JP6747883B2 - Road or railroad protection member and its manufacturing method - Google Patents

Road or railroad protection member and its manufacturing method Download PDF

Info

Publication number
JP6747883B2
JP6747883B2 JP2016121327A JP2016121327A JP6747883B2 JP 6747883 B2 JP6747883 B2 JP 6747883B2 JP 2016121327 A JP2016121327 A JP 2016121327A JP 2016121327 A JP2016121327 A JP 2016121327A JP 6747883 B2 JP6747883 B2 JP 6747883B2
Authority
JP
Japan
Prior art keywords
cement
volume
aggregate
cement composition
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016121327A
Other languages
Japanese (ja)
Other versions
JP2017226547A (en
Inventor
克哉 河野
克哉 河野
香奈子 森
香奈子 森
涼太 曽根
涼太 曽根
多田 克彦
克彦 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2016121327A priority Critical patent/JP6747883B2/en
Publication of JP2017226547A publication Critical patent/JP2017226547A/en
Application granted granted Critical
Publication of JP6747883B2 publication Critical patent/JP6747883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は道路又は鉄道の防護工用部材(特に、ロックシェッドやスノーシェッド)と、その製造方法に関する。 The present invention relates to a road or railroad protection member (in particular, a rock shed or a snow shed) and a method for manufacturing the same.

ロックシェッドやスノーシェッド等の防護工用部材は、落石や雪崩等から通行車両、乗員、及び通行者を守り、道路機能を保全するために、山間地や山間積雪地の切り立った崖地に面する道路や鉄道に設置される。そのため、防護工用部材は、落石や雪崩による衝撃抵抗が求められ、主に鋼製とコンクリート製の2種類がある。ここで、鋼製防護工用部材は、構築時の作業性に優れ、脆性破損が起き難いが、腐食防止用の塗装を定期的に行う必要があり維持コストがかかる。一方、コンクリート製防護工用部材は衝撃抵抗が高く、また塗装は不要であるため維持コストは低いが、基礎工(部材の施工現場への搬入や組立設置等の作業)の負担が大きく、また、設置場所の制約のためにコンクリート製防護工用部材を採用できない場合がある。そこで、コンクリートの強度と靱性をさらに高くできれば、部材の厚さを薄くでき、その分、基礎工の負担が減少する。
そこで、本願の出願人は、先に、セメント、ポゾラン質微粉末、粒径2mm以下の骨材、水、及び減水剤を含む配合物からなるロックシェッド及びスノーシェッドを提案した(特許文献1)。これらのロックシェッド等は、従来のコンクリートと比べ格段に高い強度と靱性を有するため、部材の厚さを大幅に薄くして軽量化でき、基礎工の手間が軽減する。
Protective materials such as rock sheds and snow sheds face mountainous areas and steep cliffs in snowy areas to protect road vehicles, occupants, and pedestrians from falling rocks and avalanches, and to preserve road functions. Installed on roads and railroads. Therefore, the member for protective work is required to have impact resistance due to rock fall and avalanche, and there are mainly two types, that is, steel and concrete. Here, the steel protective member has excellent workability at the time of construction, and brittle damage is unlikely to occur, but it is necessary to periodically perform coating for corrosion prevention, which requires maintenance costs. On the other hand, concrete protection members have high impact resistance, and since maintenance costs are low because painting is not required, the burden of basic work (work such as bringing the members to the construction site and assembly and installation) is large, and However, there are cases where concrete protective members cannot be used due to restrictions on the installation location. Therefore, if the strength and toughness of the concrete can be further increased, the thickness of the member can be reduced, and the load on the foundation work is reduced accordingly.
Therefore, the applicant of the present application previously proposed a rock shed and a snow shed made of a mixture containing cement, pozzolanic fine powder, aggregate having a particle size of 2 mm or less, water, and a water reducing agent (Patent Document 1). Since these rock sheds and the like have significantly higher strength and toughness than conventional concrete, the thickness of the members can be significantly reduced and the weight can be reduced, and the labor of the basic work is reduced.

特開2001−226916号公報JP, 2001-226916, A

そして、本発明は、前記ロックシェッド等の利点を有し、さらに強度と靱性が向上して耐久性や耐衝撃性を高めた防護工(ロックシェッドやノーシェッド)を構築できる、道路又は鉄道の防護工用部材を提供することを目的とする。 Further, the present invention has the advantages of the lock shed, etc., and can further construct a protective worker (rock shed or no shed) with improved strength and toughness to improve durability and impact resistance. An object is to provide a work member.

本発明者は、前記課題を解決するために鋭意検討した結果、セメント、特定のBET比表面積を有するシリカフューム、特定の粒度分布を有する無機粉末、及び、特定の大きさの骨材等を特定の割合で含む道路又は鉄道の防護工用部材は、前記目的を達成できることを見出し、本発明を完成させた。すなわち、本発明は、以下の構成を有する道路又は鉄道の防護工用部材である。 The present inventor, as a result of diligent studies for solving the above problems, has identified cement, silica fume having a specific BET specific surface area, inorganic powder having a specific particle size distribution, and specific aggregates having a specific size. It has been found that a road or railroad protection member included in a proportion can achieve the above-mentioned object, and thus completed the present invention. That is, the present invention is a road or railroad protection member having the following configuration.

[1]下記(a)〜(d)の特性及び含有率を有するセメント、シリカフューム、無機粉末、骨材A、及び骨材Bと、高性能減水剤、消泡剤、及び水を、少なくとも含むセメント組成物の硬化体からなる、道路又は鉄道の防護工用部材。
(a)セメント:55〜65体積%
(b)BET比表面積が15〜25m/gのシリカフューム:5〜25体積%
(c)50%体積累積粒径が0.8〜5μmの無機粉末:15〜35体積%
(d)最大粒径が1.2mm以下の骨材A、及び最大粒径が1.2mmを超え、13mm以下の骨材Bの合計の含有率が25〜40体積%
(ただし、セメント、シリカフューム、及び無機粉末の含有率の合計は100体積%である。)
[2]前記セメント組成物中のセメントが、中庸熱ポルトランドセメント粒子、又は低熱ポルトランドセメント粒子を研磨処理して、該セメント粒子の角張った表面部分を丸みを帯びた形状に整形してなる、粒径が20μm以上の粗粒子と、
該研磨処理により生じた粒径が20μm未満の微粒子とを含み、かつ、
該セメントの50%体積累積粒径が10〜18μm、及びブレーン比表面積が2100〜2900cm/gである、
前記[1]に記載の道路又は鉄道の防護工用部材。
[3]前記セメント組成物が、さらに、金属繊維、有機繊維、及び炭素繊維から選ばれる1種以上を3体積%以下含む、前記[1]又は[2]に記載の道路又は鉄道の防護工用部材。
[4]前記セメント組成物の硬化体の圧縮強度が330N/mm以上である、前記[1]〜[3]のいずれかに記載の道路又は鉄道の防護工用部材。
[5]さらに、前記セメント組成物が、最大粒径が1.2mmを超え、13mm以下の骨材Bを含む、前記[1]〜[4]のいずれかに記載の道路又は鉄道の防護工用部材。
[6]前記セメント組成物の硬化体の圧縮強度が300N/mm以上である、前記[5]に記載の道路又は鉄道の防護工用部材。
[1] Cement, silica fume, inorganic powder, aggregate A , and aggregate B having the following characteristics (a) to (d) and at least a high-performance water reducing agent, a defoaming agent, and water are included. A member for road or railroad protection, which is composed of a hardened body of a cement composition.
(A) Cement: 55-65% by volume
(B) Silica fume having a BET specific surface area of 15 to 25 m 2 /g: 5 to 25% by volume
(C) 50% Inorganic powder having a cumulative particle diameter of 0.8 to 5 μm: 15 to 35% by volume
(D) Aggregate A having a maximum particle size of 1.2 mm or less, and aggregate B having a maximum particle size of 1.2 mm or more and 13 mm or less has a total content of 25 to 40% by volume.
(However, the total content of cement, silica fume, and inorganic powder is 100% by volume.)
[2] The cement in the cement composition is formed by polishing medium-heat Portland cement particles or low-heat Portland cement particles by polishing, and shaping the angular surface portion of the cement particles into a rounded shape. Coarse particles having a diameter of 20 μm or more,
Including fine particles having a particle size of less than 20 μm generated by the polishing treatment, and
The 50% volume cumulative particle size of the cement is 10 to 18 μm, and the Blaine specific surface area is 2100 to 2900 cm 2 /g.
The member for road or railroad protection according to [1] above.
[3] The road or railroad protector according to [1] or [2], wherein the cement composition further contains 3% by volume or less of one or more kinds selected from metal fibers, organic fibers, and carbon fibers. Parts.
[4] The road or railroad protection member according to any one of [1] to [3], wherein the hardened body of the cement composition has a compressive strength of 330 N/mm 2 or more.
[5] The road or railroad protective work according to any one of [1] to [4], wherein the cement composition further includes aggregate B having a maximum particle size of more than 1.2 mm and 13 mm or less. Parts.
[6] The road or railroad protection member according to [5], wherein the hardened body of the cement composition has a compressive strength of 300 N/mm 2 or more.

[7]下記(A)成形工程、(B)常温養生工程、(C)加熱養生工程、及び(D)高温加熱工程を、少なくとも含む、道路又は鉄道の防護工用部材の製造方法。
(A)下記(a)〜(d)の特性及び含有率を有するセメント、シリカフューム、無機粉末、及び骨材A、及び骨材Bと、高性能減水剤、消泡剤、及び水を、少なくとも含むセメント組成物を混練した後、型枠内に打設して、未硬化の成形体を得る成形工程
(B)該未硬化の成形体を10〜40℃で24時間以上、封緘養生又は気中養生した後、前記型枠から脱型し、養生した成形体を得る常温養生工程
(C)該養生した成形体を、70℃以上100℃未満で6時間以上の蒸気養生又は温水養生と、100〜200℃で1時間以上のオートクレーブ養生のいずれか一方又は両方を行って加熱養生した成形体を得る加熱養生工程
(D)前記加熱養生後の成形体を、150〜200℃で24時間以上、加熱(ただし、オートクレーブ養生による加熱を除く。)して、硬化体を得る高温加熱工程
(a)セメント:55〜65体積%
(b)BET比表面積が15〜25m/gのシリカフューム:5〜25体積%
(c)50%体積累積粒径が0.8〜5μmの無機粉末:15〜35体積%
(d)最大粒径が1.2mm以下の骨材A、及び最大粒径が1.2mmを超え、13mm以下の骨材Bの合計の含有率が25〜40体積%
(ただし、セメント、シリカフューム、及び無機粉末の含有率の合計は100体積%である。)
[8]前記セメント組成物が、さらに、金属繊維、有機繊維、及び炭素繊維から選ばれる1種以上を3体積%以下含む、前記[7]に記載の道路又は鉄道の防護工用部材の製造方法。
[9]前記セメント組成物が、さらに、最大粒径が1.2mmを超え、13mm以下の骨材Bを含む、前記[7]又は[8]に記載の道路又は鉄道の防護工用部材の製造方法。
[10]前記(B)常温養生工程と前記(C)加熱養生工程の間に、前記養生した成形体に吸水させる吸水工程を含む、前記[7]〜[9]のいずれかに記載の道路又は鉄道の防護工用部材の製造方法。
[7] A method for manufacturing a member for road or rail protection work, which includes at least the following (A) molding step, (B) room temperature curing step, (C) heat curing step, and (D) high temperature heating step.
(A) Cement, silica fume, inorganic powder, and aggregate A and aggregate B having the following characteristics (a) to (d) and a high-performance water reducing agent, an antifoaming agent, and water, at least: After kneading the cement composition containing it, it is placed in a mold to obtain an uncured molded body (B) The uncured molded body is sealed at 10 to 40° C. for 24 hours or more, and cured or cured. Normal curing, followed by demolding from the mold to obtain a cured molded body, a normal temperature curing step (C), wherein the cured molded body is steam-cured or hot-water cured at 70° C. or higher and lower than 100° C. for 6 hours or longer, A heating curing step (D) of performing one or both of autoclave curing for 1 hour or longer at 100 to 200° C. to obtain a molded body subjected to heating curing, the molded body after heating curing at 150 to 200° C. for 24 hours or more. , High temperature heating step of heating (however, heating by autoclave curing is excluded) to obtain a hardened body (a) Cement: 55 to 65% by volume
(B) Silica fume having a BET specific surface area of 15 to 25 m 2 /g: 5 to 25% by volume
(C) 50% Inorganic powder having a cumulative particle diameter of 0.8 to 5 μm: 15 to 35% by volume
(D) Aggregate A having a maximum particle size of 1.2 mm or less, and aggregate B having a maximum particle size of 1.2 mm or more and 13 mm or less has a total content of 25 to 40% by volume.
(However, the total content of cement, silica fume, and inorganic powder is 100% by volume.)
[8] Manufacture of a member for road or railway protective works according to [7], wherein the cement composition further contains 3% by volume or less of one or more kinds selected from metal fiber, organic fiber, and carbon fiber. Method.
[9] The member for road or railway protective works according to [7] or [8], wherein the cement composition further contains an aggregate B having a maximum particle size of more than 1.2 mm and 13 mm or less. Production method.
[10] The road according to any one of [7] to [9], which includes a water absorption step of allowing the cured molded body to absorb water between the (B) normal temperature curing step and the (C) heat curing step. Alternatively, a method for manufacturing a railroad protection member.

本発明の道路又は鉄道の防護工用部材は、高い圧縮強度(例えば、300N/mm以上)を有するため、部材の縮小や軽量化を図ることができるので、部材の施工現場への搬入、設置作業や組立設置等の基礎工の作業負担を著しく軽減することができる。 Since the road or railroad protection member of the present invention has high compressive strength (for example, 300 N/mm 2 or more), the member can be reduced in size and weight, so that the member can be carried into a construction site. It is possible to significantly reduce the work load of the basic work such as installation work and assembly installation.

ローターの回転軸に対して垂直の方向に切断した断面を部分的に含む、高速気流撹拌装置の正面図(一例)である。It is a front view (one example) of a high-speed airflow stirring device, which partially includes a cross section cut in a direction perpendicular to the rotation axis of the rotor. 耐衝撃試験に用いた平板供試体の模式図である。It is a schematic diagram of the flat plate test body used for the impact resistance test.

