JP6746160B1 - 診断支援システムおよび方法 - Google Patents

診断支援システムおよび方法 Download PDF

Info

Publication number
JP6746160B1
JP6746160B1 JP2020532078A JP2020532078A JP6746160B1 JP 6746160 B1 JP6746160 B1 JP 6746160B1 JP 2020532078 A JP2020532078 A JP 2020532078A JP 2020532078 A JP2020532078 A JP 2020532078A JP 6746160 B1 JP6746160 B1 JP 6746160B1
Authority
JP
Japan
Prior art keywords
image data
pseudo
type
image
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020532078A
Other languages
English (en)
Other versions
JPWO2020054803A1 (ja
Inventor
賢平 竹本
賢平 竹本
航 笠井
航 笠井
裕紀 青山
裕紀 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Splink Inc
Original Assignee
Splink Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Splink Inc filed Critical Splink Inc
Priority to JP2020129194A priority Critical patent/JP7357927B2/ja
Application granted granted Critical
Publication of JP6746160B1 publication Critical patent/JP6746160B1/ja
Publication of JPWO2020054803A1 publication Critical patent/JPWO2020054803A1/ja
Priority to JP2023151875A priority patent/JP2023169313A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5247Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from an ionising-radiation diagnostic technique and a non-ionising radiation diagnostic technique, e.g. X-ray and ultrasound
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10104Positron emission tomography [PET]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Epidemiology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Primary Health Care (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Nuclear Medicine (AREA)
  • Image Analysis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

受診者(5)の疾病に対する診断支援情報(110)を提供するシステム(10)は、受診者の、評価対象領域を一部に含む参照領域を少なくとも含むMR画像の実画像データ(15)を含む受診者情報(105)を取得する取得ユニット(11)と、複数の被験対象の参照領域のMR画像の実画像データ(71)と評価対象領域を含むPET画像の実画像データ(72)とを含む訓練データ(70)に基づいて、参照領域のMR画像の実画像データ(71)から評価対象領域の疑似PET画像データ(75)を生成するように機械学習をさせた画像処理モデル(60)により、受診者の個別のMR画像の実画像データ(15)から生成された評価対象領域の疑似PET画像データ(115)に基づく診断支援情報(110)を提供する情報提供ユニット(12)とを有する。

