JP6748001B2 - Tooth contact evaluation method - Google Patents

Tooth contact evaluation method Download PDF

Info

Publication number
JP6748001B2
JP6748001B2 JP2017021111A JP2017021111A JP6748001B2 JP 6748001 B2 JP6748001 B2 JP 6748001B2 JP 2017021111 A JP2017021111 A JP 2017021111A JP 2017021111 A JP2017021111 A JP 2017021111A JP 6748001 B2 JP6748001 B2 JP 6748001B2
Authority
JP
Japan
Prior art keywords
pressure
gear
tooth
sensitive portion
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017021111A
Other languages
Japanese (ja)
Other versions
JP2018128335A (en
Inventor
光晴 関山
光晴 関山
雅教 石川
雅教 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017021111A priority Critical patent/JP6748001B2/en
Publication of JP2018128335A publication Critical patent/JP2018128335A/en
Application granted granted Critical
Publication of JP6748001B2 publication Critical patent/JP6748001B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は歯当たり評価方法に関する。 The present invention relates to a tooth contact evaluation method.

特許文献1には、歯車の歯当たりを評価する方法が開示されている。この方法では、まず、一対の歯車の一方の歯車の歯面に、赤外線サーモグラフィ装置で使用する波長域において基準値以上の吸光度を有するコーティング剤を塗布する。その後、一対の歯車を回転させ、歯車の見かけ上の歯面温度の変化を赤外線サーモグラフィ装置を用いて検出し、検出された見かけ上の歯面温度の変化に基づいて、一対の歯車の歯当たりを評価する。 Patent Document 1 discloses a method for evaluating tooth contact of gears. In this method, first, a coating agent having an absorbance equal to or higher than a reference value in a wavelength range used in an infrared thermography device is applied to a tooth surface of one of a pair of gears. After that, the pair of gears is rotated, the change in the apparent tooth surface temperature of the gears is detected by using an infrared thermography device, and based on the detected change in the apparent tooth surface temperature, the tooth contact of the pair of gears is detected. Evaluate.

特開2008−185549号公報JP, 2008-185549, A

特許文献1に開示される方法では、一対の歯車を回転させ、一対の歯車の歯面同士が当たって歯当たりが一旦生じ、当該歯面同士が離れた後に、歯車の歯面温度の変化を検出するものであり、歯当たりが生じたときに歯面へかかる圧力を測定するものではない。したがって、歯当たりの評価精度に改善の余地が有る。 In the method disclosed in Patent Document 1, a pair of gears are rotated, tooth surfaces of the pair of gears come into contact with each other, and tooth contact occurs once, and after the tooth surfaces are separated from each other, a change in tooth surface temperature of the gear is performed. It is to detect, not to measure the pressure applied to the tooth surface when tooth contact occurs. Therefore, there is room for improvement in the evaluation accuracy of tooth contact.

一方、所定の面積を有する膜状圧力センサを歯車の歯面の所定の領域に設けて、歯当たりが生じた箇所と、その圧力の大きさとを計測する方法が知られている。このような方法では、歯車形状に与える影響が大きいため、歯当たりの評価精度に改善の余地が有る。 On the other hand, there is known a method in which a film pressure sensor having a predetermined area is provided in a predetermined region of the tooth surface of a gear to measure a position where tooth contact occurs and the magnitude of the pressure. Such a method has a large effect on the shape of the gear, and thus there is room for improvement in the evaluation accuracy of tooth contact.

本発明は、歯当たりの評価精度を改善するものとする。 The present invention shall improve the accuracy of tooth contact evaluation.