本発明の道路又は鉄道の防護工用部材は、前記の特性及び含有率を有するセメント、シリカフューム、無機粉末(以下、セメント、シリカフューム、及び無機粉末を合わせた全体を「粉体原料」という。)、及び骨材Aと、高性能減水剤、消泡剤、及び水を、少なくとも含むセメント組成物の硬化体からなる部材等である。
また、本発明の道路又は鉄道の防護工用部材の製造方法は、前記の成形工程、常温養生工程、加熱養生工程、及び高温加熱工程を、少なくとも含む製造方法等である。
以下、本発明について、道路又は鉄道の防護工用部材の前記構成材料、および該部材の製造方法に含まれる前記工程の順に、詳細に説明する。
The road or railroad protective member of the present invention has cement, silica fume, and inorganic powder having the above-mentioned characteristics and contents (hereinafter, the whole of the cement, silica fume, and inorganic powder is referred to as "powder raw material"). , And aggregate A, a high-performance water reducing agent, a defoaming agent, and water, and the like, which are members made of a hardened body of a cement composition.
The method for manufacturing a road or railroad protective member of the present invention is a manufacturing method including at least the molding step, the room temperature curing step, the heating curing step, and the high temperature heating step.
Hereinafter, the present invention will be described in detail in the order of the constituent materials of the member for road or railroad protection and the steps included in the method for manufacturing the member.

(a)セメント
該セメントの種類は、特に限定されず、例えば、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、低熱ポルトランドセメントから選ばれる1種以上が使用できる。
これらの中でも、セメント組成物の流動性が向上するため、好ましくは、中庸熱ポルトランドセメント及び低熱ポルトランドセメントから選ばれる1種以上である。
(A) Cement The type of the cement is not particularly limited and is selected from, for example, ordinary Portland cement, early strength Portland cement, super early strength Portland cement, moderate heat Portland cement, sulfate resistant Portland cement, low heat Portland cement 1 More than one species can be used.
Among these, at least one selected from moderate heat Portland cement and low heat Portland cement is preferable because the fluidity of the cement composition is improved.

また、セメント組成物の流動性と、該組成物が硬化してなるセメント質硬化体の圧縮強度を高めるため、前記セメントは、好ましくは、中庸熱ポルトランドセメント、又は低熱ポルトランドセメントを研磨処理して、該セメント粒子の角張った表面部分を、丸みを帯びた形状に整形してなるセメントである。そして、該セメントは、粒径が20μm以上の粗粒子と、該研磨処理により生じた粒径が20μm未満の微粒子とを含むセメント研磨処理物であって、該セメント研磨処理物の50%体積累積粒径が10〜18μm、及びブレーン比表面積が2100〜2900cm/gのセメント研磨処理物である。 Further, in order to improve the fluidity of the cement composition and the compressive strength of the cementitious hardened body obtained by hardening the composition, the cement is preferably a medium heat Portland cement or a low heat Portland cement by polishing treatment. A cement formed by shaping the angular surface portion of the cement particles into a rounded shape. The cement is a cement-polishing product containing coarse particles having a particle size of 20 μm or more and fine particles having a particle size of less than 20 μm generated by the polishing process, and a 50% volume accumulation of the cement-polishing product. It is a cement polishing-treated product having a particle size of 10 to 18 μm and a Blaine specific surface area of 2100 to 2900 cm 2 /g.

前記粗粒子の粒径の上限は、特に限定されず、研磨処理するセメントの一般的な粒径を考慮すると通常200μm以下であり、セメント質硬化体の圧縮強度を高くする観点から、好ましくは100μm以下である。
前記微粒子の粒径の下限は、特に限定されず、セメント組成物の流動性の向上、及び、道路又は鉄道の防護工用部材を製造する際の作業性の観点から、好ましくは0.1μm以上、より好ましくは0.5μm以上である。
The upper limit of the particle size of the coarse particles is not particularly limited and is usually 200 μm or less in consideration of the general particle size of the cement to be polished, and preferably 100 μm from the viewpoint of increasing the compressive strength of the hardened cementitious material. It is the following.
The lower limit of the particle size of the fine particles is not particularly limited, and is preferably 0.1 μm or more from the viewpoint of improving the fluidity of the cement composition and workability when manufacturing a road or railroad protective member. , And more preferably 0.5 μm or more.

セメント研磨処理物の50%体積累積粒径は、好ましくは10〜18μm、より好ましくは12〜16μmであり、ブレーン比表面積は、好ましくは2100〜2900cm/g、より好ましくは2200〜2700cm/gである。
前記50%体積累積粒径が10μm以上でセメント組成物の流動性が向上し、18μm以下でセメント質硬化体の圧縮強度がより高くなる。
また、前記ブレーン比表面積が2100cm/g以上でセメント質硬化体の圧縮強度がより高くなり、2900cm/g以下でセメント組成物の流動性が向上する。
50% volume cumulative particle size of the cement grinding process was preferably 10~18Myuemu, more preferably 12~16Myuemu, Blaine specific surface area is preferably 2100~2900cm 2 / g, more preferably 2200~2700cm 2 / It is g.
When the 50% volume cumulative particle size is 10 μm or more, the fluidity of the cement composition is improved, and when it is 18 μm or less, the compressive strength of the cementitious hardened product is higher.
Further, when the Blaine specific surface area is 2100 cm 2 /g or more, the compressive strength of the cementitious hardened product is higher, and when it is 2900 cm 2 /g or less, the fluidity of the cement composition is improved.

前記研磨処理には、セメント粒子を研磨処理できる公知の研磨処理装置を用いる。研磨処理装置は、市販の高速気流撹拌装置(例えば、奈良機械製作所社製、商品名「ハイブリタイザーNHS−3型」)等が挙げられる。
以下、高速気流撹拌装置について、図1に基づき詳しく説明する。
原料であるセメントは、高速気流撹拌装置10の上部の投入口14から、開閉弁18を開いた状態で投入され、投入した後は開閉弁18を閉じる。
投入されたセメントは、循環回路13の途中に設けられた循環回路の入口13aから循環回路13内に入り、その後、循環回路の出口13bから、被処理物を収容する空間である衝突室17内に入る。
セメントを投入した後、固定体であるステーター16の内部に配設されているローター(回転体)11を高速回転させて、ローター11及びローター11に固着されたブレード12により高速気流が発生し、衝突室17内のセメントが撹拌される。撹拌中、セメント粒子は、衝突室17内に設けられた、循環回路の入口13aから、循環回路13内に入り、衝突室17の中央部分に設けられた循環回路の出口13bから、再び衝突室17内に投入されて循環する。
なお、図1中、点線で示す矢印は、粒子(セメント粒子、並びに、研磨処理によって生じた粗粒子、及び微粒子を含む。)の流れを示す。
For the polishing treatment, a known polishing treatment device capable of polishing the cement particles is used. Examples of the polishing treatment device include a commercially available high-speed airflow stirring device (for example, manufactured by Nara Machinery Co., Ltd., trade name "Hybridizer NHS-3 type").
Hereinafter, the high-speed airflow stirring device will be described in detail with reference to FIG.
Cement, which is a raw material, is charged from the charging port 14 at the upper part of the high-speed airflow stirring device 10 with the opening/closing valve 18 opened, and after the charging, the opening/closing valve 18 is closed.
The injected cement enters the circulation circuit 13 through an inlet 13a of the circulation circuit provided in the middle of the circulation circuit 13, and thereafter, through an outlet 13b of the circulation circuit, inside a collision chamber 17 which is a space for accommodating an object to be treated. to go into.
After the cement is added, the rotor (rotating body) 11 arranged inside the stator 16 that is a fixed body is rotated at high speed, and a high-speed airflow is generated by the rotor 11 and the blade 12 fixed to the rotor 11, The cement in the collision chamber 17 is agitated. During agitation, the cement particles enter the circulation circuit 13 from the inlet 13a of the circulation circuit provided in the collision chamber 17, and again from the outlet 13b of the circulation circuit provided in the central portion of the collision chamber 17 to the collision chamber again. It is thrown into 17 and circulates.
In addition, in FIG. 1, an arrow indicated by a dotted line indicates a flow of particles (including cement particles, and coarse particles and fine particles generated by the polishing treatment).

撹拌によって、セメント粒子が衝突室17の内壁面、ローター11及びブレード12と衝突すること、並びに、セメント粒子同士が衝突することにより、セメント粒子が研磨処理されて、該粒子表面の角張った部分が丸みを帯びた形状に変化した粗粒子(粒径が20μm以上である粒子)、及び、微粒子(粒径が20μm未満である粒子)が生じる。 By stirring, the cement particles collide with the inner wall surface of the collision chamber 17, the rotor 11 and the blade 12, and the cement particles collide with each other, whereby the cement particles are abraded, and the angular portion of the particle surface is Coarse particles having a rounded shape (particles having a particle size of 20 μm or more) and fine particles (particles having a particle size of less than 20 μm) are generated.

ローター11の回転速度は、好ましくは3000〜4200rpm、より好ましくは3500〜4000rpmである。該回転速度が3000rpm以上でセメント組成物の流動性は向上し、4200rpmを超えるとセメント組成物の流動性の向上効果は飽和する。また、高速気流撹拌装置の性能上、回転速度が4200rpmを超えるのは困難である。
研磨処理の時間は、好ましくは10〜60分間、より好ましくは20〜50分間、さらに好ましくは20〜40分間、特に好ましくは20〜30分間である。該時間が10分間以上でセメント組成物の流動性は向上し、60分間を超えるとセメント組成物の流動性の向上効果は飽和する。
得られたセメント研磨処理物(粗粒子と微粒子の混合物)は、排出弁19を開くことにより、排出口15から排出される。
The rotation speed of the rotor 11 is preferably 3000 to 4200 rpm, more preferably 3500 to 4000 rpm. When the rotation speed is 3000 rpm or more, the fluidity of the cement composition is improved, and when it exceeds 4200 rpm, the effect of improving the fluidity of the cement composition is saturated. In addition, it is difficult for the rotation speed to exceed 4200 rpm in view of the performance of the high-speed airflow stirring device.
The polishing treatment time is preferably 10 to 60 minutes, more preferably 20 to 50 minutes, further preferably 20 to 40 minutes, and particularly preferably 20 to 30 minutes. When the time is 10 minutes or more, the fluidity of the cement composition is improved, and when it is more than 60 minutes, the effect of improving the fluidity of the cement composition is saturated.
The obtained cement polishing treatment product (mixture of coarse particles and fine particles) is discharged from the discharge port 15 by opening the discharge valve 19.

(b)シリカフューム
該シリカフュームのBET比表面積は、15〜25m/g、好ましくは17〜23m/g、より好ましくは18〜22m/gである。該比表面積が15m/g未満ではセメント質硬化体の圧縮強度が低下し、25m/gを超えるとセメント組成物の流動性が低下する。
(B) Silica fume The BET specific surface area of the silica fume is 15 to 25 m 2 /g, preferably 17 to 23 m 2 /g, and more preferably 18 to 22 m 2 /g. If the specific surface area is less than 15 m 2 /g, the compressive strength of the cementitious hardened product will decrease, and if it exceeds 25 m 2 /g, the fluidity of the cement composition will decrease.

(c)無機粉末
50%体積累積粒径が0.8〜5μmの無機粉末は、例えば、石英粉末(珪石粉末)、火山灰、フライアッシュ(分級又は粉砕したもの)、スラグ粉末、石灰石粉末、長石類粉末、ムライト類粉末、アルミナ粉末、シリカゾル、炭化物粉末、及び窒化物粉末から選ばれる1種以上が挙げられる。
これらの中でも、石英粉末又はフライアッシュが、セメント組成物の流動性を向上させ、セメント質硬化体の圧縮強度を高くするため好ましい。
なお、本明細書中、50%体積累積粒径が0.8〜5μmの無機粉末はセメントを含まない。
(C) Inorganic powder The inorganic powder having a 50% volume cumulative particle diameter of 0.8 to 5 μm is, for example, quartz powder (silica powder), volcanic ash, fly ash (classified or crushed), slag powder, limestone powder, feldspar. Powders, mullite powders, alumina powders, silica sols, carbide powders, and nitride powders.
Of these, quartz powder or fly ash is preferable because it improves the fluidity of the cement composition and increases the compressive strength of the cementitious hardened product.
In the present specification, the inorganic powder having a 50% volume cumulative particle diameter of 0.8 to 5 μm does not contain cement.

無機粉末の50%体積累積粒径は、0.8〜5μm、好ましくは1〜4μm、より好ましくは1.1〜3.5μm、さらに好ましくは1.2μm以上3μm未満である。該粒径が0.8μm未満ではセメント組成物の流動性が低下し、5μmを超えるとセメント質硬化体の圧縮強度が低下する。
無機粉末の50%体積累積粒径は、市販の粒度分布測定装置(例えば、日機装社製、製品名「マイクロトラックHRA モデル9320−X100」)を用いて求めることができる。
具体的には、粒度分布測定装置を用いて、累積粒度曲線を作成し、該累積粒度曲線から50%体積累積粒径を求めることができる。この際、試料を分散させる溶媒であるエタノール20cmに対して、試料0.06gを添加し、90秒間、超音波分散装置(例えば、日本精機製作所社製、製品名「US300」)を用いて超音波分散した試料を測定する。
The 50% volume cumulative particle diameter of the inorganic powder is 0.8 to 5 μm, preferably 1 to 4 μm, more preferably 1.1 to 3.5 μm, still more preferably 1.2 μm or more and less than 3 μm. If the particle size is less than 0.8 μm, the fluidity of the cement composition will decrease, and if it exceeds 5 μm, the compressive strength of the cementitious hardened product will decrease.
The 50% volume cumulative particle size of the inorganic powder can be determined by using a commercially available particle size distribution measuring device (for example, product name "Microtrac HRA model 9320-X100" manufactured by Nikkiso Co., Ltd.).
Specifically, a cumulative particle size curve can be created using a particle size distribution measuring device, and the 50% volume cumulative particle size can be determined from the cumulative particle size curve. At this time, 0.06 g of the sample was added to 20 cm 3 of ethanol which is a solvent for dispersing the sample, and the ultrasonic dispersion device (for example, product name “US300” manufactured by Nippon Seiki Seisakusho Co., Ltd.) was used for 90 seconds. The ultrasonically dispersed sample is measured.

無機粉末の最大粒径は、セメント質硬化体の圧縮強度をより高くする観点から、好ましくは15μm以下、より好ましくは14μm以下、さらに好ましくは13μm以下である。また、無機粉末の95%体積累積粒径は、セメント質硬化体の圧縮強度をより高くする観点から、好ましくは8μm以下、より好ましくは7μm以下、さらに好ましくは6μm以下である。 The maximum particle size of the inorganic powder is preferably 15 μm or less, more preferably 14 μm or less, and further preferably 13 μm or less, from the viewpoint of further increasing the compressive strength of the cementitious hardened product. The 95% volume cumulative particle diameter of the inorganic powder is preferably 8 μm or less, more preferably 7 μm or less, and further preferably 6 μm or less, from the viewpoint of further increasing the compressive strength of the hardened cementitious material.