Description

本発明は、生体などの複雑系の診断を支援するシステムおよび方法に関するものである。
被験対象(被験者)の形態および機能を診断するための装置として、CT(Computed Tomography)、MRI(Magnetic Resonance Imaging)、PET(Positron Emission Tomography)、SPECT(Single Photon Emission Computed Tomography)、PET−CTなどの様々な断層撮影装置(モダリティ)が知られており、認知症、パーキンソン病などの疾病の診断に活用されている。PETおよびSPECTは、静脈注射等により、放射性薬剤を被験者の体内に投与し、体内において当該薬剤から放出される放射線を撮像することにより、画像が生成される。薬剤を用いた画像によれば、体内の各部位の形態のみならず、体内に投与された薬剤がどのように分布するか、または当該薬剤と反応する体内の物質の集積の様子などを医師に把握させることができるので、疾病の診断精度の向上に寄与しうる。例えば、通称ピッツバーグ化合物BをPET用放射性薬剤(トレーサー)として用いてPET画像を撮像し、撮像されたPET画像を基に脳内のアミロイドβ蛋白の蓄積度合いを測定することにより、アルツハイマー型認知症の鑑別診断又は早期診断に役に立たせうる。
PET画像などの薬剤を用いて撮影される画像には種々のメリットがある一方、いくつかのデメリットもある。たとえば、薬剤を用いた画像の撮像は、一般に、薬剤を用いないMRI等の撮像と比べて高価であるので、被験者、または被験者の検査費用を負担する健康保険組合などの金銭的負担が重くなるおそれがある。また、放射性の薬剤を用いるPET画像などの撮像においては、少量とはいえ放射性物質を体内に摂取しなければならず、被爆のおそれがある。また、腎臓病などの特定の疾病を患っている人は、悪影響を避けるため、薬剤を用いた画像の撮像が行えないこともある。
Apoorva Sikkaらが2018年7月30日に発表した、”MRIからFDG−PETへ:多モードアルツハイマー分類のための3D U−Netを用いたクロスモーダル合成(MRI to FDG-PET: Cross-Modal Synthesis Using 3D U-Net For Multi-Modal Alzheimer's Classification)”([online]、コーネル大学図書館(Cornell University Library)[2018年8月31日検索]、インターネット(URL: https://arxiv.Org/abs/1807.10111v1)(以降においては、Sikkaらとして参照する)には、脳の萎縮を測定する磁気共鳴画像法(MRI)と代謝低下を定量化するポジトロン放出断層撮影(PET)の組み合わせ分析により、アルツハイマー病の診断精度が向上することが示唆され、このような手法は、各モダリティの対応するスキャンの可用性によって制限されることが指摘されている。そのため、3D・U−Netアーキテクチャを使用して、特定のMRスキャンからFDG−PETスキャンを推定するためのクロスモーダルアプローチに焦点を当てた研究が開示されている。この文献には、ローカルパッチベースのアプローチの代わりに完全なMR画像を使用すると、MRIとPETのモダリティ間の非ローカルおよび非線形相関をキャプチャするのに役立つことが開示されている。なお、FDG−PET画像とは、グルコース(ブドウ糖)に目印となる「ポジトロン核種(陽電子放出核種)」を合成した薬剤を投与して撮像されたPET画像である。
MRI画像などの薬剤を用いない画像から、PET画像などの薬剤を用いた画像を推定して診断に活用することは受診者などの負担を軽減し、画像に基づく診断精度を向上するために有用である。そのためには、さらに、推定された画像あるいは推定された画像から得られる情報の有用性を向上することが要望されている。
本発明の一態様は、受診対象の、評価対象領域を一部に含む参照領域を少なくとも含む第1のタイプの個別の実画像データを取得する取得ユニットを有するシステム、例えば、診断支援システムである。このシステムは、さらに、複数の被験対象の第1のタイプの参照領域の実画像データと第2のタイプの評価対象領域を含む実画像データとを含む訓練データに基づいて、第1のタイプの参照領域の実画像データから第2のタイプの評価対象領域の疑似画像データを生成するように学習をさせた画像処理モデルにより、受診対象の第1のタイプの個別の実画像データから生成された第2のタイプの評価対象領域の疑似画像データに基づく診断支援情報を提供する情報提供ユニットを有する。
画像処理モデルは、評価対象領域を一部に含む参照領域の第1のタイプの実画像データと、評価領域を含む第2のタイプの実画像データとを含む訓練データ(教師データ、学習データ)に基づいて、参照領域の第1のタイプの実画像データから評価領域の第2のタイプの疑似画像データを生成するように機械学習されたモデルである。評価対象領域を一部に含む参照領域の第1のタイプの実画像データから、同じく、評価対象領域を一部に含む参照領域の第2のタイプの疑似画像データを生成するように機械学習されたモデルに対して、評価対象領域に限定した第2のタイプの疑似画像データを生成するように機械学習された、本発明に係る画像処理モデルは、第1のタイプの実画像データの、参照領域の評価対象領域以外の情報を積極的に利用して、第2のタイプの評価対象領域の疑似画像データを生成するように学習されたモデルである。したがって、この画像処理モデルを使用することにより、受信対象の第1のタイプの個別の実画像データから、より精度の高い第2のタイプの評価対象領域の疑似画像データを生成することができ、その疑似画像データに基づく診断支援情報を提供できる。
このシステムから提供される診断支援情報には、評価対象領域の第2のタイプの疑似画像データが含まれていてもよく、第1のタイプの個別の実画像データが含まれていてもよく、第2のタイプの疑似画像データおよび/または第2のタイプの実画像データを解析した結果が含まれていてもよい。
診断支援システムを含む診断支援ネットワークの一例を示す図。 訓練データの概要を示す図であり、行(a)は脳全体のMR画像、行(b)は脳全体のPET画像、行(c)は脳の関心領域(評価対象領域)のMR画像、行(d)は脳の関心領域のPET画像。 訓練データにより学習したモデルが生成(推定)した画像の一例であり、行(a)は脳の関心領域の疑似PET画像、行(b)は脳全体の疑似PET画像。 横軸が実指標値で、縦軸が疑似指標値としたグラフで、訓練データセットのそれぞれについての実指標値及び疑似指標値の組を1つの点として表示したグラフ。 横軸が実指標値で、縦軸が疑似指標値としたグラフで、テストデータセットのそれぞれについての実指標値及び疑似指標値の組を1つの点として表示したグラフ。 評価対象領域の疑似PETを生成するように学習されたモデルによる疑似PET画像から得られた疑似SUVR(predSUVR)と、実PET画像から得られたSUVR値との相関を示し、(a)は全ての被験者、(b)はADと診断された被験者、(c)はMCIと診断された被験者、(d)CNとされた被験者の相関を示す。 脳全体の疑似PETを生成するように学習されたモデルによる疑似PET画像から得られた疑似SUVR(predSUVR)と、実PET画像から得られたSUVR値との相関を示し、(a)は全ての被験者、(b)はAD、(c)はMCI、(d)CNの相関を示す。 遺伝子とSUVRとの相関を示す図。 バイオマーカーを含めて疑似PETを生成するように学習されたモデルによる疑似PET画像から得られた疑似SUVR(predSUVR)と、実PET画像から得られたSUVR値との相関を示し、(a)は全ての被験者、(b)はAD、(c)はMCI、(d)CNの相関を示す。 画像処理モデル生成装置の概要を示すブロック図。 画像処理モデルの生成過程の概要を示すフローチャート。 前処理の概要を示すフローチャート。 画像処理モデルの生成処理の概要を示すフローチャート。 学習処理の概要を示すフローチャート。 U−NETの概要を示す図。 評価処理の概要を示すフローチャート。 異なる学習処理の概要を示すフローチャート。 診断支援端末の概要を示すブロック図。 診断支援情報を提供する処理の概要を示すフローチャート。
発明の実施の形態
図1に、診断支援システムを含む診断支援ネットワークの概要を示している。この診断支援ネットワーク1は、1または複数の医療機関200にそれぞれ設置された端末210と、それらの端末210とインターネット(クラウド)9を介して通信可能に接続された診断支援システム100とを含む。医療機関200は、受診対象(受診者)5の形態および機能などを診断するための画像を取得する断層撮影装置(モダリティ)221〜224を含む。撮影装置の一例は、受診者5のMR画像(MRI)15を取得するMRI装置221であり、他の例は、PET画像を取得するPET装置222であってもよく、SPECT画像を取得するSPECT装置223であってもよく、CT画像を取得するCT装置224であってもよい。各医療機関200が、これら全ての断層撮影装置221〜224を備えていなくてもよく、診断支援システム100は、MRI装置221またはCT装置224により取得された画像に基づいて、PET画像またはSPECT画像を推定して診断支援情報110を提供する。
医療機関200の端末(診断支援端末、医療支援システム)210は、医師8または医療関係者に診断支援情報110を提供する画像表示装置25と、処理端末20とを含む。処理端末20は、CPU28とメモリ(記憶媒体)29とを含むコンピュータ資源を備えたコンピュータ端末であり、受診者5の属性情報14を取得する入力インターフェイス(取得ユニット、取得機能、取得モジュール)21と、MRI装置221で撮影されたMR画像15および受診者5の属性情報14を含む受診者情報105を診断支援システム100へ送信する送受信インターフェイス(通信機能、通信モジュール)22と、診断支援システム100から提供された診断支援情報110を、画像表示装置25などを介して表示(出力)する出力インターフェイス(出力ユニット、出力機能、出力モジュール)23とを含む。処理端末20は、CPU28がダウンロードして実行することにより、上記の機能を実行するための命令を含むプログラム(プログラム製品)29pを含み、プログラム29pはメモリ29に格納されていてもよく、外部の記録媒体により提供されてもよい。
医療機関200の端末210にネットワーク9を介して診断支援情報110を提供する診断支援システム100は、診断支援モジュール(診断支援機能、診断支援ユニット)10と、モデル提供モジュール(モデル提供機能、モデル提供ユニット)50とを含む。診断支援システム100の一例は、CPU101およびメモリ(記憶媒体、第1記憶部)102とを含むコンピュータ資源を備えたサーバーである。診断支援システム100は、CPU101がダウンロードして実行することにより、上記のモジュール10および50としての機能を実行するための命令を含むプログラム(プログラム製品)10pおよび50pを含み、これらのプログラム10pおよび50pはメモリ102に格納されていてもよく、外部の記録媒体により提供されてもよい。
診断支援モジュール10は、受診対象(受診者)5の、評価対象領域を一部に含む参照領域を少なくとも含む第1のタイプの個別の実画像データ15を含む受診者情報105を取得する取得ユニット(取得モジュール、入力インターフェイス)11と、学習済みの画像処理モデル60により受診者情報105から得られた診断支援情報110を提供する情報提供ユニット(情報提供モジュール、情報提供機能、情報出力インターフェイス)12とを含む。画像処理モデル60を提供するモデル提供モジュール50は、訓練データ(学習データ、教師データ)70を格納したメモリ(ストレージ、記憶部)102にアクセス可能なメモリインターフェイス51と、訓練データ70に基づき画像処理モデル60を学習する学習部(学習ユニット、学習モジュール、学習機能)53と、学習済みのモデル(画像処理モデル)60を出力するモデル出力ユニット52とを含む。
訓練データ70は、複数の被験対象(被験者)の第1のタイプの参照領域の実画像データ71と、第2のタイプの評価対象領域を含む実画像データ72とを含む。これらは3次元の画像データであり、以下においても同様である。学習部53は、訓練データ70に基づいて、第1のタイプの参照領域の実画像データ71から、第2のタイプの評価対象領域の疑似画像データ(推定画像データ)75を生成するように機械学習をさせた画像処理モデル60を提供する。診断支援モジュール10の情報提供ユニット12は、受診者情報105に含まれる受診対象(受診者)5の第1のタイプの個別の実画像データ15から、画像処理モデル60により生成された第2のタイプの評価対象領域の疑似画像データ(推定画像データ)115に基づく診断支援情報110を提供する。
図2に、訓練データ70に含まれている画像の幾つかの例を示している。最も上の段(行(a))の画像は、第1のタイプの参照領域の実画像データ71の例である。本例の実画像データ71は、生体内部の形態を中心とした情報を精度よく取得できるMR画像(MRI)であり、参照領域として脳全体の領域81を含む実画像データである。行(a)には、3次元の実画像データ71の3か所における断面図を代表して示している。以下においても同様である。
次の段(行(b))の画像は、第2のタイプの評価対象領域を含む実画像データ72の例である。薬剤を用いて撮像される本例の第2のタイプの実画像データ72は、PET画像、さらに詳しくは、脳におけるアミロイドβ蛋白の分布を示すPET画像である。たとえば、ピッツバーグ化合物BをPET用放射性薬剤(トレーサー)として用い、このピッツバーグ化合物Bとアミロイドβ蛋白が反応することを利用することで、脳におけるアミロイドβ蛋白の分布を示すPET画像72を取得できる。
したがって、本例の第2のタイプの実画像データ72は、診断対象の異常に関連する第1の物質の分布を可視化した分布情報を含む実物質画像データの一例である。本例では、診断対象の異常(疾病)は、アルツハイマー型認知症を含み、疾病を示唆する第1の物質は、アミロイドβ蛋白を含む。アルツハイマー型認知症を発症するおそれがあるかどうかを判定するための指標値として、脳の一部の大脳灰白質におけるアミロイドβ蛋白の集積度(SUV、Standardized Uptake Value)の合算と、小脳におけるアミロイドβ蛋白の集積度(SUV)との比を示すSUVR値(SUVR、Standardized Uptake Value Ratio、小脳比SUVR)が知られている。SUVRは以下の式(1)で定義できる。
式(1)の分子は、大脳灰白質4部位、すなわち、大脳の皮質領域(前頭前野、前後帯状皮質、頭頂葉、および外側側頭葉)のSUVの合算を示し、分母は、小脳のSUVを示す。
このため、参照領域を脳全体81としたときの、指標値としてSUVRを求めるための評価対象領域82は、前頭前野、前後帯状皮質、頭頂葉、外側側頭葉、および小脳の5つの領域を含む。なお、SUVは、PET画像72に含まれる所定の輝度以上の画素(画像要素、voxel)の集積度で求めることができる。例えば、訓練データ70として用いたADNIデータベース(Susan Landau & William Jagust「Florbetapir processing methods」ADNI(Alzheimer’s Disease Neuroimaging Initiative) June, 25, 2015)では、アミロイド陽性・陰性のカットオフ値は1.11とされており、図2では、アミロイド陽性の部分を、斜線を付して示している。
図2の第3行(行(c))に示す画像は、MR画像71に基づき設定された評価対象領域82を示すマスク画像73であり、第4行(行(d))に示す画像は、マスク画像73に基づいて切り出された、PET画像の評価対象領域82の実画像74である。すなわち、行(d)に示す画像は、第2のタイプの評価対象領域82の実画像データ74であり、情報としては、実画像72に含まれる。評価対象領域82の参照領域(脳全体)81に対する位置関係は、FreeSurfer法(FreeSurfer Method(Gregory Klein, MehulSampat, Davis Staewen, David Scott, Joyce Suhy「Comparison of SUVRMethods and Reference Regions in Amyloid PET」SNMMI 2015 Annual Meeting, June 6-10, 2015, Baltimore, MD, USA))に記載されているROI(関心領域、Region Of Interest)テンプレートを用いて設定できるが、この方法に限定されない。
図3に、学習済みの画像処理モデル60により生成された、第2のタイプの評価対象領域82の疑似画像データ75を示している。図3の上段(行(a))は、MR画像(第1のタイプ)の参照領域(脳全体)81の実画像71から、画像処理モデル60により生成された、評価対象領域82である前頭前野、前後帯状皮質、頭頂葉、外側側頭葉、および小脳を含む疑似画像データ(疑似PET画像、推定PET画像)75を示す。図3の下段(行(b))は、MR画像の参照領域(脳全体)81の実画像71から、PET画像の参照領域(脳全体)81の疑似PETを生成するように機械学習されたモデルにより生成された、脳全体81の疑似PET画像76を、参考に示している。
本例において、学習するモデルである画像処理モデル(画像生成モデル)60は、モデルアルゴリズム61と、モデルパラメータセット(パラメータ)62とを含む。モデル提供モジュール50の学習部53は、学習対象のPET画像74と、学習結果である疑似PET画像75とを損失関数Eiに基づき評価することにより、画像処理モデル60のパラメータセット(パラメータ)62を学習する第1のパラメータ学習機能54を含む。損失関するEiの一例は以下の式(2)で表される。
MSEiは、画像要素の2乗誤差であり、画素要素間の差異を測る指標、すなわち、第2のタイプの評価対象領域82の疑似画像データ(疑似PET画像)75の画素要素の値について、第2のタイプの評価対象領域82の実画像データ(PET画像)74の画像要素の値から乖離の度合いを示す乖離度の一例である。評価対象領域82の実画像データ(PET画像)74の画像要素の値は、参照領域81の実画像データ(PET画像)72に含まれる評価対象領域82の画素要素の値と同じであり、疑似PET画像75の画素要素をいずれのPET画像72または74の画素要素と比較してもよい。最適化のための画素要素間の差異を測る指標(乖離度)としては、MSEに変えて、あるいはMSEとともに、SSIM(Structural Similarity)、PNSR(ピーク信号対雑音比)などの他の指標を用いてもよい。
実指標値Viは、診断対象の異常に関連する第1の物質(例えば、アミロイド)の分布を可視化した分布情報を含む実物質画像データである第2のタイプの実画像データ(PET画像データ、実物質画像データ)72の評価対象領域82の第1の物質の分布情報(SUV)から得られる実指標値であり、例えば、SUVR(実SUVR)である。この実指標値SUVRは、評価対象領域82のPET画像74から取得してもよい。疑似指標値predViは、第2のタイプの評価対象領域82の疑似画像データ(疑似PET画像)75に含まれている、第1の物質(例えば、アミロイド)の分布に対応する疑似分布情報から得られる疑似指標値、例えば、疑似SUVR(推定SUVR)である。すなわち、疑似指標値は、画像処理モデル60を用いて、MR画像71から推定されたSUVR値である。疑似PET画像75には、評価対象領域82の疑似分布が画素情報として含まれている。このため、疑似PET画像75から、疑似SUVRは、式(1)を用いて、SUVRと同様に求めることができる。
式(2)に示した損失関数Eiは、乖離度(2乗誤差)MSEiと、実指標値Vi(SUVR、実SUVR)と、疑似指標値predVi(疑似SUVR)とを含んでおり、これらの指標値を用いて、画像処理モデル60を評価できる。学習部53のパラメータ学習機能54は、損失関数Eiに含まれている、これらの指標値MSEiが小さくなるように、または、実指標値Viと疑似指標値predViとの差が小さくなるように、パラメータ62を設定(補正、変更)し、学習されたパラメータ62を含む学習済みの画像処理モデル60をメモリ102に出力する。