本発明に係る歯当たり評価方法は、
測定対象歯車と別の歯車とを噛み合せて回転させることによって、前記測定対象歯車と前記別の歯車との互いの歯面同士が当たり、接触している部位である同時接触線を評価する歯当たり評価方法であって、
前記測定対象歯車は、第1の感圧部(例えば、感圧領域2a等)、及び第2の感圧部(例えば、感圧領域2b等)を備え、
前記第1の感圧部、及び前記第2の感圧部は、前記測定対象歯車の少なくとも一つの歯面に、間隔を空けて配置されており、
前記測定対象歯車と、前記別の歯車とを、噛み合せて回転させ、前記測定対象歯車の回転角度に対する前記第1の感圧部の圧力の検出値を測定した後、前記測定対象歯車の回転角度に対する前記第2の感圧部の圧力の検出値を測定する、圧力実測ステップと、
前記第1の感圧部の長さ及び前記測定対象歯車の回転角度に基づいて、前記別の歯車が前記第1の感圧部を通過した通過速度を算出する、通過速度算出ステップと、
前記同時接触線を算出する同時接触線導出ステップと、を備え、
前記同時接触線導出ステップでは、
前記第1の感圧部が圧力を検知し終わった時点から、前記第2の感圧部が圧力を検知し始めた検知開始時点までにおいて、前記測定対象歯車と前記別の歯車との接触点は、前記第1の感圧部の一端から所定の位置に移動しており、
前記検知開始時点における前記接触点の位置を前記通過速度に基づいて算出することによって、前記同時接触線を算出する。
このような構成によれば、測定対象歯車と別の歯車との歯面同士が当たって歯当たりが生じたときに歯面へかかる圧力を測定する。また、第1の感圧部が歯当たりによる圧力を検知し終わってから、第2の感圧部が歯当たりによる圧力を検知するため、所定の面積を有する膜状圧力センサよりも面積を必要とすることなく、ある時点における歯当たりの部位と、圧力の大きさを良好に計測することができる。そのため、歯当たりの評価精度を改善することができる。
The tooth contact evaluation method according to the present invention,
By rotating the gear to be measured and another gear by meshing with each other, the tooth surfaces of the gear to be measured and the different gear are in contact with each other, and the tooth contact is to evaluate the simultaneous contact line which is the contacting portion. Evaluation method,
The measurement target gear includes a first pressure-sensitive portion (for example, a pressure-sensitive area 2a) and a second pressure-sensitive portion (for example, a pressure-sensitive area 2b).
The first pressure-sensitive portion and the second pressure-sensitive portion are arranged at intervals on at least one tooth surface of the gear to be measured,
The measurement target gear and the other gear are meshed and rotated, and after measuring the detected value of the pressure of the first pressure-sensitive portion with respect to the rotation angle of the measurement target gear, the rotation angle of the measurement target gear A pressure measurement step of measuring the detected value of the pressure of the second pressure sensitive portion with respect to
Based on the length of the first pressure-sensitive portion and the rotation angle of the measurement target gear, the passage speed calculation step of calculating a passage speed at which the another gear has passed through the first pressure-sensitive portion,
Simultaneous contact line deriving step of calculating the simultaneous contact line,
In the step of deriving the simultaneous contact line,
From the time when the first pressure-sensitive portion finishes detecting pressure to the detection start time when the second pressure-sensitive portion begins to detect pressure, the contact point between the gear to be measured and the another gear. Is moving from one end of the first pressure sensitive portion to a predetermined position,
The simultaneous contact line is calculated by calculating the position of the contact point at the time of starting the detection based on the passing speed.
According to such a configuration, the pressure applied to the tooth surface is measured when the tooth surfaces of the gear to be measured and another gear contact each other and tooth contact occurs. Further, since the second pressure-sensitive portion detects the pressure due to the tooth contact after the first pressure-sensitive portion finishes detecting the pressure due to the tooth contact, it requires an area larger than that of the membrane pressure sensor having a predetermined area. It is possible to satisfactorily measure the tooth contact portion and the magnitude of pressure at a certain time point. Therefore, the evaluation accuracy of tooth contact can be improved.

本発明は、歯当たりの評価精度を改善することができる。 The present invention can improve the evaluation accuracy of tooth contact.

実施の形態1に係る歯当たり評価方法を示すフローチャートである。3 is a flowchart showing a tooth contact evaluation method according to the first embodiment. 歯面上に設けられた薄膜圧力センサを示す上面図である。It is a top view which shows the thin film pressure sensor provided on the tooth surface. 歯面上に設けられた薄膜圧力センサを示す断面図である。It is sectional drawing which shows the thin film pressure sensor provided on the tooth surface. 歯面上における歯当たりの進行を示す斜視図である。It is a perspective view which shows progress of tooth contact on a tooth surface. ギヤの回転角度に対する平均面圧の一具体例を示すグラフである。It is a graph which shows one specific example of the average surface pressure with respect to the rotation angle of a gear. 実施の形態1に係る歯当たり評価方法を示す図である。FIG. 3 is a diagram showing a tooth contact evaluation method according to the first embodiment. 実施の形態1に係る歯当たり評価方法を示す図である。FIG. 3 is a diagram showing a tooth contact evaluation method according to the first embodiment. 実施の形態1に係る歯当たり評価方法を示す図である。FIG. 3 is a diagram showing a tooth contact evaluation method according to the first embodiment. 実施の形態1に係る歯当たり評価方法を示す図である。FIG. 3 is a diagram showing a tooth contact evaluation method according to the first embodiment. 歯面上に設けられた薄膜圧力センサの他の一具体例を示す上面図である。It is a top view which shows another specific example of the thin film pressure sensor provided on the tooth surface. ギヤの回転角に対する同時接触線角度の一具体例を示すグラフである。It is a graph which shows a specific example of the simultaneous contact line angle with respect to the rotation angle of a gear. 歯面上に設けられた薄膜圧力センサの一例を示す上面図である。It is a top view which shows an example of the thin film pressure sensor provided on the tooth surface. 歯面上に設けられた薄膜圧力センサの他の一例を示す上面図である。It is a top view which shows another example of the thin film pressure sensor provided on the tooth surface.

