN108064342A (en) 2018-05-22
WO2016147514A1 (en) 2016-09-22
US10539553B2 (en) 2020-01-21
EP3273241A4 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
KR101924673B1 (en) Undifferentiated cell detection method and complex carbohydrate detection method
Diaz et al. Sensitive and specific detection of the non-human sialic Acid N-glycolylneuraminic acid in human tissues and biotherapeutic products
US10000734B2 (en) Method for evaluating cell populations
US20100047827A1 (en) Novel specific cell binders
JP6733889B2 (en) Cell differentiation potential determination method
Kitajima et al. Advanced technologies in sialic acid and sialoglycoconjugate analysis
JP6754932B2 (en) Methods and kits for detecting stem cells
Hirabayashi et al. A novel probe as surface glycan marker of pluripotent stem cells: research outcomes and application to regenerative medicine
AU2008223754B2 (en) Novel acidic glycan markers of human cells
JP2016205827A (en) Cancer detection method
KR20190126052A (en) Method for forming a complex of a sugar chain with a lectin
WO2019221245A1 (en) Novel liver cancer marker
CN116134314A (en) Novel cancer biomarkers in pancreatic cancer or malignant pancreatic ductal papillary mucous tumors
KR20130135590A (en) Lawsonia intracellularis-specific monoclonal antibody and hybridoma cell producing the same
JP2018155613A (en) Method for detecting sugar chain of antibody
KR20080013057A (en) Immunohistochemical staining method using gold-conjugated secondary antibody
Tateno et al. Discovery and Applications of a Novel Human Pluripotent Stem Cell-Specific Lectin Probe rBC2LCN
Chourb Enhanced immuno-detection of breast cancer biomarkers: Shed extracellular domain of Her-2/neu and CA 15-3
Class et al. Patent application title: NOVEL SPECIFIC CELL BINDERS

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200507

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200710

R150 Certificate of patent or registration of utility model

Ref document number: 6754932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250