損失関数Eiに含まれている係数γは、以下の式(3)の条件を満足する係数である。
0≦γ≦1 ・・・(3)
係数γが0であれば、モデル60の学習時に、実指標値Viと疑似指標値predViとの差が主に評価され、係数γが1であれば、モデル60の学習時に、乖離度(2乗誤差)MSEiが主に評価される。式(3)は、具体的には、(0<γ<1)であってもよく、さらに、(0.5<γ<1.0)であってもよい。画像処理モデル60は、第1のタイプの画像から、第2のタイプの画像を生成する画像出力モデルとしての機能を含み、画像要素間の相関を優先して評価してもよい。
図4に、学習済みの画像処理モデル60に、訓練データ70に含まれている複数の被験者のデータセットを入力し、得られた疑似PET75の疑似指標値predVi(predSUVR)を、実指標値Vi(SUVR)に対して示している。図中に線形近似した直線で示すように、実指標値SUVRと疑似指標値predSUVRとには正の相関があり、十分に高い再現性があることが分かる。したがって、学習済みの画像処理モデル60により、MR画像71からPET画像75を推定することが可能であり、学習済みの画像処理モデル60により、MR画像71から、SUVR値を推定できることがわかる。
図5に、学習済みの画像処理モデル60に、訓練データ70に含まれていない、複数の被験者のデータセットをテストデータ79として入力し、得られた疑似PET75の疑似指標値predVi(predSUVR)を、実指標値Vi(SUVR)に対して示している。テストデータ79から画像処理モデル60により生成された疑似PET75から認識される疑似指標値predSUVRは、テストデータ79における実指標値SUVRより小さくなる傾向があるが、テストデータ79に対しても実指標値SUVRと疑似指標値predSUVRとには正の相関があることが分かる。したがって、学習済みの画像処理モデル60により、学習されていない被験者のMR画像71からPET画像75を精度よく推定することが可能であり、学習済みの画像処理モデル60により、学習されていない被験者のMR画像71から、SUVR値を推定できることがわかる。
図6に、MR画像71を入力とし、学習時の損失関数に指標値としてSUVRを用い、評価対象領域82に限定した疑似PET75を生成するように学習された画像処理モデル60により生成された疑似PET75の疑似SUVRと、実PET画像72(74)から得られたSUVR値との相関を示している。上段のグラフ(a)は、AD(アルツハイマー症 Alzheimer's disease)と診断された被験者、MCI(軽度認知障害、Mild Cognitive Impairment)と診断された被験者、それ以外のCN(健常者)とされた被験者のすべてのデータの相関を示している。次のグラフ(b)は、ADの被験者のデータの相関を示し、グラフ(c)は、MCIの被験者のデータの相関を示し、グラフ(d)はCNの被験者のデータの相関を示している。グラフ(a)の相関係数r(a)は、0.21502、グラフ(b)の相関係数r(b)は、0.66484、グラフ(c)の相関係数r(c)は、0.10547、グラフ(d)の相関係数r(d)は、0.34458であった。
図7に、参考として、Sikkaらが開示している手法、すなわち、Sikkaらの文献内で利用されている、単純な機械学習による画像生成モデルを用いて、脳全体のMR画像から、脳全体のアミロイドPET画像を推定し、SUVRを推定画像から算出した結果を示している。グラフ(a)〜(d)は上記と同様である。グラフ(a)の相関係数r(a)は、0.12964、グラフ(b)の相関係数r(b)は、0.25603、グラフ(c)の相関係数r(c)は、0.07694、グラフ(d)の相関係数r(d)は、0.01905であった。
したがって、本例の学習済みの画像処理モデル60を用いて疑似PET画像を生成することにより、認知症の指標として重要とされているSUVRの推定精度を大幅に向上することが可能であることがわかる。この画像処理モデル60においては、着目部位を限定した結果、脳内の白質で、アミロイド以外に反応している非特異的集積の影響をキャンセルすることが1つの要因と考えられる。さらに、画像処理モデル60により、脳全体を参照領域81とするMR画像71に基づいて、部分的な評価対象領域82の疑似PET画像75を生成するため、疑似PET画像75に対して、参照するMR画像71の情報量が十分に多い。したがって、評価対象領域82の疑似PET画像75を、より多くの情報に基づいて、精度よく生成できる。このため、上記のように学習済みの画像処理モデル60を用いることにより、受診者5からPET画像を取得しなくても、MR画像(MRI)から、高い精度で、疾病の進行を判断する指標値を含む診断支援情報110を提供することができる。
次に、学習部53は、複数の被験者の属性情報90を含めて画像処理モデル60のパラメータ62を学習する第2のパラメータ学習機能55を含む。すなわち、訓練データ70は、複数の被験者の第1のタイプおよび第2のタイプの画像情報71〜74に加えて、複数の被験者のバイオマーカーに関連する情報91を含む属性情報90を含み、画像処理モデル60は、画像情報に加えて属性情報90を含めて機械学習したモデルとしてモデル提供モジュール50から提供される。
属性情報90には、バイオマーカーに関連する情報91、すなわち、遺伝子情報(ApoE等)91aおよび/または血液検査結果91bに加えて、年齢、性別、教育歴、職歴、認知力テストスコア(MMSE、CDR、ADAS−Cogなど)、問診結果(ADL問診等)のいずれかを含んでいてもよい。属性情報90を含めて機械学習した画像処理モデル60を用いることにより、より精度の高い疑似PET画像75および疑似SUVRが得られることが予想され、特に、遺伝子情報91aおよび血液検査結果91bは画像処理モデル60の性能を向上するために有用である。
遺伝子情報91aにおいては、アミロイドβの集積はApoE遺伝子の型によって、その蓄積量や発現時期について相関が高いと考えられる。たとえば、図8に、上述したADNIデータベース内のデータに基づいて、ApoE遺伝子型と、AV45アミロイドPETイメージングによるSUVR値の分布との関係を示している。本図から分かるように、遺伝子型は、アミロイド陽性/陰性を判断するのに非常に有効な情報であると考えられる。ただし、発現時期には個体差があり、画像や血液と異なり、現在時点の評価を行うことには適していない可能性がある。
血液検査結果91bにおいても、近年、アミロイド陽性/陰性の判断に有効である可能性が指摘されている。例えば、磁気ビーズを使用して吸着されなかった化合物を破棄した上で、残った血液に対するMALDI(Matrix Assisted Laser Desorption/Ionization、マトリックス支援レーザー脱離イオン化法)で飛沫の飛散時間(TOF:Time of Flight)を測量する方法によってアミロイドβ関連ペプチドのみを取り出す方法が提案され、高精度に脳内アミロイドβ蓄積量を推定する方法が提唱されている(「High performance plasma amyloid-β biomarkers for Alzheimer's disease」 Nakamura et al. Nature. 2018 Feb 8)。上記参考文献によれば、血液に対してIP−MS(免疫沈降法による質量分析)で計測した(1)APP699−711、(2)Aβ1−40、(3)Aβ1−42の各量から「1と2の比」と「2と3の比」を数学的に組み合わせたCompositeバイオマーカーを用いることにより、アミロイド陽性/陰性を高精度で判別することが可能であることが報告されている。なお、血液検査結果91bは現時点の評価を行うことができるが、画像と異なり部位毎のアミロイド集積の多寡を比較するのに適していない可能性がある。
図9に、MR画像71と遺伝子情報(ApoE遺伝子情報)91aを入力とし、学習時の損失関数に指標値としてSUVRを用い、評価対象領域82に限定した疑似PET75を生成するように学習された画像処理モデル60により生成された疑似PET75の疑似SUVRと、実PET画像72(74)から得られたSUVR値との相関を示している。グラフ(a)〜(d)は上記の図6と同様である。グラフ(a)の相関係数r(a)は、0.27995、グラフ(b)の相関係数r(b)は、0.50173、グラフ(c)の相関係数r(c)は、0.21462、グラフ(d)の相関係数r(d)は、0.06563であった。図6と比較すると、被験者全体についてのSUVR値の相関が向上し、特に、MCIの被験者については遺伝子情報を含めて学習した効果が見られる。したがって、遺伝子などのバイオマーカー91を含む属性情報90を含めて学習したモデル60を使用することにより、より高い精度で疾病の進行度などを判断する指標値(SUVR値)を推定できることがわかる。特に、疾病の進行度に対するケア―が必要とされる、MCIと判断される受診者5において、指標値の推定精度が向上することは、診断支援情報110を提供する上で有用である。なお、上記においては、小脳を基準としたSUVR値を用いているが、アミロイド以外に反応している非特異的集積の影響を排除できれば、他の評価対象領域82に限定したPET画像を学習し、他の評価領域を基準とする指標値を用いて学習精度を上げることも可能である。
このように、モデル提供モジュール50から提供される学習済みの画像処理モデル60は、MR画像71などの薬剤を用いず(形態をより明確にするために造影剤などが用いられることはあるが)、生体内部の形態の関する情報を主に取得できる画像データに基づいて、疾病の要因あるいは進行を示すアミロイドなどの分布に関する情報を含むPET画像75を精度よく推定できる。したがって、診断支援モジュール10の情報提供ユニット12は、画像処理モデル60を用い、取得ユニット11を介して受診者5から取得された受診者情報105に含まれるMR画像(MRI、個別の実画像データ、実MR画像)15に基づいて、評価対象領域82に限定された疑似PET画像(対象領域の疑似画像データ)115を生成(推定)し、その疑似PET画像115および/または疑似PET画像115から得られる評価対象領域82のSUVR値(疑似指標値)116を含む診断支援情報110を提供できる。
上記において開示した脳の一部を評価対象領域82とした例では、評価対象領域82として、脳の複数の部位、具体的には、図2などに示すように、前頭前野、前後帯状皮質、頭頂葉、外側側頭葉、および小脳の5つの領域(部位)を含み、実指標値であるSUVR値は、これら複数の部位のそれぞれの分布情報から、式(1)に示すように、求められる。情報提供ユニット12において、受診者5のMR画像15に基づき、画像処理モデル60により生成された疑似PET画像115は、これら5つの領域を評価対象領域82として含む。したがって、情報提供ユニット12は、疑似PET画像115の評価対象領域82に含まれる5つの領域の分布情報から疑似SUVR116を求めて診断支援情報110として提供できる。
診断支援モジュール10の取得ユニット11は、バイオマーカーに関連する情報を含む属性情報14を含む受診者情報105を取得するように構成されていてもよく、情報提供ユニット12は、受診者5の個別の画像データ(MRイメージ)15および属性情報14に基づき、属性情報90を含めて学習された画像処理モデル60により評価対象領域82の疑似画像データ(疑似PET)115を推定し、それらに基づく診断支援情報110を提供してもよい。受診者情報105に含まれる属性情報14は、上述した属性情報90に含まれる情報が全て含まれていてもよく、一部のみが含まれていてもよい。例えば、属性情報14に遺伝情報91aおよび/または血液検査結果91bというバイオマーカーに関する情報91が含まれてもよい。
さらに、画像処理モデル60は、MR画像71から、診断対象の異常の診断結果、すなわち、疾病の診断結果を導出するように学習されていてもよく、情報提供ユニット12は、推定された診断結果(疑似診断結果)117を含む診断支援情報110を提供してもよい。この場合、訓練データ70は、複数の被験者の画像データ71〜74に加え、被験者の診断対象の異常、例えば認知症の診断結果94を含み、学習部53は、形態を示すMR画像データ71から、疑似PET画像データ75に加えて診断結果(病状)95を推定するように学習された画像処理モデル60を提供する。情報提供ユニット12は、学習済みの画像処理モデル60により、受診者情報105に含まれる情報から導出された受診者5の診断対象の異常を含む疑似診断結果117を含む診断支援情報110を提供する。
なお、診断支援モジュール10の情報提供機能12は、医療機関200の端末20に含まれていてもよく、学習済みの画像処理モデル60を予め実装しておくことにより、診断支援情報110をスタンドアロンの状態で提供することも可能である。また、上記では、画像処理モデル60を学習済みとして説明しているが、随時、新しい症例に基づいて、画像処理モデル60は自己学習してもよく、モデル提供モジュール50によりアップデートされた画像処理モデル60が自動的に提供されるようにしてもよい。
画像処理モデル60は、異なる画像種別(モダリティ)を含む訓練データ(学習データ、教師データ)70に基づいて、上記と同様の学習を行うことで、アミロイドβの分布を示すアミロイドPET画像以外の他のモダリティの画像を同様に高精度で推定することが可能である。例えば、タウタンパク質(タウ)の蓄積は認知症の神経細胞死に直結するものと考えられており、近年、タウタンパクの蓄積を可視化するためのPBB3などの薬剤を用いたPET画像(タウPET)が取得できるようになっている。また、現在、タウタンパクの分布の評価には、上記と同様に小脳基準のSUVR値が多く用いられているが、他の評価対象領域82に着目される可能性もある。また、FDG(糖代謝)PET画像の推定について、同様に、訓練データ70にFDG−PET画像を含めて学習した画像処理モデル60により対応することができる。また、MR画像データに代わり、CT画像データを、形態情報を主に含む第1のタイプの画像データ71として用いて画像処理モデル60を学習させてもよい。 画像処理モデル60が対応可能な他のモダリティの1つは、SPECT画像である。SPECT画像の一例としては、123I-イオフルパン(123I-Ioflupane)という放射性医薬品を投与したSPECT検査でDatSCAN(Dopamine transporter SCAN)と呼ばれるドーパミントランスポーター(DAT)の分布を可視化する撮像方法がある。この撮像は目的としては、パーキンソン病(以下PD)のパーキンソン症候群(PS)の早期診断、レビー小体型認知症(DLB、Dementia with Lewy Bodies)の診断補助、線条体のドパミン神経脱落が有る場合のレボドバと呼ばれる種類の投薬治療判断などを挙げることができる。DatSCANの撮影は、脳に検査薬が届くまで3−6時間の待ち時間がかかり、副作用は多くはないが侵襲性があること、保険適用でも比較的高価であり、受診要否をMRI撮像から簡易に推定することは、患者の負担を少なくする目的で有益である。
DatSCANの評価(指標値)はBR(Binding Ratio、またはSBR Specific Binding Ratio)が用いられ、以下の式(4)で表される。
式(4)のCはそれぞれの着目領域内のDATの平均値であり、Cspecificは、脳内の被殻と尾状核との平均値を示し、Cnonspecificは、脳内の後頭皮質の平均値を示す。したがって、モデル提供モジュール50においては、複数の被験者の第1のタイプの参照領域81の実画像データ71として脳全体のMRイメージ、第2のタイプの評価対象領域82を含む実画像データ72(74)として脳内の被殻、尾状核、および後頭皮質を含むSPECT画像を含む訓練データ70に基づいて、MR画像71から評価対象領域82である被殻、尾状核、および後頭皮質を含む疑似SPECT画像75を生成するように画像処理モデル60を機械学習させることができる。
診断支援モジュール10においては、学習済みの画像処理モデル60により、受診対象の第1のタイプの個別の実画像データである受診者5のMR画像またはCT画像15から生成された第2のタイプの評価対象領域82の疑似画像データである疑似SPECT画像115を生成し、それに基づく疑似指標値として疑似BR値(疑似SBR値)を含む診断支援情報110を提供できる。画像処理モデル60の学習時における損失関数(損失)Eiでは、画素間の差分と、指標値であるBRとを用い、それらを算出するために用いる領域を被殻、尾状核および後頭皮質に絞ることで、パラメータ62を最適化できる。
さらに、各装置について説明する。図10にモデル提供モジュール(画像出力モデル生成装置)50を示している。生成装置50は、第1制御部101と、第1記憶部102と、第1通信部(通信インターフェイス)52とを備える。第1制御部101は、第1記憶部102および第1通信部52と信号を送受信することにより、データの授受が可能なように構成されている。第1通信部52は、有線通信又は無線通信によりネットワークを介して、診断支援システム100あるいはインターネット9を介して病院の端末210などの外部の機器のそれぞれと通信可能に構成されている。第1制御部101は、例えば、CPU(Central Processing Unit)のような演算処理装置、キャッシュメモリ及びI/Oデバイスなどにより構成される。第1制御部101は、第1記憶部102に記憶された画像出力モデル生成プログラムMGP(50p)を読み出して実行することにより、前処理部53a及びモデル生成部53bを含む学習部53として機能する。
第1記憶部102は、例えば、メモリ等の主記憶装置及びHDD等の補助記憶装置により構成されうる。第1記憶部102は、画像出力モデル生成プログラム10pと、訓練データセットGDS(70)と、テストデータセットTDS(79)と、モデルアルゴリズムMA(61)と、モデルパラメータセットMP(62)とを記憶するように構成されている。
訓練データセットGDS(70)は、N個(Nは2以上の自然数)の互いに異なる被験者データSDi(iは、データにかかる被験者を識別する番号で1<=i<=N)を記憶している。以下、適宜被験者データSDiのデータにかかる被験者を「被験者i」と表す。Nは例えば300である。
訓練データセットGDS(70)の被験者データSDiは、形態全体画像データKDi(71)と、実物質全体画像データBDi(72)と、形態部分画像データKPDi(73)と、実物質部分画像データBPDi(74)と、実指標値Vi(SUVR)とを含む。訓練データセット70は、形態部分画像データ73および実物質部分画像データ74を抽出するためのテンプレート(マスク)である部位位置データPDiを含んでいてもよい。被験者データSDiのうち、部位位置データPDiと、形態部分画像データKPDiと、実物質部分画像データBPDiと、実指標値Viは、第1制御部101が画像出力モデル生成プログラムMGPの実行中に認識する値であってもよく、画像出力モデル生成プログラムMGPの実行前には記憶されていなくてもよい。
形態全体画像データKDi(71)の一例は、図2に示すように、被験者iの体内の一または複数の部位、具体的には脳内の形態をCTまたはMRI等の所定の方式で撮像したデータである。形態全体画像データKDiは、脳のMRI全体画像である。第1のタイプの前記参照領域の実画像データである形態全体画像データKDi(71)は、所定サイズ(例えば、64×64×64)の3Dデータである。形態全体画像データKDiは、所定サイズに応じた個数(例えば64×64×64個)の輝度を示す値(輝度値)を示す画像要素(本実施形態ではvoxel)の組み合わせにより表現されうる。形態全体画像データKDiは、所定サイズに応じた個数(例えば64×64×64個)の色(RGB値)を示す画像要素(本実施形態ではvoxel)の組み合わせにより表現されてもよい。これらの画像要素の位置は、例えば3次元座標により表現されうるので、以下、形態全体画像データKDiの各画像要素をKDi(x、y、z)と適宜表す。
