JP6747731B1 - Method for producing nutrient solution for plant cultivation and method for plant cultivation - Google Patents

Method for producing nutrient solution for plant cultivation and method for plant cultivation Download PDF

Info

Publication number
JP6747731B1
JP6747731B1 JP2019194843A JP2019194843A JP6747731B1 JP 6747731 B1 JP6747731 B1 JP 6747731B1 JP 2019194843 A JP2019194843 A JP 2019194843A JP 2019194843 A JP2019194843 A JP 2019194843A JP 6747731 B1 JP6747731 B1 JP 6747731B1
Authority
JP
Japan
Prior art keywords
microbial agent
nitrification
ion concentration
water
nutrient solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019194843A
Other languages
Japanese (ja)
Other versions
JP2021065188A (en
Inventor
桃子 石山
桃子 石山
友樹 田端
友樹 田端
大樹 竹内
大樹 竹内
直彦 山口
直彦 山口
Original Assignee
フルハシEpo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フルハシEpo株式会社 filed Critical フルハシEpo株式会社
Priority to JP2019194843A priority Critical patent/JP6747731B1/en
Application granted granted Critical
Publication of JP6747731B1 publication Critical patent/JP6747731B1/en
Publication of JP2021065188A publication Critical patent/JP2021065188A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Fertilizers (AREA)
  • Hydroponics (AREA)

Abstract

【課題】水中で有機物を分解させて硝酸イオンを得る反応を同一の系(槽)で行う植物栽培用養液の製造方法において、有機物分解菌と硝化細菌の添加を個別に制御でき、製造される養液に有害菌が混入する可能性を低くする。【解決手段】微生物源として、有機物分解菌の微生物剤3と、硝化細菌の微生物剤4とを別個に準備する。水が入れられた槽1に、有機質肥料2として魚液肥を0.5g/Lより多い量添加するとともに、2種類の微生物剤3、4を同時に同量添加する。各微生物剤3、4の添加量は水1L当たり0.01%〜1.5%の量とする。魚液肥2及び微生物剤3、4の添加後、槽1の水中で有機物の分解及び硝化を進行させる期間を設ける。硝化の途中又は完了後に槽1の液を希釈し、希釈と同時又は希釈後に追肥を行う。希釈及び追肥後の液に対して、有機物の分解及び硝化を進行させる期間を設ける。【選択図】図2PROBLEM TO BE SOLVED: To produce an organic substance-degrading bacterium and nitrifying bacterium by individually controlling them in a method for producing a nutrient solution for plant cultivation in which the reaction of decomposing organic matter in water to obtain nitrate ion is carried out in the same system (tank). Reduce the possibility that harmful bacteria will be mixed in the nutrient solution. SOLUTION: As a microbial source, a microbial agent 3 of organic matter decomposing bacteria and a microbial agent 4 of nitrifying bacteria are separately prepared. To the tank 1 containing water, fish liquid fertilizer as an organic fertilizer 2 is added in an amount of more than 0.5 g/L, and two kinds of microbial agents 3 and 4 are simultaneously added in the same amount. The amount of each of the microbial agents 3 and 4 added is 0.01% to 1.5% per 1 L of water. After the addition of the fish liquid fertilizer 2 and the microbial agents 3 and 4, there is provided a period in which the decomposition of organic substances and the nitrification in the water in the tank 1 proceed. The liquid in the tank 1 is diluted during or after nitrification, and additional fertilization is performed simultaneously with or after the dilution. A period during which decomposition of organic matter and nitrification are advanced is provided for the liquid after dilution and topdressing. [Selection diagram] Figure 2

Description

本発明は植物栽培用養液の製造方法及び植物栽培方法に関する。 The present invention relates to a method for producing a nutrient solution for plant cultivation and a method for plant cultivation.

従来、水耕栽培などの養液栽培において、水に有機物を直接添加し、添加した有機物(有機態窒素)を微生物により分解させて、植物が吸収しやすい硝酸態窒素を得る技術が知られている(例えば特許文献1、2参照)。この技術に用いられる微生物として、有機物を分解してアンモニアを生成するアンモニア化成を行う微生物(アンモニア化成菌、有機物分解菌)、及びアンモニアを硝酸に変換する硝酸化成を行う微生物(硝化細菌)がある。硝化細菌には、アンモニアを酸化して亜硝酸を生成する菌(アンモニア酸化細菌)と、亜硝酸を酸化して硝酸を生成する菌(亜硝酸酸化細菌)とがある。なお、水中においては、アンモニアはアンモニウムイオン(NH )として存在し、硝酸は硝酸イオン(NO )として存在し、亜硝酸は亜硝酸イオン(NO )として存在する。 Conventionally, in hydroponics such as hydroponic cultivation, a technique is known in which an organic substance is directly added to water and the added organic substance (organic nitrogen) is decomposed by a microorganism to obtain nitrate nitrogen that is easily absorbed by plants. (See, for example, Patent Documents 1 and 2). Microorganisms used in this technology include those that perform ammonia formation that decomposes organic matter to produce ammonia (ammonia-forming bacteria, organic matter-decomposing bacteria), and microorganisms that perform nitrification formation that converts ammonia into nitric acid (nitrifying bacteria). .. Nitrifying bacteria include bacteria that oxidize ammonia to produce nitrite (ammonia-oxidizing bacteria) and bacteria that oxidize nitrite to produce nitric acid (nitrite-oxidizing bacteria). In water, ammonia exists as ammonium ion (NH 4 + ), nitric acid exists as nitrate ion (NO 3 ), and nitrous acid exists as nitrite ion (NO 2 ).

特許文献1、2では、アンモニア化成と硝酸化成を同一の反応液の中で並行して行う技術(並行複式無機化反応)を提案している。特許文献1の技術では、微生物源として土壌又はバーク堆肥を用いている。また特許文献2の技術では、微生物源として土壌、堆肥、活性汚泥、又は自然より採取した水を用いている。さらに、特許文献2には、上記微生物源を入れた水に接する固体表面にバイオフィルムを形成させ、そのバイオフィルムを回収して、回収したバイオフィルムを並行複式無機化反応の微生物群の種菌として用いることが記載されている。 Patent Documents 1 and 2 propose a technique (parallel compound mineralization reaction) in which ammonia formation and nitric acid formation are performed in parallel in the same reaction solution. In the technique of Patent Document 1, soil or bark compost is used as a microorganism source. Further, in the technique of Patent Document 2, soil, compost, activated sludge, or water collected from nature is used as a microorganism source. Further, in Patent Document 2, a biofilm is formed on a solid surface in contact with water containing the above-mentioned microbial source, the biofilm is recovered, and the recovered biofilm is used as an inoculum of a microbial group of a parallel compound mineralization reaction. It is described to be used.

特許第5071897号公報Japanese Patent No. 5071897 特許第5388096号公報Patent No. 5388096

ところで、有機物から硝酸イオンを効率的に得るためには、有機物分解菌と硝化細菌の添加を個別に制御するのが望ましいが、特許文献1、2の技術では微生物源として、含有する微生物の種類が選別されていない土壌等を用いているので、有機物分解菌と硝化細菌の添加を個別に制御することができない。また、特許文献1、2の微生物源は、雑多な微生物を含有しているので、有機物分解菌及び硝化細菌といった有用微生物の他に、有機物の分解又は硝酸化成にとって有害な菌、又は植物にとって有害な菌が混入している可能性がある。 By the way, in order to efficiently obtain nitrate ions from organic substances, it is desirable to control the addition of organic substance-degrading bacteria and nitrifying bacteria individually, but in the techniques of Patent Documents 1 and 2, the types of microorganisms contained as a microbial source Since soils that are not sorted are used, it is not possible to individually control the addition of organic substance degrading bacteria and nitrifying bacteria. In addition, since the microbial sources of Patent Documents 1 and 2 contain miscellaneous microorganisms, in addition to useful microorganisms such as organic substance degrading bacteria and nitrifying bacteria, they are harmful to organic substances degrading or nitrifying, or harmful to plants. There is a possibility that various bacteria are mixed.

本発明は上記事情に鑑みてなされたものであり、水中で有機物を分解させて硝酸イオンを得る反応を同一の系(槽)で行う植物栽培用養液の製造方法において、有機物分解菌と硝化細菌の添加を個別に制御でき、製造される養液に有害菌が混入する可能性を低くできる植物栽培用養液の製造方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, in a method for producing a nutrient solution for plant cultivation, in which the reaction of decomposing organic matter in water to obtain nitrate ions is performed in the same system (tank), an organic matter degrading bacterium and nitrification are used. It is an object of the present invention to provide a method for producing a nutrient solution for plant cultivation, which can individually control the addition of bacteria and reduce the possibility that harmful bacteria are mixed in the nutrient solution produced.

上記課題を解決するため、本発明の植物栽培用養液の製造方法は、
水に有機物として魚液肥を水1L当たり0.5gより多い量添加する有機物添加ステップと、
前記水に、有機態窒素を分解してアンモニウムイオンを生成する有機物分解菌の微生物剤と、アンモニウムイオンを酸化して亜硝酸イオンを生成する菌及び亜硝酸イオンを酸化して硝酸イオンを生成する菌である硝化細菌の微生物剤とを同時に同量添加し、かつそれぞれ水1L当たり0.01%以上0.1%以下の体積となる量を添加する微生物剤添加ステップと、
前記有機物添加ステップ及び前記微生物剤添加ステップの後の液に対して硝化を進行させる硝化ステップと、
を備え、
硝酸イオン濃度が100ppm以上の植物栽培用の養液を得る方法である。
In order to solve the above problems, the method for producing a nutrient solution for plant cultivation of the present invention,
An organic matter adding step of adding fish manure as an organic matter to water in an amount of more than 0.5 g per 1 L of water;
In the water, a microbial agent of an organic substance-decomposing bacterium that decomposes organic nitrogen to generate ammonium ion, a bacterium that oxidizes ammonium ion to generate nitrite ion and nitrite ion to oxidize nitrate ion Microbial agent addition step in which the same amount of the microbial agent of nitrifying bacteria that is a bacterium is added at the same time, and an amount of 0.01% or more and 0.1% or less per 1 L of water is added, respectively.
A nitrification step of advancing nitrification to the liquid after the organic matter addition step and the microbial agent addition step,
Equipped with
This is a method for obtaining a nutrient solution for plant cultivation having a nitrate ion concentration of 100 ppm or more .

本発明によれば、微生物源として、有機物分解菌の微生物剤と硝化細菌の微生物剤とを別個に準備して、それら2種類の微生物剤を有機物とともに水に添加する。これにより、有機物分解菌と硝化細菌の添加を個別に制御できる。また、選別された微生物を含有する微生物剤を用いるので、製造される養液に有害菌が混入する可能性を低くできる。なお、本発明における微生物剤とは、選別された特定の微生物を含有した液体、粉末、固体等をいい、選別されていない雑多な微生物を含有する土壌、堆肥、活性汚泥、自然より採取した水などを含まない。 According to the present invention, an organic substance-degrading microbial agent and a nitrifying bacterium microbial agent are separately prepared as microbial sources, and these two microbial agents are added to water together with the organic substance. This makes it possible to individually control the addition of the organic substance-degrading bacteria and the nitrifying bacteria. Further, since the microbial agent containing the selected microorganisms is used, it is possible to reduce the possibility that harmful bacteria are mixed in the produced nutrient solution. The microbial agent in the present invention refers to a liquid containing a selected specific microorganism, a powder, a solid, etc., a soil containing miscellaneous miscellaneous microorganisms, compost, activated sludge, and water collected from nature. Not including

また本発明において有機物分解菌の微生物剤と硝化細菌の微生物剤は同時に同量添加する。これによれば、有機物分解菌と硝化細菌の添加制御が容易となる。 The microbial agents of microbial agents and nitrifying bacteria organic matter degrading bacteria in the present invention is added the same amount at the same time. According to this, it becomes easy to control the addition of the organic substance degrading bacteria and the nitrifying bacteria.

また本発明において有機物分解菌の微生物剤と硝化細菌の微生物剤の添加量はそれぞれ水1L当たり0.01%〜0.1%の体積となる量である。これによれば、微生物剤の添加量を抑えることができるので、コストダウンを図ることができる。 Also an amount of respectively 0.01% -0.1% of the volume per 1L of water addition amount of the microbial agents of microbial agents and nitrifying bacteria organic matter degrading bacteria in the present invention. According to this, the amount of the microbial agent added can be suppressed, so that the cost can be reduced.

また本発明において前記有機物は魚液肥であり、その添加量は水1L当たり0.5gより多い量である。これによれば、入手が容易な魚液肥を用いるので、養液を効率的に製造できる。また、魚液肥の添加量を水1L当たり0.5gより多い量とすることで、硝酸イオン濃度を高くすることができる。 Also, the organic material in the present invention is a fish fertilizer, the amount added is an amount greater than 0.5g per water 1L. According to this, since the fish liquid fertilizer that is easily available is used, the nutrient solution can be efficiently produced. In addition, the concentration of nitrate ion can be increased by setting the addition amount of the fish liquid fertilizer to be more than 0.5 g per 1 L of water.

また、本発明において前記有機物添加ステップでは、魚液肥を水1L当たり1.0gより多い量添加してよい。各微生物剤及び魚液肥の添加量をこの条件とすることで、硝化速度及び硝酸イオン濃度をより一層向上できる。 Further, in the present invention, in the organic matter addition step, fish liquid fertilizer may be added in an amount of more than 1.0 g per 1 L of water . By setting the addition amount of each microbial agent and fish manure to this condition, the nitrification rate and nitrate ion concentration can be further improved.

また本発明は、前記硝化ステップを第1硝化ステップとして、
前記第1硝化ステップにおける硝化の途中又は硝化の完了後に、前記液を希釈する希釈ステップと、
前記希釈後の液に対して硝化を進行させて液中の硝酸イオン濃度を100ppm以上にする第2硝化ステップと、
をさらに備えてもよい。これによれば、液を希釈することで、液中の亜硝酸イオンの濃度を下げることができる。亜硝酸イオン濃度が高いと、硝化細菌にとって有害となり、硝化細菌の活性を落とす可能性がある。亜硝酸イオン濃度を下げることで、効率的に硝酸イオンを生成させることができる。
The present invention also provides the nitrification step as a first nitrification step,
A diluting step of diluting the liquid during or after nitrification in the first nitrification step,
A second nitrification step in which nitrification is advanced to the diluted solution so that the concentration of nitrate ions in the solution is 100 ppm or more;
May be further provided. According to this, the concentration of nitrite ions in the liquid can be reduced by diluting the liquid. A high nitrite ion concentration is harmful to nitrifying bacteria and may reduce the activity of nitrifying bacteria. By reducing the nitrite ion concentration, nitrate ions can be efficiently generated.

また本発明は、前記希釈ステップの希釈と同時又は希釈後に追加の有機物として魚液肥を水1L当たり0.5gより多い量添加する追肥ステップをさらに備えてもよい。これによれば、追肥によって、有機物分解菌や硝化細菌を活動させることができ、硝酸イオン濃度を高くすることができる。また、希釈と追肥の両方を行うことで、微生物剤の添加量を抑えつつ、製造される養液量を多くすることができ、コストダウンを図ることができる。 Further, the present invention may further include a supplemental fertilization step of adding fish fertilizer as an additional organic substance in an amount of more than 0.5 g per 1 L of water at the same time as or after the dilution in the dilution step. According to this, organic matter decomposing bacteria and nitrifying bacteria can be activated by topdressing, and the nitrate ion concentration can be increased. Further, by performing both the dilution and the additional fertilization, the amount of the nutrient solution to be produced can be increased and the cost can be reduced while suppressing the amount of the microbial agent added.

また本発明において前記希釈ステップの希釈は、前記第1硝化ステップにおける硝化の完了後として、液中の硝酸イオン濃度が100ppm以上にまで上昇したとき、又は硝酸イオン濃度が亜硝酸イオン濃度よりも低い状態から高い状態に逆転したとき、又は亜硝酸イオン濃度が50ppm以上の状態から50ppm未満にまで下降したときに行ってもよい。液中の硝酸イオン濃度が100ppm以上であれば、液中には硝化を担う微生物が十分に増加していると考えられる。微生物の増加を待って希釈を行うことで、希釈後においても硝化を進行させることができる。 Further, in the present invention, the dilution in the diluting step is performed after the nitrification in the first nitrification step is completed, when the nitrate ion concentration in the liquid rises to 100 ppm or more, or the nitrate ion concentration is lower than the nitrite ion concentration. It may be performed when the state is reversed to a high state, or when the nitrite ion concentration drops from a state of 50 ppm or more to less than 50 ppm. When the nitrate ion concentration in the liquid is 100 ppm or more, it is considered that the microorganisms responsible for nitrification are sufficiently increased in the liquid. By performing the dilution after waiting for the increase of the microorganisms, nitrification can be promoted even after the dilution.

また本発明において前記希釈ステップの希釈は、前記第1硝化ステップにおける硝化の途中として、液中の硝酸イオン濃度が100ppm以下のとき、又は硝酸イオン濃度よりも亜硝酸イオン濃度が高いとき、又は亜硝酸イオン濃度が50ppm以上のときに行い、
前記有機物分解菌の微生物剤と前記硝化細菌の微生物剤の添加量は水1L当たり0.01%より大きい体積となる量としてもよい。本発明者は、初期に添加する微生物剤の量が0.01%以下の場合に、硝化を担う微生物の増加を待たずに希釈を行うと、希釈後において硝酸イオン濃度があまり上昇しないという知見を持っている。そのため、硝化を担う微生物の増加を待たずに希釈を行う場合には、初期に添加する微生物剤の量は水1L当たり0.01%より大きい体積となる量とするのがよい。これによって、希釈後も硝化を進行させることができる。



Further, in the present invention, the dilution in the diluting step is performed during the nitrification in the first nitrification step when the concentration of nitrate ion in the liquid is 100 ppm or less, or when the concentration of nitrite ion is higher than the concentration of nitrate ion, or Performed when the nitrate ion concentration is 50 ppm or more,
The addition amount of the microbial agent of the organic substance-degrading bacterium and the microbial agent of the nitrifying bacterium may be an amount having a volume larger than 0.01% per 1 L of water . The present inventors have found that when the amount of the microbial agent added in the initial stage is 0.01% or less and the dilution is performed without waiting for the increase of the microorganisms responsible for nitrification, the nitrate ion concentration does not increase much after the dilution. have. Therefore, when the dilution is carried out without waiting for the increase of the microorganisms responsible for nitrification, the amount of the microbial agent added in the initial stage should be an amount which is larger than 0.01% per 1 L of water. This allows nitrification to proceed even after dilution.



本発明の植物栽培方法は、上記本発明の植物栽培用養液の製造方法により得られた養液を用いて植物を栽培する。これによれば、有害菌の混入を抑制した養液を用いて栽培を行うので、植物を順調に生育できる。 The plant cultivation method of the present invention cultivates a plant using the nutrient solution obtained by the method for producing a nutrient solution for plant cultivation of the present invention. According to this, since the cultivation is performed using the nutrient solution in which the harmful bacteria are prevented from being mixed, the plant can be smoothly grown.

植物栽培用養液の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the nutrient solution for plant cultivation. 水が入れられた槽に、有機質肥料と2種の微生物剤とを添加する様子を示した図である。It is the figure which showed a mode that the organic fertilizer and two kinds of microbial agents were added to the tank in which water was put. 図1の工程に続く追加の工程を示すフローチャートである。6 is a flowchart showing an additional process following the process of FIG. 1. 硝化途中又は硝化完了後の液を希釈し、さらに、希釈した液に追肥をする様子を示した図である。It is the figure which showed a mode that the liquid in the middle of nitrification or after nitrification was diluted, and the fertilizer was further applied to the diluted liquid. 製造された養液を、水耕栽培の槽に供給する様子を示した図である。It is the figure which showed a mode that the manufactured nutrient solution was supplied to the tank of hydroponics. 実験1の結果を示す図である。It is a figure which shows the result of experiment 1. 実験2の結果を示す図である。It is a figure which shows the result of experiment 2. 実験3の結果を示す図である。It is a figure which shows the result of experiment 3. 実験4の結果を示す図である。It is a figure which shows the result of experiment 4. 実験5の結果を示す図である。It is a figure which shows the result of experiment 5. 実験6の結果を示す図である。It is a figure which shows the result of experiment 6. 実験7の結果を示す図である。It is a figure which shows the result of experiment 7. 実験8の結果を示す図である。It is a figure which shows the result of experiment 8. 実験9の結果を示す図である。It is a figure which shows the result of experiment 9. 実験10の結果を示す図である。It is a figure which shows the result of experiment 10. 実験11の結果を示す図である。It is a figure which shows the result of experiment 11.

以下、図面を参照して本実施形態における植物栽培用養液の製造方法を説明する。本実施形態の植物栽培用養液は有機栽培用の養液である。図1は、本実施形態の植物栽培用養液の製造工程を示している。図2は、植物栽培用養液の製造の様子を示している。なお、図1の工程中は図2の槽1において植物の栽培は行わず、つまり図1の工程は植物の栽培の前段階の工程である。先ず、図2に示すように、養液製造に用いる器具として、槽1、空気(酸素)のバブリングを発生させるバブリング部5、空気(酸素)を供給する供給部6等を準備する(S1)。バブリング部5は槽1の中に入れられる。供給部6はバブリング部5に接続されて、バブリング部5に空気を供給する。また、槽1に入れられる水の温度調整を行う図示しない温度調整部(ヒータ)や、ろ過器7も必要に応じて準備する。 Hereinafter, a method for producing a nutrient solution for plant cultivation according to the present embodiment will be described with reference to the drawings. The nutrient solution for plant cultivation of the present embodiment is a nutrient solution for organic cultivation. FIG. 1 shows a manufacturing process of the nutrient solution for plant cultivation of the present embodiment. FIG. 2 shows how the nutrient solution for plant cultivation is manufactured. During the process of FIG. 1, the plant is not cultivated in the tank 1 of FIG. 2, that is, the process of FIG. 1 is a process before the plant cultivation. First, as shown in FIG. 2, a tank 1, a bubbling section 5 for generating bubbling of air (oxygen), a supply section 6 for supplying air (oxygen), and the like are prepared as equipment used for nutrient solution production (S1). .. The bubbling portion 5 is put in the tank 1. The supply unit 6 is connected to the bubbling unit 5 and supplies air to the bubbling unit 5. In addition, a temperature adjusting unit (heater) (not shown) for adjusting the temperature of the water contained in the tank 1 and a filter 7 are also prepared if necessary.

次に、槽1に水を入れる(S2)。初期水量はいずれの量であってもよいが、後述のステップS4で添加する微生物剤の量を抑えるためには初期水量は多量にしないほうがよく、例えば1L程度とすることができる。なお、槽1に入れる水は天然水(自然より採取した水)であってもよいし、人工水(水道水など)であってもよい。 Next, water is put into the tank 1 (S2). The initial amount of water may be any amount, but in order to suppress the amount of the microbial agent added in step S4 described below, it is better not to increase the initial amount of water, and for example, it may be about 1 L. The water put in the tank 1 may be natural water (water collected from nature) or artificial water (tap water, etc.).

次に、槽1の水に有機物を含んだ有機質肥料2(図2参照)を添加する(S3)。添加する有機質肥料2としては例えば液体の肥料であり、より具体的には例えば魚液肥とすることができる。液肥を添加することで、製造された養液を栽培槽に機械(ポンプ)で供給する場合に、機械に不具合(例えばポンプが異物で詰まってしまう)が生じるのを抑制できる。魚液肥は例えばアジ、イワシなどの魚から抽出したエキス(例えば魚煮汁)、又はそのエキスをさらに濃縮ないし精製したものである。なお、魚液肥は、魚市場や加工施設で出る内蔵等の残渣から作られることもある。なお、魚液肥に含まれる有機態窒素の割合は例えば5%〜10%である。また、有機質肥料2は、魚液肥等の有機物(換言すると有機態窒素、アミノ酸、タンパク質)の他に、リン酸、カリウム、石灰等の他の肥料成分を含んだものであってもよい。また、有機質肥料2は、魚液肥の他にミネラル供給目的で天然由来の素材(例えばカキガラ(牡蠣殻))を含んでいてもよい。カキガラにより、微生物(有機物分解菌、硝化細菌)の増殖を補助する栄養としてのミネラルを供給できる。 Next, the organic fertilizer 2 (see FIG. 2) containing an organic substance is added to the water in the tank 1 (S3). The organic fertilizer 2 to be added is, for example, a liquid fertilizer, and more specifically, fish liquid fertilizer can be used. By adding the liquid fertilizer, when the produced nutrient solution is supplied to the cultivation tank by a machine (pump), it is possible to prevent the machine from having a problem (for example, the pump is clogged with foreign matter). The fish manure is, for example, an extract (for example, fish broth) extracted from fish such as horse mackerel and sardines, or a product obtained by further concentrating or purifying the extract. In addition, fish manure may be made from the residues such as the built-in fish market and processing facilities. The ratio of organic nitrogen contained in the fish manure is, for example, 5% to 10%. Further, the organic fertilizer 2 may include other fertilizer components such as phosphoric acid, potassium, and lime, in addition to organic substances such as fish manure (in other words, organic nitrogen, amino acids, proteins). Further, the organic fertilizer 2 may include a naturally derived material (for example, oyster shell (oyster shell)) for the purpose of supplying minerals, in addition to the fish liquid fertilizer. Oysters can supply minerals as nutrients that support the growth of microorganisms (organic matter degrading bacteria, nitrifying bacteria).

また、有機質肥料2は原液の状態で槽1に添加してもよいし、水で希釈したうえで槽1に添加してもよい。また、有機質肥料2はろ過器7(図2参照)でろ過したうえで槽1に添加してもよい。希釈又はろ過した有機質肥料2を添加することで、製造された養液を栽培槽に機械(ポンプ)で供給する場合に、機械に不具合が生じるのをより一層抑制できる。 Further, the organic fertilizer 2 may be added to the tank 1 in a state of being undiluted, or may be diluted with water and then added to the tank 1. Further, the organic fertilizer 2 may be added to the tank 1 after being filtered by the filter 7 (see FIG. 2). By adding the diluted or filtered organic fertilizer 2, when the manufactured nutrient solution is supplied to the cultivation tank by a machine (pump), it is possible to further suppress the occurrence of a malfunction in the machine.

有機質肥料2として魚液肥を用いる場合、魚液肥の初期添加量は例えば水1L当たり0.5gより多い量、より好ましくは1.0gより多い量とするのがよい。0.5g/Lより少ないと、生成される硝酸イオン濃度が低くなる。また魚液肥の初期投入量の上限は例えば水1L当たり2.0gとすることができる。2.0g/Lより多いと、添加した魚液肥の一部が分解されずに、製造される養液中に有機物として残ってしまう可能性がある。なお、有機質肥料2が魚液肥と他の肥料成分を含んでいる場合や有機質肥料2を水で希釈した場合には、有機質肥料2中に含まれる魚液肥(原液)量が0.5g/Lより多く、2.0g/L以下となるように、有機質肥料2の添加量を設定する。 When using fish manure as the organic fertilizer 2, the amount of fish manure initially added is, for example, more than 0.5 g per liter of water, and more preferably more than 1.0 g. If it is less than 0.5 g/L, the concentration of nitrate ions produced will be low. The upper limit of the initial amount of fish manure can be 2.0 g per 1 L of water, for example. If the amount is more than 2.0 g/L, a part of the added fish liquid fertilizer may not be decomposed and may remain as an organic matter in the produced nutrient solution. In addition, when the organic fertilizer 2 contains fish liquid fertilizer and other fertilizer components or when the organic fertilizer 2 is diluted with water, the amount of fish liquid fertilizer (stock solution) contained in the organic fertilizer 2 is 0.5 g/L. The addition amount of the organic fertilizer 2 is set so as to be more than 2.0 g/L.

槽1への有機質肥料2の添加と同時又は若干前後する時期に、槽1の水に、有機物分解菌の微生物剤3(図2参照)と、硝化細菌の微生物剤4(図2参照)とを添加する(S4)。これら2種類の微生物剤3、4は互いに同時に同量添加するのが望ましい。これによれば、微生物剤3、4を異なる時期又は異なる量添加した場合よりも添加制御が容易になるとともに、微生物剤3、4を異なる時期又は異なる量添加した場合と同等以上の硝酸イオン濃度を含んだ養液を得ることができる。 At the same time as or slightly before or after the addition of the organic fertilizer 2 to the tank 1, the water in the tank 1 contains a microbial agent 3 for organic matter-decomposing bacteria (see FIG. 2) and a microbial agent 4 for nitrifying bacteria (see FIG. 2). Is added (S4). It is desirable that these two kinds of microbial agents 3 and 4 be added in the same amount at the same time. According to this, addition control becomes easier than when the microbial agents 3 and 4 are added at different times or different amounts, and the nitrate ion concentration is equal to or higher than that when the microbial agents 3 and 4 are added at different times or different amounts. A nutrient solution containing the can be obtained.

ここで、微生物剤3には、有機物分解菌として、有機態窒素(アミノ酸、タンパク質など)を分解してアンモニア(アンモニウムイオン)を生成する1種又は複数種の菌(アンモニア化成菌)が含まれている。有機物分解菌としては、例えば原生動物、細菌、糸状菌等を挙げることができ、より具体的にはBacillus属、Pseudomonas属等を挙げることができる。なお、微生物剤3には、有機物分解菌以外の微生物(硝化細菌など)は含まれていない。 Here, the microbial agent 3 includes, as organic matter-decomposing bacteria, one or more kinds of bacteria (ammonia-forming bacteria) that decompose organic nitrogen (amino acids, proteins, etc.) to generate ammonia (ammonium ion). ing. Examples of the organic substance-decomposing bacteria include protozoa, bacteria, filamentous fungi, and the like, and more specifically, Bacillus and Pseudomonas can be mentioned. It should be noted that the microbial agent 3 does not contain microorganisms (such as nitrifying bacteria) other than organic substance-decomposing bacteria.

また、微生物剤4には、硝化細菌として、アンモニア(アンモニウムイオン)を酸化して亜硝酸(亜硝酸イオン)を生成する1種又は複数種の菌(アンモニア酸化細菌、亜硝酸生成菌)と、亜硝酸を酸化して硝酸(硝酸イオン)を生成する1種又は複数種の菌(亜硝酸酸化細菌、硝酸生成菌)の両方が含まれている。微生物剤4にはアンモニア酸化細菌と亜硝酸酸化細菌とが例えば互いに同等の個数含まれていてもよいし、一方の細菌の個数が他方の細菌の個数の2倍以上であってもよい。上記同等の個数とは、具体的には、アンモニア酸化細菌の個数をX、亜硝酸酸化細菌の個数をYとしたとき、全体の個数(=X+Y)に対するアンモニア酸化細菌の個数Xの割合が例えば40%〜60%であることを意味する。 The microbial agent 4 includes, as nitrifying bacteria, one or more kinds of bacteria (ammonia-oxidizing bacteria, nitrite-producing bacteria) that oxidize ammonia (ammonium ion) to generate nitrite (nitrite ion), Both one kind or plural kinds of bacteria (nitrite-oxidizing bacteria, nitric acid-producing bacteria) that oxidize nitrite to generate nitric acid (nitrate ion) are included. The microbial agent 4 may contain, for example, the same number of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, or the number of one bacterium may be twice or more the number of the other bacterium. Specifically, the above-mentioned equivalent number means that when the number of ammonia-oxidizing bacteria is X and the number of nitrite-oxidizing bacteria is Y, the ratio of the number X of ammonia-oxidizing bacteria to the total number (=X+Y) is, for example, It means 40% to 60%.

アンモニア酸化細菌としては、例えばNitrosomonas属、Nitrosococcus属、Nitrosospira属(Nitrosolobus属、Nitrosovibrio属を含む)を挙げることができる。亜硝酸酸化細菌としては、例えばNitrobacter属、Nitrospira属を挙げることができる。なお、微生物剤4には、硝化細菌以外の微生物(例えば有機物分解菌)は含まれていない。 Examples of ammonia-oxidizing bacteria include genus Nitrosomonas, genus Nitrosococcus, genus Nitrosospira (including genus Nitrosolobus and genus Nitrosovibrio). Examples of the nitrite-oxidizing bacteria include genus Nitrobacter and genus Nitrospira. It should be noted that the microbial agent 4 does not include microorganisms other than nitrifying bacteria (for example, organic substance degrading bacteria).

微生物剤3、4として例えば食品工場等からの排水浄化用に市販されている微生物剤を用いることができる。微生物剤3、4は原料の状態では液体、固体、粉状などいずれの状態であってもよいが、槽1には液体の状態で添加するのが望ましい。すなわち、微生物剤3、4が原料の状態で液体以外の状態の場合には、微生物剤3、4を水に溶かして液体の状態にしたうえで槽1の水に添加するのが望ましい。 As the microbial agents 3 and 4, for example, commercially available microbial agents for purification of wastewater from food factories can be used. The microbial agents 3 and 4 may be in a liquid state, a solid state, a powder state, or the like in the raw material state, but it is preferable to add them to the tank 1 in the liquid state. That is, when the microbial agents 3 and 4 are raw materials other than liquid, it is desirable that the microbial agents 3 and 4 be dissolved in water to be in a liquid state and then added to the water in the tank 1.

また微生物剤3、4を槽1の水に添加する前に予め微生物剤3、4に含まれる微生物を活性化させ、活性化させた微生物剤3、4を槽1の水に添加するのが望ましい。これによって、槽1の水中で微生物を迅速に活動させることができ、ひいては迅速に有機質肥料2の分解及び硝化を進めることができる。微生物は、例えば約30℃のぬるま湯に、ぬるま湯の量に対して所定量の微生物剤(微生物剤3又は微生物剤4)を加え、よくかき混ぜた上で一定時間放置することで活性化させる。 Before adding the microbial agents 3 and 4 to the water in the tank 1, it is preferable to activate the microorganisms contained in the microbial agents 3 and 4 in advance and add the activated microbial agents 3 and 4 to the water in the tank 1. desirable. As a result, the microorganisms can be rapidly activated in the water of the tank 1, and thus the decomposition and nitrification of the organic fertilizer 2 can be promoted rapidly. The microorganisms are activated, for example, by adding a predetermined amount of the microbial agent (the microbial agent 3 or the microbial agent 4) to lukewarm water at about 30° C., stirring the mixture well, and leaving it for a certain period of time.

微生物剤3、4の初期添加量はそれぞれ水1L当たり0.01%以上1.5%以下の体積となる量に設定し、かつ、微生物剤3の添加量と微生物剤4の添加量とが互いに同じ量に設定するのが望ましい。これによれば、高硝酸イオン濃度の養液を得ることができる。また、微生物剤3、4の添加量を1.5%/L以下に抑えることで、高コストになるのを抑制できる。なお、微生物の活性化等のために、微生物剤3、4を水で希釈し、その希釈液を槽1の水に添加する場合には、その希釈液中に含まれる微生物剤3、4の量が0.01%/L以上1.5%/L以下となるように、希釈液の添加量を設定する。 The initial addition amounts of the microbial agents 3 and 4 are set to amounts of 0.01% or more and 1.5% or less per 1 L of water, respectively, and the addition amount of the microbial agent 3 and the addition amount of the microbial agent 4 are It is desirable to set the same amount to each other. According to this, a nutrient solution having a high nitrate ion concentration can be obtained. In addition, by suppressing the addition amount of the microbial agents 3 and 4 to be 1.5%/L or less, it is possible to suppress high cost. When the microbial agents 3 and 4 are diluted with water and the diluted solution is added to the water in the tank 1 to activate the microorganisms, etc., the microbial agents 3 and 4 contained in the diluted solution are The addition amount of the diluent is set so that the amount is 0.01%/L or more and 1.5%/L or less.

有機質肥料2及び微生物剤3、4の添加後、槽1の水中において微生物剤3に含まれる微生物によって有機質肥料2に含まれる有機物を分解させ、この分解により生じたアンモニウムイオンを微生物剤4に含まれた微生物によって亜硝酸イオンを経て硝酸イオンにまで変換させる工程を実施する(S5)。ステップS5は、有機物の分解及び硝化の他に、水中での有機物分解菌及び硝化細菌の環境を整える工程でもあり、すなわちステップS5により得られた養液に対して仮に追肥した際に、追肥した有機物を迅速に分解して硝酸イオンにまで変換するように微生物環境を整える役割も担っている。 After adding the organic fertilizer 2 and the microbial agents 3 and 4, the organic matter contained in the organic fertilizer 2 is decomposed by the microorganisms contained in the microbial agent 3 in the water of the tank 1, and the ammonium ion generated by this decomposition is contained in the microbial agent 4. A step of converting nitrite ions to nitrate ions by the microorganisms thus formed is carried out (S5). Step S5 is also a step of adjusting the environment of organic matter-decomposing bacteria and nitrifying bacteria in water, in addition to the decomposition and nitrification of organic matter, that is, when the nutrient solution obtained in step S5 is supplementally fertilized. It also plays a role in preparing the microbial environment so that organic substances can be rapidly decomposed and converted into nitrate ions.

ステップS5は、具体的には、有機物の分解及び硝化が進行するよう、槽1の液を所定の環境に維持させる。前記所定の環境として、具体的には例えば槽1の液の温度を、温度調整部(ヒータ)によって、微生物が活動する温度として予め定められた温度に維持させる。その温度は20℃以上が好ましく、より好ましくは25℃〜35℃とするのがよい。また、前記所定の環境として、有機物の分解及び硝化の期間中は、バブリング部5及び供給部6(図2参照)により槽1の液中に空気(酸素)を供給し続ける。 In step S5, specifically, the liquid in the tank 1 is maintained in a predetermined environment so that the decomposition and nitrification of organic substances proceed. As the predetermined environment, specifically, for example, the temperature of the liquid in the tank 1 is maintained by a temperature adjusting unit (heater) at a temperature predetermined as a temperature at which microorganisms act. The temperature is preferably 20° C. or higher, more preferably 25° C. to 35° C. Further, as the predetermined environment, air (oxygen) is continuously supplied into the liquid in the tank 1 by the bubbling unit 5 and the supply unit 6 (see FIG. 2) during the period of decomposition and nitrification of organic substances.

また、有機物の分解及び硝化の期間中は、槽1の液中のアンモニウムイオン、亜硝酸イオン及び硝酸イオンの各濃度の変化を、半定量試験紙又はイオン濃度検出器により監視するのが望ましい。また、微生物が活動しやすい溶存酸素量やpH(水素イオン指数)が定められている場合には、それら溶存酸素量やpHの変化も監視し、それらが規定外とならないように制御するのが望ましい。 During the decomposition and nitrification of organic substances, it is desirable to monitor changes in the respective concentrations of ammonium ion, nitrite ion and nitrate ion in the liquid in the tank 1 with a semi-quantitative test strip or an ion concentration detector. In addition, when the dissolved oxygen amount and pH (hydrogen ion index) in which microorganisms are likely to act are set, it is necessary to monitor changes in the dissolved oxygen amount and pH and to control them so that they are not out of regulation. desirable.

ステップS5の工程は、例えば、有機質肥料2に含まれる有機物の全部が分解し、硝化が完了したと判断できる時まで行う。具体的には、ステップS5の工程は、例えば槽1の液中のアンモニウムイオンが所定値以下となり、かつ、亜硝酸イオンが所定値以下となり、かつ、硝酸イオンが所定値以上となるまで行う。硝化完了時の硝酸イオン濃度は例えば50ppm以上であり、好ましくは100ppm以上である。また硝化完了時のアンモニウムイオン濃度は例えば20ppm以下である。なお、後述の図3の工程を実施する場合には、ステップS5は硝化完了を待たなくてもよい。 The process of step S5 is performed until, for example, it can be determined that all the organic substances contained in the organic fertilizer 2 are decomposed and nitrification is completed. Specifically, the step S5 is performed until, for example, ammonium ions in the liquid in the tank 1 are below a predetermined value, nitrite ions are below a predetermined value, and nitrate ions are above a predetermined value. The nitric acid ion concentration at the completion of nitrification is, for example, 50 ppm or more, preferably 100 ppm or more. The ammonium ion concentration at the completion of nitrification is, for example, 20 ppm or less. When the process of FIG. 3 described later is performed, step S5 does not have to wait for the completion of nitrification.

ここで、亜硝酸イオン濃度が高いと、硝化細菌の活性を落とし、効率的な硝酸イオンの生成の妨げとなる可能性があるので、亜硝酸イオン濃度は速やかに下げるのが望ましい。また、より多量又はより低コストで養液を製造できるのが望ましい。そこで、このような場合には、図1のステップS5に続いて、図3の工程を実施してもよい。 Here, if the concentration of nitrite ions is high, the activity of nitrifying bacteria may be reduced and the efficient production of nitrate ions may be hindered. Therefore, it is desirable to reduce the nitrite ion concentration promptly. It is also desirable to be able to produce the nutrient solution in larger quantities or at lower cost. Therefore, in such a case, the step of FIG. 3 may be performed subsequent to the step S5 of FIG.

図3の工程は、ステップS5において硝化が完了する前(硝化の途中)に実施してもよいし、硝化完了後に実施してもよい。硝化完了前に図3の工程を実施する場合とは、例えば図1のステップS5において亜硝酸イオン濃度が高く、硝化がなかなか進まない場合が挙げられる。より具体的には、硝化完了前(硝化途中)を判断するステップとして、硝酸イオン濃度が所定値(例えば100ppm)以下であることと、硝酸イオン濃度よりも亜硝酸イオン濃度が高いことと、亜硝酸イオン濃度が所定値(例えば50ppm)以上であることの少なくとも1つ又は全てを満たしているかを判断するステップを設けて、そのステップで肯定判断された場合に図3の工程を実施してもよい。 The process of FIG. 3 may be performed before the nitrification is completed (during the nitrification) in step S5, or after the nitrification is completed. The case where the step of FIG. 3 is performed before the completion of nitrification includes, for example, the case where the nitrite ion concentration is high in step S5 of FIG. 1 and nitrification does not progress easily. More specifically, as a step for determining before nitrification completion (during nitrification), the nitrate ion concentration is below a predetermined value (for example, 100 ppm), the nitrite ion concentration is higher than the nitrate ion concentration, and Even if the step of determining whether or not at least one or all that the nitrate ion concentration is equal to or higher than a predetermined value (for example, 50 ppm) is satisfied and the affirmative determination is made in the step, the process of FIG. 3 is performed. Good.

また硝化完了後に図3の工程を実施する場合とは、より多量又はより低コストで養液を得たい場合が挙げられる。より具体的には、硝化完了後を判断するステップとして、硝酸イオン濃度が所定値(例えば100ppm)以上にまで上昇したことと、硝酸イオン濃度が亜硝酸イオン濃度よりも低い状態から高い状態に逆転したことと、亜硝酸イオン濃度が所定値(例えば50ppm)以上の状態から該所定値未満にまで下降したことの少なくとも1つ又は全てを満たしているかを判断するステップを設けて、そのステップで肯定判断された場合に図3の工程を実施してもよい。なお、図3の工程中は槽8(図4参照)において植物の栽培は行わず、つまり、図3の工程は植物の栽培の前段階の工程である。 Further, the case where the step of FIG. 3 is carried out after the completion of nitrification includes the case where it is desired to obtain the nutrient solution in a larger amount or at a lower cost. More specifically, as a step for determining the completion of nitrification, the nitrate ion concentration has risen to a predetermined value (for example, 100 ppm) or more, and the nitrate ion concentration is reversed from a state lower than the nitrite ion concentration to a high state. And a step of determining whether or not at least one or all of the fact that the nitrite ion concentration has fallen from a state of being equal to or higher than a predetermined value (for example, 50 ppm) to less than the predetermined value is provided, and affirmative in that step. If determined, the process of FIG. 3 may be performed. Note that the plant is not cultivated in the tank 8 (see FIG. 4) during the process of FIG. 3, that is, the process of FIG. 3 is a process before the plant cultivation.

図3の工程では、先ず、図1のステップS5において硝化途中又は硝化完了後の槽1の液を水で希釈する(S6)。希釈度は、目標とする養液量に応じて適宜に設定できるが、例えば10倍希釈とすることができる。ステップS6では、具体的には、例えば、図2の槽1よりも大きな槽8(図4参照)を準備して、その槽8に所定量の水を入れる。例えば、槽1の液が1Lであり、この液を10倍に希釈する場合(10Lの液にする場合)には、槽8には9Lの水を入れる。そして、水が入った槽8に、槽1の液を入れる(図4参照)。なお、図2の槽1が希釈後の液も収容できる大きさである場合には、図2の槽1に所定量の水を加えてもよい。なお、ステップS6は、図1の工程で得た養液を種菌(微生物源)として、新たに養液を製造することと同義である。 In the process of FIG. 3, first, in step S5 of FIG. 1, the liquid in the tank 1 during or after nitrification is diluted with water (S6). The degree of dilution can be appropriately set according to the target amount of nutrient solution, but can be, for example, 10-fold dilution. In step S6, specifically, for example, a tank 8 (see FIG. 4) larger than the tank 1 of FIG. 2 is prepared, and a predetermined amount of water is put into the tank 8. For example, when the liquid in the tank 1 is 1 L and the liquid is diluted 10 times (when the liquid is 10 L), 9 L of water is put in the tank 8. Then, the liquid in the tank 1 is put into the tank 8 containing water (see FIG. 4). If the tank 1 of FIG. 2 is large enough to contain the diluted solution, a predetermined amount of water may be added to the tank 1 of FIG. It should be noted that step S6 is synonymous with newly producing a nutrient solution using the nutrient solution obtained in the process of FIG. 1 as an inoculum (microorganism source).

ステップS6の希釈と同時又は該希釈の後に、槽8の液に、追加の有機質肥料9(図4参照)を添加する(S7)。有機質肥料9は、例えば図1のステップS3で添加する有機質肥料2(図2参照)と同じもの(例えば魚液肥)を用いればよい。有機質肥料9の添加量はステップS3で添加する有機質肥料2と同じ添加量であってもよいし、異なる添加量であってもよい。有機質肥料9が魚液肥の場合、その添加量は、有機質肥料2の添加量と同様に、例えば0.5g/Lより多く、2.0g/L以下としてよい。ステップS7の追肥によって、希釈後の液中に存在する微生物(有機物分解菌、硝化細菌)の栄養源を付与できる。 Simultaneously with or after the dilution in step S6, additional organic fertilizer 9 (see FIG. 4) is added to the liquid in the tank 8 (S7). As the organic fertilizer 9, for example, the same organic fertilizer 2 (see FIG. 2) as the organic fertilizer 2 added in step S3 of FIG. 1 (for example, fish liquid fertilizer) may be used. The addition amount of the organic fertilizer 9 may be the same as that of the organic fertilizer 2 added in step S3, or may be different. When the organic fertilizer 9 is fish liquid fertilizer, the addition amount thereof may be, for example, more than 0.5 g/L and not more than 2.0 g/L, like the addition amount of the organic fertilizer 2. By the additional fertilization in step S7, the nutrient source of the microorganisms (organic substance decomposing bacteria, nitrifying bacteria) existing in the diluted liquid can be added.

ステップS6の希釈及びステップS7の追肥の後の槽8の液に対して、有機物の分解及び硝化を進めさせる(S8)。具体的には、図1のステップS5と同様に、有機物の分解及び硝化が進行するよう、槽8の液を所定の環境に維持させる。前記所定の環境として、具体的には例えば槽8の液の温度を、温度調整部(ヒータ)によって、微生物が活動する温度として予め定められた温度(例えば20℃以上、好ましくは25℃〜35℃)に維持させる。また、前記所定の環境として、有機物の分解及び硝化の期間中は、バブリング部5及び供給部6(図4参照)により槽8の液中に空気(酸素)を供給し続ける。 The liquid in the tank 8 after the dilution in step S6 and the supplemental fertilization in step S7 is allowed to proceed with the decomposition and nitrification of organic substances (S8). Specifically, as in step S5 of FIG. 1, the liquid in the tank 8 is maintained in a predetermined environment so that the decomposition and nitrification of organic substances proceed. As the predetermined environment, specifically, for example, the temperature of the liquid in the tank 8 is set at a predetermined temperature (for example, 20° C. or higher, preferably 25° C. to 35° C.) as the temperature at which the microorganisms are activated by the temperature adjusting unit (heater). C)). Further, as the predetermined environment, air (oxygen) is continuously supplied into the liquid in the tank 8 by the bubbling section 5 and the supply section 6 (see FIG. 4) during the period of decomposition and nitrification of organic substances.

また、ステップS8では、ステップS5と同様に、槽8の液中のアンモニウムイオン、亜硝酸イオン及び硝酸イオンの各濃度の変化を監視するのが望ましい。また、溶存酸素量やpHの変化も監視してよい。 Further, in step S8, it is desirable to monitor changes in the respective concentrations of ammonium ions, nitrite ions and nitrate ions in the liquid in the tank 8 in the same manner as in step S5. Also, changes in the amount of dissolved oxygen and pH may be monitored.

ステップS8の工程は、例えば、槽8の液中の有機物の全部が分解し、硝化が完了したと判断できる時まで行う。具体的には、ステップS8の工程は、例えば槽8の液中のアンモニウムイオンが所定値以下となり、かつ、亜硝酸イオンが所定値以下となり、かつ、硝酸イオンが所定値以上となるまで行う。硝化完了時の硝酸イオン濃度は例えば50ppm以上であり、好ましくは100ppm以上である。また硝化完了時のアンモニウムイオン濃度は例えば20ppm以下である。 The process of step S8 is performed until, for example, it is determined that the organic substances in the liquid in the tank 8 are all decomposed and nitrification is completed. Specifically, the step S8 is performed until, for example, ammonium ions in the liquid in the tank 8 are below a predetermined value, nitrite ions are below a predetermined value, and nitrate ions are above a predetermined value. The nitric acid ion concentration at the completion of nitrification is, for example, 50 ppm or more, preferably 100 ppm or more. The ammonium ion concentration at the completion of nitrification is, for example, 20 ppm or less.

図1の工程又は図3の工程により得られた養液は、例えば水耕栽培の養液として用いられる。この場合、例えば図5に示すように、図1の工程又は図3の工程により得られた養液を曝気槽10に投入して、ポンプ11によって、養液を栽培槽12に送り、栽培槽12において植物の栽培を行う。栽培槽12の水面には植物が固定される浮き材13が設けられる。曝気槽10として図1の槽1又は図4の槽8をそのまま用いてもよい。また、以下のように養液を栽培槽12と曝気槽10との間で循環させてもよい。すなわち、栽培槽12の養液を曝気槽10に回収して、曝気槽10において回収した養液に、有機質肥料(例えば魚液肥)を添加する。必要に応じて、有機質肥料に加えて、これを分解処理する微生物源として図1のステップS3で用いたものと同様の有機物分解菌の微生物剤及び硝化細菌の微生物剤も添加する。そして、曝気しながら、有機質肥料に含まれる有機物を分解させて硝酸イオンを生成させる処理を曝気槽10にて行う。 The nutrient solution obtained by the process of FIG. 1 or the process of FIG. 3 is used, for example, as a nutrient solution for hydroponic cultivation. In this case, for example, as shown in FIG. 5, the nutrient solution obtained in the step of FIG. 1 or the step of FIG. 3 is put into the aeration tank 10 and the nutrient solution is sent to the cultivation tank 12 by the pump 11, At 12, the plants are cultivated. On the water surface of the cultivation tank 12, a floating member 13 on which plants are fixed is provided. As the aeration tank 10, the tank 1 of FIG. 1 or the tank 8 of FIG. 4 may be used as it is. Further, the nutrient solution may be circulated between the cultivation tank 12 and the aeration tank 10 as described below. That is, the nutrient solution in the cultivation tank 12 is collected in the aeration tank 10, and an organic fertilizer (for example, fish manure) is added to the nutrient solution collected in the aeration tank 10. If necessary, in addition to the organic fertilizer, the same microbial agent for decomposing organic substances and microbial agent for nitrifying bacteria as those used in step S3 of FIG. 1 are added as a microbial source for decomposing the same. Then, while aeration is performed, a process of decomposing organic substances contained in the organic fertilizer to generate nitrate ions is performed in the aeration tank 10.

本発明に関連する各種検証(実験)を行った。以下それを説明する。 Various verifications (experiments) related to the present invention were performed. This will be explained below.

<実験A:有機物分解菌と硝化細菌を段階的に添加した場合と、同時に添加した場合との比較>
(実験1:有機物分解菌と硝化細菌を段階的に添加した場合)
水1Lが入れられた槽に、有機質肥料として魚液肥を1.5g/L添加した。魚液肥として、ロイヤルインダストリーズ株式会社製の「ポタポタ液肥2号」を用いた。ポタポタ液肥2号は、有機100%の液肥である。なお、同じ槽に、ミネラル供給目的でカキガラを水1L当たり1.0gとなるように添加した。
<Experiment A: Comparison between the case where organic matter-decomposing bacteria and nitrifying bacteria are added stepwise and the case where they are added simultaneously>
(Experiment 1: When organic matter degrading bacteria and nitrifying bacteria are added in stages)
Fish liquid manure (1.5 g/L) was added as an organic fertilizer to a tank containing 1 L of water. "Potapota liquid fertilizer No. 2" manufactured by Royal Industries Co., Ltd. was used as the fish liquid fertilizer. Potapota liquid fertilizer No. 2 is 100% organic liquid fertilizer. In addition, oysters were added to the same tank so that the amount of oysters would be 1.0 g per 1 L of water for the purpose of supplying minerals.

魚液肥の添加と同時に、有機物分解菌の微生物剤を、水1Lに対して1%の体積となる量(つまり10mL)だけ添加した。有機物分解菌の微生物剤として、BioFuture Ltd.製の「BFL5100HP」を用いた。「BFL5100HP」はシリアルベースに有機物分解菌を固着させた微生物剤である。この微生物剤の添加の際には、先ず、微生物剤に含まれる微生物を活性化させるために、微生物剤の量1に対して約30℃のぬるま湯の量が10の割合となるように微生物剤にぬるま湯を加え、よくかき混ぜた上で一定時間放置させた。その後、微生物剤を10%含んだ希釈液を、槽の水1Lに対して100mL(これに含まれる微生物剤は10mL)添加した。 Simultaneously with the addition of the fish liquid fertilizer, the microbial agent of the organic matter-decomposing bacteria was added in an amount of 1% volume (that is, 10 mL) per 1 L of water. "BFL5100HP" manufactured by BioFuture Ltd. was used as a microbial agent for the organic substance-decomposing bacteria. "BFL5100HP" is a microbial agent with organic matter-degrading bacteria fixed to a cereal base. When the microbial agent is added, first, in order to activate the microorganisms contained in the microbial agent, the amount of lukewarm water at about 30° C. is 10 for every 1 amount of the microbial agent. To the mixture was added lukewarm water, stirred well and allowed to stand for a certain period of time. Then, 100 mL (10 mL of the microbial agent contained therein) was added to 1 L of water in the tank, containing a 10% microbial agent dilution solution.

魚液肥及び有機物分解菌の微生物剤を添加してから7日後に、硝化細菌の微生物剤を槽の水1Lに対して1%の体積となる量(つまり10mL)だけ添加した。硝化細菌添加時の水中のアンモニウムイオン濃度は約100ppmであった。硝化細菌の微生物剤として、BioFuture Ltd.製の「BFL5800NTB」を用いた。「BFL5800NTB」は液体の微生物剤である。また、「BFL5800NTB」は、アンモニアを酸化して亜硝酸を生成する菌(アンモニア酸化細菌)と、亜硝酸を酸化して硝酸を生成する菌(亜硝酸酸化細菌)とが互いに同等の個数となるように配合された微生物剤である。この微生物剤の添加の際には、先ず、微生物剤の量1に対して約30℃のぬるま湯の量が10の割合となるように微生物剤にぬるま湯を加え、よくかき混ぜた上で一定時間放置させた。その後、微生物剤を10%含んだ希釈液を、槽の水1Lに対して100mL(これに含まれる微生物剤は10mL)添加した。 Seven days after the addition of the fish liquid fertilizer and the microbial agent of the organic matter-decomposing bacteria, the microbial agent of the nitrifying bacteria was added in an amount of 1% volume (that is, 10 mL) with respect to 1 L of water in the tank. The ammonium ion concentration in water when the nitrifying bacteria were added was about 100 ppm. As a microbial agent for nitrifying bacteria, "BFL5800NTB" manufactured by BioFuture Ltd. was used. "BFL5800NTB" is a liquid microbial agent. In addition, "BFL5800NTB" has the same number of bacteria that oxidize ammonia to produce nitrite (ammonia-oxidizing bacteria) and bacteria that oxidize nitrite to produce nitric acid (nitrite-oxidizing bacteria). It is a microbial agent formulated as follows. When adding this microbial agent, first add lukewarm water to the microbial agent so that the amount of lukewarm water at about 30° C. is 10 per 1 of the microbial agent, stir well, and leave for a certain period of time. Let Then, 100 mL (10 mL of the microbial agent contained therein) was added to 1 L of water in the tank, containing a 10% microbial agent dilution solution.

そして、魚液肥及び有機物分解菌の微生物剤を添加してからの経過日数に対する、水中のアンモニウムイオン濃度、亜硝酸イオン濃度、硝酸イオン濃度、溶存酸素量及びpHの変化を計測した。この計測期間中は、曝気を継続した。また、計測期間中の水温は30〜38℃に調整した。図6は計測結果を示している。図6の左側の縦軸はイオン濃度(単位はppm)の軸としている。右側の縦軸は溶存酸素量(単位はppm)と、pH(単位は無し)との共通軸としている。また、図6及び以降で説明する図7〜図16では溶存酸素量を「DO」で示している。 Then, changes in the ammonium ion concentration, the nitrite ion concentration, the nitrate ion concentration, the amount of dissolved oxygen and the pH in the water with respect to the number of days elapsed after the addition of the fish manure and the microbial agent of the organic matter-decomposing bacteria were measured. Aeration was continued during this measurement period. The water temperature during the measurement period was adjusted to 30 to 38°C. FIG. 6 shows the measurement result. The vertical axis on the left side of FIG. 6 is the axis of ion concentration (unit is ppm). The vertical axis on the right side is a common axis of the amount of dissolved oxygen (unit is ppm) and pH (there is no unit). Further, in FIG. 6 and FIGS. 7 to 16 described below, the amount of dissolved oxygen is indicated by “DO”.

図6に示すように、実験開始から7日後までにアンモニウムイオン濃度は100ppmまで上昇し、順調に有機物を分解していると考えられる。硝化細菌添加後は、アンモニア酸化細菌により亜硝酸イオンが多く生成される一方で、硝酸イオン濃度は実験開始から28日経過時点で約50ppmであった。硝酸イオン濃度の経時的変化は、実験開始から28日経過時点で時間の経過に伴いに減少していく傾向(右肩下がりの傾向)であった。 As shown in FIG. 6, the ammonium ion concentration increased to 100 ppm by 7 days after the start of the experiment, and it is considered that the organic substances were decomposed smoothly. After addition of nitrifying bacteria, a large amount of nitrite ions were produced by the ammonia-oxidizing bacteria, while the nitrate ion concentration was about 50 ppm at 28 days after the start of the experiment. The change with time of the nitrate ion concentration tended to decrease with the lapse of time after 28 days from the start of the experiment (downward trend).

(実験2:有機物分解菌と硝化細菌を同時に添加した場合)
硝化細菌の微生物剤を有機物分解菌の添加に遅れて添加するのではなく有機物分解菌の微生物剤の添加と同時に同量(水1Lに対して1%の体積となる量)添加し、それ以外は実験1と同じ条件で実験を行った。図7はこの結果を示している。
(Experiment 2: When the organic substance degrading bacteria and nitrifying bacteria are added at the same time)
The nitrifying bacteria microbial agent is not added after the addition of the organic substance-decomposing bacteria, but the same amount (1% volume relative to 1 L of water) is added at the same time as the addition of the organic substance-decomposing bacteria microbial agent. Conducted an experiment under the same conditions as Experiment 1. FIG. 7 shows this result.

図7に示すように、実験開始直後からアンモニウムイオン、亜硝酸イオン及び硝酸イオンの生成が確認された。このことから、水中に有機物が残っている状態でも(換言すればBOD(Biochemical oxygen demand、生物化学的酸素要求量)が高くても)、硝化細菌は活動できると考えられる。また、亜硝酸イオン濃度は、実験開始から28日経過時点で約270ppmであり、図6の結果の約2/3程度であった。また、硝酸イオン濃度は、実験開始から28日経過時点で約70ppmであり、図6の結果と同等又は若干高い値であった。また、硝酸イオン濃度の経時的変化は、実験開始から28日経過時点で時間の経過に伴い上昇していく傾向(右肩上がりの傾向)であった。 As shown in FIG. 7, generation of ammonium ions, nitrite ions, and nitrate ions was confirmed immediately after the start of the experiment. From this, it is considered that nitrifying bacteria can act even when organic matter remains in the water (in other words, even when BOD (Biochemical oxygen demand) is high). Further, the nitrite ion concentration was about 270 ppm after 28 days from the start of the experiment, which was about 2/3 of the result of FIG. Further, the nitrate ion concentration was about 70 ppm after 28 days from the start of the experiment, which was equal to or slightly higher than the result of FIG. In addition, the change with time of the nitrate ion concentration tended to increase with the passage of time at the point of 28 days from the start of the experiment (the tendency to increase to the right).

(実験A(実験1、2)のまとめ)
図6、図7の結果より、有機物分解菌と硝化細菌を同時に同量添加した場合、有機物分解菌と硝化細菌を段階的に添加した場合に比べて同等以上の硝化速度及び硝酸イオン濃度が得られることが分かった。
(Summary of Experiment A (Experiments 1 and 2))
From the results of FIGS. 6 and 7, when the same amount of the organic matter-degrading bacteria and the nitrifying bacteria were added at the same time, the nitrification rate and the nitrate ion concentration were equal to or higher than those when the organic substance-degrading bacteria and the nitrifying bacteria were added stepwise I found out that

<実験B:微生物剤の添加量を変えた場合の各イオン濃度の経時的変化の検証>
(実験3:微生物剤の添加量を0.1%とした場合)
実験2と同様に有機物分解菌の微生物剤と硝化細菌の微生物剤を同時に同量添加するが、各微生物剤の添加量を、水1Lに対して0.1%の体積となる量(つまり1mL)とし、それ以外は実験2と同じ条件で実験した。図8はその結果を示している。
<Experiment B: Verification of time-dependent change of each ion concentration when the addition amount of the microbial agent is changed>
(Experiment 3: When the amount of the microbial agent added is 0.1%)
Similar to Experiment 2, the same amount of microbial agent of organic matter-decomposing bacteria and microbial agent of nitrifying bacteria are added at the same time, but the amount of each microbial agent is 0.1% volume to 1 L of water (that is, 1 mL). ) And other conditions were the same as in Experiment 2. FIG. 8 shows the result.

図8に示すように、硝酸イオン濃度は、実験開始から16日経過後に急激に上昇していき、20日経過時点では100ppmに到達し、23日経過時点で200ppmに迫る値(約180ppm)に到達した。また、硝酸イオン濃度の経時的変化は、実験開始から23日経過時点で右肩上がりの傾向であった。他方、亜硝酸イオン濃度は、実験開始から16日経過後に次第に減少していき、23日経過時点では150ppmを下回る値(約130ppm)であった。また、亜硝酸イオン濃度の経時的変化は、実験開始から23日経過時点で右肩下がりの傾向であった。 As shown in FIG. 8, the nitrate ion concentration rapidly increased after 16 days from the start of the experiment, reached 100 ppm at 20 days, and approached 200 ppm at 23 days (about 180 ppm). Arrived In addition, the change with time of the nitrate ion concentration tended to increase to the right at 23 days after the start of the experiment. On the other hand, the nitrite ion concentration gradually decreased after 16 days from the start of the experiment, and was a value lower than 150 ppm (about 130 ppm) after 23 days. In addition, the change with time of the nitrite ion concentration tended to decrease to the right after 23 days from the start of the experiment.

(実験4:微生物剤の添加量を0.01%とした場合)
実験2、3と同様に有機物分解菌の微生物剤と硝化細菌の微生物剤を同時に同量添加するが、各微生物剤の添加量を、水1Lに対して0.01%の体積となる量(つまり0.1mL)とし、それ以外は実験2、3と同じ条件で実験した。図9はその結果を示している。
(Experiment 4: When the addition amount of the microbial agent is 0.01%)
Similar to Experiments 2 and 3, the same amount of the microbial agent of the organic matter degrading bacterium and the microbial agent of the nitrifying bacterium are added at the same time, but the amount of each microbial agent added is 0.01% by volume relative to 1 L of water ( That is, 0.1 mL) was set, and the other conditions were the same as those in Experiments 2 and 3. FIG. 9 shows the result.

図9に示すように、硝酸イオン濃度は、実験開始から14日経過後に急激に上昇していき、17日経過時点では100ppmに到達し、20日経過時点で250ppmに到達し、以降はほぼ横ばいとなり、26日経過時点で約250ppmであった。他方、亜硝酸イオン濃度は、実験開始から11日経過後に次第に減少していき、20日経過時点ではほぼ0ppmとなり、以降はほぼ横ばいとなり、26日経過時点でほぼ0ppmであった。 As shown in FIG. 9, the nitrate ion concentration rapidly increased after 14 days from the start of the experiment, reached 100 ppm after 17 days, reached 250 ppm after 20 days, and remained almost flat thereafter. Was about 250 ppm after 26 days. On the other hand, the nitrite ion concentration gradually decreased after 11 days from the start of the experiment, became almost 0 ppm at the time of 20 days, became almost flat thereafter, and was almost 0 ppm at the time of 26 days.

(実験B(実験2、3、4)のまとめ)
図7、図8、図9の結果より、各微生物剤の添加量が1%よりも0.1%又は0.01%のほうが、硝化速度及び硝酸イオン濃度が向上しており、微生物剤の添加量を1%未満、好ましくは0.5%以下、より好ましくは0.1%以下に抑えるのが、コスト低減の観点、及び硝化速度や硝酸イオン濃度向上の観点から望ましいことが分かった。ただし、微生物剤の添加量が1%であっても、約1か月経過時点で硝酸イオン濃度が右肩上がりの傾向を示すことから(図7参照)、各微生物剤の添加量を1%又は1%より若干大きい値(例えば1.5%以下の値)であっても、ある程度高い硝化速度及び硝酸イオン濃度(例えば約1か月経過時点で50ppm以上の濃度)が得られると考えられる。
(Summary of Experiment B (Experiments 2, 3, 4))
From the results shown in FIGS. 7, 8 and 9, the nitrification rate and the nitrate ion concentration were improved when the addition amount of each microbial agent was 0.1% or 0.01% rather than 1%. It has been found that it is desirable to suppress the addition amount to less than 1%, preferably 0.5% or less, and more preferably 0.1% or less, from the viewpoints of cost reduction, nitrification rate and nitrate ion concentration improvement. However, even if the amount of microbial agents added is 1%, the concentration of nitrate ions tends to increase upwards after about 1 month (see FIG. 7). Or, even if the value is slightly larger than 1% (for example, a value of 1.5% or less), it is considered that a relatively high nitrification rate and a nitrate ion concentration (for example, a concentration of 50 ppm or more after a lapse of about one month) are obtained. ..

<実験C:硝化細菌の添加量を有機物分解菌の添加量より多くした場合に、硝化速度及び硝酸イオン濃度が向上するかの検証>
(実験5:硝化細菌の微生物剤の添加量を2%とした場合)
有機物分解菌の微生物剤と硝化細菌の微生物剤を同時に添加するが、有機物分解菌の微生物剤の添加量は水1Lに対して1%の体積となる量(10mL)とし、硝化細菌の微生物剤の添加量は水1Lに対して2%の体積となる量(20mL)とし、それ以外は実験2と同じ条件で実験を行った。この実験5は、硝化速度及び硝酸イオン濃度の向上を目的として、硝化細菌の添加量を有機物分解菌の添加量の2倍にした実験である。図10はその結果を示している。
<Experiment C: Verification of improvement in nitrification rate and nitrate ion concentration when the amount of nitrifying bacteria added is larger than that of organic substance-decomposing bacteria>
(Experiment 5: When the addition amount of the microbial agent of nitrifying bacteria was set to 2%)
The microbial agent for organic substance-degrading bacteria and the microbial agent for nitrifying bacteria are added at the same time. The amount of microbial agent for organic substance-degrading bacteria is 1% of the volume of 1 L of water (10 mL). The amount added was 2% with respect to 1 L of water (20 mL). Other than that, the experiment was performed under the same conditions as in Experiment 2. This Experiment 5 is an experiment in which the amount of nitrifying bacteria added was twice the amount of organic substance-degrading bacteria for the purpose of improving the nitrification rate and nitrate ion concentration. FIG. 10 shows the result.

図10に示すように、硝化細菌の添加量を2倍にすることで、亜硝酸イオン濃度のみが上昇し、硝酸イオン濃度の顕著な変化は見られなかった。高濃度の亜硝酸イオンが硝化細菌の活性を落とし、これによって、硝酸イオン濃度の上昇が阻害されたと考えられる。 As shown in FIG. 10, by doubling the addition amount of nitrifying bacteria, only the nitrite ion concentration increased, and no remarkable change in the nitrate ion concentration was observed. It is considered that a high concentration of nitrite ion reduced the activity of nitrifying bacteria, and this inhibited the increase of nitrate ion concentration.

(実験C(実験2、5)のまとめ)
図7の結果(実験2)と図10の結果(実験5)を比較すると、図7の結果の方が、硝化速度及び硝酸イオン濃度が高く、亜硝酸イオン濃度は低い。このことから、有機物分解菌の微生物剤と硝化細菌の微生物剤は同量添加するのが、硝化速度及び硝酸イオン濃度の向上を図る観点、及び微生物剤の添加制御の容易化を図る観点から望ましいといえる。
(Summary of Experiment C (Experiments 2, 5))
Comparing the results of FIG. 7 (Experiment 2) and the results of FIG. 10 (Experiment 5), the results of FIG. 7 have a higher nitrification rate and nitrate ion concentration, and a lower nitrite ion concentration. From this, it is desirable to add the same amount of the microbial agent of the organic matter degrading bacterium and the microbial agent of the nitrifying bacterium from the viewpoint of improving the nitrification rate and the concentration of nitrate ion, and from the viewpoint of facilitating the addition control of the microbial agent. Can be said.

<実験D:途中で希釈した場合に亜硝酸イオン濃度が下がるかの検証>
(実験6:途中で10倍希釈した場合)
有機物分解菌の微生物剤と硝化細菌の微生物剤を同時に同量(水1Lに対して1%の量)添加し、実験開始から9日目に槽の液を水で10倍に希釈した(具体的には水量を10Lに拡張した)。希釈直前の亜硝酸イオン濃度は100ppmに到達していた。途中で希釈すること以外は実験2と同じ条件で実験を行った。なお、実験6では、希釈と同時又は希釈後の追肥は行っていない。図11はその結果を示している。
<Experiment D: Verification of decrease in nitrite ion concentration when diluted midway>
(Experiment 6: When diluted 10 times on the way)
The same amount (1% of the amount of 1 L of water) of the microbial agent of the organic matter-decomposing bacteria and the microbial agent of the nitrifying bacteria were added at the same time, and the solution in the tank was diluted 10 times with water on the 9th day from the start of the experiment (specifically, The amount of water was expanded to 10 L). The nitrite ion concentration just before dilution reached 100 ppm. The experiment was performed under the same conditions as in Experiment 2 except that the dilution was performed on the way. In Experiment 6, additional fertilization was not performed at the same time as or after dilution. FIG. 11 shows the result.

図11に示すように、途中で液を希釈することで、亜硝酸イオン濃度が大幅に減少した。このことから、亜硝酸イオン濃度に下げるには、液を希釈するのが効果的といえる。 As shown in FIG. 11, the nitrite ion concentration was significantly reduced by diluting the liquid on the way. From this, it can be said that diluting the solution is effective for reducing the nitrite ion concentration.

<実験E:液を希釈することに加えて、追肥をした場合に硝化が進行するかの検証>
先に説明した図11の結果では、液を希釈することで亜硝酸イオン濃度は減少したが、硝酸イオン濃度の大幅な上昇は見られなかった。そこで、希釈に加えて追肥をすることで、亜硝酸イオン濃度を下げつつ、硝酸イオン濃度の上昇を図ることができるかを検証するために下記実験7、8、9、10を行った。
<Experiment E: In addition to diluting the liquid, verification of whether nitrification progresses when topdressing is applied>
In the result of FIG. 11 described above, the nitrite ion concentration was decreased by diluting the liquid, but the nitrate ion concentration was not significantly increased. Therefore, the following Experiments 7, 8, 9, and 10 were performed to verify whether it is possible to increase the nitrate ion concentration while lowering the nitrite ion concentration by adding fertilizer in addition to dilution.

(実験7:微生物剤の添加量を0.1%とし、希釈と同時に追肥をした場合)
水1Lが入れられた槽に、有機質肥料として魚液肥を1.5g/L添加した。魚液肥として、ロイヤルインダストリーズ株式会社製の「ポタポタ液肥2号」を用いた。魚液肥の添加と同時に、有機物分解菌の微生物剤と硝化細菌の微生物剤をそれぞれ水1Lに対して0.1%の体積となる量(1mL)添加した。有機物分解菌の微生物剤としてBioFuture Ltd.製の「BFL5100HP」を用いた。また硝化細菌の微生物剤としてBioFuture Ltd.製の「BFL5800NTB」を用いた。
(Experiment 7: When the addition amount of the microbial agent is 0.1% and the fertilizer is added at the same time as the dilution)
Fish liquid manure (1.5 g/L) was added as an organic fertilizer to a tank containing 1 L of water. "Potapota liquid fertilizer No. 2" manufactured by Royal Industries Co., Ltd. was used as the fish liquid fertilizer. Simultaneously with the addition of the fish liquid fertilizer, a microbial agent for organic matter-decomposing bacteria and a microbial agent for nitrifying bacteria were added in amounts of 0.1% by volume (1 mL) per 1 L of water. "BFL5100HP" manufactured by BioFuture Ltd. was used as a microbial agent for the organic substance-decomposing bacteria. In addition, “BFL5800NTB” manufactured by BioFuture Ltd. was used as a microbial agent for nitrifying bacteria.

実験開始から31日目に、槽の液を水で10倍に希釈した(具体的には水量を10Lに拡張した)。その希釈と同時に、魚液肥(ロイヤルインダストリーズ株式会社製の「ポタポタ液肥2号」)を水1L当たり1.5g(水10Lでは15g)添加した。なお、希釈及び追肥の直前では、硝酸イオン濃度は約200ppmとなっており、アンモニウムイオン濃度及び亜硝酸イオン濃度はほぼ0ppmとなっており、硝化が完了していた。 On the 31st day from the start of the experiment, the liquid in the tank was diluted 10 times with water (specifically, the amount of water was expanded to 10 L). Simultaneously with the dilution, 1.5 g of fish liquid fertilizer (“Potapota liquid fertilizer No. 2” manufactured by Royal Industries Co., Ltd.) was added per 1 L of water (15 g for 10 L of water). Immediately before dilution and top fertilization, the nitrate ion concentration was about 200 ppm, the ammonium ion concentration and the nitrite ion concentration were about 0 ppm, and nitrification was completed.

そして、上記各実験と同様に、実験開始からの経過日数に対する水中のアンモニウムイオン濃度、亜硝酸イオン濃度、硝酸イオン濃度、溶存酸素量及びpHの変化を計測した。この計測期間中は、曝気を継続した。また、計測期間中の水温は30〜38℃に調整した。図12はその結果を示している。 Then, as in each of the above experiments, changes in the ammonium ion concentration, the nitrite ion concentration, the nitrate ion concentration, the amount of dissolved oxygen, and the pH with respect to the number of days elapsed from the start of the experiment were measured. Aeration was continued during this measurement period. The water temperature during the measurement period was adjusted to 30 to 38°C. FIG. 12 shows the result.

図12に示すように、希釈直後は、亜硝酸イオン濃度及び硝酸イオン濃度が大幅に下がった。さらに、希釈と同時に追肥をしているので、この追肥により各微生物が活動することで、各イオン濃度に顕著な変化が見られる。具体的には、アンモニウムイオン濃度は、希釈後に時間経過に伴い次第に上昇していき、実験開始から38日目を境に時間経過に伴い減少する傾向を示した。亜硝酸イオン濃度は、希釈後に時間経過に伴い次第に上昇していき、実験開始から42日目を境に時間経過に伴い減少する傾向を示し、51日経過時点ではほぼ0ppmとなった。硝酸イオン濃度は、希釈直後は約50ppm辺りでほぼ横ばいとなり、実験開始から42日目を境に時間経過に伴い急激に上昇する傾向を示した。硝酸イオン濃度は、実験開始から51日経過時点では約250ppmとなり、希釈直前の濃度よりも高くなった。 As shown in FIG. 12, immediately after the dilution, the nitrite ion concentration and the nitrate ion concentration significantly decreased. Furthermore, since top fertilization is performed at the same time as dilution, each microorganism is activated by this top fertilization, and thus a remarkable change is observed in each ion concentration. Specifically, the ammonium ion concentration showed a tendency of gradually increasing with time after dilution and decreasing with time after 38 days from the start of the experiment. The nitrite ion concentration gradually increased with the passage of time after dilution, and tended to decrease with the passage of time after 42 days from the start of the experiment, and became almost 0 ppm after 51 days. Immediately after the dilution, the nitrate ion concentration was almost flat at around 50 ppm, and tended to sharply increase with time after 42 days from the start of the experiment. The nitrate ion concentration was about 250 ppm at 51 days after the start of the experiment, which was higher than the concentration immediately before dilution.

(実験8:微生物剤の添加量を0.1%とし、希釈に遅れて追肥をした場合)
水1Lが入れられた槽に、有機質肥料として魚液肥を1.5g/L添加した。魚液肥として、ロイヤルインダストリーズ株式会社製の「ポタポタ液肥2号」を用いた。魚液肥の添加と同時に、有機物分解菌の微生物剤と硝化細菌の微生物剤をそれぞれ水1Lに対して0.1%の体積となる量(1mL)添加した。有機物分解菌の微生物剤としてBioFuture Ltd.製の「BFL5100HP」を用いた。また硝化細菌の微生物剤としてBioFuture Ltd.製の「BFL5800NTB」を用いた。
(Experiment 8: When the addition amount of the microbial agent was 0.1% and the fertilizer was added after the dilution)
Fish liquid manure (1.5 g/L) was added as an organic fertilizer to a tank containing 1 L of water. "Potapota liquid fertilizer No. 2" manufactured by Royal Industries Co., Ltd. was used as the fish liquid fertilizer. Simultaneously with the addition of the fish liquid fertilizer, a microbial agent for organic matter-decomposing bacteria and a microbial agent for nitrifying bacteria were added in amounts of 0.1% by volume (1 mL) per 1 L of water. "BFL5100HP" manufactured by BioFuture Ltd. was used as a microbial agent for the organic substance-decomposing bacteria. In addition, “BFL5800NTB” manufactured by BioFuture Ltd. was used as a microbial agent for nitrifying bacteria.

実験開始から7日目に、槽の液を水で10倍に希釈した(具体的には水量を10Lに拡張した)。なお、希釈の直前では、亜硝酸イオン濃度は150ppmに達しており、硝酸イオン濃度は50ppm未満となっており、硝化が未だ完了していなかった。また実験開始から31日目に、追肥として魚液肥(ロイヤルインダストリーズ株式会社製の「ポタポタ液肥2号」)を水1L当たり1.5g(水10Lでは15g)添加した。 On the 7th day from the start of the experiment, the liquid in the tank was diluted 10 times with water (specifically, the amount of water was expanded to 10 L). Immediately before the dilution, the nitrite ion concentration reached 150 ppm, the nitrate ion concentration was less than 50 ppm, and nitrification was not yet completed. On the 31st day from the start of the experiment, 1.5 g of fish liquid fertilizer (“Potapota liquid fertilizer No. 2” manufactured by Royal Industries Co., Ltd.) was added as an additional fertilizer per 1 L of water (15 g for 10 L of water).

そして、上記各実験と同様に、実験開始からの経過日数に対する水中のアンモニウムイオン濃度、亜硝酸イオン濃度、硝酸イオン濃度、溶存酸素量及びpHの変化を計測した。この計測期間中は、曝気を継続した。また、計測期間中の水温は30〜38℃に調整した。図13はその結果を示している。 Then, similarly to each of the above experiments, changes in ammonium ion concentration, nitrite ion concentration, nitrate ion concentration, dissolved oxygen amount and pH with respect to the number of days elapsed from the start of the experiment were measured. Aeration was continued during this measurement period. The water temperature during the measurement period was adjusted to 30 to 38°C. FIG. 13 shows the result.

図13に示すように、希釈直後は、亜硝酸イオン濃度が大幅に下がった。なお、硝酸イオン濃度は、希釈直後は若干上昇しているが、これは、希釈直前の低濃度の硝酸イオンに、希釈に用いた水にもともと含まれている硝酸イオンが足し合わさったためと考えられる。希釈後、追肥するまでの期間は、微生物の栄養不足のためか、亜硝酸イオン濃度及び硝酸イオン濃度の変化が小さい。追肥後は、各イオン濃度に顕著な変化が見られる。具体的には、アンモニウムイオン濃度は、追肥後に時間経過に伴い次第に上昇していき、実験開始から38日目を境に時間経過に伴い減少し、45日目以降は若干上昇する傾向を示した。亜硝酸イオン濃度は、追肥後に時間経過に伴い次第に上昇していき、実験開始から42日目を境に時間経過に伴い減少する傾向を示し、51日経過時点では約50ppmとなった。硝酸イオン濃度は、追肥直後は50ppm未満の値でほぼ横ばいであったが、実験開始から42日目を境に時間経過に伴い急激に上昇する傾向を示した。硝酸イオン濃度は、実験開始から51日経過時点では約200ppmとなり、希釈直前及び追肥直前の濃度から大幅に上昇した。 As shown in FIG. 13, immediately after the dilution, the nitrite ion concentration dropped significantly. It should be noted that the nitrate ion concentration slightly increased immediately after the dilution, but it is considered that this is because the nitrate ions originally contained in the water used for the dilution were added to the low-concentration nitrate ions immediately before the dilution. .. During the period from dilution to additional fertilization, changes in nitrite ion concentration and nitrate ion concentration are small, probably due to lack of nutrition of microorganisms. After topdressing, a remarkable change is seen in each ion concentration. Specifically, the ammonium ion concentration gradually increased with the passage of time after topdressing, decreased with the passage of time on the 38th day from the start of the experiment, and slightly increased after the 45th day. .. The nitrite ion concentration gradually increased with the passage of time after topdressing, and tended to decrease with the passage of time on the 42nd day from the start of the experiment, and became about 50 ppm at the time of the passage of 51 days. The nitrate ion concentration was almost flat at a value of less than 50 ppm immediately after top fertilization, but tended to increase sharply with the lapse of time after 42 days from the start of the experiment. The concentration of nitrate ion was about 200 ppm at 51 days after the start of the experiment, which was significantly increased from the concentration immediately before dilution and immediately before topdressing.