以下、本発明を適用した具体的な実施形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments. Further, in order to clarify the explanation, the following description and drawings are appropriately simplified.

(実施の形態1)
図1〜図9を参照して実施の形態1に係る歯当たり評価方法について説明する。図1は、実施の形態1に係る歯当たり評価方法を示すフローチャートである。図2は、歯面上に設けられた薄膜圧力センサを示す上面図である。図3は、歯面上に設けられた薄膜圧力センサを示す断面図である。図4は、歯面上における歯当たりの進行を示す斜視図である。図5は、ギヤの回転角度に対する平均面圧を示すグラフである。図6〜図9は、実施の形態1に係る歯当たり評価方法を示す図である。図2〜図4、図6〜図9では、3次元xyz座標を規定した。
(Embodiment 1)
The tooth-contact evaluation method according to the first embodiment will be described with reference to FIGS. 1 to 9. FIG. 1 is a flowchart showing a tooth contact evaluation method according to the first embodiment. FIG. 2 is a top view showing the thin film pressure sensor provided on the tooth surface. FIG. 3 is a sectional view showing a thin film pressure sensor provided on the tooth surface. FIG. 4 is a perspective view showing the progress of tooth contact on the tooth surface. FIG. 5 is a graph showing the average surface pressure with respect to the rotation angle of the gear. 6 to 9 are diagrams showing the tooth-contact evaluation method according to the first embodiment. In FIGS. 2 to 4 and 6 to 9, three-dimensional xyz coordinates are defined.

本歯当たり評価方法は、図2に示す薄膜圧力センサ2を用いて実施することができる。薄膜圧力センサ2は、歯車10(図4参照)の歯1の歯面1aに、所定のパターンとして設けられている。薄膜圧力センサ2は、感圧領域2a、2b、2cと、リード線領域2d、2e、2f、2g、2h、2iを備える。図2に示す例では、感圧領域2a、2b、2cは、歯面1aのピッチ線P1上に並んで設けられており、いずれも間隔が空いている。さらに、リード線領域2d、2e、2f、2g、2h、2iが、歯面1a上に設けられている。リード線領域2d、2eが、感圧領域2aと電圧検出装置(図示略)とを電気的に接続し、リード線領域2f、2gが、感圧領域2bと電圧検出装置(図示略)とを電気的に接続し、リード線領域2h、2iが、感圧領域2cと電圧検出装置(図示略)とを電気的に接続している。感圧領域2a、2b、2cは、例えば、ピエゾ抵抗素子であり、圧力を受けると、圧力の大きさに応じて、所定の電圧を発生する。感圧領域2a、2b、2cにそれぞれ接続された電圧検出装置は、発生した電圧を測定することができる。 This tooth contact evaluation method can be implemented using the thin film pressure sensor 2 shown in FIG. The thin film pressure sensor 2 is provided as a predetermined pattern on the tooth surface 1a of the tooth 1 of the gear 10 (see FIG. 4). The thin film pressure sensor 2 includes pressure sensitive areas 2a, 2b, 2c and lead wire areas 2d, 2e, 2f, 2g, 2h, 2i. In the example shown in FIG. 2, the pressure-sensitive areas 2a, 2b, 2c are provided side by side on the pitch line P1 of the tooth flank 1a, and they are all spaced. Further, lead wire regions 2d, 2e, 2f, 2g, 2h, 2i are provided on the tooth surface 1a. The lead wire regions 2d and 2e electrically connect the pressure sensitive region 2a and a voltage detecting device (not shown), and the lead wire regions 2f and 2g connect the pressure sensitive region 2b and a voltage detecting device (not shown). The lead wire regions 2h and 2i are electrically connected to each other, and the pressure sensitive region 2c and the voltage detection device (not shown) are electrically connected to each other. The pressure-sensitive areas 2a, 2b, 2c are, for example, piezoresistive elements, and when pressure is applied, a predetermined voltage is generated according to the magnitude of the pressure. The voltage detection devices respectively connected to the pressure sensitive areas 2a, 2b, 2c can measure the generated voltage.

図3に示すように、薄膜圧力センサ2は、中間膜21と、絶縁膜22と、絶縁膜23と、保護膜24と、感圧膜25とを含む。中間膜21と、絶縁膜22と、絶縁膜23と、保護膜24とは、この順に積層している。保護膜24は、歯車同士が歯当たりしても、薄膜圧力センサ2の他の構成要素を保護するような耐久性、又は厚みを備えればよい。感圧膜25は、絶縁膜22と、絶縁膜23との間に配置されている。なお、図2に示すように、図3に示す断面は、便宜的にリード線領域2fの断面であるが、感圧領域2a、2b、2cと、リード線領域2d、2e、2g、2h、2iにおいても同じ構成を有する。 As shown in FIG. 3, the thin film pressure sensor 2 includes an intermediate film 21, an insulating film 22, an insulating film 23, a protective film 24, and a pressure sensitive film 25. The intermediate film 21, the insulating film 22, the insulating film 23, and the protective film 24 are laminated in this order. The protective film 24 may have a durability or a thickness that protects other components of the thin film pressure sensor 2 even if the gears contact each other. The pressure sensitive film 25 is arranged between the insulating film 22 and the insulating film 23. Note that, as shown in FIG. 2, the cross section shown in FIG. 3 is a cross section of the lead wire region 2f for the sake of convenience, but the pressure sensitive regions 2a, 2b, 2c and the lead wire regions 2d, 2e, 2g, 2h, 2i has the same configuration.