第2のタイプの評価対象領域を含む実画像データである実物質全体画像データBDi(72)は、図2に示されるように、被験者iの体内の一又は複数の部位、具体的には脳内における対象物質の分布を、PET等の所定の方式で撮像したデータである。実物質全体画像データBDiは、形態全体画像データKDiと同一のサイズの3Dデータである。実物質全体画像データBDiに示される一又は複数の部位のそれぞれの画像上の位置が、形態全体画像データKDiにおける対応する部位の画像上の位置と一致するように、実物質全体画像データBDi及び形態全体画像データKDiの一方又は両方が整形されてもよい。図2では、形態全体画像データKDi(71)の断面図それぞれに対応する箇所における実物質全体画像データBDi(72)の断面図を例示している。実物質全体画像データでは、対象物質が存在している画像要素(voxel)の輝度を示す値(輝度値)が所定の値以上となっている。これらの画像要素の位置は、例えば3次元座標により表現されうるので、以下、実物質全体画像データBDiの各画像要素をBDi(x、y、z)と適宜表す。なお、PET画像により撮像される対象物質は、トレーサーと反応する物質であってもよいし、トレーサーそのものであってもよい。また、アミロイドβ蛋白の分布を示すPET画像以外にも、タウ蛋白の分布を示すPET画像であってもよい。
部位位置データPDiは、形態全体画像データKDiに示される被験者iの一又は複数の部位(評価対象領域、例えば、大脳灰白質及び小脳)82のそれぞれの画像上の位置を示すデータである。部位位置データPDiは、形態全体画像データKDiを構成する各画像要素KDi(x、y、z)が、被験者iのどの部位であるかを示すパラメータで表されてもよい。これに加えて又は代えて、1つの部位に関する部位位置データPDiは、例えば、3次元座標における領域を示すパラメータで表されてもよいし、3次元座標の各座標のセットで表されてもよい。
形態部分画像データKPDi(73)は、図2に示されるように、参照領域81の全体を示す形態全体画像データKDi(71)から、所定の部位(評価対象領域)82の個所を抽出した部分画像データである。図2では、形態全体画像データKDi(71)の断面図それぞれに対応する箇所における形態部分画像データKPDi(73)の断面図を例示している。
実物質部分画像データBPDi(74)は、図2に示されるように、実物質全体画像データBDi(72)から、形態部分画像データKPDi(73)に対応する箇所を抽出した部分画像データである。図2では、実物質全体画像データBDiの断面図それぞれに対応する箇所における実物質部分画像データBPDiの断面図を例示している。実物質部分画像データBPDi(74)では、実物質全体画像データBDiと同様に、対象物質が存在している画像要素(voxel)の輝度を示す値(輝度値)が所定の値以上となっている。対象物質が存在している画像要素の色を示す値(RGB値)が所定の色(例えば、黄色)を示す色を示す値(RGB値)となっていてもよい。これらの画像要素の位置は、例えば3次元座標により表現されうるので、以下、実物質全体画像データBDiと同様に、物質部分画像データBPDiの各画像要素をBPDi(x、y、z)と適宜表す。
実指標値Viは、被験者iがある疾病、例えばアルツハイマー型認知症を発症するおそれがあるかどうかを判定するための指標値である。実指標値Viは、例えば、実物質部分画像データBPDiに基づいて認識される、大脳灰白質におけるアミロイドβ蛋白の集積度合いと小脳におけるアミロイドβ蛋白の集積度合いとの比を示すSUVR値である。なお、SUVR値は、大脳灰白質におけるタウ蛋白の集積度合いと小脳におけるタウ蛋白の集積度合いとの比を示すものであってもよい。
血液分析値BLi(91b)は、例えば、被験者iの血液検査で測られるHba1c(血糖値)等の値や、被験者iの血液をIP−MS(免疫沈降法による質量分析)によって質量分析した結果に基づいて得られる数値等の値である。血液分析値は、BLiは、質量分析によって計測された1) APP699-711、2) Aβ1-40、3) Aβ1-42の各量から1) APP699-711と2) Aβ1-40との比、及び2) Aβ1-40と3) Aβ1-422と比を数学的に組み合わせた複合(Composite)バイオマーカーであってもよい。なお、血液分析値BLiは、例えば一般的な通常検診の血液検査で測られるHbA1c(血糖値)等の値又は質量分析法に基づいて定まる値であってもよい。
遺伝子型GEi(91a)は、被験者iの対立遺伝子2つ一組で構成される遺伝子型に基づく値である。遺伝子型GEiは、例えば、ε2、ε3、ε4の3つの対立遺伝子があるAPOE遺伝子の遺伝子型に基づいた値である。具体的には、例えば、ε4を2つ持っている遺伝子型の場合を2、ε4を1つ持っている場合を1、ε4を1つも持たない場合を0とした0〜2の離散値である。また、遺伝子型GEiは、例えばAPOE遺伝子ε4を1つ以上持っている場合を陽性(=APOE4+=1)、それ以外を陰性(=APOE4-=0)とした0、1の離散値であり得る。
テストデータセットTDS(79)は、訓練データセットGDS(70)と同様に、M個(Mは1以上の自然数)の互いに異なる被験者データSDj(jは、データにかかる被験者を識別する番号で1<=j<=M)を記憶している。以下、適宜被験者データSDjのデータにかかる被験者を「被験者j」と表す。また、Mは例えば75である。テストデータセットTDSの被験者データSDjのデータは、訓練データセットGDSの被験者データSDiと同様のデータであるから、説明及び図示を省略するが、以下適宜、例えば、「テストデータセットTDSの形態全体画像データKDj」というように、テストデータセットTDSの被験者データSDjに含まれる各データの符号にjをつけて引用する。
モデルアルゴリズムMA(61)は、画像出力モデルに用いられるアルゴリズムを特定するための情報である。画像出力モデルに用いられるアルゴリズムを特定するための情報は、例えば、TensorFlowなどの機械学習のライブラリに加え、当該ライブラリにより実現される多層畳み込みニューラルネットワークの層の数、入力層、隠れ層及び出力層で用いられる関数並び各層における関数の数などの情報である。モデルパラメータセットMP(62)は、画像出力モデルに用いられるアルゴリズムの動作を規定するパラメータのセットである。当該パラメータの例は、例えば、各関数への入力値に乗算される係数である。
図11に、モデル提供モジュール(画像処理モデル生成装置)50における処理の概要をフローチャートにより示している。ステップ300において、画像処理モデル60の学習対象となる訓練データ70の準備を行う(前処理)。ステップ500において、画像処理モデル60を生成して出力する。ステップ500は、訓練データ70に基づいて、第1のタイプの参照領域81の実画像データ(MR画像の実画像データ)71から第2のタイプの評価対象領域82の疑似画像データ(疑似PET画像)75を生成するための画像処理モデル60を学習するステップ(学習処理)510を含む。
学習処理510は、画像処理モデル60の最適なパラメータ(モデルパラメータ)62を学習する処理(モデルパラメータ最適化処理)520を含む。モデルパラメータ最適化処理520は、第2のタイプの実画像データ(PET画像)72の評価対象領域82の第1の物質(例えば、アミロイド)の分布情報(SUV)から得られる実指標値(SUVR)と、第2のタイプの評価対象領域82の疑似画像データ(疑似PET画像)75に含まれている、第1の物質の分布に対応する疑似分布情報(疑似SUV)から得られる疑似指標値(疑似SUVR)とを含む損失関数Eiを用いて、実指標値(SUVR)と疑似指標値(疑似SUVR)との差が小さくなるように画像処理モデル60のパラメータ62を学習するステップ522を含む。このステップ522において、損失関数Eiは、第2のタイプの評価対象領域82の疑似画像データ(疑似PET画像)75の画素要素の値について第2のタイプの評価対象領域82の実画像データ(PET画像)74の画像要素の値から乖離の度合いを示す乖離度(例えば、2乗誤差MSE)を含んでもよい。
さらに、学習処理510は、訓練データ70に含まれる複数の被験対象のバイオマーカーに関連する情報91を含む属性情報90を用いて、画像処理モデル60のパラメータ62を学習するステップ524を含んでもよい。バイオマーカー91は、複数の被験対象のそれぞれの血液を分析して得られる情報91bおよび遺伝子の型に基づく情報91aの少なくともいずれかを含んでもよい。さらに、学習処理510で最適化されるモデルアルゴリズム61は、畳み込みニューラルネットワーク構造を含んでもよく、属性情報を用いて最適化するステップ524においては、属性情報90を畳み込みニューラルネットワーク構造の特徴量に含めて画像処理モデル60のパラメータ62を学習することを含んでもよい。
ステップ530において、学習処理510によりパラメータが最適化された画像処理モデル60がテストデータ79により評価され、ステップ540において、学習済みの画像処理モデル60が出力され、診断支援モジュール10において使用可能となる。
図12に前処理300に含まれる処理の概要を示している。前処理部53aは、訓練データセットGDS(70)の被験者データSDiおよびテストデータセットTDSの被験者データSDjのそれぞれごとに、STEP104〜STEP118の処理を実行する(STEP102)。以下においては、処理の対象となるデータを被験者データSDkのように符号にkをつけて表す。また、そのデータにかかる被験者を被験者kと表す。
前処理部53aは、形態全体画像データKDk(71)を解析することにより被験者kの体内の各部位の画像上の位置を認識し、部位位置データPDkを生成し、第1記憶部102に記憶する(STEP104)。
たとえば、前処理部53aは、典型的な人の部位の形状、位置、輝度を示すテンプレート形態全体画像データと、形態全体画像データKDkとを比較することにより、形態全体画像データKDkを構成するそれぞれの画像要素KDk(x、y、z)について、被験者kのいずれの部位かのラベルを付けることにより、部位位置データPDkを生成する。たとえば、前処理部53aは、形態全体画像データKDkを構成するそれぞれの画像要素KDk(x、y、z)について、大脳灰白質、小脳、非特異結合が多い白質及び空白領域のいずれかを示すラベルを付けることにより、部位位置データPDkを生成する。
前処理部53aは、形態全体画像データKDkと部位位置データPDkとに基づいて、形態部分画像データKPDk(73)を認識し、第1記憶部102に記憶する(STEP106)。たとえば、前処理部53aは、形態全体画像データKDk(71)から、部位位置データPDkに示される非特異結合が多い白質を示すラベルが付いた部位の部分画像データを空白にすることにより、形態部分画像データKPDk(73)を認識する。
前処理部53aは、実物質全体画像データBDk(72)から形態部分画像データKPDk(73)に示される部位の部分画像データを抽出することにより、実物質部分画像データBPDk(74)を認識し、第1記憶部102に記憶する(STEP108)。前処理部53aは、部位位置データPDkに基づいて、実物質部分画像データBPDk(74)のうち、所定の第1部位(例えば大脳灰白質)を示す第1実物質部分画像データを認識する(STEP110)。
前処理部53aは、第1実物質部分画像データに基づいて、被験者kの疾病の診断の基礎応報となる第1実指標値を認識する(STEP112)。たとえば、前処理部53aは、第1実物質部分画像データの各画像要素の輝度値が所定の値以上となっている画像要素の数をカウントし、その数を第1実指標値として認識する。前処理部53aは、これに代えて又は加えて、第1実物質部分画像データの各画像要素の輝度が所定以上の画像要素の数をカウントして、その数を第1実指標値として認識してもよい。輝度値が所定の値以上の画像要素は、対象物質(例えばアルツハイマー認知症に関連性の高いアミロイドβ蛋白又はタウ蛋白)が被験者kの対応する部位に存在していることを示している。このような画像要素の数を示す第1実指標値は、所定の第1部位における対象の物質の集積の度合いを示している。
前処理部53aは、部位位置データPDkに基づいて、実物質部分画像データBPDk(74)のうち、所定の第2部位(例えば小脳)を示す第2実物質部分画像データを認識する(STEP114)。前処理部53aは、第2実物質部分画像データに基づいて、被験者kの疾病の診断の基礎応報となる疾病の指標となる第2実指標値を認識する(STEP116)。たとえば、前処理部53aは、第2実物質部分画像データのうち、画像要素の輝度を示す値が所定の輝度を示す値となっている画像要素の数をカウントし、その数を第2実指標値として認識する。前処理部53aは、これに代えて又は加えて、第2実物質部分画像データの各画像要素の輝度が所定以上の画像要素の数をカウントして、その数を第2実指標値として認識してもよい。第2実指標値は、第1実指標値と同様に、所定の第2部位における対象の物質の集積の度合いを示している。
前処理部53aは、第1実指標値と、第2実指標値とに基づいて、実指標値Vkを認識し、第1記憶部102に記憶する(STEP118)。たとえば、前処理部53aは、第1実指標値と第2実指標値との比を、実指標値Vkとして認識する。
訓練データセットGDSの被験者データSDi及びテストデータセットTDSの被験者データSDjのすべてについてSTEP104〜STEP118の処理が実行されると、本処理が終了する。
図13に、画像処理モデル生成処理500の概要について示している。モデル生成部53bは、モデルアルゴリズムMA(61)を設定する(STEP202)。たとえば、モデル生成部53bは、画像処理モデル生成プログラムMGP(50p)にしたがって、機械学習に用いられるライブラリを読み込み、モデルアルゴリズム61として当該ライブラリにより実現される多層畳み込みニューラルネットワークの層の数、入力層、隠れ層及び出力層で用いられる関数並び各層における関数の数などを設定する。
モデル生成部53bは、モデルパラメータセットMP(62)を初期化する(STEP204)。たとえば、モデル生成部53bは、ランダムな値をそれぞれのパラメータとして設定する。モデル生成部53bは、所定の回数(例えば2万回)だけループしてSTEP300の学習処理510を実行するSTEP206)。モデル生成部53bは、評価処理530を実行する(STEP400)。モデル生成部53bは、モデルアルゴリズムMA(61)と、モデルパラメータセットMP(62)とを第1記憶部102に記憶する(STEP208)。以上により、画像出力モデル生成処理が終了する。
図14に、学習処理510の概要を示している。図14に示した処理は、形状全体画像データKDi(71)、血液分析値BLi(91b)、遺伝子型GEi(91a)を入力として、実物質全体画像データBDi(72)に対応する疑似物質全体画像データpredBDiを出力するように、モデルアルゴリズムMAが定義されたモデルの学習処理である。疑似物質全体画像データpredBDiは、脳内の特定の疾患に関連する物質、例えばアミロイドβ蛋白又はタウ蛋白の分布を模した画像データといえる。
モデル生成部53bは、訓練データセット70の被験者データSDiごとにループして、STEP302〜STEP320の処理を実行する(STEP302)。モデル生成部53bは、モデルに形態全体画像データKDiを入力し、出力された疑似物質全体画像データpredBDiを認識する(STEP304)。
図15に、疑似物質全体画像データpredBDiの認識の具体例について説明する。本実施例においては、疑似物質全体画像データpredBDiの認識において、畳み込みニューラルネットワーク構造の一例であるU−net構造の認識モデルMOD700を用いる。U−Net構造(もしくはU−Net構造におけるSkipConnectionを廃したAuto Encoder構造)を有する畳み込みニューラルネットワーク構造は、学習処理510においては入力となるMR画像と、そのペアとなる実際に撮影されたPET画像とを複数用いて内部パラメータの最適化を行う。このU−net構造のモデル700は、形状全体画像データKDi(71)から疑似物質部分画像データpredBPDi(75)を生成する画像処理モデル60のモデルアルゴリズム61として有効である。
U−net構造の認識モデル700による演算においては、形態全体画像データKDiである3次元形態MR画像データを入力画像データIPIとする。入力画像データIPIは、隠れ層710に入力され、隠れ層710において特徴層720に至るまで各層でプーリングされて畳み込まれる。すなわち、認識モデル700においては、下向きパスにおいて畳み込み及びプーリングがなされる。認識モデル700においては、特徴層720から隠れ層710の結果である出力画像OPIを得るまで、各層で畳み込みされてアップサンプリングされる。すなわち、認識モデル700においては、上向きパスにおいて畳み込み及びアップサンプリングがなされ、本例においては、出力画像OPIとして疑似物質全体画像データpredBDiが復元(推定)されて認識される。なお、入力画像IPIが入力された隠れ層710の特徴層720までの下向きパスの各層における出力は、上向きパスの同一の深さの層にも入力される。すなわち、認識モデル700においては、下向きパスの各層の出力が上向きパスの同一の深さの層への入力にマージされる。
認識モデル700においては、特徴層720からの出力データに、バイオマーカーを含む属性情報90を足し合わせることが可能である。具体的には、下向きパスにおける特徴層720の1つ前の層の出力である画像特徴データ(3次元形式:L×M×N×1)731とバイオマーカー情報を含む属性情報90の内、例えば、血液分析値BLi(91b)、遺伝子型GEi(80a)によって決まる値を含むデータ(r個の特徴を持つデータ:L×M×r×1)732を結合した特徴データ(L×M×(N+r)×1)730が特徴層720において入力される。
このように、認識モデル700においては、特徴層720からの出力のデータ730に、特定の疾患としてのアルツハイマー型認知症に関連性が高い、具体的には脳内のアミロイドβ蛋白又はタウ蛋白の集積傾向に関連の深いバイオマーカーのデータを結合することによって、認識モデル700により推定される画像データの再現性を高めることが可能である。
なお、バイオマーカーとして、被験者の学歴等のアルツハイマー型認知症に関連性の高い他のバイオマーカーを用いてもよい。また、上記説明においては、特徴層720からの出力データ731にバイオマーカーに基づく値であり血液分析値BLi及び遺伝子型GEiによって決まる値を含むバイオマーカーに基づくデータ732を結合するとしたが、他の位置、具体的には隠れ層710の各層への入力のいずれかにバイオマーカーに基づくデータ732を結合してもよい。また、同一のバイオマーカーに基づくデータ732を複数回結合しても良い。また、複数のバイオマーカーに基づくデータ732を用いる場合、複数のバイオマーカー732に基づくデータを各々別の層への入力に結合してもよい。
モデル生成部53bは、疑似物質全体画像データpredBDiから、形態部分画像データKBDiに対応する部分画像データを抽出することで、疑似物質部分画像データpredBDiを認識する(STEP306)。モデル生成部53bは、疑似物質部分画像データpredBDiの画像要素predBDi(x、y、z)の値それぞれについて、座標(x、y、z)が同一の実物質部分画像データBDiの画像要素BDi(x、y、z)の値との2乗誤差を計算し、疑似物質部分画像データpredBDiにおける2乗誤差の平均値MSEiを求める(STEP308)。モデル生成部53bは、部位位置データPDiに基づいて、疑似物質部分画像データpredBPDi(75)のうち、所定の第1部位(例えば大脳灰白質)を示す第1疑似物質部分画像データを認識する(STEP310)。
