JP6750555B2 - Non-diaphragm type beam-column joint structure - Google Patents

Non-diaphragm type beam-column joint structure Download PDF

Info

Publication number
JP6750555B2
JP6750555B2 JP2017085933A JP2017085933A JP6750555B2 JP 6750555 B2 JP6750555 B2 JP 6750555B2 JP 2017085933 A JP2017085933 A JP 2017085933A JP 2017085933 A JP2017085933 A JP 2017085933A JP 6750555 B2 JP6750555 B2 JP 6750555B2
Authority
JP
Japan
Prior art keywords
column
steel pipe
connection
reduced thickness
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017085933A
Other languages
Japanese (ja)
Other versions
JP2018184742A (en
Inventor
中川 佳
佳 中川
匠 石井
匠 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017085933A priority Critical patent/JP6750555B2/en
Publication of JP2018184742A publication Critical patent/JP2018184742A/en
Application granted granted Critical
Publication of JP6750555B2 publication Critical patent/JP6750555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、外力が加わった場合における柱溶接部の破断を防止することのできるノンダイアフラム型の柱梁接合構造体に関する。 The present invention relates to a non-diaphragm type column-beam joint structure capable of preventing breakage of a column welded portion when an external force is applied.

ダイアフラム(例えば、外ダイアフラム、内ダイアフラム、及び通しダイアフラム等)を用いずに柱と梁とが接合された柱梁接合構造体(仕口構造体)として、ノンダイアフラム型の柱梁接合構造体(ノンダイアフラム仕口)が知られている。ノンダイアフラム仕口では、上下に分かれた柱と柱との間に仕口用鋼管を介在させ、仕口用鋼管の側面に梁を取り付ける。柱と仕口用鋼管、及び仕口用鋼管と梁とは、それぞれ溶接により接合される。 A non-diaphragm type column-beam joint structure (portion structure) in which a column and a beam are joined without using a diaphragm (for example, an outer diaphragm, an inner diaphragm, and a through diaphragm) Non-diaphragm connection) is known. In the non-diaphragm joint, a steel pipe for connection is interposed between a column that is divided into upper and lower columns, and a beam is attached to the side surface of the steel pipe for connection. The column and the steel pipe for connection, and the steel pipe for connection and the beam are respectively joined by welding.

ノンダイアフラム仕口は、ダイアフラムを用いた仕口構造体に比べて、溶接線の低減によりコストを削減できたり、梁の取付自由度を拡大できたりするといった利点がある。一方、ノンダイアフラム仕口では、ダイアフラムを用いていないことから、梁のフランジ部が取り付く箇所において仕口用鋼管の管壁の面外変形に起因する局部変形が起こりやすいという問題がある。この局部変形に関しては、従来多くの研究が行われている。 The non-diaphragm joint has an advantage over the joint structure using the diaphragm in that the welding line can be reduced in cost and the beam can be attached more freely. On the other hand, in the non-diaphragm joint, since no diaphragm is used, there is a problem that local deformation is likely to occur due to out-of-plane deformation of the pipe wall of the steel pipe for joint, at the position where the flange portion of the beam is attached. Many studies have been conducted on this local deformation.

非特許文献1では、降伏線理論から導いた局部変形の耐力式が提案され、実験で求めた耐力と耐力式を用いた計算結果とが良好に整合することが報告されている。本知見をもとに、非特許文献2では、梁が取り付く仕口用鋼管の板厚を柱の板厚よりも増厚することで、所要の耐力、剛性を実現したノンダイアフラム仕口が提案されている。これらの研究成果は、非特許文献3に反映され、現在、ノンダイアフラム仕口は広く利用可能な構造となっている。 Non-Patent Document 1 proposes a proof formula of local deformation derived from the yield line theory, and reports that the proof stress obtained by experiments and the calculation result using the proof formula are well matched. Based on this finding, Non-Patent Document 2 proposes a non-diaphragm joint that achieves the required yield strength and rigidity by increasing the plate thickness of the steel pipe for connection to which the beam is attached to be greater than the plate thickness of the column. Has been done. The results of these studies are reflected in Non-Patent Document 3, and at present, the non-diaphragm joint has a widely usable structure.

上記のように、ノンダイアフラム仕口においては、仕口用鋼管の局部変形を抑えるために、仕口用鋼管の板厚を増厚することが広く行われている。 As described above, in the non-diaphragm joint, it is widely practiced to increase the plate thickness of the joint steel pipe in order to suppress local deformation of the joint steel pipe.

森田耕次、他:箱形断面柱−H形断面はり接合部のダイアフラム補強に関する研究、日本建築学会構造系論文報告集,p100-110, 1988Koji Morita, et al.: Study on diaphragm reinforcement of beam-column joints with box-shaped cross-section, H-shaped cross-section, Proceedings of Architectural Institute of Japan, p100-110, 1988 村上行夫、他:増厚補強型柱・梁接合部を用いた半剛接架構設計法に関する研究、鋼構造論文集、第1巻4号、1994.12Yukio Murakami, et al.: Study on Semi-rigid Frame Design Method Using Thickened Reinforced Column-Beam Joints, Steel Structures, Vol. 1, No. 4, 1994.12. 日本建築学会、鋼構造接合部設計指針、2012.3Architectural Institute of Japan, Steel structure joint design guideline, 2012.3.