感圧領域2a、2b、2cにおける感圧膜25は、リード線領域2d、2e、2f、2g、2h、2iにおける感圧膜25の電気抵抗値R2よりも大きな電気抵抗値R1を有し、電気抵抗値R2は、電気抵抗値R1の5%以下であるとよい。このように電気抵抗値R1、R2の比を調整することによって、感圧領域2a、2b、2cの圧力感度を維持しつつ、リード線領域2d、2e、2f、2g、2h、2iの圧力感度を十分に低減させる。薄膜圧力センサ2の厚みは、10μm以下であるとよい。中間膜21、保護膜24、及び感圧膜25の厚みの一例は、それぞれ、0.2μm、1μm、0.2μmである。絶縁膜22と絶縁膜23とを重ねた積層体の厚みの一例は、6μmである。 The pressure sensitive film 25 in the pressure sensitive regions 2a, 2b, 2c has an electric resistance value R1 larger than the electric resistance value R2 of the pressure sensitive film 25 in the lead wire regions 2d, 2e, 2f, 2g, 2h, 2i, The electric resistance value R2 is preferably 5% or less of the electric resistance value R1. By adjusting the ratio of the electric resistance values R1 and R2 in this way, the pressure sensitivity of the pressure sensitive areas 2a, 2b, 2c is maintained, while the pressure sensitivity of the lead wire areas 2d, 2e, 2f, 2g, 2h, 2i is maintained. Is sufficiently reduced. The thickness of the thin film pressure sensor 2 is preferably 10 μm or less. Examples of the thicknesses of the intermediate film 21, the protective film 24, and the pressure sensitive film 25 are 0.2 μm, 1 μm, and 0.2 μm, respectively. An example of the thickness of the laminated body in which the insulating film 22 and the insulating film 23 are stacked is 6 μm.

まず、歯車10、11(図示略)同士を噛み合せて、歯面1aにかかる圧力を測定する(圧力実測ステップS1)。歯車10、11は、互いに噛み合せることのできる一対の歯車であり、歯車10は、歯当たり評価方法の測定対象歯車である。薄膜圧力センサ2を歯車10の歯1の歯面1aに配置し、歯車10を駆動ユニット(図示略)に組み付ける。歯車11(図示略)は、歯車10と噛み合う歯車を利用することができる。なお、歯車11の歯面には、薄膜圧力センサ2が配置されていない。駆動ユニットによって任意の一定のトルク及び、単位時間当たりの回転角度を歯車10に付与し、噛み合い試験を実施する。 First, the gears 10 and 11 (not shown) are meshed with each other, and the pressure applied to the tooth surface 1a is measured (pressure measurement step S1). The gears 10 and 11 are a pair of gears that can be meshed with each other, and the gear 10 is a measurement target gear of the tooth contact evaluation method. The thin film pressure sensor 2 is arranged on the tooth surface 1a of the tooth 1 of the gear 10, and the gear 10 is assembled to a drive unit (not shown). As the gear 11 (not shown), a gear that meshes with the gear 10 can be used. The thin film pressure sensor 2 is not arranged on the tooth surface of the gear 11. An arbitrary constant torque and a rotation angle per unit time are applied to the gear 10 by the drive unit, and the meshing test is performed.

図4に示すように、同時接触線は、歯車10、11同士が噛み合い、歯当たりが進行するとき、時点T1、T2、…、Tnにおいて略同時に接触する線、又は線状に延びる領域である。一対の歯車10、11同士の噛み合いが開始した後、同時接触線は、時点T1、T2、…、Tnと時間が経過するにつれて、噛み合い進行方向に移動する。 As shown in FIG. 4, the simultaneous contact line is a line that is in contact with the gears 10 and 11 at substantially the same time at the time points T1, T2,... .. After the meshing of the pair of gears 10 and 11 is started, the simultaneous contact line moves in the meshing advancing direction as time passes from time points T1, T2,..., Tn.