モデル生成部53bは、第1疑似物質部分画像データに基づいて、被験者iの疾病の診断の基礎情報となる第1疑似指標値を認識する(STEP312)。たとえば、モデル生成部53bは、第1疑似物質部分画像データの各画像要素の輝度を示す値が所定の輝度を示す値となっている画像要素の数をカウントし、その数を第1疑似指標値として認識する。前処理部53aは、これに代えて又は加えて、第1疑似物質部分画像データの各画像要素の輝度が所定以上の画像要素の数をカウントして、その数を第1疑似指標値として認識してもよい。
モデル生成部53bは、部位位置データPDiに基づいて、疑似物質部分画像データpredBPDiのうち、所定の第2部位(例えば小脳)を示す第2疑似物質部分画像データを認識する(STEP314)。モデル生成部53bは、第2疑似物質部分画像データに基づいて、被験者iの疾病の診断の基礎情報となる疾病の指標となる第2疑似指標値を認識する(STEP316)。たとえば、モデル生成部53bは、第2疑似物質部分画像データのうち、画像要素の輝度値が所定値以上となっている画像要素の数をカウントし、その数を第2疑似指標値として認識する。モデル生成部53bは、第1疑似指標値と、第2疑似指標値とに基づいて、疑似指標値PredViを認識し、第1記憶部120に記憶する(STEP318)。たとえば、モデル生成部112は、第1疑似指標値と第2疑似指標値との比を、疑似指標値predViとして認識する。疑似指標値predViは、特定の疾患に関する実指標値Viに相当するものである。なお、上述のように、実指標値Viは、被験者がある疾病を発生するおそれがあるかどうかを判定するための指標値である。本実施例では、疑似指標値predViは、被験者iがある疾病、例えばアルツハイマー型認知症を発症するおそれがあるかどうかを判定するための指標値である。例えば、実指標値Viが実際のSUVRである場合、疑似指標値predViは疑似的なSUVRであるといえる。
モデル生成部53bは、画素要素間の差異を測る指標、例えば画像要素の2乗誤差MSEiと、実指標値Viと疑似指標値predViとに基づいて現在のモデルの被験者データSDiに対する損失Eiを評価する(STEP320)。モデル生成部53bは、上述した式(2)を用いて現在のモデルの被験者データSDiに対する損失Eiを評価する。
STEP302のループ処理の終了後、モデル生成部53bは、誤差逆伝播法などにより、各損失Eiが最小となるように、モデルパラメータセットMPを修正する(STEP322)。以上により、本処理が終了する。
図16に評価処理530の概要を示しているモデル生成部53bは、訓練データセットGDS(70)の各被験者データSDiを学習済みのモデル60に入力し、出力された各疑似物質全体画像データpredBDiを認識する(STEP402)。モデル生成部53bは、各疑似物質全体画像データpredBDiに対し、学習処理510のSTEP306、STEP310〜STEP318と同様の処理により、各疑似指標値predViを認識する(STEP404)。モデル生成部53bは、実指標値Viを横軸とし、疑似指標値predViを縦軸とした2次元座標のグラフ、例えば、図4に示したグラフを作成する(STEP406)。
モデル生成部53bは、テストデータセットTDS(79)の各被験者データSDjを学習済みのモデル60に入力し、出力された各疑似物質全体画像データpredBDjを認識する(STEP408)。モデル生成部53bは、各疑似物質全体画像データpredBDjに対し、学習処理510のSTEP306、STEP310〜STEP318と同様の処理により、各疑似指標値predVjを認識する(STEP410)。モデル生成部53bは、実指標値Vjを横軸とし、疑似指標値predVjを縦軸とした2次元座標のグラフ、例えば図5を作成する(STEP412)。テストデータセットTDSの各疑似物質全体画像データpredBDjから認識される各疑似指標値predVjの相関と、訓練データセットGDSの各疑似物質全体画像データpredBDjから認識される各疑似指標値predViの相関とを比較し、モデル60の性能を確認する。
図17に学習処理510の異なる例を示している。図14の学習処理510は、形状全体画像データKDi(71)を入力として、実物質全体画像データBDiに対応する疑似物質全体画像データpredBDiを出力するように、モデルアルゴリズムMAが定義されたモデルの学習処理であった。図17に示す学習処理510は、形状全体画像データKDi(71)を入力として、図2に示す実物質部分画像データBPDi(74)に対応する疑似物質部分画像データpredBPDi(75)を出力するように、モデルアルゴリズムMA(61)が定義されたモデル60の学習を行う。
本処理では、モデル生成部53bが、STEP304〜STEP306に代えて、STEP350を実行する点で図14に示した学習処理と異なり、他は一致する。STEP350では、モデル生成部53bは、モデルに形状全体画像データKDiを入力し、出力された疑似物質部分画像データpredBPDi+を認識する。STEP308以降では、モデル生成部53bは、STEP350で認識された疑似物質部分画像データpredBPDi+を用いて処理を行う。
図18に、医療機関200の端末(診断支援端末、画像表示装置)210の構成をさらに示している。支援端末210は、デスクトップコンピュータ、ラップトップコンピュータ、タブレット端末又はスマートフォン等により構成されうる。支援端末210は、第2制御部20と、第2記憶部29と、第2通信部22と、表示部25とを備える。第2制御部20は、例えば、CPU(Central Processing Unit)のような演算処理装置、キャッシュメモリ及びI/Oデバイスなどにより構成される。第2制御部20は、第2記憶部29に記憶された画像出力プログラム29pを読み出して実行することにより、診断支援情報提供部(情報提供モジュール、表示データ認識部)12、表示制御部(出力部)23および受診者情報取得部(入力部)21として機能し、スタンドアロンで診断支援モジュール10として機能する例を示している。
第2記憶部29は、例えば、メモリ等の主記憶装置及びHDD等の補助記憶装置により構成されうる。第2記憶部29は、画像出力プログラム29pと、モデルアルゴリズム61およびモデルパラメータセット62を含む学習済みの画像処理モデル60とを記憶するように構成されている。学習済みの画像処理モデル60は、モデル提供モジュール50から通信を介してダウンロードしてもよい。画像処理モデル60は、CD、DVD又はUSBメモリのように可搬性のある記憶媒体から読み込まれてもよい。
第2通信部22は、有線通信又は無線通信によりネットワークを介して、モデル提供モジュール50、形態画像撮像装置221およびその他の外部の機器のそれぞれと通信可能に構成されている。表示部25は、例えば、液晶パネルにより構成される。表示部25は、表示制御部23からの信号に応じて画像を表示するように構成されている。
図19に、診断支援モジュール10における処理の概要を示している。ステップ601において、診断支援モジュール10の受診者情報取得ユニット11または取得ユニットとして機能する入力インターフェイス21が、受診者5の脳のMRイメージ15を含む受診者情報105を取得する。MR画像15は、評価対象領域82を含む脳を参照領域81として取得される、形態に関する情報を中心として含む第1のタイプの実画像データの一例であり、受診者情報105に含まれるMR画像15は、参照領域81を少なくとも含む受診対象の個別の実画像データの一例である。なお、以降においても、受診者5のアルツハイマー症を対象として、MR画像から生成される疑似PET画像を用いた診断支援を行う例を説明するが、上述したように、他の症状および他のタイプの画像についても同様に画像処理モデル60を用いた診断支援サービスを提供できる。
ステップ602で、情報提供ユニット12は、訓練データ70に基づいて、第1のタイプの参照領域81の実画像データであるMRイメージ71から第2のタイプの評価対象領域82の疑似画像データである疑似PET画像75を生成するように学習をさせた画像処理モデル60により、受診者情報105に含まれる脳全体(参照領域)81のMR画像15から、評価対象領域82の5つの部位を含む疑似PET画像115を生成する。
画像処理モデル600の学習に用いられる訓練データ70に含まれる第2のタイプの実画像データは、診断対象の異常、この例ではアルツハイマー症に関連する第1の物質であるアミロイドβの分布を可視化した分布情報を含む実物質画像データのPET画像72である。画像処理モデル600は、第2のタイプの実画像データの評価対象領域82の第1の物質の分布情報から得られる実指標値Vi(SUVR)と、第2のタイプの評価対象領域82の疑似画像データに含まれている、第1の物質の分布に対応する疑似分布情報から得られる疑似指標値predVi(predSUVR)とを含む損失関数Eiを用いて、実指標値と疑似指標値との差が小さくなるように学習されたパラメータ62を含むモデル600である。また、損失関数Eiは、第2のタイプの評価対象領域82の疑似画像データ(疑似PET画像)75の画素要素の値について第2のタイプの評価対象領域82の実画像データ(PET画像)74の画像要素の値から乖離の度合いを示す乖離度、例えばMEEiを含む。
ステップ603において、ステップ601で取得した受診者情報105に受診者5のバイオマーカー91を含む属性情報14が含まれている場合は、ステップ604において、複数の被験対象のバイオマーカーに関連する情報91を含む属性情報90を含む訓練データ70により学習済みのパラメータセット62を含む画像処理モデル60を採用して、疑似PET画像115を生成する。
ステップ605において、診断結果(疑似診断結果、推定された診断結果)117を含めた診断支援情報110が要求されている場合は、ステップ606において、複数の被験対象の診断対象の異常の診断結果94を含む訓練データ70で学習済みのパラメータセット62を含む画像処理モデル60を採用する。ステップ607において、受診者情報105に含まれるデータに基づき、画像処理モデル60により生成された評価対象領域82の疑似PET画像115に基づく診断支援情報110が提供される。診断支援情報110には、疑似PET画像115に加えて、疑似指標値116および疑似診断結果117が含まれていてもよい。また、疑似PET画像115の代わりに、疑似指標値116および/または疑似診断結果117が診断支援情報110に含まれていてもよい。
医療機関200の端末210においては、診断支援モジュール10または診断支援情報提供ユニット12から提供された診断支援情報110を画像表示端末25に出力することにより医師8などの医療関係者の診断を支援する。診断支援情報110に含まれる疑似PET画像115は独立して表示されてもよく、受診者5のMR画像15と並列に、あるいは重ねて表示されてもよく、診断支援情報110の出力方法はさまざまに設定できる。
例えば、形態全体画像データに基づいたMR画像15のみならず、疑似物質部分画像データに基づいた疑似PET画像115または受診者5の疾病の指標値を示す疑似指標値116、または双方が表示されることで、医師8に、受診者5の疾病の有無またははリスクを診断するための有用な情報が提供されうる。特に、疑似物質部分画像データに基づいた疑似PET画像115および受診者5の疾病の指標値を示す疑似指標値116の両方が表示されることで、医師8に受診者5の状態をより深く認識させうる。
以上に説明したように、画像処理モデル(画像出力モデル)60を用いた診断支援システムおよび方法においては、比較的受診者または患者の負荷が小さいMR画像あるいはCT画像といった、形態に関する情報を主に取得する3次元画像を用いて、様々な関心領域(評価対象領域)82に限定されるが、様々な異常(疾病)に関連する物質に関する3次元画像を精度よく生成することができ、それに基づく診断支援情報110を提供できる。したがって、受診者または患者に負荷をかけずに、PET画像などに匹敵する情報を高い頻度で取得でき、異常(疾病)の予防、進行あるいは診断に関する情報をタイムリーに提供できる。このため、診断支援システムは、疾病の診断のみならず、創薬における治験者の選択、臨床のモニタリングなどのアプリケーションにおいても適用でき、さらに、人体、家畜などを含めた生体の診断のみならず、画像診断が有効な構造物の内部状態を非破壊で診断するようなアプリケーションにおいても有用である。
上述した実施形態では、形状全体画像データをモデルに入力していたが、これに代えて又は加えて、形状部分画像データをモデルに入力するように構成してもよい。上記実施例においては、学習処理において、画像データとして形態部分画像データKPDi及び実物質部分画像データBPDiを用いる例について説明した。しかし、学習処理において、画像データとして形態全体画像データKDi及び実物質全体画像データBDiのみを用いることとしても良い。また、上記実施例においては、画像表示処理において、画像データとして、形態部分画像データ及び疑似物質部分画像データを出力するとしたが、疑似物質部分画像データに代えて疑似物質全体画像データを出力することとしてもよい。また、上記実施例においては、認識モデル700にU−net構造を有するモデルを用いる場合について説明した。しかし、認識モデル700には、Auto Encoder等、他のニューラルネットワーク構造を有するモデルを用いてもよい。
上記に含まれる形態の1つは、表示部を備えるコンピュータが実行する表示方法である。表示方法は、受診者の体内の形態を撮像した形態全体画像データを認識する受診者形態画像認識ステップと、画像出力モデルの生成方法により生成された画像出力モデルに前記受診者の形態全体画像データの画像部分を含む形態画像データを入力することにより、前記画像出力モデルから出力された前記受診者の体内の一部の部位における対象物質の分布を疑似的に示す疑似物質画像データを認識する受診者疑似物質画像部分認識ステップと、受診者疑似物質画像部分認識ステップで認識された前記疑似物質画像データを前記表示部に出力する表示ステップとを含む。
表示方法は、前記疑似物質画像データに基づいて、前記受診者の疾病に関する疑似指標値を認識する疑似指標値認識ステップを含んでいてもよく、表示ステップは、受診者疑似物質画像部分認識ステップで認識された前記疑似物質画像データ及び前記疑似指標値認識ステップで認識された前記疑似指標値を前記表示部に出力することを含んでいてもよい。なお、本明細書において、一の装置が情報を「認識する」とは、一の装置が他の装置から当該情報を受信すること、一の装置が当該一の装置に接続された記憶媒体に記憶された情報を読み取ること、一の装置が当該一の装置に接続されたセンサから出力された信号に基づいて情報を取得すること、一の装置が、受信した情報又は記憶媒体に記憶された情報又はセンサから取得した情報に基づいて、所定の演算処理(計算処理又は検索処理など)を実行することにより当該情報を導出すること、一の装置が他の装置による演算処理結果としての当該情報を当該他の装置から受信すること、一の装置が当該受信信号にしたがって内部記憶装置又は外部記憶装置から当該情報を読み取ること等、当該情報を取得するためのあらゆる演算処理が実行されることを意味してもよい。
他の態様の1つは、表示部を備えるコンピュータが実行する画像表示方法である。この画像表示方法は、受診者の脳の形態を撮像した形態画像データを認識する受診者形態画像認識ステップと、前記受診者の特定の疾患に関連するバイオマーカーを認識する受診者バイオマーカー認識ステップと、画像出力モデルに前記受診者の形態画像データ及び前記バイオマーカーに基づく値を入力することにより、前記画像出力モデルから出力された前記受診者の脳内における前記特定の疾患に関連する対象物質の分布を模した疑似物質画像データを認識する疑似物質画像認識ステップと、疑似物質画像認識ステップで認識された前記疑似物質画像データ、または当該疑似物質画像データに基づいて認識され、前記受診者の前記特定の疾患の発生に関する値である疑似指標値を前記表示部に出力する表示ステップとを含む。
当該構成の画像表示方法によれば、特定の疾患の診断に用いる疑似物質画像データを取得する疑似物質画像認識ステップにおいて、受診者の脳の形態画像データに加えて受診者の当該特定の疾患に関連するバイオマーカーに基づく値を入力することにより、受診者の脳内における対象物質の分布を模した疑似物質画像データを認識する。このように、疑似物質画像データの認識時に受診者の特定の疾患に関連するバイオマーカーに基づく値を加味して疑似物質画像データを生成することにより、形態画像データのみに基づいて脳内の当該特定の疾患に関連する対象物質の分布を推定するよりも当該対象物質の分布の推定精度が向上し得、ひいては疑似物質画像データ及びその疑似指標値の再現精度が向上し得る。
脳内における特定の疾患に関連する対象物質の分布の推定精度が向上することで、脳疾患等の診断にあたって提供される情報の有用性の向上を図ることができる。また、脳内における特定の疾患に関連する対象物質の情報を持つ画像を大量に用いて疾患の鑑別を行うニューラルネットワーク等のモデルを構築することが可能であるが、この際に、一般に高価な物質画像を大量に用意することに変えて、再現精度の高い疑似物質画像をその代替に用いる事ができる。
前記画像出力モデルは、U−net構造を有していてもよい。前記疑似物質画像認識ステップは、前記バイオマーカーに基づく値を前記U−net構造の入力層において追加することを含んでいてもよい。前記疑似物質画像認識ステップは、前記バイオマーカーに基づく値を前記U−net構造の特徴層において追加することを含んでいてもよい。前記バイオマーカーに基づく値は、前記受診者の血液を分析して得られる値を含んでいてもよく、前記受診者の遺伝子の型に基づく値を含んでいてもよい。前記形態画像データは、撮像された受診者の脳の断面の全体の形態を示すCT画像データまたはMR画像データであってもよい。
当該画像表示方法によれば、U−net構造の入力層にて脳の形態画像データを入力し、入力層または特徴層において特定の疾患に関連するバイオマーカーに基づく値を入力することにより、脳内の当該特定の疾患に関連する対象物質の分布の推定精度がさらに向上し得、ひいては疑似物質画像データおよびその疑似指標値の再現精度がさらに向上し得る。当該画像表示方法に依れば、例えば、アルツハイマー型認知症を発症するおそれがあるかどうかを判定するにあたって、関連性の高い脳内のアミロイドβ蛋白またはタウ蛋白の分布に関連するバイオマーカーである血液を分析して得られる値及び遺伝子の型を用いることによって、特定の疾患としてのアルツハイマー認知症の診断を高精度に行うことが可能となる。
上記に含まれる他の形態の1つは、表示部と、受診者の体内の形態を撮像した形態全体画像データを認識し、画像出力モデルの生成方法により生成された画像出力モデルに前記受診者の形態全体画像データの画像部分を含む形態画像データを入力することにより、前記画像出力モデルから出力された前記受診者の体内の一部の部位における対象物質の分布を疑似的に示す疑似物質画像データを認識する表示データ認識部と、前記表示データ認識部により認識された前記疑似物質画像データを前記表示部に出力する表示制御部とを備えた画像表示装置である。表示データ認識部は、疑似物質画像データおよび前記受診者の疾病に関する疑似指標値を認識してもよい。表示制御部は、前記疑似物質画像データおよび前記疑似指標値を前記表示部に出力してもよい。
上記に含まれる他の形態の1つは、画像表示装置である。画像表示装置は、表示部と、受診者の脳の形態を撮像した形態画像データを認識し、前記受診者の特定の疾患に関連するバイオマーカーに基づく値を認識し、画像出力モデルに前記受診者の形態画像データおよび前記バイオマーカーに基づく値を入力することにより、前記画像出力モデルから出力された前記受診者の脳内における前記特定の疾患に関連する対象物質の分布を模した疑似物質画像データ、および当該疑似物質画像データに基づいて認識され、前記受診者の前記特定の疾患の発生に関する値である疑似指標値を認識する表示データ認識部と、前記表示データ認識部により認識された前記疑似物質画像データ若しくは前記疑似物質画像データまたはその双方を前記表示部に出力する表示制御部とを含む。