無機粉末はSiOを主成分とするもの(例えば、石英粉末)が好ましい。無機粉末中のSiOの含有率は、セメント質硬化体の圧縮強度をより高くするためには、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上である。 The inorganic powder preferably contains SiO 2 as a main component (eg, quartz powder). The content of SiO 2 in the inorganic powder is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more in order to further increase the compressive strength of the hardened cementitious material. ..

前記セメント組成物において、粉体原料100体積%中、セメントの含有率は55〜65体積%、好ましくは57〜63体積%である。該含有率が55体積%未満ではセメント質硬化体の圧縮強度が低下し、65体積%を超えるとセメント組成物の流動性が低下する。
また、粉体原料100体積%中、シリカフュームの含有率は5〜25体積%、好ましくは7〜23体積%である。該含有率が5体積%未満ではセメント質硬化体の圧縮強度が低下し、25体積%を超えるとセメント組成物の流動性が低下する。
粉体原料100体積%中、無機粉末の含有率は15〜35体積%、好ましくは17〜33体積%である。該含有率が15体積%未満では、セメント質硬化体の圧縮強度が低下し、35体積%を超えるとセメント組成物の流動性が低下する。
In the cement composition, the content of cement in 100% by volume of the powder raw material is 55 to 65% by volume, preferably 57 to 63% by volume. If the content is less than 55% by volume, the compressive strength of the cementitious hardened product will decrease, and if it exceeds 65% by volume, the fluidity of the cement composition will decrease.
Further, the content of silica fume is 5 to 25% by volume, preferably 7 to 23% by volume in 100% by volume of the powder raw material. If the content is less than 5% by volume, the compressive strength of the hardened cement material will be reduced, and if it exceeds 25% by volume, the fluidity of the cement composition will be reduced.
The content of the inorganic powder in 100% by volume of the powder raw material is 15 to 35% by volume, preferably 17 to 33% by volume. If the content is less than 15% by volume, the compressive strength of the cementitious hardened product will decrease, and if it exceeds 35% by volume, the fluidity of the cement composition will decrease.

(d)骨材A
該骨材Aは、川砂、陸砂、海砂、砕砂、珪砂、天然エメリー砂、人工細骨材(例えば、スラグ細骨材、フライアッシュ等を焼成してなる焼成細骨材、人工エメリー砂、アルミナ又は炭化物(例えば、炭化ケイ素、炭化ホウ素等)の粗砕物等)、再生細骨材、又はこれらの混合物等が挙げられる。
骨材Aの最大粒径は、1.2mm以下、好ましくは1.1mm以下、より好ましくは1.0mm以下である。該最大粒径が1.2mm以下であれば、セメント質硬化体の圧縮強度は高い。
骨材Aの粒度分布は、セメント組成物の流動性とセメント質硬化体の圧縮強度が向上するため、0.6mm以下の粒径の骨材の含有率が95質量%以上、0.3mm以下の粒径の骨材の含有率が40〜50質量%、及び、0.15mm以下の粒径の骨材の含有率は6質量%以下が好ましい。
セメント組成物中の骨材Aの含有率は、好ましくは20〜40体積%、より好ましくは22〜38体積%、さらに好ましくは30〜37体積%、特に好ましくは32〜36体積%である。該含有率が20体積%以上でセメント組成物の発熱量とセメント質硬化体の収縮量は小さくなり、40体積%以下でセメント質硬化体の圧縮強度はより高くなる。
(D) Aggregate A
The aggregate A is river sand, land sand, sea sand, crushed sand, silica sand, natural emery sand, artificial fine aggregate (for example, fired fine aggregate obtained by firing slag fine aggregate, fly ash, etc., artificial emery sand. , Alumina, or a carbide (for example, a coarsely crushed product of silicon carbide, boron carbide, etc.), regenerated fine aggregate, or a mixture thereof.
The maximum particle size of the aggregate A is 1.2 mm or less, preferably 1.1 mm or less, more preferably 1.0 mm or less. If the maximum particle size is 1.2 mm or less, the compressive strength of the hardened cementitious material is high.
The particle size distribution of the aggregate A is such that the content of the aggregate having a particle size of 0.6 mm or less is 95% by mass or more and 0.3 mm or less because the fluidity of the cement composition and the compressive strength of the hardened cement material are improved. It is preferable that the content of the aggregate having the particle size of 40 to 50% by mass and the content of the aggregate having the particle size of 0.15 mm or less be 6% by mass or less.
The content of the aggregate A in the cement composition is preferably 20 to 40% by volume, more preferably 22 to 38% by volume, further preferably 30 to 37% by volume, and particularly preferably 32 to 36% by volume. When the content is 20% by volume or more, the calorific value of the cement composition and the shrinkage of the hardened cementitious material are small, and when it is 40% by volume or less, the compressive strength of the hardened cementitious material is higher.

(e)高性能減水剤
該高性能減水剤は、ナフタレンスルホン酸系、メラミン系、ポリカルボン酸系等の高性能減水剤が使用できる。これらの中でも、セメント組成物の流動性とセメント質硬化体の圧縮強度が向上することから、好ましくはポリカルボン酸系の高性能減水剤である。
高性能減水剤の配合量は、粉体原料100質量部に対して、固形分換算で、好ましくは0.2〜1.5質量部、より好ましくは0.4〜1.2質量部である。該量が0.2質量部以上で減水性能が向上してセメント組成物の流動性が高くなり、1.5質量部以下でセメント質硬化体の圧縮強度がより高くなる。
(E) High-performance water reducing agent As the high-performance water reducing agent, a high-performance water reducing agent such as naphthalenesulfonic acid-based, melamine-based, or polycarboxylic acid-based can be used. Among these, a polycarboxylic acid-based high-performance water reducing agent is preferable because it improves the fluidity of the cement composition and the compressive strength of the hardened cementitious material.
The blending amount of the high-performance water reducing agent is preferably 0.2 to 1.5 parts by mass, and more preferably 0.4 to 1.2 parts by mass in terms of solid content with respect to 100 parts by mass of the powder raw material. .. When the amount is 0.2 parts by mass or more, the water reducing performance is improved and the fluidity of the cement composition is increased, and when the amount is 1.5 parts by mass or less, the compressive strength of the hardened cementitious material is further increased.

(f)消泡剤
該消泡剤は市販品が使用できる。消泡剤の配合量は、粉体原料100質量部に対して、好ましくは0.001〜0.1質量部、より好ましくは0.01〜0.07質量部、さらに好ましくは0.01〜0.05質量部である。該量が0.001質量部以上でセメント組成物の強度発現性は向上し、0.1質量部を超えると強度発現性の向上効果が頭打ちとなる。
(F) Defoaming agent The defoaming agent may be a commercially available product. The content of the defoaming agent is preferably 0.001 to 0.1 parts by mass, more preferably 0.01 to 0.07 parts by mass, and further preferably 0.01 to 100 parts by mass of the powder raw material. It is 0.05 part by mass. When the amount is 0.001 part by mass or more, the strength developing property of the cement composition is improved, and when it exceeds 0.1 part by mass, the effect of improving the strength developing property reaches a ceiling.

(g)水
該水は水道水等が使用できる。水の配合量は、粉体原料100質量部に対して、好ましくは10〜20質量部、より好ましくは11〜18質量部、さらに好ましくは14〜16質量部である。該量が10質量部以上でセメント組成物の流動性が向上し、20質量部以下でセメント質硬化体の圧縮強度がより高くなる。
(G) Water Tap water or the like can be used as the water. The amount of water blended is preferably 10 to 20 parts by mass, more preferably 11 to 18 parts by mass, and still more preferably 14 to 16 parts by mass with respect to 100 parts by mass of the powder raw material. When the amount is 10 parts by mass or more, the fluidity of the cement composition is improved, and when the amount is 20 parts by mass or less, the compressive strength of the hardened cementitious material becomes higher.

(h)繊維
セメント組成物は、セメント質硬化体の曲げ強度や破壊エネルギー等を向上させる観点から、金属繊維、有機繊維、及び炭素繊維から選ばれる1種以上を含んでもよい。セメント組成物中の繊維の含有率は、好ましくは3体積%以下、より好ましくは0.3〜2.5体積%、さらに好ましくは0.5〜2.3体積%である。該含有率が3体積%以下であれば、セメント組成物の流動性や作業性が低下することなく、セメント質硬化体の曲げ強度や破壊エネルギー等が向上する。
(H) Fiber The cement composition may include one or more selected from metal fibers, organic fibers, and carbon fibers from the viewpoint of improving the bending strength and breaking energy of the cemented hardened product. The content of fibers in the cement composition is preferably 3% by volume or less, more preferably 0.3 to 2.5% by volume, still more preferably 0.5 to 2.3% by volume. When the content is 3% by volume or less, the fluidity and workability of the cement composition are not deteriorated, and the bending strength and fracture energy of the hardened cementitious material are improved.

(h-1)金属繊維
該金属繊維は、鋼繊維、ステンレス繊維、及びアモルファス繊維から選ばれる1種以上が挙げられる。これらの中でも、鋼繊維は、強度に優れコストや入手のし易さから好適である。
金属繊維の寸法は、セメント組成物中における金属繊維の材料分離の防止や、セメント質硬化体の曲げ強度の向上の観点から、好ましくは直径が0.01〜1.0mm、長さが2〜30mm、より好ましくは直径が0.05〜0.5mm、長さが5〜25mmである。また、金属繊維のアスペクト比(繊維長/繊維直径)は、好ましくは20〜200、より好ましくは40〜150である。
さらに、金属繊維の形状は、直線状よりも、何らかの物理的付着力を付与する形状(例えば、螺旋状や波形)であることが好ましい。螺旋状等の形状であれば、金属繊維とマトリックスとが、引き抜けながら応力を担保するため、セメント質硬化体の曲げ強度が向上する。
(H-1) Metal Fiber The metal fiber may be at least one selected from steel fiber, stainless fiber, and amorphous fiber. Among these, steel fiber is preferable because of its excellent strength and cost and availability.
The size of the metal fibers is preferably 0.01 to 1.0 mm in diameter and 2 to 2 in length from the viewpoint of preventing the material separation of the metal fibers in the cement composition and improving the bending strength of the cementitious hardened body. 30 mm, more preferably 0.05 to 0.5 mm in diameter and 5 to 25 mm in length. The aspect ratio (fiber length/fiber diameter) of the metal fiber is preferably 20 to 200, more preferably 40 to 150.
Furthermore, the shape of the metal fiber is preferably a shape that imparts some physical adhesive force (for example, a spiral shape or a corrugated shape) rather than a linear shape. If the shape is spiral or the like, the metal fibers and the matrix secure the stress while pulling out, so that the bending strength of the hardened cementitious material is improved.

(h-2)有機繊維と炭素繊維
該有機繊維は、後述する本発明の道路又は鉄道の防護工用部材の製造方法における加熱に耐えうるものであればよく、例えば、アラミド繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、ポリエチレン繊維、ポリアリート繊維、ポリプロピレン繊維等が挙げられる。
また、炭素繊維はPAN系炭素繊維やピッチ系炭素繊維が挙げられる。
有機繊維及び炭素繊維の寸法は、セメント組成物中における繊維の材料分離の防止や、セメント質硬化体の破壊エネルギーの向上の観点から、好ましくは直径が0.005〜1.0mm、長さが2〜30mm、より好ましくは直径が0.01〜0.5mm、長さが5〜25mmである。また、有機繊維及び炭素繊維のアスペクト比(繊維長/繊維直径)は、好ましくは20〜200、より好ましくは30〜150である。
(H-2) Organic fiber and carbon fiber The organic fiber may be one that can withstand heating in the method for producing a road or railroad protective member of the present invention described later, and examples thereof include aramid fiber and polyparaphenylene. Examples thereof include benzobisoxazole fiber, polyethylene fiber, polyaryto fiber, polypropylene fiber and the like.
Further, examples of the carbon fiber include PAN-based carbon fiber and pitch-based carbon fiber.
The dimensions of the organic fiber and the carbon fiber are preferably 0.005 to 1.0 mm in diameter and have a length of 0.005 to 1.0 mm from the viewpoint of preventing the material separation of the fibers in the cement composition and improving the fracture energy of the hardened cementitious material. 2 to 30 mm, more preferably 0.01 to 0.5 mm in diameter and 5 to 25 mm in length. The aspect ratio (fiber length/fiber diameter) of the organic fibers and the carbon fibers is preferably 20 to 200, more preferably 30 to 150.

(i)セメント組成物
該セメント組成物からなるモルタル(後述する骨材Bを含まないもの)の硬化前のフロー値は、「JIS R 5201(セメントの物理試験方法)11.フロー試験」に記載される方法において、15回の落下運動を行わないで測定した値(以下、「0打ちフロー値」ともいう。)として、好ましくは200mm以上、より好ましくは220mm以上である。該フロー値が200mm以上であれば、道路又は鉄道の防護工用部材を製造する際の作業性が向上する。
また、前記セメント組成物からなるモルタル(後述する骨材Bを含まないもの)の圧縮強度は、好ましくは330N/mm以上、より好ましくは350N/mm以上、さらに好ましくは370N/mm以上、特に好ましくは400N/mm以上である。
なお、前記骨材Aとして、修正モース硬度が9以上の骨材(例えば、天然または人工(人造)のエメリー砂、アルミナや炭化物の粗砕物等)を使用したセメント組成物からなるモルタル(後述する骨材Bを含まない。)の圧縮強度は、450N/mm以上(特に、エメリー砂を用いると500N/mm以上)になる。なお、修正モース硬度は、好ましくは9〜14、より好ましくは9〜13、さらに好ましくは10〜13、特に好ましくは11〜13である。
(I) Cement composition The flow value before hardening of the mortar (which does not include aggregate B described later) composed of the cement composition is described in “JIS R 5201 (Physical test method for cement) 11. Flow test”. In the method described above, the value (hereinafter, also referred to as “0 hitting flow value”) measured without performing 15 times of drop motions is preferably 200 mm or more, more preferably 220 mm or more. When the flow value is 200 mm or more, workability at the time of manufacturing a road or railroad protection member is improved.
The compressive strength of the mortar comprising the cement composition (containing no aggregate B to be described later) is preferably 330N / mm 2 or more, more preferably 350 N / mm 2 or more, more preferably 370N / mm 2 or more And particularly preferably 400 N/mm 2 or more.
A mortar composed of a cement composition using an aggregate having a modified Mohs hardness of 9 or more (for example, natural or artificial (artificial) emery sand, coarsely crushed alumina or carbide) as the aggregate A (described later). compressive strength of not including aggregate B.) is, 450 N / mm 2 or more (in particular, becomes the use of emery sand 500 N / mm 2 or higher). The modified Mohs hardness is preferably 9 to 14, more preferably 9 to 13, still more preferably 10 to 13, and particularly preferably 11 to 13.