図5に、感圧領域2a、2b、2cにより計測した、ギヤの回転角度に対応する平均面圧の一具体例を示す。図5及び図6に示すように、歯車11(図示略)と感圧領域2aとの接触が開始する開始地点A1から、歯車11と感圧領域2aとの接触が終了する終了地点A2までにおいて、感圧領域2aは、平均面圧の立ち上がりとその降下とを検出した。また、図5及び図9に示すように、歯車11と感圧領域2bとの接触が開始する開始地点B1から、歯車11と感圧領域2bとの接触が終了する終了地点B2までにおいて、感圧領域2bは、平均面圧の立ち上がりとその降下とを検出した。図5及び図9に示すように、歯車11(図示略)と感圧領域2cとの接触が開始する開始地点C1から、歯車11と感圧領域2cとの接触が終了する終了地点C2までにおいて、感圧領域2cは、平均面圧の立ち上がりとその降下とを検出した。なお、開始地点B1は、感圧領域2bが圧力を検知し始めた検知開始時点での、歯車11と感圧領域2bとの接触点の位置でもある。 FIG. 5 shows a specific example of the average surface pressure corresponding to the rotation angle of the gear, which is measured by the pressure sensitive areas 2a, 2b, 2c. As shown in FIGS. 5 and 6, from the start point A1 where the contact between the gear 11 (not shown) and the pressure sensitive area 2a starts to the end point A2 where the contact between the gear 11 and the pressure sensitive area 2a ends. In the pressure sensitive region 2a, the rise and fall of the average surface pressure were detected. Further, as shown in FIGS. 5 and 9, from the start point B1 where the contact between the gear 11 and the pressure sensitive area 2b starts to the end point B2 where the contact between the gear 11 and the pressure sensitive area 2b ends, In the pressure region 2b, the rise and fall of the average surface pressure were detected. As shown in FIGS. 5 and 9, from a start point C1 where the contact between the gear 11 (not shown) and the pressure sensitive area 2c starts to an end point C2 where the contact between the gear 11 and the pressure sensitive area 2c ends. In the pressure sensitive region 2c, the rise and fall of the average surface pressure were detected. The start point B1 is also the position of the contact point between the gear 11 and the pressure-sensitive area 2b at the time when the pressure-sensitive area 2b starts detecting pressure.

続いて、通過速度Vを算出する(通過速度算出ステップS2)。通過速度Vは、同時接触線が感圧領域2aを通過する速度である。図6に示すように、開始地点A1から終了地点A2までの、歯車11の回転角度RA1を計測する。上記したように、駆動ユニットによって任意の一定のトルク及び、単位時間当たりの回転角度を歯車10に付与し、噛み合い試験を実施する。そのため、歯車11の回転角度は、経過した時間の長さに比例し得る。通過速度V[mm/deg]と、回転角度RA1[deg]と、感圧領域2aの長さL1[mm]とは、関係式1を満たす。式1を用いて、通過速度Vを求める。
V=L1/RA1 …(式1)
Subsequently, the passing speed V is calculated (passing speed calculation step S2). The passing speed V is the speed at which the simultaneous contact lines pass through the pressure sensitive area 2a. As shown in FIG. 6, the rotation angle RA1 of the gear 11 from the start point A1 to the end point A2 is measured. As described above, the drive unit applies an arbitrary constant torque and a rotation angle per unit time to the gear 10 to perform the meshing test. Therefore, the rotation angle of the gear 11 can be proportional to the length of time that has elapsed. The passing speed V [mm/deg], the rotation angle RA1 [deg], and the length L1 [mm] of the pressure sensitive area 2a satisfy the relational expression 1. The passing speed V is obtained using the equation 1.
V=L1/RA1 (Formula 1)

最後に、開始地点B1における同時接触線TB1を導出する(同時接触線導出ステップS3)。具体的には、図5及び図7に示すように、終了地点A2から開始地点B1までに移動するまでに回転したギヤの回転角度RA2と、通過速度Vとを積算して、移動距離L2を算出する。さらに、開始地点A1と終了地点A2とを通過し終了地点A2から延長する一直線上において、終了地点A2から延長方向に移動距離L2だけ移動させた推定点A3を求める。開始地点B1と、推定点A3とを一直線で結び、同時接触線TB1を求める。 Finally, the simultaneous contact line T B1 at the start point B1 is derived (simultaneous contact line derivation step S3). Specifically, as shown in FIGS. 5 and 7, the rotation angle RA2 of the gear rotated from the end point A2 to the start point B1 and the passing speed V are integrated to calculate the moving distance L2. calculate. Further, an estimated point A3 obtained by moving the end point A2 by the moving distance L2 in the extension direction is obtained on a straight line passing through the start point A1 and the end point A2 and extending from the end point A2. The starting point B1 and the estimated point A3 are connected by a straight line to obtain a simultaneous contact line T B1 .

