JP6748956B2 - Flow stabilizing device in flow path, plant cultivation house including the same, and flow stabilizing method in flow path - Google Patents

Flow stabilizing device in flow path, plant cultivation house including the same, and flow stabilizing method in flow path Download PDF

Info

Publication number
JP6748956B2
JP6748956B2 JP2016045830A JP2016045830A JP6748956B2 JP 6748956 B2 JP6748956 B2 JP 6748956B2 JP 2016045830 A JP2016045830 A JP 2016045830A JP 2016045830 A JP2016045830 A JP 2016045830A JP 6748956 B2 JP6748956 B2 JP 6748956B2
Authority
JP
Japan
Prior art keywords
flow
flow path
water
liquid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016045830A
Other languages
Japanese (ja)
Other versions
JP2017158476A (en
Inventor
孝司 鳥山
孝司 鳥山
俊平 舩谷
俊平 舩谷
拓矢 小林
拓矢 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Priority to JP2016045830A priority Critical patent/JP6748956B2/en
Publication of JP2017158476A publication Critical patent/JP2017158476A/en
Application granted granted Critical
Publication of JP6748956B2 publication Critical patent/JP6748956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Greenhouses (AREA)
  • Pipeline Systems (AREA)

Description

本発明は、流動安定化装置並びに流動安定化方法に関し、特に流路内の流動安定化装置およびそれを備える植物栽培用ハウス、並びに流路内の流動安定化方法に関する。 TECHNICAL FIELD The present invention relates to a flow stabilizing device and a flow stabilizing method, and more particularly to a flow stabilizing device in a flow channel, a plant cultivation house including the same, and a flow stabilizing method in the flow channel.

野菜や果物の多くは年間を通しての出荷が要求されている。そこで生産者は重油による暖房や電気による冷房等で育成空間を温調し野菜や果物栽培している。しかしながらこのような温調方法はそのランニングコストが高額であるといった問題がある。そのため、地下水や太陽熱などの自然エネルギーを利用して植物を栽培する植物栽培用ハウスの冷暖房装置に関する技術として、例えば特許文献1のようなハウスを囲む壁面やその内部に地下水循環パネルを配設した植物栽培用ハウスが提案されている。 Many vegetables and fruits are required to be shipped all year round. Therefore, the producer controls the growing space by heating with heavy oil or cooling with electricity to cultivate vegetables and fruits. However, such a temperature control method has a problem that its running cost is high. Therefore, as a technique relating to a heating and cooling device for a plant cultivation house that cultivates plants by utilizing natural energy such as ground water or solar heat, a groundwater circulation panel is provided on the wall surface surrounding the house as in Patent Document 1 or inside thereof. A house for plant cultivation has been proposed.

また、非特許文献1では、このようなパネルの流路にビニル製流路を設けた場合の研究報告を行っている。 In addition, Non-Patent Document 1 reports a study in the case where a vinyl flow path is provided in the flow path of such a panel.

特開2015−128416JP-A-2015-128416 「通水型伝熱パネルによる農業用ハウス用温調システムの冷却性能の評価」日本機械学会 熱工学コンファレンス2015」"Evaluation of Cooling Performance of Agricultural House Temperature Control System Using Water-Conducting Heat Transfer Panel" The Japan Society of Mechanical Engineers Thermal Engineering Conference 2015"

非特許文献1にあるような流路にビニル製流路を設けた場合、水の重みでビニル製流路が大きく変形し、流動抵抗が著しく増大する。また、流動せずに取り残された流体もあるため、注水時の温度から変化してしまうというおそれもある。 When a vinyl flow path is provided in the flow path as in Non-Patent Document 1, the vinyl flow path is greatly deformed by the weight of water, and the flow resistance is significantly increased. In addition, there is a possibility that the temperature at the time of water injection may change because some fluid is left without flowing.

このように、流路が注水による変形を伴う部材を使用する場合には、流動抵抗を下げ、流動の安定化が要求されている。 As described above, when a member whose flow path is deformed by water injection is used, it is required to reduce flow resistance and stabilize flow.

本発明の流動安定化装置は、第1の入力口と第2の入力口とを備えた混合部を具備し、前記混合部は流路に流す液体によって変形を伴う部材で構成された前記流路に、前記第1の入力口から注入した気体と前記第2の入力口から注入した液体とを混合し気液二相流を形成し、前記混合部から前記気液二相流を前記流路に流すようにする。 The flow stabilizing device of the present invention comprises a mixing section having a first input port and a second input port, wherein the mixing section comprises a member that is deformed by a liquid flowing in a flow path. In the passage, the gas injected from the first input port and the liquid injected from the second input port are mixed to form a gas-liquid two-phase flow, and the gas-liquid two-phase flow is flowed from the mixing unit. Let it flow down the street.

また、本発明の植物栽培用ハウスは、前記流動安定化装置と、前記流路とを備え、前記流路が、植物栽培用ハウスの天井および床の少なくとも一方に備える。 A plant cultivation house of the present invention includes the flow stabilizing device and the flow path, and the flow path is provided on at least one of a ceiling and a floor of the plant cultivation house.

さらに、本発明の流動安定化方法は、流路に流す液体によって変形を伴う部材で構成された前記流路に、第1の入力口から注入された気体と第2の入力口から注入された液体とを混合し気液二相流を形成して、前記気液二相流を前記流路に流すようにする。 Further, in the flow stabilizing method of the present invention, the gas injected from the first input port and the second input port are injected into the flow path constituted by a member that is deformed by the liquid flowing in the flow path. A liquid and a liquid are mixed to form a gas-liquid two-phase flow, and the gas-liquid two-phase flow is caused to flow through the flow path.

流路が注水による変形を伴う部材を使用する場合の流動の安定化を可能とする。 This makes it possible to stabilize the flow when a member whose flow path is deformed by water injection is used.