特開2010−242290JP, 2010-242290, A 特開2007−146565JP 2007-146565A

一方で、ノンダイアフラム仕口においては、柱と仕口用鋼管との間における柱溶接部における靭性や強度が、柱や仕口用鋼管の母材の靭性や強度と比較して劣る。よって、例えば図5に示すように(詳細については後述する)、ノンダイアフラム仕口において最初に柱が降伏するパターンの場合に、溶接部の降伏及び脆性破壊(破断)が先行し、仕口構造体の崩壊を招きやすいという問題があることが見出された。建築物は、外力を加えられた際に損傷は受けても崩壊しないことが重要であり、ノンダイアフラム仕口においても構造体の崩壊を防止することが求められる。 On the other hand, in the non-diaphragm joint, the toughness and strength at the column welded portion between the column and the joint steel pipe are inferior to the toughness and strength of the base material of the column and the joint steel pipe. Therefore, for example, as shown in FIG. 5 (details will be described later), in the case of a pattern in which a column yields first in a non-diaphragm joint, yielding and brittle fracture (breakage) of the weld portion precede, and the joint structure It has been found that there is a problem that it tends to cause body collapse. It is important that a building does not collapse even if it receives damage when external force is applied, and it is required to prevent the collapse of the structure even in the non-diaphragm joint.

以下、ノンダイアフラム仕口における溶接部に関わる特許文献を概観する。 Hereinafter, the patent documents relating to the welded portion in the non-diaphragm joint will be reviewed.

特許文献1では、梁フランジの取付に関して、裏当て金の形状を工夫することにより、健全な梁フランジ溶接部を得る方法が提案されている。しかし、特許文献1では、柱と仕口用鋼管との溶接部を健全に得る方法については言及されていない。 Patent Document 1 proposes a method for obtaining a sound beam flange welded portion by devising the shape of the backing plate for attaching the beam flange. However, Patent Document 1 does not mention a method for obtaining a welded portion between a column and a steel pipe for connection soundly.

特許文献2では、ノンダイアフラム仕口に梁を偏心させて取り付ける場合の耐力計算式が提案されている。特許文献2の図2によれば、柱と仕口用鋼管との間には溶接部が存在せず、製造コストが高い高周波誘導加熱法を用いて柱と仕口用鋼管とを接続しているものと推察される。 Patent Document 2 proposes a yield strength calculation formula in the case where a beam is eccentrically attached to a non-diaphragm joint. According to FIG. 2 of Patent Document 2, there is no welded portion between the column and the steel pipe for connection, and the column and the steel pipe for connection are connected by using the high frequency induction heating method which is high in manufacturing cost. It is presumed that it is present.

以上のように、従来技術では、柱と仕口用鋼管との間における溶接部として通常の溶接方法を適用することが想定されており、いずれも柱溶接部を起点とした構造体の崩壊を招きやすいという問題点を内包している。 As described above, in the conventional technology, it is assumed that a normal welding method is applied as a welded portion between a column and a steel pipe for connection, and in both cases, collapse of the structure starting from the column welded portion is caused. The problem is that it is easy to invite.

本発明は上記の問題点に鑑みて完成されたものであり、外部から力を加えられた際に、柱溶接部における破断が先行することを回避し、塑性変形能力及び安全性に優れたノンダイアフラム型の柱梁接合構造体を提供することを課題とする。 The present invention has been completed in view of the above problems, when a force is applied from the outside, avoids prior breakage in the column welded portion, and is excellent in plastic deformation capacity and safety. An object is to provide a diaphragm-type column-beam joint structure.

本発明の手段は、以下の通りである。
[1]上下に分かれた柱と、前記柱の端面に接続される仕口用鋼管と、前記仕口用鋼管の側面に接合される梁と、を有するノンダイアフラム型の柱梁接合構造体であって、前記柱と前記仕口用鋼管とは柱溶接部により接合され、前記仕口用鋼管は、前記柱の板厚以上となる板厚を備えた増厚部と、前記増厚部よりも小さい板厚を備えた減厚部と、を有し、前記減厚部と前記柱溶接部とは、以下の式(1)を満たすノンダイアフラム型の柱梁接合構造体。
pZp×pσy≦cZp×wσy ・・・(1)
pZp:前記減厚部における仕口用鋼管の塑性断面係数(mm
pσy:仕口用鋼管を形成する材料の降伏耐力(N/mm
cZp:前記柱の塑性断面係数(mm
wσy:溶接材料の降伏耐力(N/mm
[2]前記減厚部は、仕口用鋼管と梁との接続部の上端部及び下端部から、柱軸方向にbc/2以上離れた位置に設けられる[1]に記載のノンダイアフラム型の柱梁接合構造体。但し、bcは、前記仕口用鋼管の縦断面における増厚部同士の距離とする。
The means of the present invention are as follows.
[1] A non-diaphragm type column-beam joint structure having vertically separated columns, a connection steel pipe connected to end faces of the columns, and a beam joined to a side surface of the connection steel pipe There, the column and the steel pipe for connection is joined by a column welded portion, the steel pipe for connection is a thickened portion having a plate thickness equal to or more than the plate thickness of the column, and from the thickened portion. And a reduced thickness portion having a smaller plate thickness, wherein the reduced thickness portion and the column welded portion are non-diaphragm type beam-column joint structures.
pZp×pσy≦cZp×wσy (1)
pZp: Plastic section modulus (mm 3 ) of the steel pipe for connection in the reduced thickness portion
pσy: Yield proof strength (N/mm 2 ) of the material forming the steel pipe for connection
cZp: Plastic section modulus of the column (mm 3 )
wσy: Yield strength of welding material (N/mm 2 ).
[2] The non-diaphragm type according to [1], wherein the reduced thickness portion is provided at a position bc/2 or more away from the upper end portion and the lower end portion of the connection portion between the steel pipe for connection and the beam in the column axis direction. Beam-column joint structure. However, bc is the distance between the thickened portions in the vertical cross section of the steel pipe for connection.

本発明では、柱降伏型の降伏パターンとなった際であっても、柱と仕口用鋼管とを接合する柱溶接部の破断を防止することができる。 According to the present invention, it is possible to prevent breakage of a column welded portion that joins a column and a steel pipe for a connection even when a column yield type yielding pattern is formed.