図8に示すように、同時接触線TB1とピッチ線P1との交点N1におけるピッチ線P1の接線TG1と、同時接触線TB1との挟角を計測し、同時接触線TB1の角度α1を算出する。通過速度算出ステップS2及び同時接触線導出ステップS3と同じ方法を用いて、図9に示すように、歯車11と感圧領域2cとの接触が開始する開始地点C1を通る同時接触線TC1を求める。 As shown in FIG. 8, the angle between the tangent line TG1 of the pitch line P1 and the simultaneous contact line T B1 at the intersection N1 between the simultaneous contact line T B1 and the pitch line P1 is measured, and the angle α1 of the simultaneous contact line T B1 is measured. To calculate. Using the same method as the passing speed calculation step S2 and the simultaneous contact line derivation step S3, as shown in FIG. 9, the simultaneous contact line T C1 passing through the start point C1 at which the contact between the gear 11 and the pressure sensitive area 2c starts is calculated. Ask.

(実試験)
次に、図10及び図11を参照して、各入力トルク水準における同時接触線の角度を計測した実試験について説明する。図10は、歯面上に設けられた薄膜圧力センサの他の一具体例を示す上面図である。図11は、ギヤの回転角に対する同時接触線角度の一具体例を示すグラフである。なお、図10では、3次元xyz座標を規定した。
(Actual test)
Next, an actual test in which the angle of the simultaneous contact line at each input torque level is measured will be described with reference to FIGS. 10 and 11. FIG. 10 is a top view showing another specific example of the thin film pressure sensor provided on the tooth surface. FIG. 11 is a graph showing a specific example of the simultaneous contact line angle with respect to the rotation angle of the gear. In addition, in FIG. 10, three-dimensional xyz coordinates are defined.

実試験の測定対象である歯車10の歯面1aに相当する歯面には、薄膜圧力センサ2(図2参照)に相当する薄膜圧力センサが設けられている。また、実試験の測定対象である歯車10における、この歯面とは別の歯面には、図10に示す薄膜圧力センサ202に相当する薄膜圧力センサが設けられている。 A thin film pressure sensor corresponding to the thin film pressure sensor 2 (see FIG. 2) is provided on the tooth surface corresponding to the tooth surface 1a of the gear 10 that is the measurement target of the actual test. Further, a thin film pressure sensor corresponding to the thin film pressure sensor 202 shown in FIG. 10 is provided on a tooth surface different from the tooth surface of the gear 10 that is the measurement target of the actual test.

図10に示すように、薄膜圧力センサ202は、歯車10(図4参照)の歯1の歯面1aに、図2に示す薄膜圧力センサ2のパターンと異なる所定のパターンとして設けられている。薄膜圧力センサ202の感圧領域202a、202b、202cは、それぞれ、図2に示す感圧領域2a、2b、2cと同じ構成を有する。感圧領域202a、202b、202cは、それぞれ、図2に示す感圧領域2a、2b、2cと比較して、歯面1a上においてX軸マイナス側に設けられている。リード線領域202d、202e、202f、202g、202h、202iは、リード線領域2d、2e、2f、2g、2h、2iと同じ構成を有する。 As shown in FIG. 10, the thin film pressure sensor 202 is provided on the tooth surface 1a of the tooth 1 of the gear 10 (see FIG. 4) as a predetermined pattern different from the pattern of the thin film pressure sensor 2 shown in FIG. The pressure sensitive regions 202a, 202b, 202c of the thin film pressure sensor 202 have the same configurations as the pressure sensitive regions 2a, 2b, 2c shown in FIG. 2, respectively. The pressure-sensitive areas 202a, 202b, 202c are provided on the negative side of the X-axis on the tooth surface 1a as compared with the pressure-sensitive areas 2a, 2b, 2c shown in FIG. 2, respectively. The lead wire areas 202d, 202e, 202f, 202g, 202h, 202i have the same configuration as the lead wire areas 2d, 2e, 2f, 2g, 2h, 2i.

各入力トルクで、測定対象歯車と別の歯車とを噛み合せ、各感圧領域における同時接触感圧角度を測定し、これを図11に示した。図11に示すように、入力トルクの増加に伴って、各感圧領域における同時接触線の角度が変化する。これらの要因として、駆動ユニットのケース、支持系の変形による歯車のアライメント変化、歯面の弾性変形量の増加等が挙げられる。 With each input torque, the gear to be measured is meshed with another gear, and the simultaneous contact pressure-sensitive angle in each pressure-sensitive region was measured, which is shown in FIG. 11. As shown in FIG. 11, the angle of the simultaneous contact line in each pressure-sensitive area changes as the input torque increases. These factors include the case of the drive unit, the alignment change of the gear due to the deformation of the support system, the increase of the elastic deformation amount of the tooth surface, and the like.