本発明の流動安定化装置の構成を示す図(側面から見た図)である。It is a figure which shows the structure of the flow stabilization apparatus of this invention (view seen from the side surface). 本発明の流動安定化装置の構成を示す図(上部から見た図)である。It is a figure which shows the structure of the flow stabilization apparatus of this invention (the figure seen from the upper part). 本発明の流動安定化装置に本発明の流動安定化方法を用いた場合の動作を説明する図(側面から見た図)である。It is a figure explaining the operation|movement at the time of using the flow stabilization method of this invention for the flow stabilization apparatus of this invention (view seen from the side). 本発明の流動安定化装置に本発明の流動安定化方法を用いた場合の動作を説明する図(側面から見た図)である。It is a figure explaining the operation|movement at the time of using the flow stabilization method of this invention for the flow stabilization apparatus of this invention (view seen from the side). 本発明の流動安定化装置に水のみを流す場合の動作を説明する図(側面から見た図)である。It is a figure (the figure seen from the side) explaining operation|movement when flowing only water into the flow stabilization apparatus of this invention. 本発明の流動安定化装置に水のみを流す場合の動作を説明する図(側面から見た図)である。It is a figure (the figure seen from the side) explaining operation|movement when flowing only water into the flow stabilization apparatus of this invention. 本発明を適用した温調空間を示す図である。It is a figure which shows the temperature control space to which this invention is applied. 図7の温調空間における温度測定箇所を示す図である。It is a figure which shows the temperature measurement location in the temperature control space of FIG. 実験用温調空間の一例を示す図である。It is a figure which shows an example of the experimental temperature control space. 実験用温調空間の冷却時の温度変化結果(予備実験)を示す図である。It is a figure which shows the temperature change result (preliminary experiment) at the time of cooling of the experimental temperature control space. 空気注入が無い時の流路出入口及び流路表面温度の過渡特性Transient characteristics of channel inlet/outlet and channel surface temperature without air injection 空気注入量を4.76×10−5/sとした時の流路の出入口及び流路の表面温度の過渡特性Transient characteristics of the inlet and outlet of the flow path and the surface temperature of the flow path when the air injection amount is 4.76 × 10 -5 m 3 /s 空気注入量を7.62×10−5/sとした時の流路の出入口及び流路の表面温度の過渡特性Transient characteristics of the inlet/outlet of the flow path and the surface temperature of the flow path when the air injection amount is set to 7.62×10 −5 m 3 /s 空気注入量を9.50×10−5/sとした時の流路の出入口及び流路の表面温度の過渡特性Transient characteristics of the inlet/outlet of the flow channel and the surface temperature of the flow channel when the air injection amount is set to 9.50×10 −5 m 3 /s 各測定位置における定常状態に達した時のτを示した図Diagram showing τ when the steady state is reached at each measurement position 本発明の植物栽培用ハウスの一例を示す図である。It is a figure which shows an example of the greenhouse for plant cultivation of this invention.

以下、本発明の流動安定化装置の好適な実施の形態につき図面を用いて説明する。 Preferred embodiments of the flow stabilizing device of the present invention will be described below with reference to the drawings.

(構成)
図1に本発明の流動安定化装置の構成を示す図(側面から見た図)を、図2に本発明の流動安定化装置の構成を示す図(上部から見た図)をそれぞれ示す。図1、図2に示すように、本発明の流動安定化装置100は、空気注入口1(第1の入力口)、水注入口2(第2の入力口)を具備した混合部20を備える。混合部20は、流路4に流す液体によって変形を伴う部材で構成された流路4に空気注入口1から注入した空気(気体)と水注入口(注水口)2から注入した液体(水)とを混合し気液二相流(混相流)を形成する。そして、形成された気液二相流を流路注水口3から流路4に注入する。ここで、流路4は、ポリエチレンチューブやポリ塩化ビニルチューブなどのチューブあるいはホースなどのように、変形しやすい流路(Deformableな流路)である。
(Constitution)
FIG. 1 is a diagram showing the configuration of the flow stabilizing device of the present invention (a side view), and FIG. 2 is a diagram showing the configuration of the flow stabilizing device of the present invention (a view seen from the top). As shown in FIG. 1 and FIG. 2, a flow stabilizing device 100 of the present invention includes a mixing section 20 having an air inlet 1 (first input port) and a water inlet 2 (second input port). Prepare The mixing unit 20 includes air (gas) injected from the air injection port 1 and liquid (water) injected from the water injection port (water injection port) 2 into the flow path 4 configured by a member that is deformed by the liquid flowing in the flow path 4. ) And are mixed to form a gas-liquid two-phase flow (mixed-phase flow). Then, the formed gas-liquid two-phase flow is injected into the channel 4 from the channel water injection port 3. Here, the flow path 4 is a flow path that is easily deformable (deformable flow path), such as a tube such as a polyethylene tube or a polyvinyl chloride tube or a hose.

本装置100では、流路を支えるために複数の支え棒5を備えており、図1,2においてはn本(L1〜Ln)の支え棒5を備える構成を示している。また、流路4に流れる空気と水の気液二相流は、流路4の流路排水口6介して排水口7から排水される。なお、本明細書では流路注水口側を上流、流路排水口側を下流と称す。 The present device 100 includes a plurality of support rods 5 for supporting the flow path, and FIGS. 1 and 2 show a configuration including n (L1 to Ln) support rods 5. Further, the gas-liquid two-phase flow of air and water flowing in the flow path 4 is drained from the drain port 7 via the flow path drain port 6 of the flow path 4. In this specification, the side of the flow channel water inlet is referred to as upstream and the side of the flow channel outlet is referred to as downstream.

なお、第1の入力口から注入されるものは空気に限らず気体であればよく(たとえば窒素ガス、炭酸ガスなど)、第2の入力口から注入されるものは水に限らず液体であればよい(たとえばアルコールなど)。必要に応じて任意のものに代えてもよい。 It should be noted that what is injected from the first input port is not limited to air and may be gas (for example, nitrogen gas, carbon dioxide gas, etc.), and what is injected from the second input port is not limited to water and may be liquid. Good (for example, alcohol). You may substitute for arbitrary things as needed.

なお、空気注入口1に注入される空気は、たとえば図1のように、コンプレッサー21で圧縮空気を作成したものを使うことができる。空気圧を空気圧計24で、空気の流量を流量計22で計測しつつ、所望の空気圧、流量となるようにバルブ23などで所望の値に調整するようにできる。 The air injected into the air inlet 1 may be compressed air created by a compressor 21 as shown in FIG. 1, for example. The air pressure can be adjusted to a desired value by the valve 23 or the like so that the desired air pressure and flow rate can be obtained while the air pressure is measured by the air pressure meter 24 and the flow rate of air is measured by the flow meter 22.

水注入口2に注入される水は、たとえば図1のように、ポンプ31で水を送り込むことによって流路4に注入できる。水の流量を流量計32で計測しつつ、所望の流量となるようにバルブ33などで所望の値に調整するようにできる。 The water injected into the water inlet 2 can be injected into the flow path 4 by sending water with a pump 31, as shown in FIG. 1, for example. While measuring the flow rate of water with the flow meter 32, the flow rate can be adjusted to a desired value with the valve 33 or the like so as to obtain a desired flow rate.