(実験9:微生物剤の添加量を0.01%とし、硝化完了後に希釈及び追肥を同時に行った場合)
初期に添加する有機物分解菌の微生物剤と硝化細菌の微生物剤の量をそれぞれ水1Lに対して0.01%の体積となる量(0.1mL)とし、実験開始から26日目に槽の液を水で10倍に希釈し、その希釈と同時に追肥を行い、それ以外は実験7と同じ条件で実験を行った。つまり、実験9は、微生物剤の添加量が0.01%/L、希釈及び追肥の時期が実験開始から26日目である点で実験7と異なっており、それ以外は実験7と同じである。実験9は、実験4に対して26日目に希釈及び追肥を行った実験である。なお、希釈及び追肥の直前では、硝酸イオン濃度は約250ppmとなっており、アンモニウムイオン濃度及び亜硝酸イオン濃度はほぼ0ppmとなっており、硝化が完了していた。図14はその結果を示している。
(Experiment 9: When the addition amount of the microbial agent is set to 0.01% and the dilution and the additional fertilization are simultaneously performed after nitrification is completed)
The amounts of the microbial agent for organic matter-decomposing bacteria and the microbial agent for nitrifying bacteria to be added in the initial stage were adjusted to 0.01% by volume (0.1 mL) with respect to 1 L of water, respectively. The liquid was diluted 10 times with water, and additional fertilization was performed at the same time as the dilution, and the experiment was performed under the same conditions as in Experiment 7 except for that. In other words, Experiment 9 is different from Experiment 7 in that the addition amount of the microbial agent is 0.01%/L, the timing of dilution and topdressing is the 26th day from the start of the experiment, and other than that, it is the same as Experiment 7. is there. Experiment 9 is an experiment in which the experiment 4 was diluted and topdressed on the 26th day. Immediately before dilution and top fertilization, the nitrate ion concentration was about 250 ppm, the ammonium ion concentration and the nitrite ion concentration were about 0 ppm, and nitrification was completed. FIG. 14 shows the result.

図14において実験開始から26日目までは実験4の結果(図9)と同じである。図14に示すように、希釈後の各イオン濃度の傾向は、実験7とほぼ同様となった。硝酸イオン濃度は、実験開始から47日経過時点で約250ppmとなり、希釈直前と同等であった。また、亜硝酸イオン濃度は、実験開始から47日経過時点でほぼ0ppmとなった。 In FIG. 14, from the start of the experiment to the 26th day, it is the same as the result of the experiment 4 (FIG. 9). As shown in FIG. 14, the tendency of each ion concentration after dilution was almost the same as in Experiment 7. The nitrate ion concentration was about 250 ppm 47 days after the start of the experiment, which was the same as immediately before the dilution. Further, the nitrite ion concentration became almost 0 ppm 47 days after the start of the experiment.

(実験10:微生物剤の添加量を0.01%とし、硝化途中に希釈及び追肥を同時に行った場合)
希釈及び追肥を実験開始から7日目に行い、それ以外は実験9と同じ条件で実験を行った。なお、希釈及び追肥の直前では、亜硝酸イオン濃度は100ppmに迫る値(約80ppm)である一方で、硝酸イオン濃度は50ppm未満となっており、硝化が未だ完了していなかった。図15はその結果を示している。
(Experiment 10: When the addition amount of the microbial agent is 0.01% and the dilution and the supplemental fertilization are simultaneously performed during nitrification)
Dilution and supplemental fertilization were performed on the 7th day from the start of the experiment, and the experiment was performed under the same conditions as in Experiment 9 except for the above. Immediately before dilution and top fertilization, the nitrite ion concentration was a value approaching 100 ppm (about 80 ppm), while the nitrate ion concentration was less than 50 ppm, and nitrification was not yet completed. FIG. 15 shows the result.

図15に示すように、亜硝酸イオン濃度は希釈直後は大幅に下がったが、その後(実験開始から11日目を境に)急激に上昇し、13日目には150ppm以上にまで達し、以降はほぼ横ばいとなった。これに対し、希釈後の硝酸イオン濃度は、14日目に約50ppmにまで上昇したが、その後、次第に減少していき、26日経過時点では約20ppmとなった。 As shown in FIG. 15, the nitrite ion concentration dropped sharply immediately after dilution, but then rapidly increased (after the 11th day from the start of the experiment) and reached 150 ppm or higher on the 13th day, and thereafter. Has almost leveled off. On the other hand, the nitrate ion concentration after dilution increased to about 50 ppm on the 14th day, but then gradually decreased to about 20 ppm at the 26th day.

(実験E(実験7、8、9、10)のまとめ)
図12、図13、図14、図15の結果より以下のことがいえる。
・希釈に加えて追肥をすることで、希釈後の液に対して硝化をさらに進行させることでき、亜硝酸イオンを抑制しつつ、希釈前と同等以上の硝酸イオン濃度を得ることができるとともに、より多量の養液を得ることができる。また、初期に添加する微生物剤量を抑えることができるので、低コストで養液を得ることができる。
・希釈は、硝化完了後、具体的には硝酸イオン濃度が100ppm以上、好ましくは150ppm以上、より好ましくは200ppm以上にまで上昇してとき、又は硝酸イオン濃度が亜硝酸イオン濃度よりも低い状態から高い状態に逆転したとき、又は亜硝酸イオン濃度が50ppm以上の状態から50ppm未満にまで下降したときに行うと、硝化を担う微生物が十分に増加していると考えられるので、希釈後の液に対しても微生物剤を追加しなくても硝化を進行させることができ、高濃度の硝酸イオンを生成させることができる(図12、図14参照)。
・希釈は、硝化途中(硝化完了前)に行ってもよく、具体的には硝酸イオン濃度が100ppm以下のとき、又は硝酸イオン濃度よりも亜硝酸イオン濃度が高いとき、又は亜硝酸イオン濃度が50ppm以上のときに行ってもよい。ただし、この場合には、初期に添加する微生物剤の量が0.01%/L以下とすると、希釈後において亜硝酸の高止まりを引き起こし、硝酸イオンの生成に悪影響を及ぼす可能性があるため(図15参照)、微生物剤の量は0.01%より大、好ましくは0.1%/L以上とするのが望ましい(図13参照)。
(Summary of Experiment E (Experiments 7, 8, 9, 10))
The following can be said from the results of FIGS. 12, 13, 14, and 15.
-By adding fertilizer in addition to dilution, nitrification can be further promoted for the diluted liquid, while suppressing nitrite ions, it is possible to obtain a nitrate ion concentration equal to or higher than that before dilution, A larger amount of nutrient solution can be obtained. Moreover, since the amount of the microbial agent added in the initial stage can be suppressed, the nutrient solution can be obtained at low cost.
The dilution is carried out after the nitrification is completed, specifically when the nitrate ion concentration is increased to 100 ppm or more, preferably 150 ppm or more, more preferably 200 ppm or more, or from the state where the nitrate ion concentration is lower than the nitrite ion concentration. When it is reversed to a high state or when the concentration of nitrite ion drops from 50 ppm or more to less than 50 ppm, it is considered that the microorganisms responsible for nitrification are sufficiently increased. On the other hand, nitrification can be promoted without adding a microbial agent, and high-concentration nitrate ions can be generated (see FIGS. 12 and 14).
-The dilution may be performed during nitrification (before completion of nitrification). Specifically, when the nitrate ion concentration is 100 ppm or less, or when the nitrite ion concentration is higher than the nitrate ion concentration, or when the nitrite ion concentration is You may perform it when it is 50 ppm or more. However, in this case, if the amount of the microbial agent added in the initial stage is 0.01%/L or less, it may cause the nitrite to remain high after dilution, which may adversely affect the production of nitrate ions. (See FIG. 15) It is desirable that the amount of the microbial agent is more than 0.01%, preferably 0.1%/L or more (see FIG. 13).

・追肥は、希釈と同時に行っても、希釈から遅れて行っても、高濃度の硝酸イオン濃度を得ることができる(図12、図13参照)。
・追肥を希釈と同時に行うことで、希釈時期及び追肥時期の制御の容易化を図ることができ、希釈直後から硝化を進行させることができる(図12、図14参照)。
・追肥を希釈から遅れて行うことで、希釈後の硝化の進行状況に応じて追肥の時期及び添加量を変えることができる(図13参照)。
・微生物剤の添加量が0.1%/L以下の場合であっても硝化を進行させることができる(図12、図13、図14参照)。
・槽の液量を希釈により10倍にした場合であっても硝化を進行させることができる(図12、図13、図14参照)。
-A high concentration of nitrate ion can be obtained whether the additional fertilization is performed at the same time as the dilution or after the dilution (see FIGS. 12 and 13).
-By performing the supplemental fertilizer at the same time as the dilution, it is possible to facilitate the control of the dilution timing and the supplemental fertilization timing, and to promote nitrification immediately after the dilution (see FIGS. 12 and 14).
-By performing the supplemental fertilization after the dilution, it is possible to change the timing and the addition amount of the supplemental fertilizer according to the progress of nitrification after the dilution (see FIG. 13).
-Nitrification can be promoted even when the amount of the microbial agent added is 0.1%/L or less (see FIGS. 12, 13, and 14).
-Nitrification can be promoted even when the amount of liquid in the tank is increased to 10 times by dilution (see FIGS. 12, 13, and 14).

<実験F:有機質肥料の添加量を変えた場合の各イオン濃度の経時的変化の検証>
(実験11:魚液肥の添加量を0.5g/Lにした場合)
魚液肥の添加量を0.5g/Lにしたこと以外は実験2と同じ条件で実験を行った。図16はその結果を示している。図16に示すように、亜硝酸イオン濃度のみ上昇し、硝酸イオンはほとんど検出されなかった。
<Experiment F: Verification of temporal change of each ion concentration when the addition amount of organic fertilizer is changed>
(Experiment 11: When the amount of fish manure added was 0.5 g/L)
An experiment was conducted under the same conditions as in Experiment 2 except that the amount of fish manure added was 0.5 g/L. FIG. 16 shows the result. As shown in FIG. 16, only the nitrite ion concentration increased, and the nitrate ion was hardly detected.

(実験F(実験2、11)のまとめ)
図7の結果と図16の結果を比較すると、図7の結果のほうが硝酸イオン濃度が高い。したがって、魚液肥の添加量は0.5g/Lより多くするのが好ましく、より好ましくは1.0g/Lより多くするのがよい。
(Summary of Experiment F (Experiments 2 and 11))
Comparing the result of FIG. 7 and the result of FIG. 16, the result of FIG. 7 has a higher nitrate ion concentration. Therefore, the amount of fish liquid fertilizer added is preferably more than 0.5 g/L, and more preferably more than 1.0 g/L.

以上説明したように、本実施形態では、同一の槽でアンモニア化成と硝酸化成(硝化)を行うので養液の製造工程を簡素化でき、また養液を効率的に製造できる。また、微生物源として、市販の微生物剤を用いているので、養液中に雑多な微生物(有害菌)が混入するのを抑制できる。また、有機物分解菌の微生物剤と、硝化細菌の微生物剤とを別個に準備するので、有機物分解菌の添加制御と硝化細菌の添加制御を個別に行うことができる。また、有機物分解菌の微生物剤と、硝化細菌の微生物剤とを同時に同量添加することで、段階的に添加した場合と同等以上の硝酸イオン濃度が得られるとともに、有機物分解菌の添加制御と硝化細菌の添加制御の容易化を図ることができる。 As described above, in the present embodiment, the ammonia formation and the nitric acid formation (nitrification) are performed in the same tank, so that the production process of the nutrient solution can be simplified and the nutrient solution can be efficiently produced. In addition, since a commercially available microbial agent is used as a microorganism source, it is possible to prevent various microorganisms (harmful bacteria) from being mixed in the nutrient solution. Moreover, since the microbial agent for organic substance-degrading bacteria and the microbial agent for nitrifying bacteria are separately prepared, addition control of organic substance-degrading bacteria and addition control of nitrifying bacteria can be performed separately. Further, by simultaneously adding the same amount of the microbial agent of the organic substance-decomposing bacteria and the microbial agent of the nitrifying bacteria, it is possible to obtain a nitrate ion concentration equal to or higher than that in the case of adding it stepwise, and to control the addition of the organic substance-degrading bacteria. The addition control of nitrifying bacteria can be facilitated.

また硝化細菌の微生物剤として、アンモニア酸化細菌と亜硝酸酸化細菌の両方を含んだ微生物剤を用いるので、アンモニウムイオンから亜硝酸イオンを経て硝酸イオンの生成を効率的に行うことができる。 Since a microbial agent containing both ammonia-oxidizing bacteria and nitrite-oxidizing bacteria is used as the microbial agent for nitrifying bacteria, nitrate ions can be efficiently produced from ammonium ions through nitrite ions.