以上より、実施の形態1に係る歯当たり評価方法によれば、感圧領域2a、2b、2c等によって、歯当たりが生じている間において、ある時点における歯当たりの部位と、各部位の圧力の大きさを良好に計測することができ、歯当たりの評価精度を改善することができる。 As described above, according to the tooth-contact evaluation method according to the first embodiment, the tooth-contact portion at a certain point and the pressure of each portion during the tooth-contact due to the pressure-sensitive areas 2a, 2b, 2c, and the like. Can be satisfactorily measured and the accuracy of tooth contact evaluation can be improved.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。実施の形態1に係る歯当たり評価方法では、薄膜圧力センサ2は、歯車10(図4参照)の歯1の歯面1aに、所定のパターンとして設けられており、図2に示す例では、薄膜圧力センサ2の感圧領域2a、2b、2cは、歯面1aのピッチ線P1上に並んで設けられており、いずれも間隔が空いている。しかし、感圧領域2a、2b、2cは、多種多様な配置パターンをとることができる。例えば、図12に示すように、感圧領域2a、2b、2cを歯車10の歯面1aの所定の領域、例えば、歯面の長手方向の一端(ここでは、X軸方向マイナス側の一端)近傍における限定された領域に密に設けてもよい。図13に示すように、感圧領域2a、2b、2c、2j、2k、2l、2m、2n、2p等を歯車10の歯面1aのピッチ線P1上に密に並んで設けてもよい。なお、図12、13では、分かり易さのため、リード線領域の図示を省略した。 The present invention is not limited to the above-mentioned embodiments, but can be modified as appropriate without departing from the spirit of the present invention. In the tooth contact evaluation method according to the first embodiment, the thin film pressure sensor 2 is provided on the tooth surface 1a of the tooth 1 of the gear 10 (see FIG. 4) in a predetermined pattern, and in the example shown in FIG. The pressure sensitive areas 2a, 2b, 2c of the thin film pressure sensor 2 are provided side by side on the pitch line P1 of the tooth surface 1a, and are all spaced. However, the pressure-sensitive areas 2a, 2b, 2c can take a wide variety of arrangement patterns. For example, as shown in FIG. 12, the pressure-sensitive areas 2a, 2b, and 2c are defined in a predetermined area of the tooth surface 1a of the gear 10, for example, one end in the longitudinal direction of the tooth surface (here, one end on the minus side in the X-axis direction). They may be densely provided in a limited area in the vicinity. As shown in FIG. 13, the pressure sensitive regions 2a, 2b, 2c, 2j, 2k, 21, 2m, 2n, 2p, etc. may be densely arranged on the pitch line P1 of the tooth surface 1a of the gear 10. 12 and 13, the lead wire region is not shown for the sake of clarity.

S1 圧力実測ステップ S2 通過速度算出ステップ
S3 同時接触線導出ステップ
10、11 歯車
1 歯 1a 歯面
2、202 薄膜圧力センサ
2a〜2c、202a〜202c 感圧領域
A1、B1、C1 開始地点 A2、B2、C2 終了地点
A3 推定点
L2 移動距離
B1、TC1 同時接触線 V 通過速度
S1 Pressure measurement step S2 Passing speed calculation step S3 Simultaneous contact line derivation step 10, 11 Gear 1 tooth 1a Tooth surface 2, 202 Thin film pressure sensor 2a-2c, 202a-202c Pressure sensitive area A1, B1, C1 Start point A2, B2 , C2 End point A3 Estimated point L2 Moving distance
T B1 , T C1 simultaneous contact line V Passing speed

Claims (1)

測定対象歯車と別の歯車とを噛み合せて回転させることによって、前記測定対象歯車と前記別の歯車との互いの歯面同士が当たり、接触している部位である同時接触線を評価する歯当たり評価方法であって、
前記測定対象歯車は、第1の感圧部、及び第2の感圧部を備え、
前記第1の感圧部、及び前記第2の感圧部は、前記測定対象歯車の少なくとも一つの歯面に、間隔を空けて配置されており、
前記測定対象歯車と、前記別の歯車とを、噛み合せて回転させ、前記測定対象歯車の回転角度に対する前記第1の感圧部の圧力の検出値を測定した後、前記測定対象歯車の回転角度に対する前記第2の感圧部の圧力の検出値を測定する、圧力実測ステップと、
前記第1の感圧部の長さ及び前記測定対象歯車の回転角度に基づいて、前記別の歯車が前記第1の感圧部を通過した通過速度を算出する、通過速度算出ステップと、
前記同時接触線を算出する同時接触線導出ステップと、を備え、
前記同時接触線導出ステップでは、
前記第1の感圧部が圧力を検知し終わった時点から、前記第2の感圧部が圧力を検知し始めた検知開始時点までにおいて、前記測定対象歯車と前記別の歯車との接触点は、前記第1の感圧部の一端から所定の位置に移動しており、
前記検知開始時点における前記接触点の位置を前記通過速度に基づいて算出することによって、前記同時接触線を算出する、
歯当たり評価方法。
By rotating the gear to be measured and another gear by meshing with each other, the tooth surfaces of the gear to be measured and the different gear are in contact with each other, and the tooth contact is to evaluate the simultaneous contact line which is the contacting portion. Evaluation method,
The measurement target gear includes a first pressure sensitive portion and a second pressure sensitive portion,
The first pressure-sensitive portion and the second pressure-sensitive portion are arranged at intervals on at least one tooth surface of the gear to be measured,
The measurement target gear and the other gear are meshed and rotated, and after measuring the detected value of the pressure of the first pressure-sensitive portion with respect to the rotation angle of the measurement target gear, the rotation angle of the measurement target gear A pressure measurement step of measuring the detected value of the pressure of the second pressure sensitive portion with respect to
Based on the length of the first pressure-sensitive portion and the rotation angle of the measurement target gear, the passage speed calculation step of calculating a passage speed at which the another gear has passed through the first pressure-sensitive portion,
Simultaneous contact line deriving step of calculating the simultaneous contact line,
In the step of deriving the simultaneous contact line,
From the time when the first pressure-sensitive portion finishes detecting pressure to the detection start time when the second pressure-sensitive portion begins to detect pressure, the contact point between the gear to be measured and the another gear. Is moving from one end of the first pressure sensitive portion to a predetermined position,
The simultaneous contact line is calculated by calculating the position of the contact point at the time of starting the detection based on the passing speed.
Tooth contact evaluation method.
JP2017021111A 2017-02-08 2017-02-08 Tooth contact evaluation method Expired - Fee Related JP6748001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017021111A JP6748001B2 (en) 2017-02-08 2017-02-08 Tooth contact evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017021111A JP6748001B2 (en) 2017-02-08 2017-02-08 Tooth contact evaluation method