図1は、本発明に係るノンダイアフラム型の柱梁接合構造体を正面側から見た部分断面図である。FIG. 1 is a partial cross-sectional view of a non-diaphragm type column-beam joint structure according to the present invention viewed from the front side. 図2は、本発明に係るノンダイアフラム型の柱梁接合構造体を右側面側から見た部分断面図である。FIG. 2 is a partial cross-sectional view of a non-diaphragm type column-beam joint structure according to the present invention as viewed from the right side surface side. 図3は、地震発生時に、柱及び梁に発生する力を示す模式図である。FIG. 3 is a schematic diagram showing forces generated on columns and beams when an earthquake occurs. 図4は、地震発生時に、柱及び梁に発生する力を示す模式図であり、図3の破線部において発生する力の方向をより詳細に説明した図である。FIG. 4 is a schematic diagram showing forces generated on columns and beams when an earthquake occurs, and is a diagram illustrating in more detail the direction of forces generated at the broken line portion of FIG. 図5は、ノンダイアフラム仕口における柱降伏型の降伏パターンを示す模式図である。FIG. 5 is a schematic diagram showing a column yield type yield pattern in a non-diaphragm joint. 図6は、ノンダイアフラム仕口における梁降伏型の降伏パターンを示す模式図である。FIG. 6 is a schematic diagram showing a beam yield type yield pattern in a non-diaphragm joint. 図7は、ノンダイアフラム仕口におけるパネル降伏型の降伏パターンを示す模式図である。FIG. 7 is a schematic diagram showing a panel yield type yield pattern in a non-diaphragm joint. 図8は、ノンダイアフラム仕口における局部降伏型の降伏パターンを示す模式図である。FIG. 8 is a schematic diagram showing a local yield type yield pattern in a non-diaphragm joint.

まず、図1及び図2を用いて、本発明に係るノンダイアフラム型の柱梁接合構造体(以下、単に「柱梁接合構造体」と称することもある。)について説明する。 First, a non-diaphragm type post-beam joint structure (hereinafter, also simply referred to as “post-beam joint structure”) according to the present invention will be described with reference to FIGS. 1 and 2.

図1には柱梁接合構造体を正面から見た図を示し、図2には柱梁接合構造体を右側面から見た図を示す。図1及び2ともに、柱4及び仕口用鋼管1の板厚方向の断面を示す、部分断面図である。 FIG. 1 shows a front view of the beam-column joint structure, and FIG. 2 shows a view of the beam-column joint structure from the right side. 1 and 2 are partial cross-sectional views showing cross sections in the plate thickness direction of a column 4 and a steel pipe 1 for connection.

図1に示すようにノンダイアフラム型の柱梁接合構造体では、上下2つに分かれた柱4の間に仕口用鋼管1が介在する。仕口用鋼管1は、その柱軸方向(上下方向)の両端面において上下の柱4と接合されるとともに、その外側面に梁6が取り付けられる。図2の例で、梁6としてはH形鋼が用いられている。 As shown in FIG. 1, in a non-diaphragm type column-beam joint structure, a steel pipe 1 for connection is interposed between two columns 4 which are vertically divided. The steel pipe 1 for connection is joined to the upper and lower columns 4 at both end faces in the column axial direction (vertical direction), and the beams 6 are attached to the outer side faces thereof. In the example of FIG. 2, H-section steel is used as the beam 6.

仕口用鋼管1は梁6を通して伝えられる水平力に耐える必要があることから、仕口用鋼管1のうち梁6が取り付けられている範囲の板厚(tp)は、柱4の板厚(tc)よりも大きくすることが好ましい。尚、仕口用鋼管1の板厚(tp)を増厚しなくとも、局部耐力(図8の符号7)≧梁耐力(図6の符号7)、パネル耐力(図7の符号7)≧梁耐力(図6の符号7)となって、所要の耐力が得られる場合もあるので、tp≧tcとすればよい。 Since the steel pipe for connection 1 needs to withstand the horizontal force transmitted through the beam 6, the plate thickness (tp) in the range where the beam 6 is attached in the steel pipe for connection 1 is the plate thickness of the column 4 ( It is preferably larger than tc). Even if the plate thickness (tp) of the steel pipe for connection 1 is not increased, the local proof stress (7 in FIG. 8)≧beam proof stress (7 in FIG. 6), panel proof stress (7 in FIG. 7)≧ Since the beam proof strength (reference numeral 7 in FIG. 6) may be obtained and the required proof strength may be obtained, tp≧tc may be set.

図1における右上の吹き出し拡大図では、上側の柱4と仕口用鋼管1とが、裏当て金5及び柱溶接部3を介して接合される態様を示す。裏当て金5は、柱4の内周面と仕口用鋼管1の端面に接続される。柱溶接部3は、裏当て金5と柱4の端面と仕口用鋼管1の端面とによって形成される空間に溶融、固化されてなる溶接材料によって形成される。 The blow-up enlarged view in the upper right of FIG. 1 shows a mode in which the upper column 4 and the steel pipe 1 for connection are joined via the backing metal 5 and the column welded portion 3. The backing plate 5 is connected to the inner peripheral surface of the column 4 and the end surface of the steel pipe 1 for connection. The column welded portion 3 is formed of a welding material that is melted and solidified in a space formed by the backing metal 5, the end surface of the column 4 and the end surface of the steel pipe 1 for connection.

地震発生時において、柱4と梁6とで組み立てられた構造骨組に加えられる力を模式的に示したのが図3及び図4である。図3の破線部において発生する力の向きをより詳細に説明したのが図4である。図4のように、柱4の上部には地震により水平力7が発生し、柱4の下部には当該水平力7とは反対方向に反力8が発生する。また、梁6の左側には地震により下方向への垂直力9が発生し、梁6の右側には当該垂直力9とは反対方向に反力10が発生する。 3 and 4 schematically show the force applied to the structural frame assembled by the columns 4 and the beams 6 when an earthquake occurs. FIG. 4 illustrates the direction of the force generated in the broken line portion of FIG. 3 in more detail. As shown in FIG. 4, a horizontal force 7 is generated in the upper part of the column 4 due to the earthquake, and a reaction force 8 is generated in the lower part of the column 4 in a direction opposite to the horizontal force 7. Further, a vertical force 9 is generated downward on the left side of the beam 6 due to the earthquake, and a reaction force 10 is generated on the right side of the beam 6 in a direction opposite to the vertical force 9.

このように構造骨組に力が加えられた際に、いずれの部材が最初に降伏するかによって、4つの降伏パターンに分けられる。具体的には、図5に示すように柱4が最初に降伏する柱降伏型、図6に示すように梁6が最初に降伏する梁降伏型、図7に示すように仕口用鋼管1が最初に降伏するパネル降伏型、及び図8に示すように仕口用鋼管1のうち梁6のフランジが取り付いている部分の周囲、すなわち局部が最初に降伏する局部降伏型の4つが挙げられる。 In this way, when a force is applied to the structural frame, it is divided into four yield patterns depending on which member yields first. Specifically, as shown in FIG. 5, a column yielding type in which the column 4 yields first, a beam yielding type in which the beam 6 yields first as shown in FIG. 6, and a joint steel pipe 1 as shown in FIG. There are four types: a panel yielding type in which the first yields, and a local yielding type in which the local yields first, that is, around the portion where the flange of the beam 6 is attached in the steel pipe for connection 1 as shown in FIG. ..

上記の4つの降伏パターンのうち、柱降伏型となるように構造骨組を設計した場合には、強度に劣る柱溶接部3(図5には図示せず)が最初に降伏する可能性が高い。柱溶接部3は、その靱性が低いことから、柱溶接部3が降伏するとまもなく脆性破壊、破断が起きてしまう。柱溶接部3の破断は構造骨組の崩壊に直結してしまう危険性があり、外力が加わった際の崩壊を防ぐことが求められる建築物において大きな問題となる。そこで本発明を適用することにより、柱降伏型の構造骨組であっても柱溶接部3の破断を防止することができ、安全性に優れた柱梁接合構造体が得られる。尚、柱降伏型以外の降伏パターンで設計された構造骨組であっても、本発明を適用することで、柱溶接部3が降伏、破断する可能性を小さくし、より建築物の安全性を向上させることができる。 When the structural frame is designed to be a column yield type among the above four yield patterns, the column welded portion 3 (not shown in FIG. 5) having poor strength is likely to yield first. .. Since the column welded portion 3 has low toughness, brittle fracture and fracture will occur soon after the column welded portion 3 yields. The breakage of the column welded portion 3 has a risk of being directly connected to the collapse of the structural frame, which is a serious problem in a building where it is required to prevent the collapse when an external force is applied. Therefore, by applying the present invention, it is possible to prevent breakage of the column welded portion 3 even in a column yield type structural frame, and to obtain a column-beam joint structure excellent in safety. Even if the structural frame is designed with a yield pattern other than the column yield type, by applying the present invention, the possibility that the column welded portion 3 will yield or break is reduced, and the safety of the building can be further improved. Can be improved.

本発明では、図1に示すように仕口用鋼管1の上端及び下端において、増厚部1aよりも板厚を減じた減厚部1bを設ける。増厚部1aは、仕口用鋼管1のうち柱4の板厚(tc)以上の板厚(tp)を有している部分をいう。減厚部1bの板厚は、増厚部1aの板厚(tp)よりも薄ければよく、柱4の板厚(tc)以下であってもよいし、柱4の板厚(tc)よりも厚くてもよい。 In the present invention, as shown in FIG. 1, at the upper end and the lower end of the steel pipe 1 for connection, a reduced thickness portion 1b having a thickness smaller than that of the increased thickness portion 1a is provided. The thickened portion 1a is a portion of the steel pipe for connection 1 having a plate thickness (tp) equal to or larger than the plate thickness (tc) of the column 4. The thickness of the reduced thickness portion 1b may be smaller than the thickness of the thickened portion 1a (tp), and may be equal to or less than the thickness of the pillar 4 (tc), or the thickness of the pillar 4 (tc). It may be thicker than.

減厚部1bを設ける際には、柱溶接部3との関係において以下の式(1)を満たすようにする。
pZp×pσy≦cZp×wσy ・・・(1)
pZp:減厚部1bにおける仕口用鋼管1の塑性断面係数[mm
pσy:仕口用鋼管1を形成する材料の降伏耐力[N/mm
cZp:柱4の塑性断面係数[mm
wσy:柱溶接部(溶接材料)3の降伏耐力[N/mm
When providing the reduced thickness portion 1b, the following expression (1) is satisfied in relation to the column welded portion 3.
pZp×pσy≦cZp×wσy (1)
pZp: Plastic section modulus [mm 3 ] of the steel pipe 1 for connection in the reduced thickness portion 1b
pσy: Yield proof strength of the material forming the steel pipe 1 [N/mm 2 ]
cZp: Plastic section modulus of column 4 [mm 3 ]
wσy: Yield strength of column welded part (welding material) 3 [N/mm 2 ]

上記の式(1)によって、(仕口用鋼管の減厚部断面における全塑性モーメント)≦(柱溶接部断面の全塑性モーメント)という関係が満たされる。つまり、図3及び図4で示すように外力が柱梁接合構造体に加わった際に、柱溶接部3よりも先に減厚部1bが降伏することになる。柱溶接部3よりも相対的に靭性等の強度が高い仕口用鋼管1の母材の塑性化が先行することにより、柱溶接部3が破断することを防止することができる。 The above formula (1) satisfies the relationship of (total plastic moment in cross section of reduced thickness portion of steel pipe for connection) ≤ (total plastic moment in cross section of column welded portion). In other words, as shown in FIGS. 3 and 4, when the external force is applied to the beam-column joint structure, the reduced thickness portion 1b yields before the column welded portion 3. It is possible to prevent the column welded portion 3 from breaking due to the plasticization of the base material of the steel pipe for connection 1 having a higher strength such as toughness than the column welded portion 3 prior to the plasticization.