上記に含まれる他の形態の1つは、画像出力モデルの生成方法である。生成方法は、被験者の脳の形態の撮像画像である形態画像データと、前記被験者の特定の疾患に関連する対象物質の前記被験者の脳内における分布を示す実物質画像データと、前記被験者の前記特定の疾患に関連するバイオマーカーに基づく値とを記憶する記憶部を備えるコンピュータが実行する方法であって、前記形態画像データ及び前記バイオマーカーに基づく値を入力し、前記被験者の脳内における前記対象物質の分布に関する画像である疑似物質画像データを出力するモデルを前記実物質画像データに基づいて修正するステップを含む。
当該構成の画像出力モデルの生成方法によれば、モデル生成ステップにおいて、前記記憶部に記憶された被験者の脳の形態画像データ及び当該被験者の特定の疾患に関連するバイオマーカーに基づく値を入力し、当該被験者の前記一部の部位の当該特定の疾患に関連する対象物質の分布に関する疑似物質画像データを出力するモデルが、前記被験者の脳内の当該対象物質の分布に関する実物質部分画像データに基づいて修正される。これにより、画像出力モデルが生成される。被験者の脳の形態画像データに加えて受診者の当該特定の疾患に関連するバイオマーカーに基づく値を入力することにより、被験者の脳の形態データのみを入力する場合と比較して、画像出力モデルによる被験者の脳内の当該特定の疾患に関連する対象物質の分布の推定精度が向上し得る。脳内における対象物質の分布の推定精度が向上することで、ひいては、疾病等の診断にあたって提供される情報の有用性の向上を図ることができる。
前記記憶部は、前記被験者の形態画像の一部の部位の画像部分を含む形態部分画像データと、前記被験者の実物質画像における前記一部の部位における対象物質の分布に関する画像部分を抽出した実物質部分画像データとを記憶してもよい。前記モデル生成ステップは、前記形態部分画像データおよび前記バイオマーカーに基づく値を入力し、前記被験者の脳内における前記一部の部位における前記対象物質の分布に関する画像部分を含む疑似物質画像データを出力するモデルを前記実物質部分画像データに基づいて修正するステップを含んでもよい。
生成方法は、被験者の体内の一又は複数の部位の形態の撮像画像である形態全体画像データにおける一部の部位に関する画像部分を含む形態画像データと、前記被験者の体内における対象物質の分布を示す実物質全体画像データにおける前記被験者の一又は複数の部位のうちの前記一部の部位における対象物質の分布に関する画像部分を抽出した実物質部分画像データとを記憶する記憶部を備えるコンピュータが実行する方法であって、前記形態画像データを入力し、前記被験者の体内における前記一部の部位における対象物質の分布に関する画像部分を含む疑似物質画像データを出力するモデルを前記実物質部分画像データに基づいて修正することにより、画像出力モデルを生成するモデル生成ステップを含んでもよい。
当該構成の画像出力モデルの生成方法によれば、モデル生成ステップにおいて、前記記憶部に記憶された前記形態画像データを入力し、前記被験者の一部の部位、例えば、脳の一部の部位の特定の疾患に関連する対象物質の分布に関する疑似物質画像データを出力するモデルが、前記被験者の一部の部位(脳の一部の部位)の当該対象物質の分布に関する実物質部分画像データに基づいて修正される。これにより、画像出力モデルが生成される。疾病の診断等、例えば、脳の疾病等の診断に当たっては、体内、例えば、脳内全体における当該疾病に関連する対象物質の分布が重要なのではなく、その一部領域における分布が重要であるので、実物質全体画像データのみに基づいてモデルを修正する場合と比較して、画像出力モデルによる前記被験者の当該一部の部位の対象物質の分布の推定精度が向上し得る。一部の部位(当該脳の一部の部位)における対象物質の分布の推定精度が向上することで、ひいては、疾病等の診断にあたって提供される情報の有用性の向上を図ることができる。
この画像出力モデルの生成方法は、前記実物質部分画像データに基づいて、前記被験者の前記特定の疾患に関する実指標値を認識する実指標値認識ステップを含み、前記モデル生成ステップは、前記疑似物質画像データの画像要素の値について前記実物質部分画像データの画像要素の値から乖離の度合いを示す乖離度を評価する乖離度評価ステップと、前記疑似物質画像データに基づいて、前記被験者の疾病に関する疑似指標値を認識する疑似指標値認識ステップと、前記乖離度と前記実指標値と前記疑似指標値とに基づいて前記モデルを修正する修正ステップとを含んでもよい。
当該画像出力モデルの生成方法によれば、前記モデル生成ステップにおいて、前記疑似物質画像データの画像要素について前記実物質部分画像データの画像要素から乖離の度合いを示す乖離度が評価される。そして、前記疑似物質画像データに基づいて、前記被験者の疾病に関する疑似指標値が認識される。そして、前記乖離度と前記実指標値と前記疑似指標値とに基づいて、前記モデルが修正される。これにより、画像要素および疾病に関する指標値の両面が加味されてモデルが修正される。この結果、画像出力モデルから出力されるデータにおける画像要素および疾病に関する指標値が実際のデータに近くなり、ひいては、疾病等の診断にあたって提供される情報の有用性の向上を図ることができる。
前記実指標値認識ステップは、前記実物質部分画像データに含まれる前記被験者の第1部位における前記対象物質の分布に基づいて第1実指標値を認識し、前記実物質部分画像データに含まれる前記被験者の第2部位における前記対象物質の分布に基づいて第2実指標値を認識するステップを含んでもよい。前記疑似指標値認識ステップは、前記疑似物質画像データに含まれる前記被験者の第1部位における前記対象物質の分布に基づいて第1疑似指標値を認識し、前記疑似物質画像データに含まれる前記被験者の第2部位における前記対象物質の分布に基づいて第2疑似指標値を認識するステップを含んでもよい。前記修正ステップは、前記乖離度と前記第1実指標値と前記第2実指標値と前記第1疑似指標値と前記第2疑似指標値とに基づいて前記モデルを修正するステップを含んでもよい。
一部の脳の疾病については、脳内の対象物質の全体の量のみならず、特定の疾患に関連する対象物質が脳内のどの部位にどのように分布しているかによっても、その診断が変わり得る。当該構成の画像出力モデルの生成方法によれば、前記被験者の脳の複数の部位のそれぞれについての指標値が加味されてモデルが修正される。これにより、疾病等の診断にあたって提供される情報の有用性の向上を図ることができる。
画像出力モデルの生成方法は、前記形態全体画像データまたは前記実物質全体画像データにおける前記第1部位の位置および前記第2部位の位置を認識する位置認識ステップを含んでもよい。前記疑似指標値認識ステップは、前記形態全体画像データまたは前記実物質全体画像データにおける前記第1部位の位置および前記第2部位の位置に基づいて、前記疑似物質画像データにおける前記第1部位の位置および前記第2部位の位置を認識し、前記疑似物質画像データにおける前記第1部位の位置における対象物質の分布に基づいて前記第1疑似指標値を認識し、前記疑似物質画像データにおける前記第2部位の位置における前記対象物質の分布に基づいて第2疑似指標値を認識するステップを含んでいてもよい。
人の脳内の部位の位置または大きさは人によって異なるため、生成された画像からどの部位が画像上のどこに位置するかは画像が生成された時点では不明である。この点に鑑みた上記画像出力モデルの生成方法によれば、形態画像データ又は前記実物質画像データにおける前記第1部位の位置および前記第2部位の位置に基づいて前記疑似物質画像データにおける前記第1部位の位置および前記第2部位の位置が認識される。これにより、疑似物質画像データに含まれる部位がどんなデータであるか等の解析が不要になるので、画像出力モデルの生成に当たっての計算コストを削減しうる。
画像出力モデルの生成方法において、前記形態画像データは、撮像された被験者の脳の断面の全体の形態を示すCT画像データまたはMR画像データであってもよく、前記実物質部分画像データは、前記被験者の脳における大脳灰白質及び小脳に関する前記PET画像の画像データであってもよい。前記モデル生成ステップは、前記記憶部に記憶されたCT画像データまたはMR画像データにおける大脳灰白質および小脳に関する画像部分を含むCT部分画像データまたはMRI部分画像データを入力し、前記被験者の前記大脳灰白質および前記小脳におけるアミロイドβ蛋白またはタウ蛋白の分布に関する画像部分を含む疑似PET画像データを出力するモデルを前記PET画像の画像データに基づいて修正することにより、画像出力モデルを生成するステップを含んでいてもよい。
当該構成の画像出力モデルの生成方法によれば、前記記憶部に記憶されたCT画像データ又はMR画像データにおける大脳灰白質及び小脳に関する画像部分を含むCT部分画像データ又はMRI部分画像データを入力し、前記被験者の前記大脳灰白質及び前記小脳におけるアミロイドβ蛋白又はタウ蛋白の分布に関する画像部分を含む疑似PET画像データを出力するモデルが前記PET画像の部分画像データに基づいて修正されることにより、画像出力モデルが生成される。大脳灰白質及び小脳におけるアミロイドβ蛋白又はタウ蛋白の分布は、特に認知症のリスク判定の基礎情報としうるところ、このような大脳灰白質及び小脳におけるアミロイドβ蛋白又はタウ蛋白の分布を推定する画像出力モデルが生成される。このような画像出力モデルから出力された全体画像データが医師等に提供されることで、認知症のリスク判定における基礎情報の有用性の向上を図ることができる。
上記には、受診対象の、評価対象領域を一部に含む参照領域を少なくとも含む第1のタイプの個別の実画像データを取得する取得ユニットと、複数の被験対象の前記第1のタイプの前記参照領域の実画像データと第2のタイプの前記評価対象領域を含む実画像データとを含む訓練データに基づいて、前記第1のタイプの前記参照領域の実画像データから前記第2のタイプの前記評価対象領域の疑似画像データを生成するように機械学習をさせた画像処理モデルにより、前記受診対象の前記第1のタイプの前記個別の実画像データから生成された前記第2のタイプの前記評価対象領域の疑似画像データに基づく診断支援情報を提供する情報提供ユニットとを有するシステムが開示されている。前記画像処理モデルは、前記第2のタイプの前記評価対象領域の疑似画像データの画素要素の値について前記第2のタイプの前記評価対象領域の実画像データの画像要素の値から乖離の度合いを示す乖離度を含む損失関数を用いて学習されたパラメータを含むモデルであってもよい。
前記第2のタイプの実画像データは、診断対象の異常に関連する第1の物質の分布を可視化した分布情報を含む実物質画像データであり、前記画像処理モデルは、前記第2のタイプの実画像データの前記評価対象領域の前記第1の物質の分布情報から得られる実指標値と、前記第2のタイプの前記評価対象領域の疑似画像データに含まれている、前記第1の物質の分布に対応する疑似分布情報から得られる疑似指標値とを含む損失関数を用いて、前記実指標値と前記疑似指標値との差が小さくなるように学習されたパラメータを含むモデルであってもよい。前記損失関数は、前記第2のタイプの前記評価対象領域の疑似画像データの画素要素の値について前記第2のタイプの前記評価対象領域の実画像データの画像要素の値から乖離の度合いを示す乖離度を含んでもよい。前記評価対象領域は複数の部位を含み、前記実指標値は、前記複数の部位のそれぞれの分布情報から求められ、前記疑似分布情報は、前記複数の部位のそれぞれの疑似分布情報から求められてもよい。前記情報提供ユニットは、前記受診対象の前記第1のタイプの前記個別の実画像データから生成された前記第2のタイプの前記評価対象領域の疑似画像データから得られる疑似指標値を含む前記診断支援情報を提供してもよい。
このシステムにおいて、前記第2のタイプの実画像データは、診断対象の異常に関連する第1の物質の分布を可視化した分布情報を含む実物質画像データであり、前記情報提供ユニットは、前記受診対象の前記第1のタイプの前記個別の実画像データから生成された前記第2のタイプの前記評価対象領域の疑似画像データに含まれている、前記第1の物質の分布に対応する疑似分布情報から得られる疑似指標値を含む前記診断支援情報を提供してもよい。前記第1のタイプの実画像データは、脳を前記参照領域とするCT画像データまたはMR画像データを含み、前記第2のタイプの実画像データは、PET画像データを含み、前記疑似指標値は、疑似SUVR値を含んでもよい。前記第1のタイプの実画像データは、脳を前記参照領域とするCT画像データまたはMR画像データを含み、前記第2のタイプの実画像データは、SPECT画像データを含み、前記疑似指標値は、疑似BR値を含んでもよい。前記訓練データは、前記複数の被験対象の前記診断対象の異常の診断結果を含み、前記情報提供ユニットは、前記画像処理モデルにより導出された前記受診対象の前記診断対象の異常の疑似診断結果を含む前記診断支援情報を提供してもよい。
前記取得ユニットは、さらに前記受診対象のバイオマーカーに関連する情報を含む属性情報を取得するように構成され、前記訓練データは、前記複数の被験対象のバイオマーカーに関連する情報を含む属性情報を含み、前記情報提供ユニットは、前記受診対象の前記個別の画像データおよび前記受診対象の前記属性情報に基づき前記画像処理モデルにより生成された前記第2のタイプの前記評価対象領域の疑似画像データに基づく診断支援情報を提供してもよい。システムは、前記訓練データを格納したストレージにアクセス可能なインターフェイスと、前記訓練データに基づいて、前記第1のタイプの前記参照領域の実画像データから前記第2のタイプの前記評価対象領域の疑似画像データを生成するための前記画像処理モデルを学習する学習部とを、さらに有してもよい。
また、上記には、受診対象の、評価対象領域を一部に含む参照領域を少なくとも含む第1のタイプの個別の実画像データを取得するインターフェイスを備えたコンピュータが実行する方法が開示されている。この方法は、前記第1のタイプの個別の実画像データを取得することと、複数の被験対象の前記第1のタイプの前記参照領域の実画像データと第2のタイプの前記評価対象領域を含む実画像データとを含む訓練データに基づいて、前記第1のタイプの前記参照領域の実画像データから前記第2のタイプの前記評価対象領域の疑似画像データを生成するように学習をさせた画像処理モデルにより、前記受診対象の前記第1のタイプの前記個別の実画像データから生成された前記第2のタイプの前記評価対象領域の疑似画像データに基づく診断支援情報を提供することとを有する。前記画像処理モデルは、前記第2のタイプの前記評価対象領域の疑似画像データの画素要素の値について前記第2のタイプの実画像データの前記評価対象領域の実画像データの画像要素の値から乖離の度合いを示す乖離度を含む損失関数を用いて学習されたパラメータを含むモデルであってもよい。
前記第2のタイプの実画像データは、診断対象の異常に関連する第1の物質の分布を可視化した分布情報を含む実物質画像データであり、前記画像処理モデルは、前記第2のタイプの実画像データの前記評価対象領域の前記第1の物質の分布情報から得られる実指標値と、前記第2のタイプの前記評価対象領域の疑似画像データに含まれている、前記第1の物質の分布に対応する疑似分布情報から得られる疑似指標値とを含む損失関数を用いて、前記実指標値と前記疑似指標値との差が小さくなるように学習されたパラメータを含むモデルであってもよい。前記損失関数は、前記第2のタイプの前記評価対象領域の疑似画像データの画素要素の値について前記第2のタイプの前記評価対象領域の実画像データの画像要素の値から乖離の度合いを示す乖離度を含んでもよい。前記評価対象領域は複数の部位を含み、前記実指標値は、前記複数の部位のそれぞれの分布情報から求められ、前記疑似分布情報は、前記複数の部位のそれぞれの疑似分布情報から求められてもよい。前記診断支援情報を提供することは、前記受診対象の前記第1のタイプの前記個別の実画像データから生成された前記第2のタイプの前記評価対象領域の疑似画像データから得られる疑似指標値を含む前記診断支援情報を提供することを含んでもよい。
この方法において、前記第2のタイプの実画像データは、診断対象の異常に関連する第1の物質の分布を可視化した分布情報を含む実物質画像データであり、前記診断支援情報を提供することは、前記受診対象の前記第1のタイプの前記個別の実画像データから生成された前記第2のタイプの前記評価対象領域の疑似画像データに含まれている、前記第1の物質の分布に対応する疑似分布情報から得られる疑似指標値を含む前記診断支援情報を提供してもよい。前記訓練データは、前記複数の被験対象の前記診断対象の異常の診断結果を含み、前記診断支援情報を提供することは、前記受診対象の前記診断対象の異常の疑似診断結果を含む前記診断支援情報を提供することを含んでもよい。
この方法において、前記取得することは、前記受診対象のバイオマーカーに関連する情報を含む属性情報を取得することを含み、前記訓練データは、前記複数の被験対象のバイオマーカーに関連する情報を含む属性情報を含み、前記診断支援情報を提供することは、前記受診対象の前記個別の画像データおよび前記受診対象の前記属性情報に基づき生成された前記第2のタイプの前記評価対象領域の疑似画像データに基づく診断支援情報を提供することを含んでもよい。
上記には、上記に記載の画像処理モデルを提供する装置が開示されている。この装置は、前記訓練データを格納したストレージにアクセス可能なインターフェイスと、前記訓練データに基づいて、前記第1のタイプの前記参照領域の実画像データから前記第2のタイプの前記評価対象領域の疑似画像データを生成するための前記画像処理モデルを学習する学習部とを有する。
上記には、また、複数の被験対象の第1のタイプの、評価対象領域を一部に含む参照領域の実画像データと、第2のタイプの前記評価対象領域を含む実画像データとを含む訓練データを格納したストレージにアクセス可能なインターフェイスを有するコンピュータが実行する方法が開示されている。この方法は、前記訓練データに基づいて、前記第1のタイプの前記参照領域の実画像データから前記第2のタイプの前記評価対象領域の疑似画像データを生成するための画像処理モデルを学習することを有する。前記第2のタイプの実画像データは、診断対象の異常に関連する第1の物質の分布を可視化した分布情報を含む実物質画像データであり、前記学習することは、前記第2のタイプの実画像データの前記評価対象領域の前記第1の物質の分布情報から得られる実指標値と、前記第2のタイプの前記評価対象領域の疑似画像データに含まれている、前記第1の物質の分布に対応する疑似分布情報から得られる疑似指標値とを含む損失関数を用いて、前記実指標値と前記疑似指標値との差が小さくなるように前記画像処理モデルのパラメータを学習することを含んでもよい。前記損失関数は、前記第2のタイプの前記評価対象領域の疑似画像データの画素要素の値について前記第2のタイプの前記評価対象領域の実画像データの画像要素の値から乖離の度合いを示す乖離度を含んでもよい。
この方法において、前記訓練データは、前記複数の被験対象のバイオマーカーに関連する情報を含む属性情報を含み、前記学習することは、前記属性情報を含めて前記画像処理モデルのパラメータを学習することを含んでもよい。前記バイオマーカーは、前記複数の被験対象のそれぞれの血液を分析して得られる情報および遺伝子の型に基づく情報の少なくともいずれかを含んでもよい。前記画像処理モデルは、畳み込みニューラルネットワーク構造を含み、前記学習することは、前記属性情報を前記畳み込みニューラルネットワーク構造の特徴量に含めて前記画像処理モデルのパラメータを学習することを含んでもよい。
さらに、上記には、コンピュータを上記に記載のシステムとして機能させる命令を有するプログラムが開示されている。
なお、上記において開示した画像、症例、指標値などの情報は一例であり、本発明はこれらの記載および表示に限定されるものではない。また、上記において、図面を参照して本発明の特定の実施形態を説明したが、様々な他の実施形態および変形例は本発明の範囲および精神から逸脱することなく当業者が想到し得ることであり、そのような他の実施形態および変形は以下の請求の範囲の対象となり、本発明は以下の請求の範囲により規定されるものである。