つまり、本発明の流動安定化装置100は、混合部で注入された空気(気体)と水(液体)から気液二相流を作り、その気液二相流をDeformableな流路に送り込むことができる。そのため、本発明の流動安定化装置100は、空気注入口1、水注入口2を有する混合部20がその主要部である。そして、流動安定化装置100は、主要部の混合部20に流路4を備えた流動安定化装置である。見方を変えると流動安定化装置100は、混合部20を備えた流路4と言い換えることができる。 That is, the flow stabilizing device 100 of the present invention creates a gas-liquid two-phase flow from the air (gas) and water (liquid) injected in the mixing section, and sends the gas-liquid two-phase flow to the deformable flow path. You can Therefore, the flow stabilizing device 100 of the present invention is mainly composed of the mixing section 20 having the air inlet 1 and the water inlet 2. The flow stabilizing device 100 is a flow stabilizing device having the flow passage 4 in the main mixing section 20. From a different point of view, the flow stabilizing device 100 can be restated as the flow path 4 including the mixing section 20.

(動作)
次に本発明の流動安定化装置の動作および流動安定化方法について説明する。図3は本発明の流動安定化装置に本発明の流動安定化方法を用いた場合の動作を説明する図(側面から見た図)であり、図4は本発明の流動安定化装置に本発明の流動安定化方法を用いた場合の動作を説明する図(側面から見た図)である。図3、図4は、空気(気体)12と水(液体)11とを同時に注入し気液二相流を構成して流路4に流す場合を示している。なお、図5、図6は水(液体)11のみを流路4に流す場合を示している。図3に示すように、空気と水とにより流路4に気液二相流が流れるようになる、図4、図6に示すように、流路4は上面方向から見て長方形の形状をとる。
(motion)
Next, the operation of the flow stabilizing device and the flow stabilizing method of the present invention will be described. FIG. 3 is a diagram for explaining the operation when the flow stabilizing method of the present invention is used in the flow stabilizing device of the present invention (a side view), and FIG. 4 is a diagram of the flow stabilizing device of the present invention. It is a figure explaining the operation|movement at the time of using the flow stabilization method of this invention (side view). 3 and 4 show a case where air (gas) 12 and water (liquid) 11 are simultaneously injected to form a gas-liquid two-phase flow and flow into the flow path 4. 5 and 6 show the case where only the water (liquid) 11 is flown into the flow path 4. As shown in FIG. 3, a gas-liquid two-phase flow is caused to flow in the flow path 4 by the air and water. As shown in FIGS. To take.

図1に示したコンプレッサー21で圧縮空気を作成し、流路4に注入する空気の空気圧と流量を、それぞれ空気圧計24と流量計22で計測しながらバルブ23を調整し所望の空気圧、流量となるように設定する。同様に流量計32で計測しながらバルブ33で水量を調整しポンプ31により水を流路4に注入する。コンプレッサー21で作成されバルブ23で調整された空気流(気体)F1とポンプ31で作成されバルブ33で調整された水流(液体)F2が、混合部20で気液二相流(F3)を成し、流路注水口3での流れ(F3)、流路4での流れ(F4)を形作る。最終的には流路排水口6の流れ(F5)となって排水される。ここで、流路4はポリチューブやホースなどのDeformableな流路であるが、空気を入れることによって安定した流れとなる。 Compressed air is created by the compressor 21 shown in FIG. 1, and the air pressure and flow rate of the air injected into the flow path 4 are measured by the air pressure gauge 24 and the flow meter 22, respectively, and the valve 23 is adjusted to obtain the desired air pressure and flow rate. To be set. Similarly, the amount of water is adjusted with the valve 33 while measuring with the flow meter 32, and water is injected into the flow path 4 by the pump 31. The air flow (gas) F1 created by the compressor 21 and adjusted by the valve 23 and the water flow (liquid) F2 created by the pump 31 and adjusted by the valve 33 form a gas-liquid two-phase flow (F3) in the mixing section 20. Then, the flow (F3) in the channel water injection port 3 and the flow (F4) in the channel 4 are formed. Eventually, the flow (F5) of the flow path drainage port 6 is discharged. Here, the flow path 4 is a deformable flow path such as a poly tube or a hose, but it becomes a stable flow by introducing air.

以下、より具体的な本発明の構成、方法および本発明の効果について説明する。 Hereinafter, more specific constitutions, methods and effects of the present invention will be described.

(流動安定化装置)
後述する温調空間において本発明の流動安定化装置100は次のように構成した。まず、流路4はポリチューブを使用し、これに空気と水を混合する配管を製作した。この配管が混合部20に相当する。ポリチューブ流路は支え棒5の上に配置した。ポリチューブ流路は支え棒5の上に配置することによってパネル(本明細書では、通水性伝熱パネルと称する)を構成している。ここで支え棒5は、4mmφのステンレス棒を用い、その配置間隔は5cmとした。また、今回使用したポリチューブは材質がポリエチレンであり、設置時の寸法は長さ178cm、幅25cm、厚さ0.1mmのものを使用した。通水性伝熱パネルは、パネルに水の流路を設け、その水によりパネルの接する領域(空間)と水との熱交換を行うようにしたパネルである。なお、本発明においてはこの通水性伝熱パネルに限らず、水の流路が設けられたシート(通水性伝熱シート)においても適用が可能である。
(Flow stabilizer)
In the temperature control space described below, the flow stabilizing device 100 of the present invention is configured as follows. First, a poly tube was used for the flow path 4, and a pipe for mixing air and water was manufactured. This pipe corresponds to the mixing section 20. The poly tube flow path was arranged on the support rod 5. By arranging the poly tube flow path on the support rod 5, a panel (referred to as a water-permeable heat transfer panel in this specification) is formed. Here, the support rods 5 were made of stainless steel rods having a diameter of 4 mm, and the arrangement interval was 5 cm. The polytube used this time was made of polyethylene, and had dimensions of 178 cm in length, 25 cm in width and 0.1 mm in thickness when installed. The water-permeable heat transfer panel is a panel in which a flow path of water is provided in the panel and the water exchanges heat with a region (space) in contact with the panel. The present invention is not limited to this water permeable heat transfer panel, and can be applied to a sheet provided with a water flow path (water permeable heat transfer sheet).

圧縮空気を作成するコンプレッサー21はオイルフリーベビコン(日立社製)を使用し、空気の流量はパージメータ(東京計装社製)(流量計22)にて計測した。また圧力(空気圧)はマノメータ(空気圧計24)にて計測する構成とした。 An oil-free Vevicon (manufactured by Hitachi Ltd.) was used as the compressor 21 for producing compressed air, and the flow rate of air was measured by a purge meter (manufactured by Tokyo Keiso Co., Ltd.) (flow meter 22). The pressure (air pressure) is measured by a manometer (air pressure gauge 24).