(k)骨材B
本発明に用いるセメント組成物は、最大粒径が1.2mmを超え、13mm以下の骨材Bを含むことができる。
骨材Bは、川砂、山砂、陸砂、海砂、砕砂、珪砂、天然エメリー砂、人工細骨材(例えば、スラグ細骨材、フライアッシュ等を焼成してなる焼成細骨材、及び人工エメリー砂)、再生細骨材、川砂利、山砂利、陸砂利、砕石、人工粗骨材(例えば、スラグ粗骨材、フライアッシュ等を焼成してなる焼成粗骨材)、再生粗骨材、又はこれらの混合物等が挙げられる。
骨材Bの最大粒径は、好ましくは13mm以下、より好ましくは12mm以下、さらに好ましくは11mm以下、特に好ましくは10以下mmである。該最大粒径が13mm以下であれば、セメント組成物の強度発現性が向上し、例えば、300N/mm以上の圧縮強度を発現できる。
また、骨材Bの最大粒径は、コストの低減等の観点から、1.2mmを超える値であり、好ましくは3mm以上、より好ましくは5mm以上、さらに好ましくは7mm以上である。
なお、本明細書中、骨材Bの最大粒径が5mm以上の場合における「最大粒径」とは、骨材B全体の90質量%以上が通るふるいのうち、最小寸法のふるいの呼び寸法で示される骨材Bの粒径(一般に、粗骨材の最大粒径の定義として知られている)をいう。
(K) Aggregate B
The cement composition used in the present invention can include an aggregate B having a maximum particle size of more than 1.2 mm and 13 mm or less.
The aggregate B is river sand, mountain sand, land sand, sea sand, crushed sand, silica sand, natural emery sand, artificial fine aggregate (for example, slag fine aggregate, fired fine aggregate obtained by firing fly ash, and the like, and Artificial Emery Sand), Recycled Fine Aggregate, River Gravel, Mountain Gravel, Land Gravel, Crushed Stone, Artificial Coarse Aggregate (for example, Slag Coarse Aggregate, Calcined Coarse Aggregate Made by Fly Ash, etc.), Recycled Coarse Bone Examples of the material include a material and a mixture thereof.
The maximum particle size of the aggregate B is preferably 13 mm or less, more preferably 12 mm or less, further preferably 11 mm or less, particularly preferably 10 mm or less. When the maximum particle diameter is 13 mm or less, the strength development of the cement composition is improved and, for example, a compression strength of 300 N/mm 2 or more can be expressed.
Further, the maximum particle size of the aggregate B is a value exceeding 1.2 mm, preferably 3 mm or more, more preferably 5 mm or more, further preferably 7 mm or more, from the viewpoint of cost reduction and the like.
In the present specification, the "maximum particle size" in the case where the maximum particle size of the aggregate B is 5 mm or more means the nominal size of the smallest size sieve among the sieves through which 90% by mass or more of the entire aggregate B passes. The particle size of the aggregate B shown by (is generally known as the definition of the maximum particle size of coarse aggregate).

骨材Bの最小粒径は、好ましくは骨材Aの最大粒径を超える値であり、より好ましくは2mm以上、さらに好ましくは3mm以上、さらに好ましくは4mm以上、特に好ましくは5mm以上(この場合、粗骨材に該当する。)である。
なお、本明細書中、骨材Bの最小粒径とは、骨材Bの中の最も粒径が小さいものから粒径が大きなものに向かって累積した場合において、骨材B全体の15質量%に達したときの骨材Bの粒径をいう。
The minimum particle size of the aggregate B is preferably a value larger than the maximum particle size of the aggregate A, more preferably 2 mm or more, further preferably 3 mm or more, further preferably 4 mm or more, and particularly preferably 5 mm or more (in this case, , Which corresponds to coarse aggregate).
In the present specification, the minimum particle size of the aggregate B is 15 mass of the entire aggregate B in the case of accumulating from the smallest particle size to the largest particle size of the aggregate B. The particle size of the aggregate B when reaching 100%.

本発明において、セメント組成物中の骨材Aと骨材Bの合計量の含有率は、好ましくは25〜40体積%、より好ましくは28〜38体積%、さらに好ましくは30〜36体積%である。該含有率が25体積%以上でセメント組成物の発熱量とセメント質硬化体の収縮量が小さくなる。また、該含有率が40体積%以下でセメント組成物の強度発現性が向上する。
骨材Aと骨材Bの合計100体積%に対する骨材Bの含有率は、好ましくは40体積%以下、より好ましくは30体積%以下、さら好ましくは25体積%以下である。該含有率が40体積%以下で、セメント組成物の強度発現性(例えば、圧縮強度)が向上する。
骨材Bを含むセメント組成物の硬化体(例えば、コンクリート)の圧縮強度は、好ましくは300N/mm以上、より好ましくは320N/mm以上、さらに好ましくは340N/mm以上、特に好ましくは360N/mm以上である。
In the present invention, the content of the aggregate A and the aggregate B in the cement composition is preferably 25 to 40% by volume, more preferably 28 to 38% by volume, and further preferably 30 to 36% by volume. is there. When the content is 25% by volume or more, the calorific value of the cement composition and the shrinkage amount of the hardened cementitious material become small. Further, when the content is 40 vol% or less, the strength development of the cement composition is improved.
The content rate of the aggregate B with respect to the total 100% by volume of the aggregate A and the aggregate B is preferably 40% by volume or less, more preferably 30% by volume or less, and further preferably 25% by volume or less. When the content is 40% by volume or less, the strength developing property (for example, compressive strength) of the cement composition is improved.
The compressive strength of the hardened body (for example, concrete) of the cement composition containing the aggregate B is preferably 300 N/mm 2 or more, more preferably 320 N/mm 2 or more, further preferably 340 N/mm 2 or more, particularly preferably It is 360 N/mm 2 or more.

以下、前記セメント組成物の硬化体からなる道路又は鉄道の防護工用部材の製造方法について詳しく説明する。
本発明の道路又は鉄道の防護工用部材の製造方法は、前記セメント組成物を混練した後、型枠内に打設して、未硬化の成形体を得る成形工程と、未硬化の成形体を、10〜40℃で24時間以上、封緘養生又は気中養生した後、型枠から脱型し、養生した成形体を得る常温養生工程と、養生した成形体を、70℃以上100℃未満で6時間以上の蒸気養生又は温水養生と、100〜200℃で1時間以上のオートクレーブ養生のいずれか一方又は両方を行い、加熱養生した成形体を得る加熱養生工程と、加熱養生後の成形体を、150〜200℃で24時間以上、加熱(ただし、オートクレーブ養生による加熱を除く。)して、道路又は鉄道の防護工用部材(前記セメント組成物の硬化体)を得る高温加熱工程を含む。
Hereinafter, a method for manufacturing a road or railroad protective member made of the cured body of the cement composition will be described in detail.
The method for producing a member for road or railroad protection of the present invention comprises a kneading process of the cement composition, and a casting step in which it is cast in a mold to obtain an uncured molded product, and an uncured molded product. After curing at 10 to 40° C. for 24 hours or more, or curing in air, the mold is removed from the mold to obtain a cured molded body at room temperature, and the cured molded body is heated to 70° C. or more and less than 100° C. In either or both of steam curing or warm water curing for 6 hours or more and autoclave curing for 1 hour or more at 100 to 200° C., a heat curing step for obtaining a heat cured molded body, and a molded body after heat curing At a temperature of 150 to 200° C. for at least 24 hours (excluding heating by autoclave curing) to obtain a road or railroad protective member (hardened body of the cement composition). ..

(A)成形工程
本工程は、前記セメント組成物を混練した後、型枠内に打設して、未硬化の成形体を得る工程である。
打設を行う前に、セメント組成物を混練する方法は、特に限定されない。また、混練に用いる装置も特に限定されず、オムニミキサ、パン型ミキサ、二軸練りミキサ、傾胴ミキサ等の慣用のミキサを使用できる。さらに、打設(成形)方法も特に限定されない。
また、本工程における未硬化の成形体は、セメント組成物中の気泡を低減又は除去したセメント組成物からなるものでもよい。セメント組成物中の気泡を低減又は除去することにより、セメント組成物の強度発現性はより向上する。
セメント組成物中の気泡を低減又は除去する方法は、(1)セメント組成物の混練を減圧下で行う方法、(2)混練後のセメント組成物を、型枠内に打設する前に減圧して脱泡する方法、又は(3)セメント組成物を型枠内に打設した後、減圧して脱泡する方法等が挙げられる。
(A) Molding step This step is a step of kneading the cement composition and then placing it in a mold to obtain an uncured molded body.
The method of kneading the cement composition before performing the casting is not particularly limited. The device used for kneading is also not particularly limited, and a conventional mixer such as an omni mixer, a pan mixer, a biaxial kneading mixer, or a tilting cylinder mixer can be used. Furthermore, the driving (molding) method is not particularly limited.
Further, the uncured molded body in this step may be made of a cement composition in which air bubbles in the cement composition are reduced or removed. By reducing or removing air bubbles in the cement composition, the strength development of the cement composition is further improved.
The method for reducing or removing air bubbles in the cement composition includes (1) a method of kneading the cement composition under reduced pressure, and (2) a method of depressurizing the cement composition after kneading before placing it in a mold. And (3) the cement composition is placed in a mold and then depressurized to remove bubbles.

(B)常温養生工程
本工程は、未硬化の成形体を、10〜40℃(好ましくは15〜30℃)で24時間以上(好ましくは24〜96時間、より好ましくは24〜72時間、さらに好ましくは24〜48時間)、封緘養生又は気中養生した後、型枠から脱型し、養生した成形体を得る工程である。
養生温度が10℃以上で養生時間をより短くでき、40℃以下でセメント質硬化体(道路又は鉄道の防護工用部材)の圧縮強度をより高くできる。
養生時間が24時間以上で、脱型の際に、硬化体に欠けや割れ等の欠陥が生じにくくなる。
また、本工程において、養生した成形体が、好ましくは20〜100N/mm、より好ましくは30〜80N/mmの圧縮強度を発現したときに、硬化体を型枠から脱型するのが好ましい。該圧縮強度が20N/mm以上で、脱型の際に、硬化体に欠けや割れ等の欠陥が生じ難く、100N/mm以下で、後述する吸水工程において、少ない労力で硬化体に吸水させることができる。
(B) Room Temperature Curing Step In this step, the uncured molded body is treated at 10 to 40° C. (preferably 15 to 30° C.) for 24 hours or longer (preferably 24-96 hours, more preferably 24-72 hours). It is a step of obtaining a cured molded body by demolding from the mold after sealing and curing in air for 24 to 48 hours).
When the curing temperature is 10°C or higher, the curing time can be shortened, and when the curing temperature is 40°C or lower, the compressive strength of the cementitious hardened body (member for road or railroad protection) can be further increased.
When the curing time is 24 hours or more, defects such as cracks and cracks are less likely to occur in the cured body during demolding.
Further, in this step, curing the shaped body is preferably 20~100N / mm 2, more preferably when expressed compressive strength of 30~80N / mm 2, is to demolding the cured product from the mold preferable. When the compressive strength is 20 N/mm 2 or more, defects such as chips and cracks are less likely to occur in the cured body when demolding, and 100 N/mm 2 or less, the cured body absorbs water with less labor in a water absorption step described later. Can be made.

(C)加熱養生工程
本工程は、前工程で得られた養生した成形体を、70℃以上100℃未満(好ましくは75〜95℃、より好ましくは80〜92℃)で6時間以上の蒸気養生又は温水養生と、100〜200℃(好ましくは160〜190℃)で1時間以上のオートクレーブ養生のいずれか一方又は両方を行い、加熱養生した成形体を得る工程である。
本工程において、蒸気養生又は温水養生のみを行う場合、その養生時間は、好ましくは24時間以上、より好ましくは24〜96時間、特に好ましくは36〜72時間である。オートクレーブ養生のみを行う場合、その養生時間は、好ましくは8〜60時間、より好ましくは12〜48時間である。蒸気養生又は温水養生とオートクレーブ養生の両方を行う場合(例えば、蒸気養生又は温水養生を行った後、さらにオートクレーブ養生を行う場合)、蒸気養生又は温水養生における養生時間は、好ましくは6〜72時間、より好ましくは12〜48時間であり、オートクレーブ養生における養生時間は、好ましくは1〜24時間、より好ましくは4〜18時間である。
本工程において、養生温度が前記範囲内であれば、養生時間を短縮でき、また、セメント質硬化体の圧縮強度が向上し、さらに養生時間が前記範囲内であれば、セメント質硬化体の圧縮強度が向上する。
(C) Heat curing step In this step, the cured body obtained in the previous step is steamed at 70°C or higher and lower than 100°C (preferably 75 to 95°C, more preferably 80 to 92°C) for 6 hours or longer. In this step, one or both of curing or warm water curing and autoclave curing at 100 to 200° C. (preferably 160 to 190° C.) for 1 hour or more is performed to obtain a heat cured molded body.
In this step, when only steam curing or warm water curing is performed, the curing time is preferably 24 hours or more, more preferably 24 to 96 hours, particularly preferably 36 to 72 hours. When only autoclave curing is performed, the curing time is preferably 8 to 60 hours, more preferably 12 to 48 hours. When performing both steam curing or warm water curing and autoclave curing (for example, when performing autoclave curing after performing steam curing or warm water curing), curing time in steam curing or warm water curing is preferably 6 to 72 hours. , More preferably 12 to 48 hours, and the curing time in autoclave curing is preferably 1 to 24 hours, more preferably 4 to 18 hours.
In this step, if the curing temperature is within the above range, the curing time can be shortened, and the compressive strength of the hardened cement material is improved. Strength is improved.

(D)高温加熱工程
本工程は、加熱養生した成形体を、150〜200℃(好ましくは170〜190℃)で24時間以上(好ましくは24〜72時間、より好ましくは36〜48時間)、加熱(ただし、オートクレーブ養生による加熱を除く。)して、道路又は鉄道の防護工用部材(前記セメント組成物の硬化体)を得る工程である。
本工程における加熱は、通常、乾燥雰囲気下(換言すると、水や水蒸気を人為的に供給しない状態)で行われる。
加熱温度が150℃以上で加熱時間をより短くでき、200℃以下でセメント質硬化体の圧縮強度がより向上する。また、加熱時間が24時間以上でセメント質硬化体の圧縮強度がより向上する。
(D) High-temperature heating step In this step, the heat-cured molded body is heated at 150 to 200°C (preferably 170 to 190°C) for 24 hours or longer (preferably 24 to 72 hours, more preferably 36 to 48 hours), In this step, heating (however, heating by autoclave curing is excluded) is performed to obtain a member for road or railroad protective work (cured product of the cement composition).
The heating in this step is usually performed in a dry atmosphere (in other words, a state in which water or steam is not artificially supplied).
When the heating temperature is 150° C. or higher, the heating time can be shortened, and when the heating temperature is 200° C. or lower, the compressive strength of the cementitious hardened product is further improved. Further, when the heating time is 24 hours or more, the compressive strength of the hardened cementitious material is further improved.

(E)吸水工程
常温養生工程と加熱養生工程の間に、常温養生工程で養生した成形体に吸水させる吸水工程を含んでもよい。
常温養生した成形体に吸水させる方法は、該成形体を水中に浸漬する方法が挙げられる。また、該成形体を水中に浸漬する方法において、短時間で吸水量を増やし、セメント質硬化体の圧縮強度を高くするためには、(1)該成形体を、減圧下の水中に浸漬する方法、(2)該成形体を、沸騰している水中に浸漬した後、該成形体を浸漬したまま、水温を40℃以下に低下させる方法、(3)該成形体を、沸騰している水の中に浸漬した後、該成形体を沸騰している水から取り出して、次いで、40℃以下の水に浸漬する方法、(4)該成形体を、加圧下の水中に浸漬する方法、又は(5)該成形体への水の浸透性が向上する薬剤が溶解した水溶液の中に、該成形体を浸漬する方法が好ましい。
(E) Water Absorption Process A water absorption process may be included between the room temperature curing process and the heat curing process so that the molded body cured in the room temperature curing process absorbs water.
Examples of the method of absorbing water in the molded body that has been aged at room temperature include a method of immersing the molded body in water. Further, in the method of immersing the molded body in water, in order to increase the water absorption amount and increase the compressive strength of the cementitious hardened body in a short time, (1) the molded body is immersed in water under reduced pressure. Method, (2) a method in which the molded body is immersed in boiling water, and then the water temperature is lowered to 40° C. or lower while the molded body is immersed, (3) the molded body is boiled After immersing in water, the molded body is taken out of boiling water and then immersed in water at 40° C. or lower, (4) the molded body is immersed in water under pressure, Alternatively, (5) a method of immersing the molded body in an aqueous solution in which a drug capable of improving water permeability into the molded body is dissolved is preferable.

前記成形体を、減圧下の水の中に浸漬する方法は、真空ポンプや大型の減圧容器等の設備を利用する方法が挙げられる。
前記成形体を、沸騰している水の中に浸漬する方法は、高温高圧容器や熱温水水槽等の設備を利用する方法が挙げられる。
前記養生した成形体を、減圧下の水又は沸騰している水中に浸漬させる時間は、吸水率を高くするため、好ましくは3分間以上、より好ましくは8分間以上、さらに好ましくは20分間以上である。該時間の上限は、セメント質硬化体の圧縮強度をより高くするため、好ましくは60分間、より好ましくは45分間である。
Examples of the method of immersing the molded body in water under reduced pressure include a method of using equipment such as a vacuum pump and a large-sized reduced pressure container.
Examples of the method of immersing the molded body in boiling water include a method of using equipment such as a high-temperature high-pressure container and a hot-water water tank.
The time to immerse the cured molded article in water under reduced pressure or boiling water is preferably 3 minutes or more, more preferably 8 minutes or more, further preferably 20 minutes or more in order to increase the water absorption rate. is there. The upper limit of the time is preferably 60 minutes, more preferably 45 minutes in order to further increase the compressive strength of the cementitious hardened product.

吸水工程における吸水率は、セメント組成物が粗骨材を含まない場合(セメント組成物が骨材Bを含まない、又は、セメント組成物中の骨材Bが粗骨材(最小粒径が5mm以上)に該当しない場合)、φ50×100mmの硬化体100体積%に対する水の含有率は、好ましくは0.2体積%以上、より好ましくは0.3〜2.0体積%、さらに好ましくは0.35〜1.7体積%である。
また、セメント組成物が粗骨材を含む場合(セメント組成物中の骨材Bが粗骨材に該当する場合)、φ100×200mmの硬化体100体積%に対する水の含有率は、好ましくは0.2体積%以上、より好ましくは0.3〜2.0体積%、さらに好ましくは0.35〜1.7体積%である。これらの吸水率が0.2体積%以上でセメント質硬化体の圧縮強度をより高くできる。
When the cement composition does not contain coarse aggregate (the cement composition does not contain aggregate B, or the aggregate B in the cement composition is coarse aggregate (the minimum particle size is 5 mm The above does not apply)), the water content with respect to 100% by volume of the cured product of φ50×100 mm is preferably 0.2% by volume or more, more preferably 0.3 to 2.0% by volume, and further preferably 0. .35 to 1.7% by volume.
Further, when the cement composition contains coarse aggregate (when the aggregate B in the cement composition corresponds to the coarse aggregate), the content ratio of water to 100% by volume of the cured product of φ100×200 mm is preferably 0. 0.2% by volume or more, more preferably 0.3 to 2.0% by volume, still more preferably 0.35 to 1.7% by volume. When the water absorption of these is 0.2 vol% or more, the compressive strength of the hardened cementitious material can be further increased.

本発明の道路又は鉄道の防護工用部材は、高い圧縮強度を有するセメント質硬化体からなるため、ひび割れ等が発生しにくく、道路又は鉄道の防護工用部材の厚さを薄くでき、その結果、道路又は鉄道の防護工用部材を軽量化して、工賃を低減できる。
また、本発明の道路又は鉄道の防護工用部材は、耐摩耗性に優れている。例えば、「ASTM C779」に準拠して測定した60分経過後の前記セメント質硬化体のすりへり深さは、好ましくは0.5mm以下、より好ましくは0.4mm以下、さらに好ましくは0.3mm以下である。
Since the road or railroad protective member of the present invention is made of a cementitious hardened material having high compressive strength, cracks and the like are less likely to occur, and the thickness of the road or railway protective member can be reduced, resulting , It is possible to reduce the labor cost by reducing the weight of road or railroad protection materials.
Further, the road or railroad protective member of the present invention has excellent wear resistance. For example, the frayed depth of the cementitious hardened body after 60 minutes measured according to "ASTM C779" is preferably 0.5 mm or less, more preferably 0.4 mm or less, and further preferably 0.3 mm or less. Is.

また、本発明の道路又は鉄道の防護工用部材は、遮水性、凍結融解抵抗性、及び遮煙性(例えば、道路又は鉄道の防護工用部材に塩化物イオンや硫酸イオンが浸透しにくい)に優れている。
また、本発明の道路又は鉄道の防護工用部材は、寸法安定性に優れている。例えば、「JIS A 1129−2:2010(モルタル及びコンクリートの長さ変化測定方法−第2部:コンタクトゲージ方法)」に準拠して測定した、40×40×160mmの供試体を6カ月間保存した後の前記セメント質硬化体の収縮ひずみは、好ましくは10×10−6以下、より好ましくは8×10−6以下、さらに好ましくは6×10−6以下である。
さらに、本発明の道路又は鉄道の防護工用部材は、高い曲げ強度を有する。例えば、前記セメント質硬化体が繊維を含む場合、「土木学会基準 JSCE−G 552−2010(鋼繊維補強コンクリートの曲げ強度及び曲げタフネス試験方法)」に準拠して測定した、前記セメント質硬化体の曲げ強度は、好ましくは20N/mm以上、より好ましくは30N/mm以上、さらに好ましくは35N/mm以上である。
Further, the road or railroad protective member of the present invention is water-blocking, freeze-thaw resistant, and smoke-proof (for example, chloride ions or sulfate ions are unlikely to penetrate into the road or railway protective member). Is excellent.
The road or railroad protection member of the present invention has excellent dimensional stability. For example, a 40×40×160 mm specimen, which is measured according to “JIS A 1129-2:2010 (Mortar and Concrete Length Change Measuring Method—Part 2: Contact Gauge Method)”, is stored for 6 months. The shrinkage strain of the cementitious hardened product after the treatment is preferably 10×10 −6 or less, more preferably 8×10 −6 or less, and further preferably 6×10 −6 or less.
Further, the road or railroad protection member of the present invention has high bending strength. For example, when the hardened cementitious material contains fibers, the hardened cementitious material is measured according to "JSCE Standard JSCE-G 552-2010 (bending strength and bending toughness test method of steel fiber reinforced concrete)". the flexural strength is preferably 20 N / mm 2 or more, more preferably 30 N / mm 2 or more, more preferably 35N / mm 2 or more.

本発明において防護工は、ロックシェッドやスノーシェッドが挙げられる。防護工は、従来から用いられている形状のものでよく、例えば、(1)スラブ部材(屋根の部分)と柱部材からなるロックシェッドやスノーシェッド、(2)アーチ部材からなるスノーシェッドが挙げられる。
本発明の防護工用部材を用いて、前記(1)ロックシェッドやスノーシェッドを構築する場合は、該部材の使用箇所はスラブ部材(屋根の部分)と柱部材が挙げられ、該部材を用いてスラブ部材のみ、又はスラブ部材及び柱部材を製造してもよい。また、(2)スノーシェッドを構築する場合は、該部材の使用箇所はアーチ部材が挙げられる。
In the present invention, examples of protective workers include rock sheds and snow sheds. The protector may have a conventionally used shape, and examples thereof include (1) a rock shed or a snow shed made of a slab member (roof portion) and a pillar member, and (2) a snow shed made of an arch member.
When the above-mentioned (1) rock shed or snow shed is constructed by using the member for protective work of the present invention, the use locations of the member include a slab member (roof portion) and a pillar member, and the member is used. Only the slab member or the slab member and the pillar member may be manufactured. Further, in the case of (2) constructing a snow shed, an arch member can be cited as a use place of the member.

本発明の防護工用部材が、ロックシェッド構築用のスラブ部材の場合、その厚さは、強度や耐衝撃性の観点から、好ましくは6cm以上、より好ましくは8cm以上、さらに好ましくは10cm以上であり、製造の容易性や軽量化による作業性の向上の観点から、好ましくは30cm以下、より好ましくは25cm以下、さらに好ましくは20cm以下である。また、縦と横の長さは、取り扱い易さの観点から、好ましくは3m以下、より好ましくは2.5m以下、さらに好ましくは2m以下であり、作業の効率の観点からは、好ましくは1m以上、より好ましくは1.5m以上、さらに好ましくは2m以上である。
なお、ロックシェッドのスラブ(屋根)の厚さが30cm以上であれば、スラブ部材を重ねてスラブ(屋根)を構築するとよい。
When the member for protective work of the present invention is a slab member for rockshed construction, the thickness thereof is preferably 6 cm or more, more preferably 8 cm or more, further preferably 10 cm or more from the viewpoint of strength and impact resistance. From the standpoint of improving workability due to ease of production and weight reduction, it is preferably 30 cm or less, more preferably 25 cm or less, and further preferably 20 cm or less. The length and width are preferably 3 m or less, more preferably 2.5 m or less, further preferably 2 m or less from the viewpoint of ease of handling, and preferably 1 m or more from the viewpoint of work efficiency. , More preferably 1.5 m or more, further preferably 2 m or more.
If the slab (roof) of the lock shed has a thickness of 30 cm or more, it is advisable to stack the slab members to construct the slab (roof).

本発明の防護工用部材が、ロックシェッドやスノーシェッド構築用の柱部材の場合、強度や耐衝撃性の観点から、1辺が10〜50cmの角柱又は直径が10〜50cmの円柱とすることが好ましい。なお、当該柱部材の高さは、構築するロックシェッドやスノーシェッドの高さに応じて定めることができるが、概ね4〜7mが好ましい。 When the member for protective work of the present invention is a column member for building a rock shed or a snow shed, it may be a prism having a side of 10 to 50 cm or a column having a diameter of 10 to 50 cm from the viewpoint of strength and impact resistance. preferable. The height of the pillar member can be determined according to the height of the rock shed or snow shed to be built, but is preferably about 4 to 7 m.

本発明の防護工用部材が、スノーシェッド構築用のスラブ部材やアーチ部材の場合、その厚さは、強度や耐衝撃性の観点から、好ましくは4cm以上、より好ましくは6cm以上、さらに好ましくは8cm以上であり、製造の容易性や軽量化による作業性の向上の観点から、好ましくは25cm以下、より好ましくは20cm以下、さらに好ましくは15cm以下である。また、縦と横の長さは、取り扱い易さの観点から、好ましくは3m以下、より好ましくは2.5m以下、さらに好ましくは2m以下であり、作業の効率の観点から、好ましくは1m以上、より好ましくは1.5m以上、さらに好ましくは2m以上である。 When the member for protective work of the present invention is a slab member or an arch member for building a snowshed, the thickness thereof is preferably 4 cm or more, more preferably 6 cm or more, and further preferably 8 cm from the viewpoint of strength and impact resistance. From the viewpoints of ease of production and improvement in workability due to weight reduction, it is preferably 25 cm or less, more preferably 20 cm or less, and further preferably 15 cm or less. The length and width are preferably 3 m or less, more preferably 2.5 m or less, still more preferably 2 m or less from the viewpoint of easy handling, and preferably 1 m or more from the viewpoint of work efficiency. It is more preferably 1.5 m or more, still more preferably 2 m or more.

