JP6745782B2 - Negative electrode for lithium-ion secondary battery and lithium-ion secondary battery - Google Patents

Negative electrode for lithium-ion secondary battery and lithium-ion secondary battery Download PDF

Info

Publication number
JP6745782B2
JP6745782B2 JP2017226668A JP2017226668A JP6745782B2 JP 6745782 B2 JP6745782 B2 JP 6745782B2 JP 2017226668 A JP2017226668 A JP 2017226668A JP 2017226668 A JP2017226668 A JP 2017226668A JP 6745782 B2 JP6745782 B2 JP 6745782B2
Authority
JP
Japan
Prior art keywords
negative electrode
ion secondary
tin film
secondary battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017226668A
Other languages
Japanese (ja)
Other versions
JP2019061941A (en
Inventor
和明 松本
和明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to CN201810067791.8A priority Critical patent/CN108365170B/en
Publication of JP2019061941A publication Critical patent/JP2019061941A/en
Application granted granted Critical
Publication of JP6745782B2 publication Critical patent/JP6745782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。 The present invention relates to a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery.

従来、携帯電子機器等の電源に用いられる二次電池として、リチウムイオン二次電池が知られている。 Conventionally, a lithium ion secondary battery has been known as a secondary battery used as a power source for portable electronic devices and the like.

前記リチウムイオン二次電池の負極活物質に炭素材料より理論容量が大きいスズを用いることが検討されており、例えば、集電体の表面に10〜300μmの厚さのスズ皮膜を形成したものを該リチウムイオン二次電池の負極に用いることが知られている(例えば、特許文献1参照)。 The use of tin, which has a larger theoretical capacity than that of a carbon material, as the negative electrode active material of the lithium ion secondary battery has been studied. For example, one having a tin film with a thickness of 10 to 300 μm formed on the surface of a current collector may be used. It is known to be used as a negative electrode of the lithium ion secondary battery (see, for example, Patent Document 1).

ところが、前記スズ皮膜はリチウムイオンを吸蔵したときの体積膨張が極めて大きく、充放電反応を繰り返すと前記集電体の表面から剥離するため、前記リチウムイオン二次電池の充放電サイクル性能が低下するという問題がある。そこで、前記問題を解決するために、銅細線からなるクロス状メッシュを集電体とし、該集電体にスズめっきを施したリチウムイオン二次電池用負極が知られている(例えば、特許文献2参照)。 However, the tin film has extremely large volume expansion when occluding lithium ions, and peels from the surface of the current collector when the charge/discharge reaction is repeated, so that the charge/discharge cycle performance of the lithium ion secondary battery deteriorates. There is a problem. Therefore, in order to solve the above problem, a negative electrode for a lithium ion secondary battery in which a cross-shaped mesh made of copper thin wires is used as a current collector and the current collector is plated with tin is known (for example, Patent Document 1). 2).

特開2001−68094号公報JP 2001-68094 A 特開2008−91035号公報JP, 2008-91035, A

しかしながら、銅細線からなるクロス状メッシュを集電体としても、前記スズ皮膜がリチウムイオンを吸蔵したときの大きな体積膨張のために、充放電反応を繰り返すと該集電体の表面から剥離する点では同一であり、改善が望まれる。 However, even if a cross-shaped mesh made of thin copper wires is used as a current collector, the tin film is peeled from the surface of the current collector when the charge/discharge reaction is repeated due to large volume expansion when the lithium ions are absorbed. It is the same, and improvement is desired.

本発明は、かかる事情に鑑み、充放電反応を繰り返したときにも集電体の表面に形成されたスズ皮膜が剥離することがなく、充放電サイクル性能の低下を抑制することができ、しかも所要のエネルギー容量を確保することができるリチウムイオン二次電池用負極を提供することを目的とする。 In view of such circumstances, the present invention does not peel off the tin film formed on the surface of the current collector even when the charge/discharge reaction is repeated, and can suppress deterioration of charge/discharge cycle performance, and It is an object of the present invention to provide a negative electrode for a lithium-ion secondary battery that can secure a required energy capacity.