Publications (2)

Publication Number Publication Date
JP2018128335A JP2018128335A (en) 2018-08-16
JP6748001B2 true JP6748001B2 (en) 2020-08-26

Family

ID=63172504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017021111A Expired - Fee Related JP6748001B2 (en) 2017-02-08 2017-02-08 Tooth contact evaluation method

Country Status (1)

Country Link
JP (1) JP6748001B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525362B2 (en) * 1973-03-26 1980-07-05
JPS6246228A (en) * 1985-08-24 1987-02-28 Mazda Motor Corp Method of inspecting tooth contact of gear
US5373735A (en) * 1993-07-30 1994-12-20 Gei Systems, Inc. Gear testing method and apparatus for inspecting the contact area between mating gears
JP3399322B2 (en) * 1997-10-14 2003-04-21 トヨタ自動車株式会社 Method and apparatus for measuring gear tooth profile
JP4628088B2 (en) * 2004-12-21 2011-02-09 トヨタ自動車株式会社 Gear tooth surface shape design method and gear
JP2008175694A (en) * 2007-01-18 2008-07-31 Fuji Heavy Ind Ltd Evaluation device of gear pair, evaluation program, and evaluation method of gear pair using this
JP4733652B2 (en) * 2007-01-31 2011-07-27 ジヤトコ株式会社 Gear tooth contact evaluation method
JP2011185285A (en) * 2010-03-04 2011-09-22 Toyota Motor Corp Hypoid gear device
JP2015132280A (en) * 2014-01-09 2015-07-23 トヨタ自動車株式会社 Gear

Also Published As

Publication number Publication date
JP2018128335A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
EP3333558B1 (en) Flexible tactile sensor and manufacturing method therefor
FI3668400T3 (en) Method for the individualized calibration of analyte sensors
WO2009148233A3 (en) Level sensor
JP2009505062A5 (en)
KR102398552B1 (en) Flexible display device having bending sensing device
JP6748001B2 (en) Tooth contact evaluation method
KR20180083387A (en) Sensor elements for pressure sensors
CN104406514B (en) A kind of device and method for measuring object Bending Deformation degree
JPWO2020146481A5 (en)
JP3197515U (en) Liquid level sensor
JP5467517B2 (en) Radiation measurement equipment
EP2554964B2 (en) Pressure and temperature measuring device
CN110361115B (en) Piezoelectric sensing module, detection method of piezoelectric sensing module and piezoelectric induction detection system of piezoelectric sensing module
CN108024736A (en) The inspection method of pressure pulse wave sensor and the manufacture method of pressure pulse wave sensor
JP2005522656A (en) Rolling bearing with sensor
JP2014134507A5 (en)
EP2887040A3 (en) Device and method for determining the contact force between two components
JP2014085259A5 (en) Strain measuring device and strain gauge transducer
JP2013007694A (en) Surface potential measuring apparatus
KR102463495B1 (en) Apparatus for measuring gap
JP2020115098A5 (en) Angular velocity sensors, inertial measurement units, electronics and mobiles
JP6645902B2 (en) Particulate matter detection device
MX2020010752A (en) Method and measuring apparatus for measuring a thread.
JP4457126B2 (en) Gear tooth contact evaluation method and apparatus
RU2683583C1 (en) Method for diagnosing eccentricity of a rotor of an alternating current electrical machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200806

R151 Written notification of patent or utility model registration

Ref document number: 6748001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees