JP6747147B2 - Method for producing heteroacene derivative - Google Patents

Method for producing heteroacene derivative Download PDF

Info

Publication number
JP6747147B2
JP6747147B2 JP2016150245A JP2016150245A JP6747147B2 JP 6747147 B2 JP6747147 B2 JP 6747147B2 JP 2016150245 A JP2016150245 A JP 2016150245A JP 2016150245 A JP2016150245 A JP 2016150245A JP 6747147 B2 JP6747147 B2 JP 6747147B2
Authority
JP
Japan
Prior art keywords
heteroacene derivative
purity
group
heteroacene
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016150245A
Other languages
Japanese (ja)
Other versions
JP2018016606A (en
Inventor
渡辺 真人
真人 渡辺
さおり 上田
さおり 上田
真人 宮下
真人 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016150245A priority Critical patent/JP6747147B2/en
Publication of JP2018016606A publication Critical patent/JP2018016606A/en
Application granted granted Critical
Publication of JP6747147B2 publication Critical patent/JP6747147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、有機半導体材料等の電子材料への展開が可能なヘテロアセン誘導体の新規な製造方法に関するものであり、特に簡便に高純度を与えるヘテロアセン誘導体の製造方法に関するものである。 The present invention relates to a novel method for producing a heteroacene derivative that can be applied to electronic materials such as organic semiconductor materials, and more particularly to a method for producing a heteroacene derivative that provides high purity in a simple manner.

有機薄膜トランジスタに代表される有機半導体デバイスは、省エネルギー、低コスト及びフレキシブルといった無機半導体デバイスにはない特徴を有することから近年注目されている。この有機半導体デバイスは、有機半導体層、基板、絶縁層、電極等の数種類の材料から構成され、中でも電荷のキャリア移動を担う有機半導体層は該デバイスの中心的な役割を有している。そして、有機半導体デバイス性能は、この有機半導体層を構成する有機半導体材料のキャリア移動度により左右されることから、高キャリア移動度を与える有機半導体材料の出現が所望されている。 Organic semiconductor devices typified by organic thin film transistors have recently attracted attention because they have characteristics such as energy saving, low cost, and flexibility that are not found in inorganic semiconductor devices. This organic semiconductor device is composed of several kinds of materials such as an organic semiconductor layer, a substrate, an insulating layer, and an electrode. Among them, the organic semiconductor layer responsible for carrier transfer of electric charge plays a central role in the device. Since the performance of the organic semiconductor device depends on the carrier mobility of the organic semiconductor material forming the organic semiconductor layer, the advent of an organic semiconductor material that gives high carrier mobility is desired.

有機半導体層を作製する方法としては、高温真空下、有機材料を気化させて実施する真空蒸着法、有機材料を適当な溶媒に溶解させその溶液を塗布する塗布法等の方法が一般的に知られている。このうち、塗布法においては、高温高真空条件を用いることなく印刷技術を用いても実施することができるため、デバイス作製の大幅な製造コストの削減を図ることが期待でき、経済的に好ましいプロセスである。 As a method for forming an organic semiconductor layer, generally known are a vapor deposition method in which an organic material is vaporized under a high temperature vacuum, a coating method in which an organic material is dissolved in an appropriate solvent and the solution is applied. Has been. Of these, the coating method can be carried out without using high-temperature high-vacuum conditions even if a printing technique is used. Therefore, it is expected that a large reduction in manufacturing cost of device fabrication can be expected, and an economically preferable process. Is.

このような塗布法に使用される有機半導体材料の製造に関して、通常、溶媒への溶解性を利用してカラムクロマトグラフィー等の分離方法により不純物を除去する精製方法が使用されている。しかし、カラムクロマトグラフィー(フラッシュクロマトグラフィーを含む)は多量のシリカゲル等の分離剤を用い、ヘキサン及びトルエン等の多量の溶媒を使用することから経済的、環境的に好ましいプロセスではない。一方、有機半導体材料の純度はキャリア移動度等の電気物性に影響を与えることから、99.0%以上の高純度が求められるが、これまで経済的及び環境的に好ましい精製方法は殆ど知られていないのが現状であった。 Regarding the production of the organic semiconductor material used in such a coating method, a purification method of removing impurities by a separation method such as column chromatography utilizing solubility in a solvent is usually used. However, column chromatography (including flash chromatography) is not an economically and environmentally preferable process because it uses a large amount of a separating agent such as silica gel and a large amount of a solvent such as hexane and toluene. On the other hand, since the purity of the organic semiconductor material affects electrical properties such as carrier mobility, a high purity of 99.0% or higher is required. However, most economically and environmentally preferable purification methods have heretofore been known. That was not the case.

ここで、一般に、低分子系の半導体は、高分子系の半導体と比べて結晶性が高いため高キャリア移動度を発現しやすいことが知られている。そして現在、低分子系材料としては、ジアルキル置換ベンゾチエノベンゾチオフェン(例えば、特許文献1参照。)、2,7−ジヘキシルジチエノベンゾジチオフェン(例えば、特許文献2参照。)等が提案されている。 Here, it is generally known that a low-molecular-weight semiconductor has a higher crystallinity than a high-molecular-weight semiconductor and thus easily exhibits high carrier mobility. At present, dialkyl-substituted benzothienobenzothiophenes (see, for example, Patent Document 1), 2,7-dihexyldithienobenzodithiophenes (see, for example, Patent Document 2), etc. have been proposed as low-molecular materials. There is.

しかし、特許文献1に記載されたジアルキル置換ベンゾチエノベンゾチオフェン又は特許文献2に記載のジアルキル置換ジチエノベンゾジチオフェンは、カラムクロマトグラフィーにより精製することで高純度化されており、より簡便に高純度のヘテロアセン誘導体を製造する方法が望まれていた。 However, the dialkyl-substituted benzothienobenzothiophene described in Patent Document 1 or the dialkyl-substituted dithienobenzodithiophene described in Patent Document 2 is highly purified by purification by column chromatography, and is more easily and highly purified. A method for producing a pure heteroacene derivative has been desired.

WO2008/047896号公報WO2008/047896 特開2012/206952号公報JP, 2012/206952, A

本発明は、上記課題に鑑みてなされたものであり、その目的は、高純度なヘテロアセン誘導体の簡便な製造方法を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a simple method for producing a highly pure heteroacene derivative.