本発明の防護工用部材が、ロックシェッド構築用のスラブ部材の場合、当該部材の引張強度やせん断強度の向上の観点から、当該部材にプレストレスを導入することが好ましい。プレストレスを導入する方法は、従来から行われているプレテンション方式とポストテンション方式のいずれを用いてもよいが、製造の容易性等の観点から、高温加熱後のスラブ部材にプレストレスを導入するポストテンション方式が好ましい。 When the member for protective work of the present invention is a slab member for building a lockshed, it is preferable to introduce prestress to the member from the viewpoint of improving the tensile strength and shear strength of the member. The prestressing method may be either a pretensioning method or a posttensioning method that has been conventionally performed, but from the viewpoint of ease of manufacturing, etc., prestressing is introduced into the slab member after high temperature heating. The post tension method is preferred.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。
[使用材料]
実施例1〜17及び比較例1で使用した材料を以下に示す。
(1)セメント:低熱ポルトランドセメント(太平洋セメント社製)
(2)シリカフュームA:BET比表面積20m/g
(3)シリカフュームB:BET比表面積17m/g
(4)無機粉末A:珪石粉末、50%体積累積粒径2μm、最大粒径12μm、95%体積累積粒径5.8μm
(5)無機粉末B:珪石粉末、50%体積累積粒径7μm、最大粒径67μm、95%体積累積粒径27μm
(6)骨材A1(細骨材):珪砂
最大粒径1.0mmで、0.6mm以下が98質量%、0.3mm以下が45質量%、0.15mm以下が3質量%に粒度分布を調整した。
(7)骨材A2(細骨材):人工エメリー砂(宇治電化学工業社製、修正モース硬度:12)
最大粒径1.0mmで、粒径0.6mm以下が96質量%、粒径0.3mm以下が46質量%、粒径0.15mm以下が1質量%に粒度分布を調整した。
(8)ポリカルボン酸系高性能減水剤:固形分量27.4質量%、フローリック社製、商品名「フローリックSF500U」[登録商標]
(9)消泡剤:BASFジャパン社製、商品名「マスターエア404」[登録商標]
(10)水:水道水
(11)金属繊維:鋼繊維(直径:0.2mm、長さ:15mm)
(12)骨材B(粗骨材):硬質砂岩砕石1005(粒径:5〜10mm)
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
[Materials used]
The materials used in Examples 1 to 17 and Comparative Example 1 are shown below.
(1) Cement: Low heat Portland cement (manufactured by Taiheiyo Cement)
(2) Silica fume A: BET specific surface area 20 m 2 /g
(3) Silica fume B: BET specific surface area 17 m 2 /g
(4) Inorganic powder A: silica powder, 50% volume cumulative particle diameter 2 μm, maximum particle diameter 12 μm, 95% volume cumulative particle diameter 5.8 μm
(5) Inorganic powder B: silica powder, 50% volume cumulative particle size 7 μm, maximum particle size 67 μm, 95% volume cumulative particle size 27 μm
(6) Aggregate A1 (fine aggregate): Quartz sand With a maximum particle size of 1.0 mm, a particle size distribution of 98% by mass for 0.6 mm or less, 45% by mass for 0.3 mm or less, and 3% by mass for 0.15 mm or less Was adjusted.
(7) Aggregate A2 (fine aggregate): artificial emery sand (manufactured by Uji Denki Kagaku Co., modified Mohs hardness: 12)
The particle size distribution was adjusted such that the maximum particle size was 1.0 mm, the particle size of 0.6 mm or less was 96% by mass, the particle size of 0.3 mm or less was 46% by mass, and the particle size of 0.15 mm or less was 1% by mass.
(8) Polycarboxylic acid-based high-performance water reducing agent: solid content 27.4% by mass, manufactured by Floric, trade name "Floric SF500U" [registered trademark]
(9) Defoaming agent: BASF Japan Ltd., trade name "Master Air 404" [registered trademark]
(10) Water: Tap water (11) Metal fiber: Steel fiber (diameter: 0.2 mm, length: 15 mm)
(12) Aggregate B (coarse aggregate): crushed hard sandstone 1005 (particle size: 5 to 10 mm)

[実施例1]
粉体原料100体積%中、セメント等の含有率が表2の実施例1に示す量となるように混合してなる混合物と、セメント組成物中の骨材A1の含有率が表2に示す量の骨材A1を、オムニミキサに投入して、15秒間空練りを行った。
次に、表2に示す量の水、ポリカルボン酸系高性能減水剤、及び消泡剤を、オムニミキサに投入して、2分間混練した。
混練後、オムニミキサ内の側壁に付着した混練物を掻き落とし、さらに4分間混練を行った。そして、混練後のセメント組成物の0打ちフロー値を、「JIS R 5201(セメントの物理試験方法)11.フロー試験」に記載される方法において、15回の落下運動を行わないで測定した。
[Example 1]
Table 2 shows the content of the aggregate A1 in the cement composition and the mixture prepared by mixing the content of cement and the like in 100% by volume of the powder raw material so as to be the amount shown in Example 1 of Table 2. The amount of aggregate A1 was put into an omni mixer and kneaded for 15 seconds.
Next, the amounts of water, polycarboxylic acid-based high-performance water reducing agent, and defoaming agent shown in Table 2 were put into an omni mixer and kneaded for 2 minutes.
After the kneading, the kneaded material adhering to the side wall in the omni mixer was scraped off, and the kneading was performed for 4 minutes. Then, the zero impact flow value of the cement composition after kneading was measured by the method described in "JIS R 5201 (Physical test method for cement) 11. Flow test" without performing 15 drop motions.

得られた混練物を、φ50×100mmの円筒形の型枠に打設した後、20℃で48時間、封緘養生を行い、次いで、脱型して成形体を得た。なお、脱型時の圧縮強度は50N/mmであった。
この成形体を、表3に示す時間、減圧したデシケーター内で水に浸漬した(表3中、「減圧下」と示す。)。なお、減圧は、アズワン社製の「アスピレーター(AS−01)」を使用した。浸漬前後の成形体の質量を測定し、得られた測定値から、吸水率を算出した。
浸漬後、この成形体を90℃で48時間蒸気養生を行い、次いで、20℃まで降温した後、180℃で48時間加熱を行った。
セメント質硬化体()の圧縮強度を、「JIS A 1108(コンクリートの圧縮強度試験方法)」に準じて測定した。
また、該セメント質硬化体と同様にして、30×30×6cmの供試体を製造し、「ASTM C779」に準拠して、60分経過後のすりへり深さを測定した。
0打ちフロー値、吸水率、圧縮強度、及びすりへり深さの各値を表3に示す。なお、後述の実施例、比較例における0打ちフロー値、吸水率、圧縮強度、及びすりへり深さ等の各値も表3に示す。
The obtained kneaded product was cast in a cylindrical mold frame of φ50×100 mm, then sealed and cured at 20° C. for 48 hours, and then demolded to obtain a molded product. The compressive strength during demolding was 50 N/mm 2 .
This molded body was immersed in water in a desiccator under reduced pressure for the time shown in Table 3 (in Table 3, indicated as "under reduced pressure"). In addition, for the depressurization, "Aspirator (AS-01)" manufactured by AS ONE was used. The mass of the molded body before and after the immersion was measured, and the water absorption rate was calculated from the obtained measured value.
After the immersion, the molded body was steam-cured at 90° C. for 48 hours, then cooled to 20° C., and then heated at 180° C. for 48 hours.
The compressive strength of the cementitious hardened body () was measured according to "JIS A 1108 (concrete compressive strength test method)".
Further, a test piece of 30×30×6 cm was manufactured in the same manner as the cementitious hardened material, and the chamfer depth after 60 minutes was measured according to “ASTM C779”.
Table 3 shows the values of the zero impact flow value, the water absorption rate, the compressive strength, and the fray depth. It should be noted that Table 3 also shows the respective values such as zero impact flow value, water absorption rate, compressive strength, and fray depth in Examples and Comparative Examples described later.

[実施例2]
粉体原料100質量部当たりの水の配合量を、13質量部から15質量部に変更した以外は、実施例1と同様にして、セメント組成物及びセメント質硬化体を得た。
実施例1と同様にして、セメント組成物の0打ちフロー値の測定等を行った。なお、脱型時の圧縮強度は45N/mmであった。
[Example 2]
A cement composition and a cementitious hardened body were obtained in the same manner as in Example 1 except that the amount of water mixed per 100 parts by mass of the powder raw material was changed from 13 parts by mass to 15 parts by mass.
In the same manner as in Example 1, the zero flow value of the cement composition was measured. The compressive strength at the time of demolding was 45 N/mm 2 .

[実施例3]
脱型後の成形体を、減圧したデシケーター内で水に浸漬する代わりに、沸騰水に、表3に示す時間浸漬した後、該成形体を水に浸漬させたまま、水温が25℃となるまで冷却した以外は、実施例1と同様にして、セメント組成物及びセメント質硬化体を得た。
実施例1と同様にして、吸水率の算出、及び、セメント質硬化体の圧縮強度の測定を行った。
[Example 3]
Instead of immersing the molded body after demolding in water in a desiccator under reduced pressure, after immersing it in boiling water for the time shown in Table 3, the water temperature becomes 25° C. while the molded body is immersed in water. A cement composition and a cementitious hardened body were obtained in the same manner as in Example 1 except that the cooling was performed.
In the same manner as in Example 1, the water absorption rate was calculated, and the compressive strength of the hardened cementitious material was measured.

[実施例4]
脱型後の成形体を、減圧したデシケーター内で水に浸漬する代わりに、実施例3と同様に沸騰水への浸漬等を行った以外は、実施例2と同様にして、セメント組成物及びセメント質硬化体を得た。
実施例1と同様にして、吸水率の算出、及び、セメント質硬化体の圧縮強度の測定を行った。
[Example 4]
The cement composition and the cement composition were prepared in the same manner as in Example 2 except that the molded product after demolding was immersed in boiling water in the same manner as in Example 3 instead of being immersed in water in a desiccator under reduced pressure. A cementitious hardened body was obtained.
In the same manner as in Example 1, the water absorption rate was calculated, and the compressive strength of the hardened cementitious material was measured.

[実施例5]
シリカフュームAの含有率を10体積%から20体積%に変更し、かつ、無機粉末Aの含有率を30体積%から20体積%に変更した以外は、実施例1と同様にして、セメント組成物及びセメント質硬化体を得た。
実施例1と同様にして、0打ちフロー値の測定等を行った。なお、脱型時の圧縮強度は50N/mmであった。
[Example 5]
Cement composition in the same manner as in Example 1 except that the content of silica fume A was changed from 10% by volume to 20% by volume, and the content of inorganic powder A was changed from 30% by volume to 20% by volume. And a cementitious hardened body was obtained.
In the same manner as in Example 1, measurement of the zero shot flow value and the like were performed. The compressive strength during demolding was 50 N/mm 2 .

また、前記セメント質硬化体と同様にして、40×40×160mmの供試体を製造し、「JIS A 1129−2:2010 モルタル及びコンクリートの長さ変化測定方法−第2部:コンタクトゲージ方法」に準拠して、6か月保存した場合における収縮ひずみを測定した。
また、得られたセメント質硬化体の透水係数を、「地盤工学会基準 JGS 0311−2009(土の透水試験方法)」の変水位透水試験方法に準じて測定した。その結果、水の浸透は認められず、透水係数は「0」であった。
また、得られたセメント質硬化体を人工海水に6カ月間浸漬した。なお、人工海水は表1に示す各試薬を、表1に示す量で蒸留水に溶解することで調製した。
浸漬後、セメント質硬化体中の塩化物イオンの濃度を、EPMA(日本電子社製)を用いて測定し、塩化物イオンの拡散係数(表3中、「拡散係数」で示す。)を算出した。
さらに、得られたセメント質硬化体に対して、「JIS A 1148(コンクリートの凍結溶解試験方法)」に準拠して測定した値を用いて、「ASTM C666 75」の耐久性指数(300サイクル)を算出した。なお、耐久性指数は、最大値が100であり、最大値に近いほど凍結融解抵抗性に優れている。
In addition, a 40×40×160 mm specimen is manufactured in the same manner as the cement hardened product, and “JIS A 1129-2:2010 Mortar and Concrete Length Change Measuring Method-Part 2: Contact Gauge Method”. The shrinkage strain when stored for 6 months was measured in accordance with the above.
Further, the water permeability of the obtained cementitious hardened body was measured according to the water level permeability test method of "Geotechnical Society Standard JGS 0311-2009 (Soil permeability test method)". As a result, no water permeation was observed, and the water permeability coefficient was "0".
Moreover, the obtained cementitious hardened body was immersed in artificial seawater for 6 months. The artificial seawater was prepared by dissolving the reagents shown in Table 1 in distilled water in the amounts shown in Table 1.
After the immersion, the concentration of chloride ions in the hardened cementitious material was measured using EPMA (manufactured by JEOL Ltd.), and the diffusion coefficient of chloride ions (indicated by "diffusion coefficient" in Table 3) was calculated. did.
Further, the obtained cementitious hardened material was used with the value measured according to "JIS A 1148 (freezing and thawing test method for concrete)", and the durability index (300 cycles) of "ASTM C666 75" was used. Was calculated. The maximum value of the durability index is 100, and the closer to the maximum value, the better the freeze-thaw resistance.

[実施例6]
脱型後の成形体を、減圧したデシケーター内で水に浸漬する代わりに、実施例3と同様に沸騰水への浸漬等を行った以外は、実施例5と同様にして、セメント組成物及びセメント質硬化体を得た。
実施例1と同様にして、吸水率の算出、及び、セメント質硬化体の圧縮強度の測定を行った。
[Example 6]
The cement composition and the cement composition were prepared in the same manner as in Example 5 except that the molded product after the mold release was immersed in boiling water in the same manner as in Example 3 instead of being immersed in water in a desiccator under reduced pressure. A cementitious hardened body was obtained.
In the same manner as in Example 1, the water absorption rate was calculated, and the compressive strength of the hardened cementitious material was measured.

[実施例7]
シリカフュームAの含有率を10体積%から20体積%に変更し、かつ、無機粉末Aの含有率を30体積%から20体積%に変更した以外は、実施例2と同様にして、セメント組成物及びセメント質硬化体を得た。
実施例1と同様にして、0打ちフロー値の測定等を行った。なお、脱型時の圧縮強度は45N/mmであった。
[Example 7]
Cement composition in the same manner as in Example 2 except that the content of silica fume A was changed from 10% by volume to 20% by volume, and the content of inorganic powder A was changed from 30% by volume to 20% by volume. And a cementitious hardened body was obtained.
In the same manner as in Example 1, measurement of the zero shot flow value and the like were performed. The compressive strength at the time of demolding was 45 N/mm 2 .

[実施例8]
脱型後の成形体を、減圧したデシケーター内で水に浸漬する代わりに、実施例3と同様にして沸騰水への浸漬等を行った以外は、実施例7と同様にして、セメント組成物及びセメント質硬化体を得た。
実施例1と同様にして、吸水率の算出、及び、セメント質硬化体の圧縮強度及びすりへり深さの測定を行った。
また、実施例5と同様にして、収縮ひずみ及び透水係数の測定、並びに、塩化物イオンの拡散係数及び耐久性指数の算出を行った。
[Example 8]
The cement composition was prepared in the same manner as in Example 7, except that the molded product after the mold release was immersed in boiling water in the same manner as in Example 3 instead of being immersed in water in a desiccator under reduced pressure. And a cementitious hardened body was obtained.
In the same manner as in Example 1, the water absorption was calculated, and the compressive strength and the ground depth of the hardened cementitious material were measured.
Further, in the same manner as in Example 5, the shrinkage strain and the water permeability were measured, and the chloride ion diffusion coefficient and the durability index were calculated.