Claims (24)

  1. 受診対象の、評価対象領域を一部に含む参照領域を少なくとも含む第1のタイプの個別の実画像データを取得する取得ユニットと、
    複数の被験対象の前記第1のタイプの前記参照領域の実画像データと第2のタイプの前記評価対象領域を含む実画像データとを含む訓練データに基づいて、前記第1のタイプの前記参照領域の実画像データから前記第2のタイプの前記評価対象領域の疑似画像データを生成するように機械学習をさせた画像処理モデルにより、前記受診対象の前記第1のタイプの前記個別の実画像データから生成された前記第2のタイプの前記評価対象領域の疑似画像データに基づく診断支援情報を提供する情報提供ユニットとを有し、
    前記第2のタイプの実画像データは、診断対象の異常に関連する第1の物質の分布を可視化した分布情報を含む実物質画像データであり、
    前記画像処理モデルは、前記第2のタイプの実画像データの前記評価対象領域の前記第1の物質の分布情報から得られる実指標値と、前記第2のタイプの前記評価対象領域の疑似画像データに含まれている、前記第1の物質の分布に対応する疑似分布情報から得られる疑似指標値とを含む損失関数を用いて、前記実指標値と前記疑似指標値との差が小さくなるように学習されたパラメータを含むモデルである、システム。
  2. 請求項において、
    前記損失関数は、前記第2のタイプの前記評価対象領域の疑似画像データの画素要素の値について前記第2のタイプの前記評価対象領域の実画像データの画像要素の値から乖離の度合いを示す乖離度を含む、システム。
  3. 請求項1または2において、
    前記評価対象領域は複数の部位を含み、前記実指標値は、前記複数の部位のそれぞれの分布情報から求められ、前記疑似分布情報は、前記複数の部位のそれぞれの疑似分布情報から求められる、システム。
  4. 請求項1ないし3のいずれかにおいて、
    前記情報提供ユニットは、前記受診対象の前記第1のタイプの前記個別の実画像データから生成された前記第2のタイプの前記評価対象領域の疑似画像データから得られる疑似指標値を含む前記診断支援情報を提供する、システム。
  5. 受診対象の、評価対象領域を一部に含む参照領域を少なくとも含む第1のタイプの個別の実画像データを取得する取得ユニットと、
    複数の被験対象の前記第1のタイプの前記参照領域の実画像データと第2のタイプの前記評価対象領域を含む実画像データとを含む訓練データに基づいて、前記第1のタイプの前記参照領域の実画像データから前記第2のタイプの前記評価対象領域の疑似画像データを生成するように機械学習をさせた画像処理モデルにより、前記受診対象の前記第1のタイプの前記個別の実画像データから生成された前記第2のタイプの前記評価対象領域の疑似画像データに基づく診断支援情報を提供する情報提供ユニットとを有し、
    前記第2のタイプの実画像データは、診断対象の異常に関連する第1の物質の分布を可視化した分布情報を含む実物質画像データであり、
    前記情報提供ユニットは、前記受診対象の前記第1のタイプの前記個別の実画像データから生成された前記第2のタイプの前記評価対象領域の疑似画像データに含まれている、前記第1の物質の分布に対応する疑似分布情報から得られる疑似指標値を含む前記診断支援情報を提供する、システム。
  6. 請求項1ないし5のいずれかにおいて、
    前記第1のタイプの実画像データは、脳を前記参照領域とするCT画像データまたはMR画像データを含み、前記第2のタイプの実画像データは、PET画像データを含み、
    前記疑似指標値は、疑似SUVR値を含む、システム。
  7. 請求項1ないし5のいずれかにおいて、
    前記第1のタイプの実画像データは、脳を前記参照領域とするCT画像データまたはMR画像データを含み、前記第2のタイプの実画像データは、SPECT画像データを含み、
    前記疑似指標値は、疑似BR値を含む、システム。
  8. 請求項1ないし7のいずれかにおいて、
    前記訓練データは、前記複数の被験対象の前記診断対象の異常の診断結果を含み、
    前記情報提供ユニットは、前記画像処理モデルにより導出された前記受診対象の前記診断対象の異常の疑似診断結果を含む前記診断支援情報を提供する、システム。
  9. 請求項1ないし8のいずれかにおいて、
    前記取得ユニットは、さらに前記受診対象のバイオマーカーに関連する情報を含む属性情報を取得するように構成され、
    前記訓練データは、前記複数の被験対象のバイオマーカーに関連する情報を含む属性情報を含み、
    前記情報提供ユニットは、前記受診対象の前記個別の画像データおよび前記受診対象の前記属性情報に基づき前記画像処理モデルにより生成された前記第2のタイプの前記評価対象領域の疑似画像データに基づく診断支援情報を提供する、システム。
  10. 請求項1ないし9のいずれかにおいて、
    前記訓練データを格納したストレージにアクセス可能なインターフェイスと、
    前記訓練データに基づいて、前記第1のタイプの前記参照領域の実画像データから前記第2のタイプの前記評価対象領域の疑似画像データを生成するための前記画像処理モデルを学習する学習部とを、さらに有する、システム。
  11. 受診対象の、評価対象領域を一部に含む参照領域を少なくとも含む第1のタイプの個別の実画像データを取得するインターフェイスを備えたコンピュータが実行する方法であって、
    前記コンピュータが、前記第1のタイプの個別の実画像データを取得することと、
    複数の被験対象の前記第1のタイプの前記参照領域の実画像データと第2のタイプの前記評価対象領域を含む実画像データとを含む訓練データに基づいて、前記第1のタイプの前記参照領域の実画像データから前記第2のタイプの前記評価対象領域の疑似画像データを生成するように学習をさせた画像処理モデルにより、前記受診対象の前記第1のタイプの前記個別の実画像データから生成された前記第2のタイプの前記評価対象領域の疑似画像データに基づく診断支援情報を提供することとを有し、
    前記第2のタイプの実画像データは、診断対象の異常に関連する第1の物質の分布を可視化した分布情報を含む実物質画像データであり、
    前記画像処理モデルは、前記第2のタイプの実画像データの前記評価対象領域の前記第1の物質の分布情報から得られる実指標値と、前記第2のタイプの前記評価対象領域の疑似画像データに含まれている、前記第1の物質の分布に対応する疑似分布情報から得られる疑似指標値とを含む損失関数を用いて、前記実指標値と前記疑似指標値との差が小さくなるように学習されたパラメータを含むモデルである、方法。
  12. 請求項11において、
    前記損失関数は、前記第2のタイプの前記評価対象領域の疑似画像データの画素要素の値について前記第2のタイプの前記評価対象領域の実画像データの画像要素の値から乖離の度合いを示す乖離度を含む、方法。
  13. 請求項11または12において、
    前記評価対象領域は複数の部位を含み、前記実指標値は、前記複数の部位のそれぞれの分布情報から求められ、前記疑似分布情報は、前記複数の部位のそれぞれの疑似分布情報から求められる、方法。
  14. 請求項11ないし13のいずれかにおいて、
    前記診断支援情報を提供することは、前記受診対象の前記第1のタイプの前記個別の実画像データから生成された前記第2のタイプの前記評価対象領域の疑似画像データから得られる疑似指標値を含む前記診断支援情報を提供することを含む、方法。
  15. 受診対象の、評価対象領域を一部に含む参照領域を少なくとも含む第1のタイプの個別の実画像データを取得するインターフェイスを備えたコンピュータが実行する方法であって、
    前記第1のタイプの個別の実画像データを取得することと、
    複数の被験対象の前記第1のタイプの前記参照領域の実画像データと第2のタイプの前記評価対象領域を含む実画像データとを含む訓練データに基づいて、前記第1のタイプの前記参照領域の実画像データから前記第2のタイプの前記評価対象領域の疑似画像データを生成するように学習をさせた画像処理モデルにより、前記受診対象の前記第1のタイプの前記個別の実画像データから生成された前記第2のタイプの前記評価対象領域の疑似画像データに基づく診断支援情報を提供することとを有し、
    前記第2のタイプの実画像データは、診断対象の異常に関連する第1の物質の分布を可視化した分布情報を含む実物質画像データであり、
    前記診断支援情報を提供することは、前記受診対象の前記第1のタイプの前記個別の実画像データから生成された前記第2のタイプの前記評価対象領域の疑似画像データに含まれている、前記第1の物質の分布に対応する疑似分布情報から得られる疑似指標値を含む前記診断支援情報を提供する、方法
  16. 請求項11ないし15のいずれかにおいて、
    前記訓練データは、前記複数の被験対象の前記診断対象の異常の診断結果を含み、
    前記診断支援情報を提供することは、前記受診対象の前記診断対象の異常の疑似診断結果を含む前記診断支援情報を提供することを含む、方法。
  17. 請求項11ないし16のいずれかにおいて、
    前記取得することは、前記受診対象のバイオマーカーに関連する情報を含む属性情報を取得することを含み、
    前記訓練データは、前記複数の被験対象のバイオマーカーに関連する情報を含む属性情報を含み、
    前記診断支援情報を提供することは、前記受診対象の前記個別の画像データおよび前記受診対象の前記属性情報に基づき生成された前記第2のタイプの前記評価対象領域の疑似画像データに基づく診断支援情報を提供することを含む、方法。
  18. 請求項1ないし4のいずれかに記載の画像処理モデルを提供する装置であって、
    前記訓練データを格納したストレージにアクセス可能なインターフェイスと、
    前記訓練データに基づいて、前記第1のタイプの前記参照領域の実画像データから前記第2のタイプの前記評価対象領域の疑似画像データを生成するための前記画像処理モデルを学習する学習部とを有する、装置。
  19. 複数の被験対象の第1のタイプの、評価対象領域を一部に含む参照領域の実画像データと、第2のタイプの前記評価対象領域を含む実画像データとを含む訓練データを格納したストレージにアクセス可能なインターフェイスを有するコンピュータが実行する方法であって、
    前記コンピュータが、前記訓練データに基づいて、前記第1のタイプの前記参照領域の実画像データから前記第2のタイプの前記評価対象領域の疑似画像データを生成するための画像処理モデルを学習することを有し、
    前記第2のタイプの実画像データは、診断対象の異常に関連する第1の物質の分布を可視化した分布情報を含む実物質画像データであり、
    前記学習することは、前記第2のタイプの実画像データの前記評価対象領域の前記第1の物質の分布情報から得られる実指標値と、前記第2のタイプの前記評価対象領域の疑似画像データに含まれている、前記第1の物質の分布に対応する疑似分布情報から得られる疑似指標値とを含む損失関数を用いて、前記実指標値と前記疑似指標値との差が小さくなるように前記画像処理モデルのパラメータを学習することを含む、方法。
  20. 請求項19において、
    前記損失関数は、前記第2のタイプの前記評価対象領域の疑似画像データの画素要素の値について前記第2のタイプの前記評価対象領域の実画像データの画像要素の値から乖離の度合いを示す乖離度を含む、方法。
  21. 請求項19または20において、
    前記訓練データは、前記複数の被験対象のバイオマーカーに関連する情報を含む属性情報を含み、
    前記学習することは、前記属性情報を含めて前記画像処理モデルのパラメータを学習することを含む、方法。
  22. 請求項21において、
    前記バイオマーカーは、前記複数の被験対象のそれぞれの血液を分析して得られる情報および遺伝子の型に基づく情報の少なくともいずれかを含む、方法。
  23. 請求項21または22において、
    前記画像処理モデルは、畳み込みニューラルネットワーク構造を含み、
    前記学習することは、前記属性情報を前記畳み込みニューラルネットワーク構造の特徴量に含めて前記画像処理モデルのパラメータを学習することを含む、方法。
  24. コンピュータを請求項1ないし10のいずれかに記載のシステムとして機能させる命令を有するプログラム。
JP2020532078A 2018-09-12 2019-09-12 診断支援システムおよび方法 Active JP6746160B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020129194A JP7357927B2 (ja) 2018-09-12 2020-07-30 診断支援システムおよび方法
JP2023151875A JP2023169313A (ja) 2018-09-12 2023-09-20 診断支援システムおよび方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2018170708 2018-09-12
JP2018170708 2018-09-12
JP2019067854 2019-03-29
JP2019067854 2019-03-29
PCT/JP2019/035914 WO2020054803A1 (ja) 2018-09-12 2019-09-12 診断支援システムおよび方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020129194A Division JP7357927B2 (ja) 2018-09-12 2020-07-30 診断支援システムおよび方法