前記式(1)を満たすためには、減厚部1bの位置、大きさ、形状、仕口用鋼管1の素材の強度等を調節することができる。例えば、前述した「仕口用鋼管の減厚部断面における全塑性モーメント」を小さくするには、減厚部1bの板厚を小さくすること、減厚部1bにおいて鋼管の外側を減厚すること等を行うことが有効である。また「仕口用鋼管の減厚部断面における全塑性モーメント」を大きくするには、上記と逆の操作を行えばよい。尚、減厚部1bは、仕口用鋼管1の全周に亘って設けられていてもよいし、周方向の一部のみに設けられていてもよい。 In order to satisfy the above formula (1), the position, size and shape of the reduced thickness portion 1b, the strength of the material of the steel pipe 1 for connection, etc. can be adjusted. For example, in order to reduce the above-mentioned "total plastic moment in the cross section of the reduced thickness portion of the steel pipe for connection", the plate thickness of the reduced thickness portion 1b should be reduced, and the outside of the steel pipe should be reduced in the reduced thickness portion 1b. Etc. is effective. Further, in order to increase the "total plastic moment in the cross section of the reduced thickness portion of the steel pipe for connection", the reverse operation to the above may be performed. The reduced-thickness portion 1b may be provided over the entire circumference of the connection steel pipe 1, or may be provided only in a part in the circumferential direction.

また、柱のモーメント分布を考えると、柱の階高中央付近の反曲点位置から梁フランジに近づくにつれてモーメントが大きくなることから、減厚部1bの位置を仕口用鋼管1の中で梁6のフランジ部6a、6cに近づけると、よりいっそう、柱溶接部3よりも減厚部1bの塑性化を先行させることができる。 Further, considering the moment distribution of the column, the moment increases as the position approaches the beam flange from the inflection point position near the center of the floor height of the column. When the flange portions 6a and 6c of 6 are brought closer to each other, plasticization of the reduced-thickness portion 1b can be more advanced than that of the column welded portion 3.

仕口用鋼管1の上端面側及び下端面側にそれぞれ設けられた溶接部3の破断を防止するように、仕口用鋼管1の上側及び下側にそれぞれ1箇所ずつ減厚部1bを設けることが好ましい。この場合、上側の減厚部1bと上側の柱溶接部3との間で上述の式(1)を満たすようにし、且つ下側の減厚部1bと下側の柱溶接部3との間で上述の式(1)を満たすようにする。 In order to prevent breakage of the welded portions 3 provided on the upper end surface side and the lower end surface side of the connection steel pipe 1, respectively, one thinned portion 1b is provided on each of the upper side and the lower side of the connection steel pipe 1. It is preferable. In this case, the above formula (1) is satisfied between the upper reduced thickness portion 1b and the upper column welded portion 3, and between the lower reduced thickness portion 1b and the lower column welded portion 3. Then, the above equation (1) is satisfied.

本発明の効果を奏する限りにおいて減厚部1bの形状は特に制限されないが、減厚部1bの成形が容易であること等を鑑みると、減厚部1bを曲面状とすることが好ましい。 The shape of the reduced-thickness portion 1b is not particularly limited as long as the effects of the present invention are exhibited, but it is preferable to make the reduced-thickness portion 1b into a curved shape in view of easy molding of the reduced-thickness portion 1b.

減厚部1bにおいては、仕口用鋼管1の内側面を減肉してもよいし、外側面を減肉してもよい。急激に仕口用鋼管1の断面形状を変化させると、ひずみ集中による早期破壊が引き起こされることがあるので、曲率半径が50mm以上となるように緩やかな減肉加工を行うことが望ましい。 In the reduced thickness portion 1b, the inner side surface of the connection steel pipe 1 may be thinned or the outer side surface may be thinned. If the cross-sectional shape of the steel pipe 1 for connection is suddenly changed, early fracture due to strain concentration may be caused. Therefore, it is desirable to perform a gradual wall thinning process so that the radius of curvature becomes 50 mm or more.

次に、減厚部1bの柱軸方向における位置について説明する。減厚部1bは、仕口用鋼管1と梁6との接続部の上端部及び下端部から、それぞれ「bc/2」以上離れた場所に設けることが好ましい。図1の例では、梁6の上側のフランジ部6aが仕口用鋼管1に取り付く高さが前記上端部にあたり、下側のフランジ部6bが仕口用鋼管1に取り付く高さが前記下端部にあたる。また、減厚部1bの基準となる位置としては、減厚部1bのうち最も梁6との接続部に近い側の柱軸方向位置を採用することができる。 Next, the position of the reduced thickness portion 1b in the column axis direction will be described. It is preferable that the reduced-thickness portion 1b is provided at a position "bc/2" or more apart from the upper end portion and the lower end portion of the connection portion between the steel pipe for connection 1 and the beam 6, respectively. In the example of FIG. 1, the height at which the upper flange portion 6a of the beam 6 is attached to the connection steel pipe 1 is the upper end portion, and the height at which the lower flange portion 6b is attached to the connection steel pipe 1 is the lower end portion. Hits. Further, as the reference position of the reduced thickness portion 1b, the column axial direction position on the side closest to the connection portion with the beam 6 in the reduced thickness portion 1b can be adopted.