また、注入する水(液体)については、恒温水槽(ヤマト科学社製)と空冷式チラー(TAITEC社製)の設備により所望の温度に調整するように構成し、またこれらの設備をポンプ31として、流路4に水11を注入する構成とした。 The water (liquid) to be injected is configured to be adjusted to a desired temperature by the equipment of a constant temperature water tank (made by Yamato Scientific Co., Ltd.) and an air-cooled chiller (made by TAITEC), and these equipments are used as a pump 31. The water 11 is injected into the flow path 4.

(温調空間)
図7は本発明を適用した温調空間を示す図である。図7は、本発明として図1に示した流路安定化装置100の流路を温調空間200に適用した例であり、流動安定化装置100の構成は上述のとおりである。また、この温調空間200の天井及び床は上記に示したような通水性伝熱パネル(211、212)である。ここではポリチューブ流路4と複数の支え棒5とによりパネル(通水性伝熱パネル(211、212))を成している。混合部20は省略しているが、混合部20はパネル(211、212)に備えたポリチューブ流路4に接続される。4つの側壁(201〜204)は断熱壁(断熱ボード)とした。なお、図7にあっては、断熱壁の中の一部を図示するため、断熱壁204を省略している。また、断熱壁の断熱材として使用したスタイロフォームの厚さは5cmである。この温調空間は、幅0.9m、奥行1.8m、高さ1.8mの大きさとした。図9に、実際に測定を行った温調空間200を示す。201および202は上述の断熱壁(断熱ボード)であり、211が通水性伝熱パネルである。なお、パネル(211、212)の構成は上記に限らず様々な構成をとってもよい。例えば、支え棒5が図9のようにメッシュ状になっていてもよい。
(Temperature control space)
FIG. 7 is a diagram showing a temperature control space to which the present invention is applied. FIG. 7 is an example in which the flow path of the flow path stabilizing device 100 shown in FIG. 1 according to the present invention is applied to the temperature control space 200, and the structure of the flow stabilizing device 100 is as described above. The ceiling and floor of the temperature control space 200 are the water-permeable heat transfer panels (211 and 212) as described above. Here, a panel (water-permeable heat transfer panel (211, 212)) is formed by the poly tube flow path 4 and the plurality of support bars 5. Although the mixing section 20 is omitted, the mixing section 20 is connected to the polytube flow path 4 provided in the panels (211 and 212). The four side walls (201 to 204) were heat insulating walls (heat insulating boards). Note that, in FIG. 7, the heat insulating wall 204 is omitted because a part of the heat insulating wall is illustrated. The thickness of the styrofoam used as the heat insulating material of the heat insulating wall is 5 cm. This temperature control space had a width of 0.9 m, a depth of 1.8 m, and a height of 1.8 m. FIG. 9 shows the temperature control space 200 in which the actual measurement is performed. 201 and 202 are the above-mentioned heat insulating walls (heat insulating boards), and 211 is a water-permeable heat transfer panel. The configurations of the panels (211 and 212) are not limited to the above, and various configurations may be adopted. For example, the support rod 5 may have a mesh shape as shown in FIG.

本発明の性能評価のため実験用温調空間200を実験室内に設置した。以下の実験結果は実験室内のため太陽光照射による実験温調空間内の加熱は無い条件となる。 For the performance evaluation of the present invention, the experimental temperature control space 200 was installed in the laboratory. Since the following experimental results are in the laboratory, there is no heating in the experimental temperature control space by sunlight irradiation.

温度計測のため、図8に示すように、熱電対を複数実験用温調空間200に設置した。なお、図8では図7の温調空間200内外の温度計測ポイントを図示するため、側壁202〜204は記載を省略している。また、図9の250が温度測定用の熱電対(のケーブル)である。 For temperature measurement, thermocouples were installed in a plurality of experimental temperature control spaces 200 as shown in FIG. Note that in FIG. 8, the side walls 202 to 204 are omitted because the temperature measurement points inside and outside the temperature control space 200 of FIG. 7 are illustrated. Further, reference numeral 250 in FIG. 9 is (the cable of) the thermocouple for temperature measurement.

(実験用温調空間の冷却特性)
まず、予備的実験として実験用温調空間200の冷却実験を行った。上述の恒温水槽と空冷式チラーを用いて15℃に調整した冷却水を使用し、実験室内(OT)温度を32℃に保った条件から計測を開始した。この際の流量は300mL/minとした。
(Cooling characteristics of experimental temperature control space)
First, as a preliminary experiment, a cooling experiment of the experimental temperature control space 200 was performed. The measurement was started from the condition in which the laboratory (OT) temperature was kept at 32° C. by using the cooling water adjusted to 15° C. by using the above constant temperature water tank and the air-cooled chiller. The flow rate at this time was 300 mL/min.

また、温度測定ポイントは、実験室内(すなわち温調空間200の外)に1箇所、温調空間内の中心に1箇所、上下パネルの流入・流出口それぞれ1箇所ずつ、合計6箇所である。これらの熱電対の配置位置は、温調空間の外はOT、温調空間内の中心はIN、上パネルの流入口はUI、上パネルの流出口はUO、下パネルの流入口はLI、下パネルの流出口はLO、として図8に示される場所である。 Further, there are a total of 6 temperature measurement points, one in the laboratory (that is, outside the temperature control space 200), one in the center of the temperature control space, and one inflow/outflow port for each of the upper and lower panels. The positions of these thermocouples are OT outside the temperature control space, IN at the center of the temperature control space, UI at the upper panel inlet, UO at the upper panel, and LI at the lower panel inlet. The outlet on the bottom panel is the location shown in FIG. 8 as LO.

図10に、実験用温調空間の冷却時の温度変化結果(予備実験結果)を示す。パネル入口の水温が約18℃であり、15℃ではないことが分かる。これは、実験開始時にポリチューブ(流路4)内にあった温度の高い水が流路の変形によりポリチューブ内に滞在しやすくなっているためである。 FIG. 10 shows the temperature change result (preliminary experiment result) during cooling of the experimental temperature control space. It can be seen that the water temperature at the panel inlet is about 18°C, not 15°C. This is because the high temperature water in the poly tube (flow channel 4) at the start of the experiment is likely to stay in the poly tube due to the deformation of the flow channel.

(発明の効果の検証実験)
次に、本発明の効果について検証するため、空気注入がある場合と無い場合の実験を実施した。実験条件としては、実験室(OT)内とポリチューブ内の水が12℃になるようにし、45℃の加熱した水を100mL/min通水した。
(Verification experiment of effect of invention)
Next, in order to verify the effect of the present invention, an experiment was conducted with and without air injection. As experimental conditions, the water in the laboratory (OT) and the water inside the polytube were adjusted to 12° C., and heated water at 45° C. was passed at 100 mL/min.

空気注入のない場合(流量0)を含め、次の4つのケースについてのポリチューブ表面の温度の応答性を評価した。なお目盛りはパージメータの目盛りを表す。 The temperature response of the polytube surface was evaluated for the following four cases including the case without air injection (flow rate 0). The scale indicates the scale of the purge meter.

(1) 0m/s (目盛り−−−) : 空気注入無
(2) 4.76×10−5/s (目盛り0.5)
(3) 7.62×10−5/s (目盛り0.8)
(4) 9.50×10−5/s (目盛り1.0)
(1) 0 m 3 /s (scale ---): No air injection (2) 4.76×10 -5 m 3 /s (scale 0.5)
(3) 7.62×10 −5 m 3 /s (scale 0.8)
(4) 9.50×10 −5 m 3 /s (scale 1.0)

また、伝熱パネル211の流路注水口3の位置(UIの位置)、流路排水口6の位置(UOの位置)そして流路注水口3側のポリチューブ(流路)4の端の位置を起点として距離x離れたポイント(Px:xは距離(cm))のポリチューブ(流路)4の表面温度を計測した。具体的にはx=0cm、44.5cm、89cm、133.5cm、178cmの地点とUI、UOの地点とを計測した。図11〜図14においては、x=0cm、44.5cm、89cm、133.5cm、178cmの地点をそれぞれ、P、P44.5、P89、P133.5、P178として示す。 In addition, the position of the flow channel water inlet 3 (the position of UI) of the heat transfer panel 211, the position of the flow channel drain port 6 (the position of UO), and the end of the poly tube (flow channel) 4 on the side of the flow channel water inlet 3 The surface temperature of the polytube (flow path) 4 at a point (Px:x is a distance (cm)) separated by a distance x from the position as a starting point was measured. Specifically, the points of x=0 cm, 44.5 cm, 89 cm, 133.5 cm, and 178 cm and the points of UI and UO were measured. 11 to 14, points at x=0 cm, 44.5 cm, 89 cm, 133.5 cm, and 178 cm are shown as P 0 , P 44.5 , P 89 , P 133.5 , and P 178 , respectively.

上記4ケース((1)〜(4))に対して流路の出入口(UI、UO)及び流路のP、P44.5、P89、P133.5、P178の各地点の表面温度の過渡特性について空気流量を変えて計測を行った結果を図11から図14に示す。図11に空気注入が無い時(空気注入量を0m/sの時)の流路出入口及び流路表面温度の過渡特性を示す。図12に、空気注入量を4.76×10−5/sとした時の流路の出入口及び流路の表面温度の過渡特性を示す。図13に、空気注入量を7.62×10−5/sとした時の流路の出入口及び流路の表面温度の過渡特性を示す。図14に、空気注入量を9.5×10−5/sとした時の流路の出入口及び流路の表面温度の過渡特性を示す。 With respect to the above four cases ((1) to (4)), the inlet/outlet (UI, UO) of the channel and the points P 0 , P 44.5 , P 89 , P 133.5 , and P 178 of the channel are provided. 11 to 14 show the results of measurement of the transient characteristics of the surface temperature while changing the air flow rate. FIG. 11 shows transient characteristics of the flow path inlet/outlet and the flow path surface temperature when there is no air injection (when the air injection amount is 0 m 3 /s). FIG. 12 shows the transient characteristics of the inlet and outlet of the channel and the surface temperature of the channel when the air injection amount is set to 4.76×10 −5 m 3 /s. FIG. 13 shows the transient characteristics of the inlet and outlet of the channel and the surface temperature of the channel when the air injection amount is set to 7.62×10 −5 m 3 /s. FIG. 14 shows the transient characteristics of the inlet and outlet of the channel and the surface temperature of the channel when the air injection amount is 9.5×10 −5 m 3 /s.

図11〜図14の測定結果は、各観測点(UI、UO、P、P44.5、P89、P133.5、P178)の温度測定値とその測定時間とをそれぞれ以下の式で無次元量に直したものをプロットしている。 In the measurement results of FIGS. 11 to 14, the temperature measurement values at the respective observation points (UI, UO, P 0 , P 44.5 , P 89 , P 133.5 , P 178 ) and the measurement time thereof are as follows. The equation is plotted as a dimensionless quantity.

無次元温度の式(下記数式1) Dimensionless temperature formula (Formula 1 below)

無次元時間の式(下記数式2) Dimensionless time formula (Formula 2 below)

ここで、Tは温度、TCは初期温度、Tは通水温度、ρは水の密度、Qは単位時間当たりの通水量、tは経過時間、mは流路内に予め滞在していた水の質量である。即ち、無次元温度Θは通水温度にどれだけ近づいたかの割合を、無次元時間τは水が混合しないと仮定したときに全ての水が何回入れ替わるかを示している。 Here, T is the temperature, T C is the initial temperature, T H is water passing temperature, [rho is the density of water, Q is passing amount of water per unit time, t is the elapsed time, m is not previously stayed in the channel It is the mass of water. That is, the dimensionless temperature Θ shows the ratio of how close to the water flow temperature, and the dimensionless time τ shows how many times all the water is exchanged assuming that the water does not mix.

空気注入のない場合(図11)を例として、入口水温を見ると、通水開始とともに無次元温度は上昇し、無次元時間τが0.26になると一定の値を取るようになる。この一定になった時を定常状態と定義し、この定常状態での無次元温度をΘmaxとする。 Taking the inlet water temperature as an example when no air is injected (FIG. 11), the dimensionless temperature rises with the start of water flow, and when the dimensionless time τ reaches 0.26, it takes a constant value. This constant time is defined as a steady state, and the dimensionless temperature in this steady state is Θmax.

空気注入無し((1)のケース)の計測時間は約3時間とし、空気注入有り((2)〜(4)のケース)の計測時間は各1時間とした。そのため、空気注入有りの各ケースのデータはデータの測定個数3600個の中での最大のΘをΘmaxとした。これは、測定温度は定常状態の値に緩やかに漸近し、その時間を特定するのは難しいためである。 The measurement time without air injection (case (1)) was about 3 hours, and the measurement time with air injection (cases (2) to (4)) was 1 hour each. Therefore, in the data of each case with air injection, the maximum Θ in the number of measured data 3600 was set to Θmax. This is because the measured temperature gradually approaches the steady-state value and it is difficult to specify the time.