また、本発明の目的は、前記リチウムイオン二次電池用負極を備えるリチウムイオン二次電池を提供することにもある。 Moreover, the objective of this invention is also providing the lithium ion secondary battery provided with the said negative electrode for lithium ion secondary batteries.

かかる目的を達成するために、本発明のリチウムイオン二次電池用負極は、平板状集電体と、該平板状集電体の表面を被覆する100〜1200nmの範囲の厚さの第1のスズ皮膜とを備える第1の負極部材と、電気伝導性を備えるメッシュ状集電体と、該メッシュ状集電体の表面を被覆する100〜1200nmの範囲の厚さの第2のスズ皮膜とを備え、該第2のスズ皮膜に囲まれた空間を有する第2の負極部材とを備え、該第1の負極部材の第1のスズ皮膜上に少なくとも1つの該第2の負極部材が積層されていることを特徴とする。 In order to achieve such an object, the negative electrode for a lithium ion secondary battery of the present invention comprises a flat plate current collector and a first flat plate current collector having a thickness in the range of 100 to 1200 nm. A first negative electrode member having a tin coating, a mesh-shaped current collector having electrical conductivity, and a second tin coating having a thickness in the range of 100 to 1200 nm that covers the surface of the mesh-shaped current collector. And a second negative electrode member having a space surrounded by the second tin film, wherein at least one second negative electrode member is laminated on the first tin film of the first negative electrode member. It is characterized by being.

本発明のリチウムイオン二次電池用負極において、前記第1の負極部材は、平板状集電体と、該平板状集電体の表面を被覆する第1のスズ皮膜とを備える。ここで、前記第1のスズ皮膜は100〜1200nmの範囲の厚さを備えるので、リチウムイオンを吸蔵したときに体積膨張を抑制することができ、リチウムイオン電池において充放電を繰り返したときにも、前記集電体から剥離することを防止して充放電サイクル性能の低下を抑制することができる。 In the negative electrode for a lithium ion secondary battery of the present invention, the first negative electrode member includes a plate-shaped current collector and a first tin film that covers the surface of the plate-shaped current collector. Here, since the first tin film has a thickness in the range of 100 to 1200 nm, volume expansion can be suppressed when lithium ions are occluded, and even when charging and discharging are repeated in a lithium ion battery. It is possible to prevent peeling from the current collector and suppress deterioration of charge/discharge cycle performance.

第1のスズ皮膜は、厚さが100nm未満では負極活物質としてリチウムイオンを吸蔵する作用が過小になり、厚さが1200nmを超えるとリチウムイオンを吸蔵したときに体積膨張を抑制することができない。 When the thickness of the first tin film is less than 100 nm, the action of occluding lithium ions as a negative electrode active material becomes too small, and when the thickness exceeds 1200 nm, volume expansion cannot be suppressed when occluding lithium ions. ..

一方、本発明のリチウムイオン二次電池用負極は、前記範囲の厚さを備える第1のスズ皮膜だけでは所要のエネルギー容量を確保することが難しい。そこで、本発明のリチウムイオン二次電池用負極は、前記第1の負極部材の第1のスズ皮膜上に少なくとも1つの前記第2の負極部材が積層されている。 On the other hand, in the lithium-ion secondary battery negative electrode of the present invention, it is difficult to secure the required energy capacity only with the first tin film having a thickness within the above range. Therefore, in the negative electrode for a lithium ion secondary battery of the present invention, at least one second negative electrode member is laminated on the first tin film of the first negative electrode member.