より具体的には、図1の右下の吹き出し拡大図を用いて説明する。上側のフランジ部6aと仕口用鋼管1とは、裏当て金15を介して梁溶接部13によって接合される。この場合、梁溶接部13の余盛高さを考慮して、梁溶接部13の最上部からbc/2以上離れた(上側の)位置に減厚部1bを設けることが好ましい。図示は省略するが、下側の減厚部1bについては溶接部13の最下部からbc/2以上離れた(下側の)位置に減厚部を設けることが好ましい。 More specifically, a description will be given with reference to the balloon enlarged view at the lower right of FIG. The upper flange portion 6 a and the steel pipe 1 for connection are joined by the beam welded portion 13 via the backing metal 15. In this case, it is preferable that the reduced thickness portion 1b is provided at a position (upper side) bc/2 or more away from the uppermost portion of the beam welded portion 13 in consideration of the extra height of the beam welded portion 13. Although illustration is omitted, it is preferable that the reduced thickness portion 1b on the lower side is provided at a position (downward) away from the lowermost portion of the welded portion 13 by bc/2 or more.

bcは、図1に示すように、仕口用鋼管1の縦断面(水平方向とは垂直な方向で切断した断面)における仕口用鋼管の増厚部同士、より具体的には縦断面における柱軸方向とは垂直方向の増厚部同士の距離であり、単位は「mm」である。増厚部同士の距離は、縦断面図における仕口用鋼管1の板厚方向中央部同士の距離を用いることもできるし、より安全に設計する際には、仕口用鋼管1の外側面同士の距離を用いることもできる。また、とりうる縦断面に応じて増厚部同士の距離が変動する場合には、最も大きい距離をbcとして採用すればよい。 bc is, as shown in FIG. 1, between the thickened portions of the steel pipe for connection in a vertical cross section (cross section cut in a direction perpendicular to the horizontal direction) of the steel pipe for connection 1, more specifically, in the vertical cross section. The column axis direction is the distance between the thickened portions in the vertical direction, and the unit is "mm". As the distance between the thickened portions, the distance between the central portions in the plate thickness direction of the steel pipe for connection 1 in the vertical cross-sectional view can be used, and when designing more safely, the outer surface of the steel pipe for connection 1 can be used. The distance between them can also be used. Further, when the distance between the thickened portions varies depending on the possible vertical cross section, the largest distance may be adopted as bc.

仕口用鋼管1に生じる曲げモーメントは、フランジ部6aの取り付く高さで最大となり、仕口用鋼管1の上端面側又は下端面側へ向かうほど低下する。よって、減厚部1bから仕口用鋼管1と梁6との接続部の上端部又は下端部までの距離が大きい場合は、これらの距離が小さい場合に比べて、柱溶接部3及び減厚部1bが塑性化しにくくなり、柱梁接合構造体の変形性能が向上する。 The bending moment generated in the connection steel pipe 1 becomes maximum at the mounting height of the flange portion 6a, and decreases toward the upper end surface side or the lower end surface side of the connection steel pipe 1. Therefore, when the distance from the reduced thickness portion 1b to the upper end portion or the lower end portion of the connection portion between the connection steel pipe 1 and the beam 6 is large, the column welded portion 3 and the reduced thickness portion are compared to the case where these distances are small. The portion 1b is less likely to be plasticized, and the deformation performance of the beam-column joint structure is improved.

上記のように減厚部1bを前記上端部及び前記下端部からbc/2以上離して設けることによって、降伏線を仮定する位置で板厚が一定となることから力学モデルが明快となって、非特許文献3に示される耐力式をそのまま用いることができる。非特許文献3で仮定する降伏線の位置は、最も降伏線が梁フランジから離れる場合であっても、その距離は梁フランジから「bc/2」の位置となる。したがって、上述した耐力式によると、減厚部1bを前記上端部及び前記下端部からbc/2以上離すことにより、全ての降伏線を仕口用鋼管1の増厚部1a内に収めることができる。よって、減厚部1bよりも先に増厚部1aが塑性化することを促し、柱溶接部3の破断をより確実に防止することができる。 As described above, by providing the reduced thickness portion 1b away from the upper end portion and the lower end portion by bc/2 or more, the plate thickness becomes constant at the position where the yield line is assumed, so that the dynamic model becomes clear, The load bearing formula shown in Non-Patent Document 3 can be used as it is. The position of the yield line assumed in Non-Patent Document 3 is “bc/2” from the beam flange even when the yield line is farthest from the beam flange. Therefore, according to the above-described proof formula, by separating the reduced thickness portion 1b from the upper end portion and the lower end portion by bc/2 or more, all the yield lines can be accommodated in the thickened portion 1a of the steel pipe 1 for connection. it can. Therefore, it is possible to promote plasticization of the thickened portion 1a before the reduced thickness portion 1b, and to more reliably prevent the column welded portion 3 from breaking.

以上を言い換えると、仕口用鋼管1の柱軸方向の両端に減厚部1bを設け、両端の減厚部1bの間に位置する増厚部1aの柱軸方向長さを、「梁せい+(梁溶接部13の余盛り高さ)×2+bc」以上とすることが好ましい。これにより、仕口用鋼管1に生じうる全ての降伏線を増厚部1b内に収めることができ、柱溶接部3の破断をより確実に防止することができる。 In other words, the thickened portions 1b are provided at both ends in the column axial direction of the steel pipe 1 for connection, and the length in the column axial direction of the thickened portions 1a located between the thinned portions 1b at both ends is defined as "beam width". +(excessive height of the beam welded portion 13)×2+bc” or more is preferable. As a result, all yield lines that may occur in the steel pipe 1 for connection can be accommodated in the thickened portion 1b, and the breakage of the column welded portion 3 can be prevented more reliably.

尚、軸力比は、仕口用鋼管の減厚部位置の断面で0.4(無次元)程度以下で設計されることが好ましい。軸力比が0.4を超えるレベルでは、減厚部位置の塑性化が早期に生じ、塑性化後の耐力劣化も大きくなるので、軸力比は0.4程度以下に抑えることが望ましい。 The axial force ratio is preferably designed to be approximately 0.4 (dimensionless) or less in the cross section at the position of the reduced thickness portion of the steel pipe for connection. At a level where the axial force ratio exceeds 0.4, plasticization of the reduced-thickness portion position occurs early and the proof stress deterioration after plasticizing also becomes large, so it is desirable to keep the axial force ratio to about 0.4 or less.