また、各微生物剤の添加量を0.01%/L〜1%/Lとすることで、有機物の分解及び硝化の開始から約1か月後に50ppm以上の硝酸イオン濃度を得ることができるとともに(図7、図8、図9参照)、微生物剤の添加量が抑えられることでコストダウンを図ることができる。特に、添加量を0.1%/L以下とすることで、より一層高濃度の硝酸イオンを得ることができる(図8、図9参照)。 In addition, by setting the addition amount of each microbial agent to 0.01%/L to 1%/L, it is possible to obtain a nitrate ion concentration of 50 ppm or more about one month after the start of decomposition and nitrification of organic substances. (See FIGS. 7, 8 and 9) Since the amount of the microbial agent added is suppressed, the cost can be reduced. In particular, by setting the addition amount to 0.1%/L or less, a higher concentration of nitrate ion can be obtained (see FIGS. 8 and 9).

また、図3の工程を実施することで、高濃度の硝酸イオンを有した多量の養液を低コストで得ることができる。 Further, by carrying out the process of FIG. 3, a large amount of nutrient solution having a high concentration of nitrate ions can be obtained at low cost.

なお、本発明は上記実施形態に限定されず、特許請求の範囲を逸脱しない限度で種々の変更が可能である。例えば、上記各実験では、初期の水量を1Lとしたが、1L以外の水量でもよい。また、上記実験6、7、8、9、10では、液を10倍希釈した例を示したが、それ以外の倍率で希釈してもよい。また、上記実験7、8、9、10では、追加の魚液肥の添加量を、初期の添加量と同じとした例を示したが、初期の添加量と追加の添加量とを異ならせてもよい。また、上記各実験では、有機質肥料として魚液肥を用いた例を示したが、魚液肥以外の有機質肥料を用いてもよい。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the claims. For example, in each of the above experiments, the initial amount of water was 1 L, but a water amount other than 1 L may be used. In addition, in the experiments 6, 7, 8, 9, and 10 described above, an example in which the liquid was diluted 10 times was shown, but it may be diluted at other ratios. In addition, in Experiments 7, 8, 9, and 10 above, an example was shown in which the amount of additional fish manure added was the same as the initial amount added, but the initial addition amount and the additional addition amount were different. Good. Further, in each of the above experiments, an example in which the fish liquid manure was used as the organic fertilizer was shown, but an organic fertilizer other than the fish liquid manure may be used.

1、8 槽
2、9 有機質肥料
3 有機物分解菌の微生物剤
4 硝化細菌の微生物剤
5 バブリング部
6 酸素供給部
1, 8 Tank 2, 9 Organic fertilizer 3 Microbial agent of organic matter decomposing bacteria 4 Microbial agent of nitrifying bacteria 5 Bubbling section 6 Oxygen supply section

Claims (10)

水に有機物として魚液肥を水1L当たり0.5gより多い量添加する有機物添加ステップと、An organic matter adding step of adding fish manure as an organic matter to water in an amount of more than 0.5 g per 1 L of water;
前記水に、有機態窒素を分解してアンモニウムイオンを生成する有機物分解菌の微生物剤と、アンモニウムイオンを酸化して亜硝酸イオンを生成する菌及び亜硝酸イオンを酸化して硝酸イオンを生成する菌である硝化細菌の微生物剤とを同時に同量添加し、かつそれぞれ水1L当たり0.01%以上0.1%以下の体積となる量を添加する微生物剤添加ステップと、 In the water, a microbial agent of an organic substance-decomposing bacterium that decomposes organic nitrogen to produce ammonium ion, a bacterium that oxidizes ammonium ion to produce nitrite ion and nitrite ion to produce nitrate ion Microbial agent addition step in which the same amount of the microbial agent of nitrifying bacteria that is a bacterium is added at the same time, and an amount of 0.01% or more and 0.1% or less per 1 L of water is added, respectively.
前記有機物添加ステップ及び前記微生物剤添加ステップの後の液に対して硝化を進行させる硝化ステップと、 A nitrification step of advancing nitrification to the liquid after the organic matter addition step and the microbial agent addition step,
を備え、 Equipped with
硝酸イオン濃度が100ppm以上の植物栽培用の養液を得る植物栽培用養液の製造方法。 A method for producing a nutrient solution for plant cultivation, which obtains a nutrient solution for plant cultivation having a nitrate ion concentration of 100 ppm or more.
前記有機物添加ステップでは、魚液肥を水1L当たり1.0gより多い量添加する請求項1に記載の植物栽培用養液の製造方法。The method for producing a nutrient solution for plant cultivation according to claim 1, wherein, in the organic matter addition step, fish liquid fertilizer is added in an amount of more than 1.0 g per 1 L of water. 前記硝化ステップを第1硝化ステップとして、 The nitrification step is referred to as a first nitrification step,
前記第1硝化ステップにおける硝化の途中又は硝化の完了後に、前記液を希釈する希釈ステップと、 A diluting step of diluting the liquid during or after nitrification in the first nitrification step,
前記希釈後の液に対して硝化を進行させて液中の硝酸イオン濃度を100ppm以上にする第2硝化ステップと、 A second nitrification step in which nitrification is advanced to the diluted solution so that the concentration of nitrate ions in the solution is 100 ppm or more;
をさらに備える請求項1又は2に記載の植物栽培用養液の製造方法。 The method for producing a nutrient solution for plant cultivation according to claim 1 or 2, further comprising:
前記希釈ステップの希釈と同時又は希釈後に追加の有機物として魚液肥を水1L当たり0.5gより多い量添加する追肥ステップをさらに備える請求項3に記載の植物栽培用養液の製造方法。 The method for producing a nutrient solution for plant cultivation according to claim 3, further comprising a supplemental fertilization step of adding fish fertilizer as an additional organic matter in an amount of more than 0.5 g per 1 L of water at the same time as or after the dilution in the dilution step. 前記希釈ステップの希釈は、前記第1硝化ステップにおける硝化の完了後として、液中の硝酸イオン濃度が100ppm以上にまで上昇したとき、又は硝酸イオン濃度が亜硝酸イオン濃度よりも低い状態から高い状態に逆転したとき、又は亜硝酸イオン濃度が50ppm以上の状態から50ppm未満にまで下降したときに行う請求項4に記載の植物栽培用養液の製造方法。 The dilution in the diluting step is performed after the nitrification in the first nitrification step is completed, when the nitrate ion concentration in the liquid rises to 100 ppm or more, or when the nitrate ion concentration is higher than the nitrite ion concentration. The method for producing a nutrient solution for plant cultivation according to claim 4, which is performed when the concentration of nitrite ion is decreased from 50 ppm or more to less than 50 ppm. 前記希釈ステップの希釈は、前記第1硝化ステップにおける硝化の途中として、液中の硝酸イオン濃度が100ppm以下のとき、又は硝酸イオン濃度よりも亜硝酸イオン濃度が高いとき、又は亜硝酸イオン濃度が50ppm以上のときに行い、 The dilution in the diluting step is performed during the nitrification in the first nitrification step when the nitrate ion concentration in the liquid is 100 ppm or less, or when the nitrite ion concentration is higher than the nitrate ion concentration, or when the nitrite ion concentration is Perform when 50ppm or more,
前記有機物分解菌の微生物剤と前記硝化細菌の微生物剤の添加量は水1L当たり0.01%より大きい体積となる量である請求項4に記載の植物栽培用養液の製造方法。 The method for producing a nutrient solution for plant cultivation according to claim 4, wherein the amounts of the microbial agent of the organic substance-degrading bacterium and the microbial agent of the nitrifying bacterium are amounts that are more than 0.01% per 1 L of water.
前記希釈は、硝酸イオン濃度が100ppm以下であることと、硝酸イオン濃度よりも亜硝酸イオン濃度が高いことと、亜硝酸イオン濃度が50ppm以上であることの全てを満たすときに行う請求項6に記載の植物栽培用養液の製造方法。 The dilution is performed when the nitrate ion concentration is 100 ppm or less, the nitrite ion concentration is higher than the nitrate ion concentration, and the nitrite ion concentration is 50 ppm or more. A method for producing the nutrient solution for plant cultivation described. 前記有機物分解菌の微生物剤及び前記硝化細菌の微生物剤は排水浄化用として市販されている微生物剤である請求項1〜7のいずれか1項に記載の植物栽培用養液の製造方法。 The method for producing a nutrient solution for plant cultivation according to any one of claims 1 to 7, wherein the microbial agent of the organic substance decomposing bacterium and the microbial agent of the nitrifying bacterium are commercially available microbial agents for purifying wastewater. 前記微生物剤添加ステップは、前記有機物分解菌の微生物剤及び前記硝化細菌の微生物剤を前記水に添加する前に予め前記有機物分解菌の微生物剤及び前記硝化細菌の微生物剤に含まれる微生物を活性化させるステップを含む請求項1〜8のいずれか1項に記載の植物栽培用養液の製造方法。 The microbial agent adding step activates microorganisms contained in the microbial agent of the organic substance-degrading bacterium and the microbial agent of the nitrifying bacterium in advance before adding the microbial agent of the organic substance-degrading bacterium and the microbial agent of the nitrifying bacterium to the water. The method for producing a nutrient solution for plant cultivation according to any one of claims 1 to 8, further comprising a step of activating the nutrient solution. 請求項1〜9のいずれか1項に記載の植物栽培用養液の製造方法により得られた養液を用いて植物を栽培する植物栽培方法。 A plant cultivation method for cultivating a plant using the nutrient solution obtained by the method for producing a nutrient solution for plant cultivation according to any one of claims 1 to 9.
JP2019194843A 2019-10-28 2019-10-28 Method for producing nutrient solution for plant cultivation and method for plant cultivation Active JP6747731B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019194843A JP6747731B1 (en) 2019-10-28 2019-10-28 Method for producing nutrient solution for plant cultivation and method for plant cultivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019194843A JP6747731B1 (en) 2019-10-28 2019-10-28 Method for producing nutrient solution for plant cultivation and method for plant cultivation

Publications (2)

Publication Number Publication Date
JP6747731B1 true JP6747731B1 (en) 2020-08-26
JP2021065188A JP2021065188A (en) 2021-04-30

Family

ID=72146217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019194843A Active JP6747731B1 (en) 2019-10-28 2019-10-28 Method for producing nutrient solution for plant cultivation and method for plant cultivation

Country Status (1)

Country Link
JP (1) JP6747731B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7421774B2 (en) 2020-04-30 2024-01-25 ウシオ電機株式会社 Component measurement method and strip for component measurement

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9200845A (en) * 1992-05-13 1993-12-01 Epenhuysen Chem Fab FERTILIZER SOLUTION, METHOD FOR PREPARING THIS FERTILIZER SOLUTION AND USE THEREOF
JP2005323540A (en) * 2004-05-14 2005-11-24 Fuji Photo Film Co Ltd Method for applying nitrogen-containing fertilizer and nitrifying bacterial formulation
JP3831800B2 (en) * 2004-08-23 2006-10-11 伸也 渡部 Method and apparatus for collecting and utilizing malodorous components in compost
JP5071897B2 (en) * 2005-10-25 2012-11-14 独立行政法人農業・食品産業技術総合研究機構 Biomineral-containing production method and organic hydroponics method
JP2009201354A (en) * 2005-12-22 2009-09-10 Saihatsu Ko Microorganism formulation for inhibiting harmful gas in pasture, field, fishery culture pond or the like
JP5388096B2 (en) * 2008-10-09 2014-01-15 独立行政法人農業・食品産業技術総合研究機構 Method for producing inoculum of microorganism group optimized as catalyst for parallel double mineralization reaction
JP6156821B2 (en) * 2013-08-29 2017-07-05 国立研究開発法人農業・食品産業技術総合研究機構 Manufacturing method of inorganic fertilizer
JP2017024973A (en) * 2015-07-17 2017-02-02 株式会社アイエイアイ Manufacturing method and manufacturing apparatus of organic fertilizer nutritious liquid
JP2017078010A (en) * 2015-10-20 2017-04-27 門上 洋一 Method of plant cultivation by mineralization of organic matter

Also Published As

Publication number Publication date
JP2021065188A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
Wongkiew et al. Nitrogen transformations in aquaponic systems: A review
Cáceres et al. Nitrification within composting: A review
Zhang et al. The substrate is an important factor in controlling the significance of heterotrophic nitrification in acidic forest soils
Hargreaves et al. Managing ammonia in fish ponds
WO2016178580A3 (en) Nitrifying micro-organisms for fertilization
Wongkiew et al. Fate of nitrogen in floating-raft aquaponic systems using natural abundance nitrogen isotopic compositions
Wongkiew et al. Nitrogen recovery via aquaponics–bioponics: Engineering considerations and perspectives
CN113072402A (en) Method for producing microorganism-enhanced organic liquid fertilizer for hydroponics
JP6747731B1 (en) Method for producing nutrient solution for plant cultivation and method for plant cultivation
Zhu-Barker et al. Nitrous oxide production from soils in the future: Processes, controls, and responses to climate change
Hill et al. Development and validation of a comprehensive model of large-scale production of microalgae
Egli On the use of anammox in treating ammonium-rich wastewater
Singh Integrated nutrient management
Chaiprapat et al. Modeling nitrogen transport in duckweed pond for secondary treatment of swine wastewater
Aung et al. Observational study of wastewater treatment by the use of microalgae
EP3649089B1 (en) Method for the production of organic fertilizer based on ammonium and/or nitrate
Sugiharta et al. Electrolysis of water using iron electrode to boost the growth of hydroponic plant of water spinach
JP7485272B2 (en) Plant Growth Promoters
KR20150088727A (en) A nitrification batch co-culturing of autotrophic algae and nitrifier
US20220162132A1 (en) Method and System for Providing Plants with Water Comprising a High Nitrate Content
Uchimura et al. Treatment of anaerobic digestion effluent of sewage sludge using soilless cultivation
JP2003000061A (en) Method for forcing cultivation
Le Quillec et al. Potential of a bioreactor applied to nutrient solutions in a soilless tomato crop
Raj et al. Effect of C/N ratio on water quality using distillery spent wash as a carbon source in indoor aerobic microbial floc tanks
WO2023286090A1 (en) Bioreactor system and process for nitrate production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200106

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200106

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200803

R150 Certificate of patent or registration of utility model

Ref document number: 6747731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250