本発明者は、上記課題を解決するため鋭意検討の結果、ヘテロアセン誘導体の溶液と特定の吸着剤を接触させた後、再結晶する工程を含む製造方法を用いることにより、効率良く高純度なヘテロアセン誘導体を製造する方法を見出し、本発明を完成するに到った。 MEANS TO SOLVE THE PROBLEM As a result of earnest study for solving the above-mentioned subject, this inventor has contacted a solution of a heteroacene derivative with a specific adsorbent, and then uses a production method including a step of recrystallizing the heteroacene efficiently and with high purity. The inventors have found a method for producing a derivative and have completed the present invention.

即ち、本発明は、ヘテロアセン誘導体の溶液を極性不純物吸着剤と接触させた後、再結晶する工程を含む高純度ヘテロアセン誘導体の製造方法であり、該ヘテロアセン誘導体が分子内に一つ以上のチオフェン環を含む4から7縮合環構造を有するヘテロアセン誘導体であり、該極性不純物吸着剤が該ヘテロアセン誘導体のアルキル基に二重結合を有するもの及び/又は縮合環部にヒドロキシ基若しくはカルボニル基を有するものを吸着除去する吸着剤であることを特徴とする高純度ヘテロアセン誘導体の製造方法に関するものである。 That is, the present invention is a method for producing a high-purity heteroacene derivative, which comprises a step of contacting a solution of a heteroacene derivative with a polar impurity adsorbent and then recrystallizing the heteroacene derivative, wherein the heteroacene derivative contains one or more thiophene rings. A heteroacene derivative having a condensed ring structure of 4 to 7 containing, wherein the polar impurity adsorbent has a double bond in the alkyl group of the heteroacene derivative and/or a compound having a hydroxy group or a carbonyl group in the condensed ring portion. The present invention relates to a method for producing a high-purity heteroacene derivative, which is an adsorbent that is removed by adsorption.

以下に本発明を詳細に説明する。 The present invention will be described in detail below.

本発明は、分子内に一つ以上のチオフェン環を含む4から7縮合環構造を有する高純度ヘテロアセン誘導体の製造方法に関するものであり、簡便に高純度ヘテロアセン誘導体を製造できることを特徴とする。ここで、本発明において、「高純度ヘテロアセン誘導体」とは、99.0%以上の高純度のヘテロアセン誘導体をいうものである。 The present invention relates to a method for producing a high-purity heteroacene derivative having a 4 to 7 condensed ring structure containing one or more thiophene rings in the molecule, and is characterized in that a high-purity heteroacene derivative can be easily produced. Here, in the present invention, the “high-purity heteroacene derivative” refers to a 99.0% or more high-purity heteroacene derivative.

本発明の分子内に一つ以上のチオフェン環を含む4から7縮合環構造のヘテロアセン誘導体は、より具体的には下記一般式(1)〜(10)で示されるヘテロアセン誘導体が挙げられる。 Specific examples of the heteroacene derivative having a 4 to 7 condensed ring structure containing one or more thiophene rings in the molecule of the present invention include heteroacene derivatives represented by the following general formulas (1) to (10).

(ここで、置換基R及びRはそれぞれ独立して、水素、又は炭素数1〜20のアルキル基を示す。)
上記一般式(1)〜(10)で示される誘導体において、置換基R及びRは、それぞれ独立して、水素、又は炭素数1〜20のアルキル基を示す。
(Here, the substituents R 1 and R 2 each independently represent hydrogen or an alkyl group having 1 to 20 carbon atoms.)
In the derivatives represented by the general formulas (1) to (10), the substituents R 1 and R 2 each independently represent hydrogen or an alkyl group having 1 to 20 carbon atoms.

置換基R及びRにおける炭素数1〜20のアルキル基は、例えば、メチル基、エチル基、n−プロピル基、n−ブチル基、イソブチル基、n−ペンチル基、n−ヘキシル基、イソヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−テトラデシル基、n−オクタデシル基、2−エチルヘキシル基、3−エチルヘプチル基、3−エチルデシル、2−ヘキシルデシル基等の直鎖又は分岐アルキル基である。そして、その中でも特に高移動度及び高溶解性を示すヘテロアセン誘導体となることから、炭素数3〜12のアルキル基が好ましく、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基である炭素数4〜12の直鎖アルキル基がさらに好ましい。 The alkyl group having 1 to 20 carbon atoms in the substituents R 1 and R 2 is, for example, methyl group, ethyl group, n-propyl group, n-butyl group, isobutyl group, n-pentyl group, n-hexyl group, isohexyl group. Group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tetradecyl group, n-octadecyl group, 2-ethylhexyl group, 3-ethyl It is a linear or branched alkyl group such as a heptyl group, 3-ethyldecyl group, and 2-hexyldecyl group. And, since it becomes a heteroacene derivative showing particularly high mobility and high solubility among them, an alkyl group having 3 to 12 carbon atoms is preferable, and n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group More preferred is a linear alkyl group having 4 to 12 carbon atoms, which is a group, an n-octyl group, an n-nonyl group, an n-decyl group, an n-undecyl group, or an n-dodecyl group.

本発明の分子内に一つ以上のチオフェン環を含む4から7縮合環構造のヘテロアセン誘導体は、高移動度のため縮合環数が5のヘテロアセン誘導体であることが好ましく、分子内に二つ以上のチオフェン環を含むヘテロアセン誘導体であることがさらに好ましい。これらの中でも室温で1重量%以上の高溶解性、150℃以上の高融点、及び1.0cm/V・sec以上の高移動度を持つ一般式(2)のヘテロアセン誘導体が特に好ましい。 The heteroacene derivative having a 4 to 7 condensed ring structure containing one or more thiophene rings in the molecule of the present invention is preferably a heteroacene derivative having 5 condensed rings because of its high mobility, and two or more in the molecule. More preferably, it is a heteroacene derivative containing a thiophene ring. Among these, the heteroacene derivative represented by the general formula (2) having a high solubility of 1% by weight or more at room temperature, a high melting point of 150° C. or more, and a high mobility of 1.0 cm 2 /V·sec or more is particularly preferable.

本発明の一般式(1)〜(10)で示されるヘテロアセン誘導体の具体的例示としては、以下のものを挙げることができる。 The following can be mentioned as specific examples of the heteroacene derivatives represented by the general formulas (1) to (10) of the present invention.