(無次元温度(Θ)の場所依存)
下流側の計測点(上パネルの流出口UOに近い計測点)ほどこの温度上昇の速度は減少し、一定となる温度(定常状態における無次元温度)も低下する。出口温度(UOでの温度)は無次元温度Θが0.5程度までしかならない。
(Location-dependent non-dimensional temperature (Θ))
As the measurement point on the downstream side (the measurement point closer to the outlet UO of the upper panel) decreases, the rate of temperature increase decreases, and the constant temperature (dimensionless temperature in the steady state) also decreases. The exit temperature (temperature at UO) is only up to a dimensionless temperature Θ of about 0.5.

空気を注入した場合(たとえば(4)のケース)、温度が短時間で上昇(温度応答性が改善)するとともに、定常状態での温度がわずかではあるが上昇している。 When air is injected (for example, the case of (4)), the temperature rises in a short time (the temperature responsiveness is improved), and the temperature in the steady state rises, albeit slightly.

(定常状態での無次元温度(Θ))
定常状態での温度について示すため、表1に空気注入の有無((1)〜(4)のケース)における各位置における定常状態での無次元温度を示す。流路の中心付近では空気注入がある方が温度はやや低いが、下流側に向かうにつれて温度が高くなる。流路中心付近の温度低下は、空気注入量が少なすぎるため、入口部で脈動流が発生し、流出が妨げられているのが原因であり、空気注入量を増やすことにより改善可能であると推測される。なお、下流側温度が上昇しているということから、流動状況の改善できていると考えられる。
(Dimensionless temperature in steady state (Θ))
In order to show the temperature in the steady state, Table 1 shows the dimensionless temperature in the steady state at each position in the presence or absence of air injection (cases (1) to (4)). The temperature is slightly lower in the vicinity of the center of the flow path when air is injected, but the temperature becomes higher toward the downstream side. The temperature drop near the center of the flow path is due to the fact that the pulsating flow is generated at the inlet and the outflow is blocked because the air injection amount is too small, and it can be improved by increasing the air injection amount. Guessed. Since the downstream temperature is rising, it is considered that the flow condition has been improved.

表1:空気注入の有無における各位置における定常状態での無次元温度 Table 1: Steady-state non-dimensional temperature at each position with and without air injection

(温度応答性)
温度応答性を確認するため、定常状態に至るまでの時間を図15および表2に示す。ここで各ポイント毎に空気注入の有無による定常状態に至るまでの時間を比較する。流路入口付近は定常状態に至る時間が長くなっているが、これは前述の空気注入量が少なすぎるためである。下流側に向かうにつれて定常状態に至る時間は短くなり、およそ0.48(最も加速されない(x=44.5cm)場合)〜0.78(最も加速される(出口)場合)倍の時間で定常状態に至るようになる。
(Temperature response)
In order to confirm the temperature responsiveness, the time required to reach a steady state is shown in FIG. 15 and Table 2. Here, the time to reach a steady state depending on the presence or absence of air injection is compared for each point. The time to reach the steady state is long in the vicinity of the inlet of the flow path because the above-mentioned air injection amount is too small. The time to reach the steady state becomes shorter toward the downstream side, and the steady time is about 0.48 (when most accelerated (x=44.5 cm)) to 0.78 (when most accelerated (exit)) times. Come to a state.

表2:空気注入の有無における各位置における定常状態に至るまでの無次元時間 Table 2: Dimensionless time to reach steady state at each position with and without air injection

空気注入をすると水が空気とともに脈動流として出てくるため、その影響からか入口及びx=0cm(P)では空気注入無しの方が早い段階で定常状態に達する。しかし下流側につれて空気注入有りの方がかなり早い段階で定常状態に達することが分かる。また空気流量が少ないほどわずかではあるが応答性が良い傾向が実験結果より得られた。 When air is injected, water comes out as a pulsating flow together with the air. Due to the influence of this, at the inlet and x=0 cm (P 0 ), the steady state is reached at an early stage without air injection. However, it can be seen that the steady state is reached at a much earlier stage with air injection along the downstream side. The experimental results showed that the smaller the air flow rate, the smaller the air flow rate and the better the responsiveness.

以上より、流動状況及び温度の過渡特性から本発明は有効であると言える。 From the above, it can be said that the present invention is effective from the transient characteristics of the flow state and temperature.

なお、上述の実施例では、流路4を平行に並べた金属棒の上に乗せる形をとっていたが、これに代えて、金属棒を網目状にした棚に乗せるようにしてもよい。 In the above-mentioned embodiment, the flow paths 4 are placed on the metal rods arranged in parallel, but instead of this, the metal rods may be placed on a mesh-shaped shelf.

また、上述の実施例1において、温調空間内部に外部光(太陽光など)を取り入れる場合、特に後述する植物栽培用ハウスへの適用の場合は、通水性伝熱パネル(211、212)の流路4を構成する部材を透過性のある材料に代えるとよい。この場合は、側面パネルも同様に透明化してもよい。しかしながら本発明の流動安定化装置は、気液二相流を生成して、流体を流路に流すようにするため、流路が注水による変形を伴う部材を使用する場合に、その効果を発揮する。流路の変形は、雨水を流すドレンチューブなどにも見られる。特に屋外の雨水排水の場合は、停留する雨水に制御できるため、ボウフラがわくなどの衛生問題も解決できる。 Moreover, in the above-mentioned Example 1, when external light (sunlight etc.) is taken in inside the temperature control space, especially in the case of application to a greenhouse for plant cultivation described later, the water-permeable heat transfer panel (211 and 212) is used. The member forming the flow path 4 may be replaced with a permeable material. In this case, the side panel may be transparent as well. However, since the flow stabilizing device of the present invention generates a gas-liquid two-phase flow and causes the fluid to flow through the flow channel, it exerts its effect when the flow channel uses a member that is deformed by water injection. To do. Deformation of the flow channel is also seen in drain tubes that flow rainwater. In particular, in the case of outdoor rainwater drainage, since it can be controlled to stop rainwater, hygiene problems such as bow hula can be solved.