本発明は、仕口用鋼管が、高強度鋼、例えば引張強さが780MPa以上の鋼によって形成される場合に特に有効である。柱と仕口用鋼管との溶接部を高強度(特に780MPa以上)に確保することは難しいことから、高強度鋼を仕口用鋼管として用いる場合には柱溶接部における破断の危険性が特に高くなる。本発明を適用すると、高強度鋼を用いた場合であっても、溶接部の破断を確実に防止することができる。 The present invention is particularly effective when the connection steel pipe is made of high-strength steel, for example, steel having a tensile strength of 780 MPa or more. Since it is difficult to secure a high-strength (particularly 780 MPa or more) welded portion between a column and a steel pipe for connection, when using high-strength steel as a steel pipe for connection, there is a particular risk of breakage at the welded portion of the column. Get higher When the present invention is applied, even if high-strength steel is used, it is possible to reliably prevent breakage of the welded portion.

また、構造骨組の強度をより強固にするという観点から、柱4の内側にはコンクリートを充填することもできる。 Further, from the viewpoint of further strengthening the strength of the structural frame, the inside of the pillar 4 can be filled with concrete.

尚、本発明は、ノンダイアフラム型の接合方法を用いていることから、ダイアフラムを用いる接合方法に比べて以下の(1)〜(4)のような技術的効果を奏する。
(1)施工時の溶接線の長さが少なくて済み、コストを削減することができる。
(2)梁を取り付ける態様の自由度が比較的高く、山形梁のように1つの仕口用鋼管に取り付く複数の梁の角度を変えることや、段違い梁のように複数の梁が取り付く高さを変えることも可能である。
(3)柱の外側面からの仕口用鋼管の張り出しが極めて小さいので、設備配管等の他の部材を柱に近接させる場合に、接合部構造体が邪魔になりにくい。
(4)柱の内側がダイアフラムにより仕切られていないので、柱内へのコンクリート充填が容易であり、CFT構造とすることに適している。
Since the present invention uses the non-diaphragm type joining method, it has the following technical effects (1) to (4) as compared with the joining method using the diaphragm.
(1) The length of the welding line at the time of construction is small, and the cost can be reduced.
(2) There is a relatively high degree of freedom in the manner in which the beams are attached, and the angle at which multiple beams are attached to a single steel pipe for connection, such as a mountain beam, is changed, or the height at which multiple beams are attached, such as a stepped beam. It is also possible to change.
(3) Since the protrusion of the steel pipe for connection from the outer surface of the column is extremely small, the joint structure is less likely to get in the way when other members such as equipment piping are brought close to the column.
(4) Since the inside of the pillar is not partitioned by the diaphragm, it is easy to fill the inside of the pillar with concrete, which is suitable for forming a CFT structure.

本発明例と比較例とについて、柱梁接合構造体の破壊モデルを組み立て、計算を行った。以下の表1及び表2に結果を示す。 With respect to the example of the present invention and the comparative example, a fracture model of a beam-column joint structure was assembled and calculation was performed. The results are shown in Tables 1 and 2 below.

表1では、引張強さ400MPa級の柱、400MPa級の梁、及び490MPa級の仕口用鋼管の組み合わせで、十字骨組の破壊部位を検討した。ここで、十字骨組の梁スパンは4m、柱階高は3mとした。これらの組み合わせはいずれも柱降伏型の組み合わせである。表1に示されているように、仕口用鋼管に本願請求項1の条件を満たすように減厚部を設けている場合には、減厚部から破壊されるが(本発明例)、そうでない場合には柱−仕口用鋼管溶接部からの早期破壊となる(比較例)。表1の例は標準的な梁スパン、階高を設定している。梁スパン、階高が大きく変化しない限り、崩壊形は変化しないと考えられる。具体的に本構造を設計する際には、梁スパン、階高、鋼種、などを設定して耐力を計算することで、崩壊形を知ることができる。 In Table 1, the fracture site of the cross frame was examined by combining a column having a tensile strength of 400 MPa, a beam having a tensile strength of 400 MPa, and a steel pipe for a connection having a pressure of 490 MPa. Here, the beam span of the cross frame was 4 m, and the height of the column floor was 3 m. All of these combinations are column yield type combinations. As shown in Table 1, when the steel pipe for connection is provided with the reduced thickness portion so as to satisfy the condition of claim 1 of the present application, it is destroyed from the reduced thickness portion (invention example), If not, early fracture occurs from the column-connection steel pipe weld (comparative example). The example in Table 1 sets the standard beam span and floor height. As long as the beam span and floor height do not change significantly, the collapse shape is considered to remain unchanged. When designing this structure, the collapse type can be known by setting the beam span, floor height, steel grade, etc. and calculating the proof stress.

表2では、引張強さ780MPa級の柱、590MPa級の梁、780MPa級の仕口用鋼管の組み合わせで、十字骨組の破壊部位を検討したものである。780MPaでは、溶接部の強度を確保することが難しいが、本発明に適合する減厚部を設けることで、確実に減厚部での破壊を優先させることができる。 In Table 2, a fractured part of the cross frame is examined by a combination of a column having a tensile strength of 780 MPa class, a beam of 590 MPa class, and a steel pipe for a connection of 780 MPa class. At 780 MPa, it is difficult to secure the strength of the welded portion, but by providing the reduced thickness portion conforming to the present invention, it is possible to reliably give priority to the fracture at the reduced thickness portion.

Figure 0006750555
Figure 0006750555

Figure 0006750555
Figure 0006750555

1 仕口用鋼管
1a 増厚部
1b 減厚部
3 柱溶接部
4 柱
5 裏当て金
6 梁
6a フランジ部
6b ウェブ部
13 梁溶接部
15 裏当て金
1 Steel pipe for connection 1a Thickened part 1b Thickened part 3 Column welded part 4 Column 5 Backing metal 6 Beam 6a Flange part 6b Web part 13 Beam welded part 15 Backing metal

Claims (2)

上下に分かれた柱と、前記柱の端面に接続される仕口用鋼管と、前記仕口用鋼管の側面に接合される梁と、を有するノンダイアフラム型の柱梁接合構造体であって、
前記柱と前記仕口用鋼管とは柱溶接部により接合され、
前記仕口用鋼管は、前記柱の板厚以上となる板厚を備えた増厚部と、前記増厚部よりも小さい板厚を備えた減厚部と、を有し、
前記減厚部は、前記仕口用鋼管の上端部及び下端部に、前記柱溶接部から離れるようにして設けられ、
前記減厚部と前記柱溶接部とは、以下の式(1)を満たすノンダイアフラム型の柱梁接合構造体。
pZp×pσy≦cZp×wσy ・・・(1)
pZp:前記減厚部における仕口用鋼管の塑性断面係数(mm
pσy:仕口用鋼管を形成する材料の降伏耐力(N/mm
cZp:前記柱の塑性断面係数(mm
wσy:溶接材料の降伏耐力(N/mm
A non-diaphragm type column-beam joint structure having a column divided into upper and lower parts, a connection steel pipe connected to the end face of the column, and a beam joined to a side surface of the connection steel pipe,
The column and the steel pipe for connection are joined by a column weld,
The steel pipe for connection has a thickened portion having a plate thickness equal to or greater than the plate thickness of the column, and a reduced thickness portion having a plate thickness smaller than the thickened portion,
The reduced thickness portion is provided at the upper end portion and the lower end portion of the steel pipe for connection so as to be separated from the column welded portion,
The reduced thickness portion and the column welded portion are non-diaphragm type column-beam joint structures that satisfy the following formula (1).
pZp×pσy≦cZp×wσy (1)
pZp: Plastic section modulus (mm 3 ) of the steel pipe for connection in the reduced thickness portion
pσy: Yield proof strength (N/mm 2 ) of the material forming the steel pipe for connection
cZp: Plastic section modulus of the column (mm 3 )
wσy: Yield strength of welding material (N/mm 2 ).
前記減厚部は、仕口用鋼管と梁との接続部の上端部及び下端部から、柱軸方向にbc/2以上離れた位置に設けられる請求項1に記載のノンダイアフラム型の柱梁接合構造体。
但し、bcは、前記仕口用鋼管の縦断面における増厚部同士の距離とする。
The non-diaphragm type column beam according to claim 1, wherein the reduced thickness portion is provided at a position bc/2 or more away from an upper end portion and a lower end portion of a connection portion between the connection steel pipe and the beam in the column axial direction. Junction structure.
However, bc is the distance between the thickened portions in the vertical cross section of the steel pipe for connection.
JP2017085933A 2017-04-25 2017-04-25 Non-diaphragm type beam-column joint structure Active JP6750555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017085933A JP6750555B2 (en) 2017-04-25 2017-04-25 Non-diaphragm type beam-column joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017085933A JP6750555B2 (en) 2017-04-25 2017-04-25 Non-diaphragm type beam-column joint structure

Publications (2)

Publication Number Publication Date
JP2018184742A JP2018184742A (en) 2018-11-22
JP6750555B2 true JP6750555B2 (en) 2020-09-02

Family

ID=64356442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017085933A Active JP6750555B2 (en) 2017-04-25 2017-04-25 Non-diaphragm type beam-column joint structure

Country Status (1)

Country Link
JP (1) JP6750555B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07158207A (en) * 1993-12-13 1995-06-20 Kawasaki Steel Corp Square steel tube column and its connection part
US20090294426A1 (en) * 2008-06-03 2009-12-03 Bong William L System and method for beam-to-column welding
JP2010229660A (en) * 2009-03-26 2010-10-14 Kobe Steel Ltd Steel pipe column of non-diaphragm type
JP6544337B2 (en) * 2016-11-01 2019-07-17 Jfeスチール株式会社 Cold formed square steel pipe and beam-to-column connection

Also Published As

Publication number Publication date
JP2018184742A (en) 2018-11-22

Similar Documents

Publication Publication Date Title
JP5741356B2 (en) Column-to-column joints of ramen frames
JP2010229660A (en) Steel pipe column of non-diaphragm type
KR102001041B1 (en) Joint structure between the cft square column and the steel girder
JP6750555B2 (en) Non-diaphragm type beam-column joint structure
JP6544337B2 (en) Cold formed square steel pipe and beam-to-column connection
JP2001271451A (en) Thickness increased steel beam and its manufacture
JP2017020257A (en) Connection structure of steel column and h-shaped beam or i-shaped beam and connection method thereof
JP6152809B2 (en) Beam-column joint structure
JP2015224517A (en) Joining structure of beam end part
JP2009097261A (en) Foundation pile structure, prefabricated concrete pile, and joint hardware for prefabricated concrete pile and steel pipe pile
JPH0813691A (en) Steel pipe column with box section
JP3890516B2 (en) Earthquake-resistant column / beam joint structure
KR102366228B1 (en) Method for manufacturing a column-beam joint structure and a column-beam joint structure
JP2012255283A (en) Concrete filled steel tube column
JP6390284B2 (en) Beam-column joint structure
JP4966673B2 (en) Column and beam joint structure
JP2020045671A (en) Beam-column joint core
JP6390360B2 (en) Structure and method for joining reinforced concrete beam and steel pipe column
JP7047856B2 (en) Assembling method of four-sided welded box-shaped cross-section columns, skin plate members, four-sided welded box-shaped cross-section columns, and concrete-filled steel pipe columns
CN109635476A (en) Combined beam column Joint design method
JP2020012329A (en) Beam joint structure
JP3215633U (en) Brace mounting structure
JP2012162983A (en) Foundation pile structure, precast concrete pile, and joint hardware for precast concrete pile and steel pipe pile
JP6386462B2 (en) Composite structure
JP3232594U (en) Joint structure

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R150 Certificate of patent or registration of utility model

Ref document number: 6750555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250