本発明の高純度ヘテロアセン誘導体の製造方法では、不純物を含むヘテロアセン誘導体を合成で得る。該ヘテロアセン誘導体を合成する方法としては、ヘテロアセン誘導体を合成することが可能であれば如何なる方法であってもよい。 In the method for producing a high-purity heteroacene derivative of the present invention, a heteroacene derivative containing impurities can be obtained by synthesis. The method for synthesizing the heteroacene derivative may be any method as long as the heteroacene derivative can be synthesized.

本発明の高純度ヘテロアセン誘導体の製造方法は、分子内に一つ以上のチオフェン環を含む4から7縮合環構造のヘテロアセン誘導体(上記合成で得られたヘテロアセン誘導体)の溶液を極性不純物吸着剤と接触させた後、再結晶する工程を含むものである。ここで、本発明において、「極性不純物吸着剤」は、極性不純物を選択的に吸着除去するものである。また、本発明において、「極性不純物」とは、該ヘテロアセン誘導体のアルキル基に二重結合を有するもの、及び/又は縮合環部にヒドロキシ基若しくはカルボニル基を有するものをいうものである。 The method for producing a high-purity heteroacene derivative of the present invention is a method in which a solution of a heteroacene derivative having a 4 to 7 condensed ring structure containing at least one thiophene ring in the molecule (heteroacene derivative obtained by the above synthesis) is used as a polar impurity adsorbent. After the contact, the step of recrystallizing is included. Here, in the present invention, the “polar impurity adsorbent” is one for selectively adsorbing and removing polar impurities. Further, in the present invention, the “polar impurity” refers to the heteroacene derivative having a double bond in the alkyl group and/or the heterocyclic derivative having a hydroxy group or a carbonyl group in the condensed ring portion.

本発明において、極性不純物吸着剤は、該極性不純物吸着剤により吸着除去された極性不純物の量と溶液中に存在する極性不純物の量の比を1.0以上とするものであり、高純度化のため、2.0以上とするものであることが好ましい。 In the present invention, the polar impurity adsorbent is such that the ratio of the amount of polar impurities adsorbed and removed by the polar impurity adsorbent to the amount of polar impurities present in the solution is 1.0 or more, and high purification is achieved. Therefore, it is preferably 2.0 or more.

本発明における極性不純物吸着剤としては、例えば、活性アルミナ、ゼオライト、フロリジル、活性白土等を挙げることができ、不純物をより選択的に除去できることから、活性アルミナ、活性白土が好ましく、活性アルミナがさらに好ましい。また、これら極性不純物吸着剤は1種又は2種以上の混合物を用いても良い。 As the polar impurity adsorbent in the present invention, for example, activated alumina, zeolite, florisil, activated clay and the like can be mentioned. Since impurities can be removed more selectively, activated alumina and activated clay are preferable, and activated alumina is more preferable. preferable. In addition, these polar impurity adsorbents may be used alone or in combination of two or more.

前記ヘテロアセン誘導体と極性不純物吸着剤を接触させる場合、接触効率が増大することから、溶液状態で行うことが好ましく、該溶液の調製に用いる溶剤は、特に限定はなく、例えば、トルエン、キシレン、メシチレン、テトラリン、インダン、ビフェニル、エチルベンゼン、オクチルベンゼン等の芳香族の炭化水素系溶剤;o−ジクロロベンゼン、クロロベンゼン、トリクロロベンゼン、1,2−ジクロロエタン、1,1,2,2−テトラクロロエタン、クロロホルム、ジクロロメタン等のハロゲン系溶剤;テトラヒドロフラン(以後、THFと略す)、ジオキサン等のエーテル系溶剤;酢酸エチル、γ−ブチロラクトン等のエステル系溶剤;N,N−ジメチルホルムアミド、N−メチルピロリドン等のアミド系溶剤等が挙げられる。また、これら溶剤は1種又は2種以上の混合物を用いても良い。中でも、高溶解性のため芳香族の炭化水素系溶剤が好ましく、トルエン、キシレン、メシチレン、テトラリンがさらに好ましい。 When the heteroacene derivative and the polar impurity adsorbent are brought into contact with each other, it is preferable to carry out the reaction in a solution state because the contact efficiency is increased. The solvent used for preparing the solution is not particularly limited, and examples thereof include toluene, xylene and mesitylene. , Tetralin, indane, biphenyl, ethylbenzene, octylbenzene, and other aromatic hydrocarbon solvents; o-dichlorobenzene, chlorobenzene, trichlorobenzene, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, chloroform, Halogen-based solvents such as dichloromethane; tetrahydrofuran (hereinafter abbreviated as THF), ether-based solvents such as dioxane; ester-based solvents such as ethyl acetate and γ-butyrolactone; amide-based solvents such as N,N-dimethylformamide and N-methylpyrrolidone Examples include solvents. Moreover, these solvents may use 1 type or a mixture of 2 or more types. Among them, aromatic hydrocarbon solvents are preferable because of their high solubility, and toluene, xylene, mesitylene, and tetralin are more preferable.

ヘテロアセン誘導体の溶液を極性不純物吸着剤と接触する際の温度は、例えば、0〜80℃が挙げられ、不純物の吸着効率が高いことから10〜60℃が好ましく、さらに好ましくは20〜40℃である。接触時間としては、極性不純物吸着剤により異なるが、1分〜10時間とすることが挙げられる
ヘテロアセン誘導体の溶液が極性不純物吸着剤と接触している間は、不純物の吸着除去の効率が高いことから攪拌することが好ましく、50〜300rpmの攪拌速度がさらに好ましく、100〜200rpmの攪拌速度が特に好ましい。接触方法は特に限定はなく、例えば容器中のヘテロアセン誘導体の溶液に、極性不純物吸着剤を添加しても良いし、極性不純物吸着剤を充填したカラムにヘテロアセン誘導体の溶液を通過させる等の方法を採用することができる。より簡便であることからヘテロアセン誘導体の溶液に極性不純物吸着剤を添加することが好ましい。
The temperature at which the solution of the heteroacene derivative is brought into contact with the polar impurity adsorbent is, for example, 0 to 80°C, and is preferably 10 to 60°C because of high impurity adsorption efficiency, and more preferably 20 to 40°C. is there. The contact time varies depending on the polar impurity adsorbent, but it may be 1 minute to 10 hours. While the heteroacene derivative solution is in contact with the polar impurity adsorbent, the efficiency of adsorbing and removing impurities is high. The stirring speed of 50 to 300 rpm is more preferable, and the stirring speed of 100 to 200 rpm is particularly preferable. The contact method is not particularly limited, and for example, a solution of the heteroacene derivative in the container may be added with a polar impurity adsorbent, or a method of passing the solution of the heteroacene derivative through a column filled with the polar impurity adsorbent may be used. Can be adopted. It is preferable to add the polar impurity adsorbent to the solution of the heteroacene derivative because it is simpler.

ヘテロアセン誘導体の溶液を調製する際の濃度は、溶剤及び温度により変えることができ、精製効率向上のため、溶剤に対し0.01〜10.0重量%であることが好ましい。 The concentration at the time of preparing the solution of the heteroacene derivative can be changed depending on the solvent and the temperature, and is preferably 0.01 to 10.0% by weight with respect to the solvent in order to improve purification efficiency.

極性不純物吸着剤の使用量は極性不純物吸着剤により異なり、例えば、ヘテロアセン誘導体に対し1〜1,000重量%とすることが挙げられ、高収率のため20〜500重量%であることが好ましく、30〜300重量%であることがさらに好ましい。 The amount of the polar impurity adsorbent used varies depending on the polar impurity adsorbent, and is, for example, 1 to 1,000% by weight with respect to the heteroacene derivative, and is preferably 20 to 500% by weight for high yield. , 30 to 300% by weight is more preferable.

ヘテロアセン誘導体の溶液の調製及び極性不純物吸着剤との接触は空気中でも実施することができるが、純度向上のため、窒素、アルゴン等の不活性雰囲気下で行うことが好ましい。吸着操作が終了した後は、濾過することで該極性不純物吸着剤を除去し、溶液部分のみを取り出すことができる。 The preparation of the solution of the heteroacene derivative and the contact with the polar impurity adsorbent can be carried out in air, but in order to improve the purity, it is preferably carried out under an inert atmosphere such as nitrogen or argon. After the adsorption operation is completed, the polar impurity adsorbent can be removed by filtration and only the solution portion can be taken out.

極性不純物吸着剤は予め焼成処理した後、使用することもできる。焼成温度は、吸着効率が向上することから、80〜1000℃が好ましく、さらに好ましくは100〜500℃、加熱時間は、焼成効果の向上のため、1〜24時間が好ましく、さらに好ましくは3〜20時間である。 The polar impurity adsorbent can also be used after being pre-baked. The baking temperature is preferably 80 to 1000° C., more preferably 100 to 500° C., since the adsorption efficiency is improved, and the heating time is preferably 1 to 24 hours, and more preferably 3 to 10 to improve the baking effect. 20 hours.

本発明では、極性不純物吸着剤と接触した後にヘテロアセン誘導体をさらに再結晶により精製するものである。ここで、本発明において、本発明に係る工程の順序を変更し、ヘテロアセン誘導体の再結晶の後極性不純物吸着剤と接触させる場合、得られるヘテロアセン誘導体の純度が劣るものとなる。この点に関し、ヘテロアセン誘導体の合成直後に得られる溶液ではヘテロアセン誘導体と極性不純物とが溶解しているところ、何らの操作をせずに該溶液を再結晶すると、該ヘテロアセン誘導体と極性不純物との共析した物質が得られ、精製の効率が低下する。そして、このまま極性不純物吸着剤を適用する場合には、該共析した極性不純物を除去できず、ヘテロアセン誘導体の純度が低下してしまう。これに対し、再結晶前の溶液に予め極性不純物吸着剤を適用すれば、該溶液中の極性不純物を低減することで共析の防止が可能となり、該ヘテロアセン誘導体の純度を向上させることができる。 In the present invention, the heteroacene derivative is further purified by recrystallization after contact with the polar impurity adsorbent. Here, in the present invention, when the order of the steps according to the present invention is changed and the heteroacene derivative is recrystallized and then brought into contact with a polar impurity adsorbent, the purity of the obtained heteroacene derivative becomes poor. In this regard, in the solution obtained immediately after the synthesis of the heteroacene derivative, the heteroacene derivative and the polar impurity are dissolved, and when the solution is recrystallized without any operation, the heteroacene derivative and the polar impurity are The precipitated substance is obtained and the efficiency of purification is reduced. When the polar impurity adsorbent is applied as it is, the co-deposited polar impurities cannot be removed, and the purity of the heteroacene derivative decreases. On the other hand, if a polar impurity adsorbent is applied to the solution before recrystallization in advance, it is possible to prevent the eutectoid by reducing the polar impurities in the solution and improve the purity of the heteroacene derivative. ..

再結晶に用いる溶剤としては、例えば、ヘキサン、ヘプタン、オクタン、トルエン、キシレン、THF、酢酸エチル、クロロホルム、クロロベンゼン、ジクロロベンゼン等を挙げることができ、さらに高純度なヘテロアセン誘導体とすることができることから、ヘキサン、ヘプタン、トルエン、キシレンが好ましい。これらの溶剤は任意の割合の混合物であってもよい。 Examples of the solvent used for recrystallization include hexane, heptane, octane, toluene, xylene, THF, ethyl acetate, chloroform, chlorobenzene, dichlorobenzene, and the like, and since a highly pure heteroacene derivative can be obtained. , Hexane, heptane, toluene and xylene are preferred. These solvents may be a mixture in any proportion.

本発明に係る再結晶では、加熱によりヘテロアセン誘導体の溶液を調製して実施する。この際の溶液の濃度は、不純物を効率よく除去するため、0.01〜12.0重量%の範囲であることが好ましく、0.05〜9.0重量%の範囲がさらに好ましい。該溶液を冷却することでヘテロアセン誘導体の結晶を析出させ単離するが、単離する際の最終的な冷却温度は、純度及び回収率向上のため、−20℃から40℃の範囲であることが好ましく、0℃から30℃の範囲にあることがさらに好ましい。なお、純度の測定は液体クロマトグラフィーにより分析することが可能である。 The recrystallization according to the present invention is performed by heating to prepare a solution of the heteroacene derivative. The concentration of the solution at this time is preferably in the range of 0.01 to 12.0% by weight, and more preferably in the range of 0.05 to 9.0% by weight in order to remove impurities efficiently. Crystals of the heteroacene derivative are precipitated and isolated by cooling the solution, but the final cooling temperature at the time of isolation is in the range of -20°C to 40°C in order to improve the purity and the recovery rate. Is preferable, and it is more preferable that the temperature is in the range of 0°C to 30°C. The purity can be measured by liquid chromatography.

本発明のヘテロアセン誘導体の製造方法により得られた高純度ヘテロアセン誘導体は有機トランジスタの塗布型有機半導体材料として使用することができる。 The high-purity heteroacene derivative obtained by the method for producing a heteroacene derivative of the present invention can be used as a coating type organic semiconductor material for an organic transistor.

本発明のヘテロアセン誘導体の製造方法は、簡便に高収率で高純度のヘテロアセン誘導体を製造することができ、高純度を必要とする有機電子材料の用途から、その効果は極めて高いものである。 INDUSTRIAL APPLICABILITY The method for producing a heteroacene derivative of the present invention can easily produce a high-purity heteroacene derivative in a high yield, and its effect is extremely high from the use of an organic electronic material requiring high purity.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

生成物の同定にはH NMRスペクトル、ガスクロマトフラフィー−マススペクトル(GCMS)、及び液体クロマトグラフィー−マススペクトル(LCMS)分析を用いた。 1 H NMR spectrum, gas chromatography-mass spectrum (GCMS), and liquid chromatography-mass spectrum (LCMS) analysis were used to identify the product.

H NMRスペクトル分析>
装置;日本電子製、(商品名)Delta V5(400MHz)
<ガスクロマトグラフィー−マススペクトル分析>
装置;パーキンエルマー製、(商品名)オートシステムXL(MS部;ターボマスゴールド)
カラム;J&Wサイエンティフィック社製、(商品名)DB−1,30m。
MSイオン化;電子衝突(EI)法(70エレクトロンボルト)
<液体クロマトグラフィー−マススペクトル(LCMS)分析>
装置;ブルカー・ダルトニクス、(商品名)microTOF focus
MSイオン化;大気圧化学イオン化(APCI)法
LC条件;下記液体クロマトグラフィー分析の項目にて記載の条件
反応の進行の確認等は薄層クロマトグラフィー、ガスクロマトグラフィー(GC)、液体クロマトグラフィー(LC)分析を用いた。
< 1 H NMR spectrum analysis>
Device: JEOL, (trade name) Delta V5 (400MHz)
<Gas chromatography-mass spectrum analysis>
Equipment: Perkin Elmer, (trade name) Auto System XL (MS part: Turbomass Gold)
Column: (trade name) DB-1, 30 m manufactured by J&W Scientific.
MS ionization; electron impact (EI) method (70 electron volts)
<Liquid chromatography-mass spectrum (LCMS) analysis>
Equipment: Bruker Daltonics, (trade name) microTOF focus
MS ionization; atmospheric pressure chemical ionization (APCI) method LC conditions; conditions described in the item of liquid chromatography analysis below. Confirmation of reaction progress is confirmed by thin layer chromatography, gas chromatography (GC), liquid chromatography (LC). ) Analysis was used.

<ガスクロマトグラフィー分析>
装置;島津製作所製、(商品名)GC14B
カラム;J&Wサイエンティフィック社製、(商品名)DB−1,30m
ヘテロアセン誘導体の純度測定は液体クロマトグラフィー分析を用いた。
<Gas chromatography analysis>
Equipment: Shimadzu, (trade name) GC14B
Column; J&W Scientific, (trade name) DB-1,30m
Liquid chromatographic analysis was used to measure the purity of the heteroacene derivative.

<液体クロマトグラフィー分析>
装置;東ソー製(コントローラー;PX−8020、ポンプ;CCPM−II、デガッサー;SD−8022)
カラム;東ソー製、(商品名)ODS−100V、5μm、4.6mm×250mm
カラム温度;30℃
溶離液;ジクロロメタン:アセトニトリル=2:8(容積比)
流速;1.0ml/分
検出器;UV(東ソー製、(商品名)UV−8020、波長;254nm)。
<Liquid chromatography analysis>
Device: Tosoh (Controller: PX-8020, Pump: CCPM-II, Degasser: SD-8022)
Column: manufactured by Tosoh, (trade name) ODS-100V, 5 μm, 4.6 mm×250 mm
Column temperature; 30℃
Eluent; dichloromethane:acetonitrile = 2:8 (volume ratio)
Flow rate: 1.0 ml/min Detector: UV (manufactured by Tosoh Corporation, (trade name) UV-8020, wavelength: 254 nm).

上記一般式(2)で示されるヘテロアセン誘導体は、特開2013/69752号公報に記載されている方法で合成した。 The heteroacene derivative represented by the above general formula (2) was synthesized by the method described in JP2013/69752A.

実施例1
(ジn−ヘキシルジチエノベンゾジチオフェンの合成)
窒素雰囲気下、1l三口フラスコにジn−ヘキサノイルジチエノベンゾジチオフェン4.00g(8.02mmol)及びTHF200mlを添加した。0℃に冷却後、塩化アルミニウム(和光純薬工業)5.36g(40.2mmol)及び水素化ホウ素ナトリウム(和光純薬工業)3.04g(80.4mmol)を添加した。この混合物を加熱還流下で5時間攪拌後、水冷し水を添加して反応を停止させた。トルエンで抽出し、有機相を1M塩酸及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧濃縮し、さらに真空ポンプで乾燥し、3.47gの黄色固体を得た。得られたジn−ヘキシルジチエノベンゾジチオフェンの純度は液体クロマトグラフィーより94.05%であった。
(活性アルミナ/活性炭同時吸着、及び再結晶)
窒素雰囲気下、100ml一口フラスコに、得られたジn−ヘキシルジチエノベンゾジチオフェン400mg及びトルエン62mlを添加し固体を溶解させた。120rpmの攪拌下、ここへ活性アルミナ(和光純薬工業)800mgを添加し、10分間攪拌した。さらに120rpmの攪拌下、活性炭(和光純薬工業)200mgを添加し、10分間攪拌した。静置後、上澄を濾過し、減圧濃縮及び真空ポンプで乾燥し、345mgの淡黄色固体を得た(収率86.2%)。得られたジn−ヘキシルジチエノベンゾジチオフェンの純度は液体クロマトグラフィーより96.15%であった。
Example 1
(Synthesis of di-n-hexyldithienobenzodithiophene)
Under a nitrogen atmosphere, 4.00 g (8.02 mmol) of di-n-hexanoyldithienobenzodithiophene and 200 ml of THF were added to a 1-liter three-necked flask. After cooling to 0° C., 5.36 g (40.2 mmol) of aluminum chloride (Wako Pure Chemical Industries) and 3.04 g (80.4 mmol) of sodium borohydride (Wako Pure Chemical Industries) were added. This mixture was stirred under heating under reflux for 5 hours, cooled with water, and water was added to stop the reaction. It was extracted with toluene, the organic phase was washed with 1M hydrochloric acid and saturated saline, and dried over anhydrous sodium sulfate. It was concentrated under reduced pressure and further dried by a vacuum pump to obtain 3.47 g of a yellow solid. The purity of the obtained di-n-hexyldithienobenzodithiophene was 94.05% by liquid chromatography.
(Simultaneous adsorption of activated alumina/activated carbon and recrystallization)
Under a nitrogen atmosphere, 400 mg of the obtained di-n-hexyldithienobenzodithiophene and 62 ml of toluene were added to a 100 ml one neck flask to dissolve the solid. While stirring at 120 rpm, 800 mg of activated alumina (Wako Pure Chemical Industries, Ltd.) was added thereto, and the mixture was stirred for 10 minutes. Further, under stirring at 120 rpm, 200 mg of activated carbon (Wako Pure Chemical Industries, Ltd.) was added and stirred for 10 minutes. After standing still, the supernatant was filtered, concentrated under reduced pressure and dried by a vacuum pump to obtain 345 mg of a pale yellow solid (yield 86.2%). The purity of the obtained di-n-hexyldithienobenzodithiophene was 96.15% by liquid chromatography.

得られた固体にトルエン3.9ml及びヘキサン0.65mlを添加し、90℃に加熱し溶解させた。室温まで冷却後、析出した結晶を濾過した。真空ポンプで乾燥し、281mgの淡黄色板状結晶を得た(収率81.4%)。得られたジn−ヘキシルジチエノベンゾジチオフェンの純度は液体クロマトグラフィーより98.69%であった。 To the obtained solid, 3.9 ml of toluene and 0.65 ml of hexane were added, and the mixture was heated to 90°C and dissolved. After cooling to room temperature, the precipitated crystals were filtered. It was dried by a vacuum pump to obtain 281 mg of pale yellow plate crystals (yield 81.4%). The purity of the obtained di-n-hexyldithienobenzodithiophene was 98.69% by liquid chromatography.

得られた固体にトルエン3.4mlを添加し、90℃に加熱し溶解させた。室温まで冷却後、析出した結晶を濾過した。真空ポンプで乾燥し、256mgの淡黄色板状結晶を得た(収率91.1%)。得られたジn−ヘキシルジチエノベンゾジチオフェンの純度は液体クロマトグラフィーより99.33%であった。 Toluene (3.4 ml) was added to the obtained solid, and the mixture was heated to 90° C. and dissolved. After cooling to room temperature, the precipitated crystals were filtered. It was dried by a vacuum pump to obtain 256 mg of pale yellow plate crystals (yield 91.1%). The purity of the obtained di-n-hexyldithienobenzodithiophene was 99.33% by liquid chromatography.

活性アルミナ及び活性炭による同時吸着、2回の再結晶の収率は64.0%であった。 Simultaneous adsorption with activated alumina and activated carbon, the yield of two recrystallizations was 64.0%.

実施例2
(ジn−ヘキシルジチエノベンゾジチオフェンの合成)
実施例1と同様の方法により、ジn−ヘキシルジチエノベンゾジチオフェンを得た(純度は液体クロマトグラフィーより94.05%)。
Example 2
(Synthesis of di-n-hexyldithienobenzodithiophene)
By the same method as in Example 1, di-n-hexyldithienobenzodithiophene was obtained (purity is 94.05% by liquid chromatography).

(活性アルミナ吸着、活性炭吸着、及び再結晶)
窒素雰囲気下、100ml一口フラスコに、得られたジn−ヘキシルジチエノベンゾジチオフェン400mg及びトルエン62mlを添加し固体を溶解させた。120rpmの攪拌下、ここへ活性アルミナ(和光純薬工業)800mgを添加し、10分間攪拌した。静置後、上澄を濾過し、減圧濃縮及び真空ポンプで乾燥し、384mgの黄色固体を得た(収率96.0%)。得られたジn−ヘキシルジチエノベンゾジチオフェンの純度は液体クロマトグラフィーより95.85%であった。
(Adsorption of activated alumina, adsorption of activated carbon, and recrystallization)
Under a nitrogen atmosphere, 400 mg of the obtained di-n-hexyldithienobenzodithiophene and 62 ml of toluene were added to a 100 ml one neck flask to dissolve the solid. While stirring at 120 rpm, 800 mg of activated alumina (Wako Pure Chemical Industries, Ltd.) was added thereto, and the mixture was stirred for 10 minutes. After standing still, the supernatant was filtered, concentrated under reduced pressure and dried by a vacuum pump to obtain 384 mg of a yellow solid (yield 96.0%). The purity of the obtained di-n-hexyldithienobenzodithiophene was 95.85% by liquid chromatography.

得られた固体にトルエン62mlを添加し固体を溶解させた。120rpmの攪拌下、活性炭(和光純薬工業)200mgを添加し、10分間攪拌した。静置後、上澄を濾過し、減圧濃縮及び真空ポンプで乾燥し、340mgの淡黄色固体を得た(収率88.5%、活性アルミナ吸着と活性炭吸着後の収率は85.0%)。得られたジn−ヘキシルジチエノベンゾジチオフェンの純度は液体クロマトグラフィーより96.41%であった。 To the obtained solid, 62 ml of toluene was added to dissolve the solid. Under stirring at 120 rpm, 200 mg of activated carbon (Wako Pure Chemical Industries, Ltd.) was added and stirred for 10 minutes. After standing still, the supernatant was filtered, concentrated under reduced pressure and dried by a vacuum pump to obtain 340 mg of a pale yellow solid (yield 88.5%, yield after activated alumina adsorption and activated carbon adsorption 85.0%). ). The purity of the obtained di-n-hexyldithienobenzodithiophene was 96.41% by liquid chromatography.

実施例1と同様に2回再結晶を行い、251mgの淡黄色板状結晶を得た(収率73.8%)。得られたジn−ヘキシルジチエノベンゾジチオフェンの純度は液体クロマトグラフィーより99.48%であった。 Recrystallization was carried out twice in the same manner as in Example 1 to obtain 251 mg of pale yellow plate crystals (yield 73.8%). The purity of the obtained di-n-hexyldithienobenzodithiophene was 99.48% by liquid chromatography.

活性アルミナ吸着と活性炭吸着、及び2回の再結晶の収率は62.8%であった。 The yields of activated alumina adsorption, activated carbon adsorption, and recrystallization twice were 62.8%.

実施例3
(ジn−ヘキシルジチエノベンゾジチオフェンの合成)
実施例1と同様の方法により、ジn−ヘキシルジチエノベンゾジチオフェンを得た(純度は液体クロマトグラフィーより94.05%)。
Example 3
(Synthesis of di-n-hexyldithienobenzodithiophene)
By the same method as in Example 1, di-n-hexyldithienobenzodithiophene was obtained (purity is 94.05% by liquid chromatography).

(活性アルミナ吸着、及び再結晶)
窒素雰囲気下、100ml一口フラスコに、得られたジn−ヘキシルジチエノベンゾジチオフェン400mg及びトルエン62mlを添加し固体を溶解させた。120rpmの攪拌下、ここへ活性アルミナ(和光純薬工業)800mgを添加し、10分間攪拌した。静置後、上澄を濾過し、減圧濃縮及び真空ポンプで乾燥し、380mgの黄色固体を得た(収率95.0%)。得られたジn−ヘキシルジチエノベンゾジチオフェンの純度は液体クロマトグラフィーより95.95%であった。
(Adsorption of activated alumina and recrystallization)
Under a nitrogen atmosphere, 400 mg of the obtained di-n-hexyldithienobenzodithiophene and 62 ml of toluene were added to a 100 ml one neck flask to dissolve the solid. While stirring at 120 rpm, 800 mg of activated alumina (Wako Pure Chemical Industries, Ltd.) was added thereto, and the mixture was stirred for 10 minutes. After standing still, the supernatant was filtered, concentrated under reduced pressure and dried by a vacuum pump to obtain 380 mg of a yellow solid (yield 95.0%). The purity of the obtained di-n-hexyldithienobenzodithiophene was found to be 95.95% by liquid chromatography.

実施例1と同様に2回再結晶を行い、270mgの黄色板状結晶を得た(収率71.1%)。得られたジn−ヘキシルジチエノベンゾジチオフェンの純度は液体クロマトグラフィーより99.18%であった。 Recrystallization was performed twice in the same manner as in Example 1 to obtain 270 mg of yellow plate crystals (yield 71.1%). The purity of the obtained di-n-hexyldithienobenzodithiophene was 99.18% by liquid chromatography.

活性アルミナ吸着、及び2回の再結晶の収率は67.5%であった。 The yield of activated alumina adsorption and recrystallization twice was 67.5%.

比較例1
(ジn−ヘキシルジチエノベンゾジチオフェンの合成)
実施例1と同様の方法により、ジn−ヘキシルジチエノベンゾジチオフェンを得た(純度は液体クロマトグラフィーより94.05%)。
Comparative Example 1
(Synthesis of di-n-hexyldithienobenzodithiophene)
By the same method as in Example 1, di-n-hexyldithienobenzodithiophene was obtained (purity is 94.05% by liquid chromatography).

(シリカゲル吸着、活性炭吸着、及び再結晶)
窒素雰囲気下、100ml一口フラスコに、得られたジn−ヘキシルジチエノベンゾジチオフェン400mg及びトルエン62mlを添加し固体を溶解させた。120rpmの攪拌下、ここへシリカゲル(メルク社シリカゲル60)800mgを添加し、10分間攪拌した。静置後、上澄を濾過し、減圧濃縮及び真空ポンプで乾燥し、389mgの黄色固体を得た(収率97.3%)。得られたジn−ヘキシルジチエノベンゾジチオフェンの純度は液体クロマトグラフィーより94.41%であった。
(Silica gel adsorption, activated carbon adsorption, and recrystallization)
Under a nitrogen atmosphere, 400 mg of the obtained di-n-hexyldithienobenzodithiophene and 62 ml of toluene were added to a 100 ml one neck flask to dissolve the solid. Under stirring at 120 rpm, 800 mg of silica gel (Silica gel 60 manufactured by Merck & Co., Inc.) was added thereto and stirred for 10 minutes. After standing still, the supernatant was filtered, concentrated under reduced pressure and dried by a vacuum pump to obtain 389 mg of a yellow solid (yield 97.3%). The purity of the obtained di-n-hexyldithienobenzodithiophene was 94.41% by liquid chromatography.

得られた固体にトルエン62mlを添加し固体を溶解させた。120rpmの攪拌下、活性炭(和光純薬工業)200mgを添加し、10分間攪拌した。静置後、上澄を濾過し、減圧濃縮及び真空ポンプで乾燥し、342mgの淡黄色固体を得た(収率87.9%、シリカゲル吸着と活性炭吸着後の収率は85.5%)。得られたジn−ヘキシルジチエノベンゾジチオフェンの純度は液体クロマトグラフィーより95.06%であった。 To the obtained solid, 62 ml of toluene was added to dissolve the solid. Under stirring at 120 rpm, 200 mg of activated carbon (Wako Pure Chemical Industries, Ltd.) was added and stirred for 10 minutes. After standing still, the supernatant was filtered, concentrated under reduced pressure and dried by a vacuum pump to obtain 342 mg of a pale yellow solid (yield 87.9%, yield after silica gel adsorption and activated carbon adsorption 85.5%). .. The purity of the obtained di-n-hexyldithienobenzodithiophene was 95.06% by liquid chromatography.

実施例1と同様に2回再結晶を行い、246mgの淡黄色板状結晶を得た(収率72.0%)。得られたジn−ヘキシルジチエノベンゾジチオフェンの純度は液体クロマトグラフィーより97.86%であった。 Recrystallization was performed twice in the same manner as in Example 1 to obtain 246 mg of pale yellow plate crystals (yield 72.0%). The purity of the obtained di-n-hexyldithienobenzodithiophene was 97.86% by liquid chromatography.