以上説明したように、本発明は、ポリチューブやホース、あるいはビニル製流路のように流路が注水による変形を伴う部材を使用する場合、流路の流動抵抗を減らすことができる。流路入口に空気注入口を設け、液体の注入と共に空気も送り込み、流路が注水による変形を伴う部材でできた流路の変形量が減少することで流路内の流動が容易になる。これにより流路が注水による変形を伴う部材でできた流路内にあらかじめ滞在していた液体が流出しやすくなるため、流路が注水による変形を伴う部材でできた流路表面の温度応答性も改善が期待できる。 As described above, the present invention can reduce the flow resistance of the flow path when using a member such as a poly tube or a hose, or a flow path made of vinyl that is deformed by water injection. An air inlet is provided at the inlet of the flow passage, and air is also sent in along with the liquid injection, and the amount of deformation of the flow passage made of a member that is deformed by water injection is reduced, so that the flow in the flow passage is facilitated. This facilitates the outflow of liquid that was previously staying in the flow path made of a member that is deformed by water injection, so the temperature response of the flow path surface made of a member that is deformed by water injection Can be expected to improve.

(植物栽培用ハウス)
図16に本発明の植物栽培用ハウスの一例を示す。これは、本発明の流動安定化装置を用いた植物栽培用ハウスの構成例である。本実施例における植物栽培用ハウスは、ハウス300の主構成物として、実施例1で示した温調空間200とビニル天井301とを備える。温調空間200には通水性伝熱パネル(211、212)が備えられ、その通水性伝熱パネルには本発明の流動安定化装置から空気と水とが気液二相流として、通水性伝熱パネル(211、212)注水される。
(House for plant cultivation)
FIG. 16 shows an example of the greenhouse for plant cultivation of the present invention. This is a structural example of a greenhouse for plant cultivation using the flow stabilizing device of the present invention. The greenhouse for plant cultivation in the present embodiment includes the temperature control space 200 and the vinyl ceiling 301 shown in the first embodiment as main components of the house 300. The temperature control space 200 is provided with water permeable heat transfer panels (211 and 212), and the water permeable heat transfer panels have air and water as a gas-liquid two-phase flow from the flow stabilizer of the present invention. The heat transfer panels (211 and 212) are filled with water.

なお、本発明の流動安定化方法は、流路に流す液体によって変形を伴う部材で構成された前記流路に、第1の入力口から注入された気体と第2の入力口から注入された液体とを混合し気液二相流を形成して、前記気液二相流を前記流路に流すようにする。 According to the flow stabilizing method of the present invention, the gas injected from the first input port and the second input port are injected into the flow path formed of a member that is deformed by the liquid flowing in the flow path. A liquid and a liquid are mixed to form a gas-liquid two-phase flow, and the gas-liquid two-phase flow is caused to flow through the flow path.

本発明において、流路4はポリチューブやホースなどの変形しやすい(Deformableな)流路である。本発明は、上記した例のようにポリチューブやホースなど、中に何も流さないときに折りたたむことができるような変形を伴う部材を備えた流路に適用できる。 In the present invention, the flow path 4 is a deformable flow path such as a poly tube or a hose. INDUSTRIAL APPLICABILITY The present invention can be applied to a flow path provided with a member such as a polytube or a hose that is deformable so that it can be folded when nothing flows in it, as in the above-described example.

本発明は、上述したように流路4を折径(折り畳んだ状態の幅方向の寸法)が流路注水口3や流路排水口6の径よりも大きくした流路に適用できる。なお発明はこれに限られず、流路4の折径が流路注水口3や流路排水口6の径と同じくした流路に適用できる。流路4の上面から見た(上面視した)形状も長方形のみならずパネルの形にあわせて楕円や扇形など様々な形状の流路に適用してもよい。 INDUSTRIAL APPLICABILITY As described above, the present invention can be applied to a flow path in which the flow path 4 has a folded diameter (a widthwise dimension in a folded state) larger than the diameter of the flow path water inlet 3 or the flow path drain port 6. The invention is not limited to this, and can be applied to a flow path in which the bent diameter of the flow path 4 is the same as the diameter of the flow path water injection port 3 or the flow path drainage port 6. The shape of the flow path 4 viewed from the upper surface (top view) is not limited to the rectangular shape, and may be applied to flow paths having various shapes such as an ellipse and a fan shape according to the shape of the panel.

本発明は、流路に流す液体によって変形を伴う部材で構成された流路の流動の安定化機構に関わる装置や装備に汎用的に利用が可能である。特に植物栽培用ハウスの天井や床に配備するパネルやシートに水の流路を設け、その水によりパネルやシートの接する領域(空間)と水との熱交換を行うようにしたパネル/シートを備える植物栽培用ハウスに利用が可能である。 INDUSTRIAL APPLICABILITY The present invention can be generally used in devices and equipment related to a mechanism for stabilizing the flow of a flow path, which is composed of a member that is deformed by the liquid flowing in the flow path. In particular, a panel/sheet is provided in which a flow path for water is provided in a panel or sheet that is placed on the ceiling or floor of a greenhouse for plant cultivation, and the water exchanges heat with the area (space) in contact with the panel or sheet. It can be used as a house for plant cultivation.

1 空気注入口
2 水注入口
3 流路注水口
4 流路
5 支え棒
6 流路排水口
7 排水口
20 混合部
21 コンプレッサー
24 空気圧計
22、32 流量計
23、33 バルブ
31 ポンプ
100 流動安定化装置
200 温調空間
201〜204 断熱壁(断熱ボード)
211、212 通水性伝熱パネル
250 熱電対
300 ハウス
301 ビニル天井
1 Air injection port 2 Water injection port 3 Flow path injection port 4 Flow path 5 Support rod 6 Flow path drain port 7 Drain port 20 Mixing section 21 Compressor 24 Air pressure gauge 22, 32 Flow meter 23, 33 Valve 31 Pump 100 Flow stabilization Device 200 Temperature control space 201-204 Thermal insulation wall (insulation board)
211, 212 Water-permeable heat transfer panel 250 Thermocouple 300 House 301 Vinyl ceiling

Claims (7)