[実施例9]
前記粉体原料の合計100体積%中、セメント等の各含有率が表2に示す量となるように混合した。得られた混合物と、セメント組成物中の骨材A1の含有率が表2に示す量の骨材A1を、オムニミキサに投入して、15秒間空練りを行った。
次いで、水、ポリカルボン酸系高性能減水剤、及び消泡剤を、表2に示す量でオムニミキサに投入して、2分間混練を行った後、オムニミキサ内の側壁に付着した混練物を掻き落とし、さらに4分間混練を行った。その後、セメント組成物中の金属繊維の含有率が表2に示す量の金属繊維を、オムニミキサに投入して、さらに2分間混練を行った。
得られたセメント組成物について、実施例1と同様にして、0打ちフロー値を測定した。
また、得られたセメント組成物を用いて、実施例1と同様の方法で、セメント質硬化体を得た。
得られたセメント質硬化体について、実施例1と同様にして、吸水率及び圧縮強度を測定した。
さらに、得られたセメント質硬化体の曲げ強度を、「土木学会基準 JSCE−G 552−2010(鋼繊維補強コンクリートの曲げ強度及び曲げタフネス試験方法)」に準じて測定した。
[Example 9]
In the total 100% by volume of the powder raw materials, the respective contents such as cement were mixed so as to be the amounts shown in Table 2. The obtained mixture and the aggregate A1 having the content of the aggregate A1 in the cement composition shown in Table 2 were put into an omni mixer and kneaded for 15 seconds.
Next, water, a polycarboxylic acid-based high-performance water reducing agent, and an antifoaming agent were added to the omni mixer in the amounts shown in Table 2 and kneaded for 2 minutes, and then the kneaded material adhering to the side wall inside the omni mixer was scratched. It was dropped and kneading was continued for 4 minutes. Then, the amount of the metal fibers in the cement composition shown in Table 2 was added to the omni mixer, and the mixture was further kneaded for 2 minutes.
With respect to the obtained cement composition, the zero-setting flow value was measured in the same manner as in Example 1.
Further, using the obtained cement composition, a hardened cementitious material was obtained in the same manner as in Example 1.
The water absorption and the compressive strength of the obtained cementitious hardened body were measured in the same manner as in Example 1.
Furthermore, the bending strength of the obtained cementitious hardened body was measured according to "JSCE Standard JSCE-G 552-2010 (bending strength and bending toughness test method of steel fiber reinforced concrete)".

[実施例10]
金属繊維の含有率を2.2体積%から2.0体積%に変更し、かつ、脱型後の成形体を、減圧したデシケーター内で水に浸漬する代わりに、実施例3と同様に沸騰水への浸漬等を行った以外は、実施例9と同様にして、セメント組成物及びセメント質硬化体を得た。
セメント組成物及びセメント質硬化体について、実施例9と同様にして、各種物性を測定した。
また、実施例5と同様にして、透水係数の測定、塩化物イオンの拡散係数、及び耐久性指数を算出した。
さらに、前記セメント質硬化体と同様にして、縦550mm×横100mm×厚さ25mmの平板供試体を製造し、該平板供試体の中央部に、図2に示すように鋼製重錘(質量20kg、先端直径200mm)を1回目が10cm、2回目が20cm、3回目が30cmと、落下高さを変えて(高くして)自由落下させて繰返し載荷を加え、何回目の落下で平板が破断するかで耐衝撃性を評価した。その結果、5回目(落下高さは50cm)の落下で平板供試体は破断した。
[Example 10]
The content of the metal fibers was changed from 2.2% by volume to 2.0% by volume, and the molded body after demolding was boiled in the same manner as in Example 3 instead of being immersed in water in a desiccator under reduced pressure. A cement composition and a cementitious hardened body were obtained in the same manner as in Example 9 except that immersion in water was performed.
Various physical properties of the cement composition and the cementitious hardened product were measured in the same manner as in Example 9.
Also, in the same manner as in Example 5, the permeability coefficient, chloride ion diffusion coefficient, and durability index were calculated.
Further, in the same manner as the hardened cement material, a flat plate specimen having a length of 550 mm, a width of 100 mm and a thickness of 25 mm was manufactured, and a steel weight (mass) (mass) as shown in FIG. 20 kg, tip diameter 200 mm) was changed to 10 cm for the first time, 20 cm for the second time, and 30 cm for the third time. The height of the plate was changed (increased) to allow free fall, and repeated loading was applied. The impact resistance was evaluated by the fracture. As a result, the flat plate specimen broke at the fifth drop (falling height was 50 cm).

[実施例11]
金属繊維の含有率を2.0体積%から1.0体積%に変更した以外は実施例10のセメント組成物と同様の配合で、セメント組成物を製造した。
セメント組成物及びセメント質硬化体について、実施例9と同様にして、各種物性を測定した。
さらに、実施例11のセメント組成物を用いて、実施例10と同様にして、平板供試体を製造し、耐衝撃性を評価した。その結果、3回目(落下高さは30cm)の落下で平板供試体は破断した。
[Example 11]
A cement composition was produced with the same composition as the cement composition of Example 10 except that the content of the metal fibers was changed from 2.0% by volume to 1.0% by volume.
Various physical properties of the cement composition and the cementitious hardened product were measured in the same manner as in Example 9.
Further, using the cement composition of Example 11, a flat plate test piece was manufactured in the same manner as in Example 10, and the impact resistance was evaluated. As a result, the flat plate specimen broke at the third drop (falling height was 30 cm).

[実施例12]
粉体原料100質量部当たりの水の配合量を、13質量部から11質量部に変更し、骨材A1の配合量を35.5体積%から30.0体積%に変更し、高性能減水剤の配合量を0.69質量部から0.76質量部に変更し、かつ、成形体を水に浸漬しなかった以外は、実施例1と同様にして、セメント組成物及びセメント質硬化体を得た。
実施例1と同様にして、セメント組成物の0打ちフロー値の測定等を行った。なお、脱型時の圧縮強度は54N/mmであった。
[Example 12]
The amount of water mixed per 100 parts by mass of the powder raw material was changed from 13 parts by mass to 11 parts by mass, and the amount of the aggregate A1 was changed from 35.5% by volume to 30.0% by volume to achieve high-performance water reduction. A cement composition and a cementitious hardened product were obtained in the same manner as in Example 1 except that the compounding amount of the agent was changed from 0.69 parts by mass to 0.76 parts by mass, and the molded body was not immersed in water. Got
In the same manner as in Example 1, the zero flow value of the cement composition was measured. The compressive strength at the time of demolding was 54 N/mm 2 .

[実施例13]
脱型後の成形体を沸騰水に、表3に示す時間浸漬した後、該成形体を水に浸漬させたまま、水温が25℃となるまで冷却した以外は、実施例12と同様にして、セメント組成物及びセメント質硬化体を得た。
実施例1と同様にして、吸水率の算出、及び、セメント質硬化体の圧縮強度等の測定を行った。
また、実施例5と同様にして、透水係数の測定、塩化物イオンの拡散係数、及び耐久性指数の算出等を行った。
[Example 13]
After demolding the molded body in boiling water for the time period shown in Table 3, the same procedure as in Example 12 was carried out except that the molded body was cooled in the water until the water temperature reached 25°C. A cement composition and a cementitious hardened body were obtained.
In the same manner as in Example 1, the water absorption was calculated, and the compressive strength of the hardened cementitious material was measured.
Further, in the same manner as in Example 5, the permeability coefficient, chloride ion diffusion coefficient, and durability index were calculated.

[実施例14]
骨材A1の配合量を、30.0体積%から24.0体積%に変更し、セメント組成物中の骨材Bの含有率が6.0体積%となる量の骨材Bを使用した以外は実施例12のセメント組成物と同様の配合で、セメント組成物を製造した。
セメント組成物の製造は、実施例1と同様にして、各材料(粉体原料、骨材A1、水、ポリカルボン酸系高性能減水剤、及び消泡剤)を混練した後、さらに骨材Bをオムニミキサに投入して、1分間混練することにより行った。
得られたセメント組成物(混練物)を、φ100×200mmの円筒形の型枠に打設し、かつ、成形体を水に浸漬しなかった以外は実施例1と同様にして、セメント質硬化体を得た。
実施例1と同様にして、セメント質硬化体の圧縮強度等を測定した。なお、脱型時の圧縮強度は43N/mmであった。
[Example 14]
The content of the aggregate A1 was changed from 30.0% by volume to 24.0% by volume, and the amount of the aggregate B was such that the content of the aggregate B in the cement composition was 6.0% by volume. A cement composition was produced with the same composition as the cement composition of Example 12 except for the above.
The production of the cement composition was carried out in the same manner as in Example 1, after kneading the respective materials (powder raw material, aggregate A1, water, polycarboxylic acid type high-performance water reducing agent, and defoaming agent), and further aggregate It was carried out by charging B into an omni mixer and kneading for 1 minute.
Cementitious hardening was performed in the same manner as in Example 1 except that the obtained cement composition (kneaded product) was cast in a cylindrical mold of φ100×200 mm and the molded body was not immersed in water. Got the body
In the same manner as in Example 1, the compressive strength and the like of the hardened cementitious material were measured. The compressive strength at the time of demolding was 43 N/mm 2 .

[実施例15]
骨材A1の含有率を、35.5体積%から28.5体積%に変更し、セメント組成物中の骨材Bの含有率が7.0体積%となる量の骨材Bを使用した以外は実施例8のセメント組成物と同様の配合で、セメント組成物を製造した。
セメント組成物の製造は、実施例1と同様にして、各材料(粉体原料、骨材A1、水、ポリカルボン酸系高性能減水剤、及び消泡剤)を混練した後、さらに、骨材Bをオムニミキサに投入して、1分間混練することで行った。
得られたセメント組成物(混練物)を、φ100×200mmの円筒形の型枠に打設する以外は実施例8と同様にして、セメント質硬化体を得た。
実施例1と同様にして、吸水率の算出及びセメント質硬化体の圧縮強度等の測定を行った。なお、脱型時の圧縮強度は37N/mmであった。
また、実施例5と同様にして、透水係数の測定、塩化物イオンの拡散係数、及び耐久性指数等の算出を行った。
[Example 15]
The content of the aggregate A1 was changed from 35.5% by volume to 28.5% by volume, and the aggregate B was used in an amount such that the content of the aggregate B in the cement composition was 7.0% by volume. A cement composition was produced with the same composition as the cement composition of Example 8 except for the above.
The cement composition was produced in the same manner as in Example 1, after kneading the respective materials (powder raw material, aggregate A1, water, polycarboxylic acid type high-performance water reducing agent, and defoaming agent), and further adding bone. Material B was put into an omni mixer and kneaded for 1 minute.
A hardened cementitious body was obtained in the same manner as in Example 8 except that the obtained cement composition (kneaded product) was cast in a cylindrical mold having a diameter of 100×200 mm.
In the same manner as in Example 1, the water absorption rate was calculated, and the compressive strength of the hardened cementitious material was measured. The compressive strength during demolding was 37 N/mm 2 .
Further, in the same manner as in Example 5, the water permeability was measured, the chloride ion diffusion coefficient, and the durability index were calculated.

[実施例16]
骨材A1の代わりに骨材A2を使用した以外は、実施例4と同様にして、セメント組成物及びセメント質硬化体を得た。
実施例1と同様にして、セメント組成物の0打ちフロー値及び圧縮強度の測定を行った。なお、脱型時の圧縮強度は47N/mmであった。
[Example 16]
A cement composition and a cementitious hardened body were obtained in the same manner as in Example 4 except that the aggregate A2 was used instead of the aggregate A1.
In the same manner as in Example 1, the zero-setting flow value and compressive strength of the cement composition were measured. The compressive strength during demolding was 47 N/mm 2 .

[実施例17]
骨材A1の代わりに骨材A2を使用した以外は、実施例12と同様にして、セメント組成物及びセメント質硬化体を得た。
実施例1と同様にして、セメント組成物の0打ちフロー値及び圧縮強度の測定を行った。なお、脱型時の圧縮強度は55N/mmであった。
[Example 17]
A cement composition and a cementitious hardened body were obtained in the same manner as in Example 12 except that the aggregate A2 was used instead of the aggregate A1.
In the same manner as in Example 1, the zero-setting flow value and compressive strength of the cement composition were measured. The compressive strength at the time of demolding was 55 N/mm 2 .

[比較例1]
粉体原料100体積%中、セメント等の含有率が表2の比較例1に示す量となるように混合してなる混合物と、セメント組成物中の骨材A1の含有率が表2に示す量の骨材A1を、オムニミキサに投入して、15秒間空練りを行った。
次いで、水、ポリカルボン酸系高性能減水剤、及び消泡剤を、表2に示す量でオムニミキサに投入して、2分間混練した。混練後、オムニミキサ内の側壁に付着した混練物を掻き落とし、さらに4分間混練を行った。得られた混練物を用いて、実施例1と同様にして、セメント質硬化体を得た。
そして、セメント組成物及びセメント質硬化体について、実施例1と同様にして、前記各物性を測定又は算出した。
さらに、比較例1のセメント組成物を用いて、実施例10と同様にして、平板供試体を製造し、耐衝撃性を評価した。その結果、1回目(落下高さは10cm)の落下で平板供試体は破断した。
[Comparative Example 1]
Table 2 shows the content of the aggregate A1 in the cement composition and the mixture obtained by mixing the content of cement and the like in 100% by volume of the powder raw material so as to be the amount shown in Comparative Example 1 of Table 2. The amount of aggregate A1 was put into an omni mixer and kneaded for 15 seconds.
Next, water, a polycarboxylic acid-based high-performance water reducing agent, and an antifoaming agent were added to the omni mixer in the amounts shown in Table 2 and kneaded for 2 minutes. After the kneading, the kneaded material adhering to the side wall inside the omni mixer was scraped off, and the kneading was further performed for 4 minutes. Using the obtained kneaded product, a hardened cementitious body was obtained in the same manner as in Example 1.
Then, with respect to the cement composition and the cementitious hardened product, each physical property was measured or calculated in the same manner as in Example 1.
Furthermore, using the cement composition of Comparative Example 1, a flat plate test piece was manufactured in the same manner as in Example 10, and the impact resistance was evaluated. As a result, the flat plate specimen broke at the first drop (falling height was 10 cm).