シリカゲル吸着と活性炭吸着、及び2回の再結晶の収率は61.5%であった。 The yield of silica gel adsorption, activated carbon adsorption, and recrystallization twice was 61.5%.

従って、活性アルミナ吸着に代わりシリカゲル吸着及び活性炭吸着を用いる精製は本発明の精製に比べ、有機半導体材料として使用するには純度が低いことが判明した。 Therefore, it was found that the purification using silica gel adsorption and activated carbon adsorption instead of activated alumina adsorption had a lower purity for use as an organic semiconductor material than the purification of the present invention.

本発明のヘテロアセン誘導体の精製方法は、簡便に高収率で高純度のヘテロアセン誘導体を製造することができることから、高純度を必要とする有機トランジスタに代表される半導体デバイス材料としての適用が期待できる。 INDUSTRIAL APPLICABILITY Since the method for purifying a heteroacene derivative of the present invention can easily produce a high-purity heteroacene derivative in high yield, it can be expected to be applied as a semiconductor device material represented by an organic transistor requiring high purity. ..

Claims (1)

ヘテロアセン誘導体の溶液を活性アルミナまたは活性白土の少なくともいずれかの極性不純物吸着剤と攪拌下で接触させた後、再結晶する工程を含む高純度ヘテロアセン誘導体の製造方法であり、該ヘテロアセン誘導体が下記一般式(2)で示されるヘテロアセン誘導体であり、該極性不純物吸着剤が該ヘテロアセン誘導体のアルキル基に二重結合を有するもの及び/又は縮合環部にヒドロキシ基若しくはカルボニル基を有するものを吸着除去する吸着剤であることを特徴とする高純度ヘテロアセン誘導体の製造方法。
(ここで、置換基R 及びR はそれぞれ独立して、水素、又は炭素数1〜20のアルキル基を示す。)
After contacting with stirring and at least one polar impurity adsorbent activated alumina or activated clay to a solution of heteroacene derivatives, a process for producing a high-purity heteroacene derivative comprising the step of recrystallization, the heteroacene derivative is represented by the following general A heteroacene derivative represented by the formula (2), in which the polar impurity adsorbent has a double bond in the alkyl group of the heteroacene derivative and/or an adsorbent having a hydroxy group or a carbonyl group in the condensed ring portion. A method for producing a high-purity heteroacene derivative, which is an adsorbent.
(Here, the substituents R 1 and R 2 each independently represent hydrogen or an alkyl group having 1 to 20 carbon atoms.)
JP2016150245A 2016-07-29 2016-07-29 Method for producing heteroacene derivative Active JP6747147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016150245A JP6747147B2 (en) 2016-07-29 2016-07-29 Method for producing heteroacene derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016150245A JP6747147B2 (en) 2016-07-29 2016-07-29 Method for producing heteroacene derivative

Publications (2)

Publication Number Publication Date
JP2018016606A JP2018016606A (en) 2018-02-01
JP6747147B2 true JP6747147B2 (en) 2020-08-26

Family

ID=61075874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016150245A Active JP6747147B2 (en) 2016-07-29 2016-07-29 Method for producing heteroacene derivative

Country Status (1)

Country Link
JP (1) JP6747147B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2077590B1 (en) * 2006-10-20 2013-06-19 Nippon Kayaku Kabushiki Kaisha Field-effect transistor
JP5811542B2 (en) * 2010-06-15 2015-11-11 株式会社リコー Organic semiconductor material precursor comprising dithienobenzodithiophene derivative, ink, insulating member, and method for producing charge transporting member
JP5790069B2 (en) * 2011-03-29 2015-10-07 東ソー株式会社 Method for producing dithienobenzodithiophene derivative
JP2012206953A (en) * 2011-03-29 2012-10-25 Tosoh Corp Dithienobenzodithiophene derivative, and organic thin-film transistor using the same
CN103906754A (en) * 2011-11-02 2014-07-02 三菱化学株式会社 Process for producing fused-ring aromatic compound, and conjugated polymer

Also Published As

Publication number Publication date
JP2018016606A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP7038422B2 (en) Polycyclic aromatic derivative compounds and organic light emitting devices using them
KR101978650B1 (en) Intermediate for deuterated aromatic compounds and method of synthesizing deuterated aromatic compounds using the intermediate
TW201714869A (en) Organic electroluminescent devices and material thereof
CN111454276B (en) Organic compound and electroluminescent device comprising same
CN111620910A (en) Metal complex and application thereof
CN113121367B (en) Organic electroluminescent compound and preparation method and application thereof
CN112292768A (en) Organic electroluminescent element and electronic device using the same
CN112789269A (en) Novel compound, organic electroluminescent element, and electronic device
JP2012206953A (en) Dithienobenzodithiophene derivative, and organic thin-film transistor using the same
JP5948772B2 (en) Dithienobenzodithiophene derivative composition and organic thin film transistor using the same
CN112789270A (en) Novel compound, organic electroluminescent element, and electronic device
JP4792796B2 (en) 2,3-Dihalobiphenylene derivative, precursor compound thereof and production method thereof
CN107312013B (en) General formula compound and application of organic electroluminescence
JP2023518759A (en) Organic light-emitting device using polycyclic aromatic derivative compound
JP6056498B2 (en) Dithienobenzodifuran derivative and method for producing the same
JP2012206952A (en) Method for producing dithienobenzodithiophene derivative
JP5655301B2 (en) Organic semiconductor materials
JP2014110347A (en) Material for formation of organic semiconductor layer
JP6747147B2 (en) Method for producing heteroacene derivative
JP2023518069A (en) Organic light-emitting device using polycyclic aromatic derivative compound
CN114075231A (en) Organic compound, and organic electroluminescent device and electronic device using same
CN111748338B (en) Organic electroluminescent compound, organic electroluminescent device and application thereof
CN104447294A (en) Chiral resolution method of 3-cyclohexene-1-formic acid
JP2023516814A (en) Amine compound having condensed ring and organic light-emitting device containing the same
CN111747935B (en) Organic electroluminescent compound and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R151 Written notification of patent or utility model registration

Ref document number: 6747147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151