流路に流す液体によって変形を伴う部材を備えた流路と、
第1の入力口と第2の入力口とを備えた混合部とを、具備し、
前記混合部は、前記第1の入力口から注入した気体と前記第2の入力口から注入した液体とを混合し気液二相流を形成し、
前記混合部から前記気液二相流を前記流路に流す流動安定化装置。
A flow path provided with a member that is deformed by the liquid flowing in the flow path,
A mixing unit having a first input port and a second input port,
The mixing unit mixes a gas injected from the first input port with a liquid injected from the second input port to form a gas-liquid two-phase flow,
A flow stabilizing device for flowing the gas-liquid two-phase flow from the mixing section to the flow path.
前記部材は、透明であること特徴とする請求項1に記載の流動安定化装置。 The flow stabilizing device according to claim 1, wherein the member is transparent. 前記部材は、チューブあるいはホースである請求項1または2の何れかである流動安定化装置。 The flow stabilizing device according to claim 1, wherein the member is a tube or a hose. 前記部材は、ポリエチレンまたはポリ塩化ビニルである請求項1乃至3の何れか1つである流動安定化装置。 The flow stabilizing device according to any one of claims 1 to 3, wherein the member is polyethylene or polyvinyl chloride. 前記気体が空気であり、前記液体が水であること特徴とする請求項1乃至4の何れか1つである流動安定化装置。 The flow stabilizing device according to any one of claims 1 to 4, wherein the gas is air and the liquid is water. 請求項1乃至5のいずれか1つに記載の流動安定化装置を備え、
前記流路が、植物栽培用ハウスの天井および床の少なくとも一方に備えられたことを特徴とする植物栽培用ハウス。
A flow stabilizing device according to any one of claims 1 to 5,
A plant cultivation house, wherein the flow path is provided in at least one of a ceiling and a floor of the plant cultivation house.
請求項1乃至5のいずれか1つに記載の流動安定化装置を用いた流動安定化方法であって、
前記気体と前記液体とを混合して気液二相流を形成し、前記気液二相流を前記流路に流すことによって、前記流路内の前記液体の流動を安定化することを特徴とする流動安定化方法。
A flow stabilizing method using the flow stabilizing device according to claim 1.
The gas and the liquid are mixed to form a gas-liquid two-phase flow, and the gas-liquid two-phase flow is caused to flow in the flow path, thereby stabilizing the flow of the liquid in the flow path. And a flow stabilization method.
JP2016045830A 2016-03-09 2016-03-09 Flow stabilizing device in flow path, plant cultivation house including the same, and flow stabilizing method in flow path Active JP6748956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016045830A JP6748956B2 (en) 2016-03-09 2016-03-09 Flow stabilizing device in flow path, plant cultivation house including the same, and flow stabilizing method in flow path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016045830A JP6748956B2 (en) 2016-03-09 2016-03-09 Flow stabilizing device in flow path, plant cultivation house including the same, and flow stabilizing method in flow path

Publications (2)

Publication Number Publication Date
JP2017158476A JP2017158476A (en) 2017-09-14
JP6748956B2 true JP6748956B2 (en) 2020-09-02

Family

ID=59852862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016045830A Active JP6748956B2 (en) 2016-03-09 2016-03-09 Flow stabilizing device in flow path, plant cultivation house including the same, and flow stabilizing method in flow path

Country Status (1)

Country Link
JP (1) JP6748956B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019122271A (en) * 2018-01-12 2019-07-25 日鉄建材株式会社 Agriculture house

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56954A (en) * 1979-06-18 1981-01-08 Sumitomo Chem Co Ltd Heat-accumulating tube made of film
JPS5721758A (en) * 1980-07-16 1982-02-04 Achilles Corp Regenerator radiator and heat storage and radiation of excess heat in greenhouse
JPH07248159A (en) * 1994-03-11 1995-09-26 Norin Suisansyo Hokuriku Nogyo Shikenjo Controlling method for radiating load using green house effect gas
JP2004222712A (en) * 2003-01-27 2004-08-12 Aidoma:Kk House provided with water tube for using heat of ground water
JP2004242658A (en) * 2003-02-15 2004-09-02 Aidoma:Kk Water carpet utilizing temperature of water
EP1707912A1 (en) * 2005-04-01 2006-10-04 Fiwihex B.V. Heat exchanger and greenhouse
JP5023481B2 (en) * 2005-12-08 2012-09-12 株式会社日立製作所 Liquid processing method and liquid processing apparatus
US9591815B2 (en) * 2013-07-01 2017-03-14 Panasonic Intellectual Property Management Co., Ltd. Plant cultivation device, box, end section unit
WO2016010074A1 (en) * 2014-07-16 2016-01-21 株式会社ジーエスコマース Superheated steam generation device

Also Published As

Publication number Publication date
JP2017158476A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
Ramsey et al. Interaction of a heated jet with a deflecting stream
Dmitriev et al. Experimental investigation of fill pack impact on thermal-hydraulic performance of evaporative cooling tower
Sharan et al. Performance of single pass earth-tube heat exchanger: An experimental study
CN106133430B (en) Heat-insulating room and method for rinsing such room
Yakut et al. Optimum design-parameters of a heat exchanger having hexagonal fins
JP6748956B2 (en) Flow stabilizing device in flow path, plant cultivation house including the same, and flow stabilizing method in flow path
Calautit et al. Numerical investigation of the integration of heat transfer devices into wind towers
Ahmed et al. Comparison of earth pipe cooling performance between two different piping systems
US3403531A (en) Chimney cooler for the cooling of liquids by means of atmospheric air
Qu et al. Direct contact heat transfer enhancement between two stratified immiscible fluids by artificial interface oscillations
Zhao et al. Study of a compact falling film evaporation/condensation alternate-arrayed desalination system
Pearson et al. The resistance to air flow of farm building ventilation components
IT201700008792A1 (en) "thermoelectric converter with convective motions"
Amini et al. Analysis of frost visualization over a fin and tube heat exchanger by natural convection
Wang et al. Experimental research on the performance of a gas lift bubble pump based on a diffusion generation process
JP6259387B2 (en) Air conditioning equipment for house for plant cultivation
RU2806267C2 (en) Stand for hydroaerothermal testing of a water-cooling device of a cooling tower
Khalifa et al. Effectiveness of two different evaporative cooling systems in a synthetic warmed air space
Baisheva et al. Heat and mass transfer of a coolant in horizontal seasonal cooling devices
Mahdi et al. Energy and exergy analysis on modified closed wet cooling tower in Iraq
Lemckert Spreading radius of fountains after impinging a free surface
JP6877273B2 (en) Water outlet structure
Amemiya et al. HEAT AND FLOW CHARACTERISTICS OF WATER WITH AIR-INJECTION ON POLYETHYLENE TUBE FOR VARIOUS TUBE WIDTHS PLACED OVER METAL RODS SET.
Yousaf et al. Formation and maintenance of salinity gradient in a solar pond using brine injection technique for linear stratification
Kim et al. Refrigerant distribution in a minichannel evaporator having vertical headers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R150 Certificate of patent or registration of utility model

Ref document number: 6748956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250