[試験結果の評価]
(1)強度について
表3から、骨材A1、A2を含むが骨材B(粗骨材)は含まない実施例1〜13、16、17のセメント質硬化体の圧縮強度は350N/mm以上と高い。特に、実施例9、10(セメント組成物が金属繊維を含むもの)は、得られたセメント質硬化体の圧縮強度が445N/mm以上で、著しく高く、かつ、曲げ強度が41N/mm以上である。
また、骨材Bを含む場合(実施例14、15)であっても、セメント質硬化体の圧縮強度は333N/mm以上と高い。
(2)耐摩耗性、収縮ひずみ、透水係数等について
実施例1、2、5、8、10、13、15のセメント質硬化体のすりへり深さは0.37mm以下と小さい。また、実施例5、8のセメント質硬化体の収縮ひずみは5×10−6以下と小さい。さらに、実施例5、8、10、13、15のセメント質硬化体の透水係数、塩化物イオンの拡散係数、耐久性指数から、得られたセメント質硬化体が遮水性、遮塩性、及び凍結融解抵抗性に優れていることがわかる。
(3)耐衝撃性について
金属繊維を含む実施例10、11のセメント質硬化体は、それぞれ5回目と3回目の落下で破断し、下記比較例1と比べ耐衝撃性は高い。
一方、比較例1のセメント質硬化体の圧縮強度は290N/mmであり、実施例1〜17と比べて低い。また、比較例1のセメント質硬化体のすりへり深さは0.57mmで、実施例と比べて大きい。また、比較例1のセメント質硬化体の耐衝撃性は1回目の落下で破断したため、耐衝撃性は低い。
これらの結果から、本発明の道路又は鉄道の防護工用部材は、高い強度と耐衝撃性を有し、耐摩耗性、寸法安定性、遮水性、凍結融解抵抗性、及び遮塩性等の耐久性に優れていることがわかる。
[Evaluation of test results]
(1) Strength From Table 3, the compressive strength of the cementitious hardened bodies of Examples 1 to 13, 16 and 17 including the aggregates A1 and A2 but not including the aggregate B (coarse aggregate) is 350 N/mm 2. More expensive than above. In particular, in Examples 9 and 10 (the cement composition contains metal fibers), the obtained cementitious cured product had a compressive strength of 445 N/mm 2 or more, which was remarkably high and a bending strength of 41 N/mm 2. That is all.
Further, even when the aggregate B is included (Examples 14 and 15), the compressive strength of the cementitious hardened body is as high as 333 N/mm 2 or more.
(2) Abrasion resistance, shrinkage strain, water permeability, etc. The hardened cementitious bodies of Examples 1, 2, 5, 8, 10, 13, and 15 have a small fray depth of 0.37 mm or less. Further, the shrinkage strains of the hardened cementitious bodies of Examples 5 and 8 are as small as 5×10 −6 or less. Further, from the water permeability, the chloride ion diffusion coefficient, and the durability index of the cementitious hardened bodies of Examples 5, 8, 10, 13, and 15, the obtained cementitious hardened bodies were water-impervious, salt-impervious, and It can be seen that it has excellent freeze-thaw resistance.
(3) Impact resistance The cementitious hardened bodies of Examples 10 and 11 containing metal fibers were broken at the fifth and third drops, respectively, and have higher impact resistance than Comparative Example 1 below.
On the other hand, the compressive strength of the hardened cementitious body of Comparative Example 1 is 290 N/mm 2, which is lower than that of Examples 1 to 17. Further, the ground depth of the hardened cementitious body of Comparative Example 1 is 0.57 mm, which is larger than that of the Examples. Further, the impact resistance of the cementitious hardened body of Comparative Example 1 was broken by the first drop, so the impact resistance was low.
From these results, the road or railroad protection member of the present invention has high strength and impact resistance, and has wear resistance, dimensional stability, water impermeability, freeze-thaw resistance, salt impermeability and the like. It can be seen that it has excellent durability.

10 高速気流撹拌装置
11 ローター
12 ブレード
13 循環回路
13a 循環回路の入口
13b 循環回路の出口
14 投入口
15 排出口
16 ステーター
17 衝突室
18 開閉弁
19 排出弁
10 High Speed Air Flow Stirrer 11 Rotor 12 Blade 13 Circulation Circuit 13a Circulation Circuit Inlet 13b Circulation Circuit Outlet 14 Input Port 15 Discharge Port 16 Stator 17 Collision Chamber 18 Opening Valve 19 Discharge Valve

Claims (10)

下記(a)〜(d)の特性及び含有率を有するセメント、シリカフューム、無機粉末、骨材A、及び骨材Bと、高性能減水剤、消泡剤、及び水を、少なくとも含むセメント組成物の硬化体からなる、道路又は鉄道の防護工用部材。
(a)セメント:55〜65体積%
(b)BET比表面積が15〜25m/gのシリカフューム:5〜25体積%
(c)50%体積累積粒径が0.8〜5μmの無機粉末:15〜35体積%
(d)最大粒径が1.2mm以下の骨材A、及び最大粒径が1.2mmを超え、13mm以下の骨材Bの合計の含有率が25〜40体積%
(ただし、セメント、シリカフューム、及び無機粉末の含有率の合計は100体積%である。)
A cement composition containing at least a cement, silica fume, an inorganic powder, an aggregate A , and an aggregate B having the following characteristics (a) to (d) and a high-performance water reducing agent, an antifoaming agent, and water. A member for road or railroad protection work, which consists of a cured body of.
(A) Cement: 55-65% by volume
(B) Silica fume having a BET specific surface area of 15 to 25 m 2 /g: 5 to 25% by volume
(C) 50% Inorganic powder having a cumulative particle diameter of 0.8 to 5 μm: 15 to 35% by volume
(D) Aggregate A having a maximum particle size of 1.2 mm or less, and aggregate B having a maximum particle size of 1.2 mm or more and 13 mm or less has a total content of 25 to 40% by volume.
(However, the total content of cement, silica fume, and inorganic powder is 100% by volume.)
前記セメント組成物中のセメントが、中庸熱ポルトランドセメント粒子、又は低熱ポルトランドセメント粒子を研磨処理して、該セメント粒子の角張った表面部分を丸みを帯びた形状に整形してなる、粒径が20μm以上の粗粒子と、
該研磨処理により生じた粒径が20μm未満の微粒子とを含み、かつ、
該セメントの50%体積累積粒径が10〜18μm、及びブレーン比表面積が2100〜2900cm/gである、
請求項1に記載の道路又は鉄道の防護工用部材。
The cement in the cement composition is obtained by polishing medium-heat Portland cement particles or low-heat Portland cement particles by polishing, and shaping the angular surface portion of the cement particles into a rounded shape, having a particle size of 20 μm. With the above coarse particles,
Including fine particles having a particle size of less than 20 μm generated by the polishing treatment, and
The 50% volume cumulative particle size of the cement is 10 to 18 μm, and the Blaine specific surface area is 2100 to 2900 cm 2 /g.
The road or railroad protection member according to claim 1.
前記セメント組成物が、さらに、金属繊維、有機繊維、及び炭素繊維から選ばれる1種以上を3体積%以下含む、請求項1又は2に記載の道路又は鉄道の防護工用部材。 The road or railroad protective member according to claim 1 or 2, wherein the cement composition further contains 3% by volume or less of one or more kinds selected from metal fibers, organic fibers, and carbon fibers. 前記セメント組成物中の硬化体の圧縮強度が330N/mm以上である、請求項1〜3のいずれか1項に記載の道路又は鉄道の防護工用部材。 The road or railroad protection member according to any one of claims 1 to 3, wherein the hardened body in the cement composition has a compressive strength of 330 N/mm 2 or more. さらに、前記セメント組成物が、最大粒径が1.2mmを超え、13mm以下の骨材Bを含む、請求項1〜4のいずれか1項に記載の道路又は鉄道の防護工用部材。 The road or railroad protection member according to any one of claims 1 to 4, wherein the cement composition further includes an aggregate B having a maximum particle size of more than 1.2 mm and 13 mm or less. 前記セメント組成物の硬化体の圧縮強度が300N/mm以上である、請求項5に記載の道路又は鉄道の防護工用部材。 The road or railroad protection member according to claim 5, wherein the cured product of the cement composition has a compressive strength of 300 N/mm 2 or more. 下記(A)成形工程、(B)常温養生工程、(C)加熱養生工程、及び(D)高温加熱工程を、少なくとも含む、道路又は鉄道の防護工用部材の製造方法。
(A)下記(a)〜(d)の特性及び含有率を有するセメント、シリカフューム、無機粉末、骨材A、及び骨材Bと、高性能減水剤、消泡剤、及び水を、少なくとも含むセメント組成物を混練した後、型枠内に打設して、未硬化の成形体を得る成形工程
(B)該未硬化の成形体を10〜40℃で24時間以上、封緘養生又は気中養生した後、前記型枠から脱型し、養生した成形体を得る常温養生工程
(C)該養生した成形体を、70℃以上100℃未満で6時間以上の蒸気養生又は温水養生と、100〜200℃で1時間以上のオートクレーブ養生のいずれか一方又は両方を行って加熱養生した成形体を得る加熱養生工程
(D)前記加熱養生後の成形体を、150〜200℃で24時間以上、加熱(ただし、オートクレーブ養生による加熱を除く。)して、硬化体を得る高温加熱工程
(a)セメント:55〜65体積%
(b)BET比表面積が15〜25m/gのシリカフューム:5〜25体積%
(c)50%体積累積粒径が0.8〜5μmの無機粉末:15〜35体積%
(d)最大粒径が1.2mm以下の骨材A、及び最大粒径が1.2mmを超え、13mm以下の骨材Bの合計の含有率が25〜40体積%
(ただし、セメント、シリカフューム、及び無機粉末の含有率の合計は100体積%である。)
A method for producing a member for road or railroad protection, which includes at least the following (A) molding step, (B) room temperature curing step, (C) heat curing step, and (D) high temperature heating step.
(A) At least contains cement, silica fume, inorganic powder, aggregate A , and aggregate B having the following characteristics and contents (a) to (d), a superplasticizer, a defoaming agent, and water. After the cement composition is kneaded, it is cast in a mold to obtain an uncured molded body (B) The uncured molded body is sealed at 10 to 40° C. for 24 hours or more, and cured in the air or in air. After curing, the mold is removed from the mold to obtain a cured molded body, which is a room temperature curing step (C), wherein the cured molded body is steam-cured or hot-water cured at 70°C or higher and lower than 100°C for 6 hours or longer, and Heating-curing step (D) to obtain a molded body that has been heat-cured by performing one or both of autoclave curing for 1 hour or more at ˜200° C., the molded body after heat-curing for 24 hours or more at 150-200° C., High temperature heating step of heating (however, excluding heating by autoclave curing) to obtain a hardened body (a) Cement: 55 to 65% by volume
(B) Silica fume having a BET specific surface area of 15 to 25 m 2 /g: 5 to 25% by volume
(C) 50% Inorganic powder having a cumulative particle diameter of 0.8 to 5 μm: 15 to 35% by volume
(D) Aggregate A having a maximum particle size of 1.2 mm or less, and aggregate B having a maximum particle size of 1.2 mm or more and 13 mm or less has a total content of 25 to 40% by volume.
(However, the total content of cement, silica fume, and inorganic powder is 100% by volume.)
前記セメント組成物が、さらに、金属繊維、有機繊維、及び炭素繊維から選ばれる1種以上を3体積%以下含む、請求項7に記載の道路又は鉄道の防護工用部材の製造方法。 The method for producing a member for road or rail protective works according to claim 7, wherein the cement composition further contains 3% by volume or less of one or more kinds selected from metal fibers, organic fibers, and carbon fibers. 前記セメント組成物が、さらに、最大粒径が1.2mmを超え、13mm以下の骨材Bを含む、請求項7又は8に記載の道路又は鉄道の防護工用部材の製造方法。 The method for producing a member for road or railway protective work according to claim 7 or 8, wherein the cement composition further contains an aggregate B having a maximum particle size of more than 1.2 mm and 13 mm or less. 前記(B)常温養生工程と前記(C)加熱養生工程の間に、前記養生した成形体に吸水させる吸水工程を含む、請求項7〜9のいずれか1項に記載の道路又は鉄道の防護工用部材の製造方法。 The road or railway protection according to any one of claims 7 to 9, including a water absorption step of allowing the cured molded body to absorb water between the (B) normal temperature curing step and the (C) heat curing step. Method for manufacturing engineering member.
JP2016121327A 2016-06-20 2016-06-20 Road or railroad protection member and its manufacturing method Active JP6747883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016121327A JP6747883B2 (en) 2016-06-20 2016-06-20 Road or railroad protection member and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016121327A JP6747883B2 (en) 2016-06-20 2016-06-20 Road or railroad protection member and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017226547A JP2017226547A (en) 2017-12-28
JP6747883B2 true JP6747883B2 (en) 2020-08-26

Family

ID=60891144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016121327A Active JP6747883B2 (en) 2016-06-20 2016-06-20 Road or railroad protection member and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6747883B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130508A (en) * 1997-10-30 1999-05-18 Taiheiyo Cement Corp Cement-based composition and its hardened body
JP2001226916A (en) * 2000-02-14 2001-08-24 Taiheiyo Cement Corp Rock shed and/or snow shed
JP5872165B2 (en) * 2011-01-21 2016-03-01 大成建設株式会社 Explosion-preventing ultra-high-strength precast concrete and method for producing the same
JP6516411B2 (en) * 2013-06-17 2019-05-22 宇部興産株式会社 High strength cement mortar composition and method of producing hardened high strength cement mortar
SG10201901401RA (en) * 2014-08-25 2019-03-28 Taiheiyo Cement Corp Cement composition and manufacturing method for cement cured body using same

Also Published As

Publication number Publication date
JP2017226547A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP6619215B2 (en) Bridge web member and manufacturing method thereof
JP6713347B2 (en) Cement board and manufacturing method thereof
JP2017095318A (en) Porous concrete and manufacturing method therefor
JP2017095920A (en) Tunnel segment and method for producing the same
JP6747883B2 (en) Road or railroad protection member and its manufacturing method
JP6927751B2 (en) Safe and its manufacturing method
JP2021155285A (en) Concrete structure and its manufacturing method
JP6646908B2 (en) Concrete member for high-speed traffic system structure and method of manufacturing the same
JP2017218371A (en) Vault constructing panel and method for producing the same
JP6612599B2 (en) Method for producing prestressed hydraulic cured body
JP2017226596A (en) Panel for explosion protection and method for producing the same
JP6949697B2 (en) Safe room construction panel and its manufacturing method
JP2017095316A (en) Machine component and manufacturing method therefor
JP2017101389A (en) Concrete pavement slab and method for producing the same
JP2017100887A (en) Wall balustrade and manufacturing method therefor
JP2017226554A (en) Monorail track beam and method for producing the same
JP2017101406A (en) Sound-insulating wall and method for producing the same
Chandramohan et al. Investigation on Strength of Concrete with Addition of Fly Ash and Natural Fiber
JP2021155299A (en) Precast concrete slab and its manufacturing method
JP7433031B2 (en) Cement composition and method for producing hardened cementitious body
JP2017096012A (en) Sheet pile and method for producing the same
JP2021155287A (en) Concrete brace and its manufacturing method
Kumar et al. Performance of ultra fine GGBFS based coconut shell less dense concrete slabs under low-velocity impact
JP2017223062A (en) Bearing pressure wall block for propulsion method and manufacturing method thereof
JP2017101380A (en) Snow melting panel and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200806

R150 Certificate of patent or registration of utility model

Ref document number: 6747883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250