Publications (2)

Publication Number Publication Date
JP6746160B1 true JP6746160B1 (ja) 2020-08-26
JPWO2020054803A1 JPWO2020054803A1 (ja) 2020-10-22

Family

ID=69777069

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2020532078A Active JP6746160B1 (ja) 2018-09-12 2019-09-12 診断支援システムおよび方法
JP2020129194A Active JP7357927B2 (ja) 2018-09-12 2020-07-30 診断支援システムおよび方法
JP2023151875A Pending JP2023169313A (ja) 2018-09-12 2023-09-20 診断支援システムおよび方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2020129194A Active JP7357927B2 (ja) 2018-09-12 2020-07-30 診断支援システムおよび方法
JP2023151875A Pending JP2023169313A (ja) 2018-09-12 2023-09-20 診断支援システムおよび方法

Country Status (5)

Country Link
US (1) US11978557B2 (ja)
EP (1) EP3851036A4 (ja)
JP (3) JP6746160B1 (ja)
CN (1) CN112702947A (ja)
WO (1) WO2020054803A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220292657A1 (en) * 2021-03-11 2022-09-15 Terran Biosciences, Inc. Systems, devices, and methods for harmonization of imaging datasets including biomarkers

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7334256B2 (ja) * 2019-09-27 2023-08-28 富士フイルム株式会社 画像処理装置、方法およびプログラム、学習装置、方法およびプログラム、並びに導出モデル
JPWO2022054711A1 (ja) * 2020-09-10 2022-03-17
WO2022065061A1 (ja) * 2020-09-28 2022-03-31 富士フイルム株式会社 画像処理装置、画像処理装置の作動方法、画像処理装置の作動プログラム
JPWO2022138960A1 (ja) * 2020-12-25 2022-06-30
EP4272635A4 (en) * 2020-12-30 2024-09-04 Neurophet Inc METHOD FOR PROVIDING DIAGNOSTIC ASSISTANCE INFORMATION, AND DEVICE IMPLEMENTING SAME
WO2022168969A1 (ja) * 2021-02-05 2022-08-11 株式会社Medicolab 学習装置、学習済みモデルの生成方法、診断処理装置、コンピュータプログラム及び診断処理方法
WO2022250253A1 (en) * 2021-05-25 2022-12-01 Samsung Electro-Mechanics Co., Ltd. Apparatus and method with manufacturing anomaly detection
KR102609153B1 (ko) * 2021-05-25 2023-12-05 삼성전기주식회사 딥러닝 기반 제조 영상의 이상 탐지 장치 및 방법
KR102444082B1 (ko) 2022-02-22 2022-09-16 뉴로핏 주식회사 치매 진단 보조 정보 제공 장치 및 방법
KR102451108B1 (ko) 2022-02-22 2022-10-06 뉴로핏 주식회사 치매 진단에 필요한 정보 제공 방법 및 장치
WO2023167157A1 (ja) * 2022-03-01 2023-09-07 株式会社Splink コンピュータプログラム、情報処理装置及び情報処理方法
WO2024166932A1 (ja) * 2023-02-07 2024-08-15 公立大学法人大阪 医療用画像生成方法及び装置、人工知能モデル学習方法及び装置、並びにプログラム
CN117036305B (zh) * 2023-08-16 2024-07-19 郑州大学 一种用于咽喉检查的图像处理方法、系统及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320387A (ja) * 2005-05-17 2006-11-30 Univ Of Tsukuba 計算機支援診断装置および方法
JP2018505705A (ja) * 2014-12-10 2018-03-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 機械学習を用いた医用イメージングの変換のためのシステムおよび方法
WO2018048507A1 (en) * 2016-09-06 2018-03-15 Han Xiao Neural network for generating synthetic medical images
KR20180097214A (ko) * 2017-02-23 2018-08-31 고려대학교 산학협력단 딥러닝을 사용하여 재발 부위를 예측하고, pet 이미지를 생성하는 방법과 장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071080A (ja) * 2002-08-08 2004-03-04 Pioneer Electronic Corp 情報再生出力装置、方法、プログラム及び記録媒体
US7782998B2 (en) * 2004-12-21 2010-08-24 General Electric Company Method and apparatus for correcting motion in image reconstruction
JP4685078B2 (ja) * 2007-10-25 2011-05-18 富士フイルムRiファーマ株式会社 画像診断支援システム
JP5243865B2 (ja) * 2008-07-07 2013-07-24 浜松ホトニクス株式会社 脳疾患診断システム
JP6703323B2 (ja) 2015-09-17 2020-06-03 公益財団法人神戸医療産業都市推進機構 生体の画像検査のためのroiの設定技術
CN107644419A (zh) * 2017-09-30 2018-01-30 百度在线网络技术(北京)有限公司 用于分析医学影像的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320387A (ja) * 2005-05-17 2006-11-30 Univ Of Tsukuba 計算機支援診断装置および方法
JP2018505705A (ja) * 2014-12-10 2018-03-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 機械学習を用いた医用イメージングの変換のためのシステムおよび方法
WO2018048507A1 (en) * 2016-09-06 2018-03-15 Han Xiao Neural network for generating synthetic medical images
KR20180097214A (ko) * 2017-02-23 2018-08-31 고려대학교 산학협력단 딥러닝을 사용하여 재발 부위를 예측하고, pet 이미지를 생성하는 방법과 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220292657A1 (en) * 2021-03-11 2022-09-15 Terran Biosciences, Inc. Systems, devices, and methods for harmonization of imaging datasets including biomarkers
US12079960B2 (en) * 2021-03-11 2024-09-03 Terran Biosciences Inc. Systems, devices, and methods for harmonization of imaging datasets including biomarkers

Also Published As

Publication number Publication date
WO2020054803A1 (ja) 2020-03-19
JP7357927B2 (ja) 2023-10-10
CN112702947A (zh) 2021-04-23
EP3851036A4 (en) 2022-06-15
EP3851036A1 (en) 2021-07-21
US20210257094A1 (en) 2021-08-19
JP2023169313A (ja) 2023-11-29
US11978557B2 (en) 2024-05-07
JPWO2020054803A1 (ja) 2020-10-22
JP2020171841A (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
JP6746160B1 (ja) 診断支援システムおよび方法
US20240274249A1 (en) Diagnosis support system, information processing method, and program
JP5468905B2 (ja) 神経変性疾患の診断を支援するためのツール
JP5424902B2 (ja) Pet/mrフロー推定を用いて補われる自動診断及び自動整列
Willette et al. Prognostic classification of mild cognitive impairment and Alzheimer׳ s disease: MRI independent component analysis
US8170347B2 (en) ROI-based assessment of abnormality using transformation invariant features
JP6036009B2 (ja) 医用画像処理装置、およびプログラム
US11403755B2 (en) Medical information display apparatus, medical information display method, and medical information display program
US11151717B2 (en) Computer aided diagnosis system for mild cognitive impairment
US11222728B2 (en) Medical image display apparatus, medical image display method, and medical image display program
JP7492769B2 (ja) 認知症診断に必要な情報の提供方法及び装置
Jitsuishi et al. Searching for optimal machine learning model to classify mild cognitive impairment (MCI) subtypes using multimodal MRI data
Platten et al. Deep learning corpus callosum segmentation as a neurodegenerative marker in multiple sclerosis
Chen et al. Contrastive learning for prediction of Alzheimer's disease using brain 18f-fdg pet
CN117098496A (zh) 用于协调包括生物标志物的成像数据集的系统、装置和方法
US20160166192A1 (en) Magnetic resonance imaging tool to detect clinical difference in brain anatomy
JP7477906B2 (ja) 認知症診断支援情報の提供装置及びその方法
WO2023276563A1 (ja) 診断支援装置、コンピュータプログラム及び診断支援方法
JP6998760B2 (ja) 脳画像解析装置、脳画像解析方法、及び脳画像解析プログラム
Miller et al. Identifying dementia in MRI scans using machine learning
BORDIN et al. Harmonizing large-scale imaging databases to provide integrated assessments of the role of white matter hyperintensities in cognitive aging
Chattopadhyay et al. Comparison of deep learning architectures for predicting amyloid positivity in Alzheimer’s disease, mild cognitive impairment, and healthy aging, from T1-weighted brain structural MRI
JP2020075100A (ja) 画像生装置、画像表示方法及び画像出力モデルの生成方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200610

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200610

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200730

R150 Certificate of patent or registration of utility model

Ref document number: 6746160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250