前記第2の負極部材は、電気伝導性を備えるメッシュ状集電体と、該メッシュ状集電体の表面を被覆する100〜1200nmの範囲の厚さの第2のスズ皮膜とを備えている。また、前記第2の負極部材は、前記メッシュ状集電体の表面を前記第2のスズ皮膜が被覆していることにより、該第2のスズ皮膜に囲まれた空間を備えている。 The second negative electrode member includes a mesh-shaped current collector having electrical conductivity, and a second tin film having a thickness in the range of 100 to 1200 nm that covers the surface of the mesh-shaped current collector. .. In addition, the second negative electrode member has a space surrounded by the second tin film by coating the surface of the mesh-shaped current collector with the second tin film.

この結果、前記第1の負極部材の第1のスズ皮膜上に前記第2の負極部材が積層されたときに、リチウムイオン電池においては前記第2のスズ皮膜に囲まれた空間を電解液が満たすこととなる。従って、前記第1のスズ皮膜及び前記第2のスズ皮膜の両方が前記電解液を介してリチウムイオンと良好に接触することができ、所要のエネルギー容量を確保することができる。 As a result, when the second negative electrode member is laminated on the first tin film of the first negative electrode member, the electrolyte solution fills the space surrounded by the second tin film in the lithium ion battery. Will be satisfied. Therefore, both the first tin film and the second tin film can make good contact with lithium ions through the electrolytic solution, and a required energy capacity can be secured.

本発明のリチウムイオン二次電池用負極において、前記第2の負極部材は、前記第1の負極部材に少なくとも1つ積層されていればよく、その数により該リチウムイオン二次電池用負極のエネルギー容量を調整することができる。 In the lithium ion secondary battery negative electrode of the present invention, at least one second negative electrode member may be laminated on the first negative electrode member, and the energy of the lithium ion secondary battery negative electrode depends on the number thereof. The capacity can be adjusted.

尚、前記第2のスズ皮膜の厚さを100〜1200nmの範囲とする理由は、前記第1のスズ皮膜の場合と同一である。 The reason why the thickness of the second tin film is set in the range of 100 to 1200 nm is the same as in the case of the first tin film.

本発明のリチウムイオン二次電池用負極において、前記第1のスズ皮膜及び第2のスズ皮膜は、無電解めっきにより形成されていてもよいが、電気めっきにより形成されていることが好ましい。電気めっきによれば、集電体に対するスズ皮膜の密着性がよく、大面積のスズ皮膜を容易且つ安価に形成することができる。 In the negative electrode for a lithium ion secondary battery of the present invention, the first tin film and the second tin film may be formed by electroless plating, but are preferably formed by electroplating. According to electroplating, the tin film has good adhesion to the current collector, and a large-area tin film can be easily and inexpensively formed.

また、本発明のリチウムイオン二次電池は、前記リチウムイオン二次電池用負極と、前記第2の負極部材に対向して配置された正極と、電解液とを備えるものとすることができる。 Further, the lithium ion secondary battery of the present invention may include the negative electrode for the lithium ion secondary battery, a positive electrode arranged to face the second negative electrode member, and an electrolytic solution.

本発明のリチウムイオン二次電池用負極の一構成例を示す模式的断面図。The typical sectional view showing one example of composition of the negative electrode for lithium ion secondary batteries of the present invention. 図1に示す第2の負極部材の平面図。The top view of the 2nd negative electrode member shown in FIG. 本発明のリチウムイオン二次電池の一構成例を示す模式的断面図。FIG. 3 is a schematic cross-sectional view showing a configuration example of the lithium-ion secondary battery of the present invention. 第1の負極部材における第1のスズ皮膜の厚さと充放電サイクル性能との関係を示すグラフ。The graph which shows the relationship between the thickness of the 1st tin film in a 1st negative electrode member, and charge/discharge cycle performance. メッシュ状集電体に用いるエキスパンドメタルの要部の構成を示す平面図。FIG. 3 is a plan view showing a configuration of a main part of the expanded metal used for the mesh current collector. 本発明のリチウムイオン二次電池の他の構成例を示す組立図。FIG. 6 is an assembly diagram showing another configuration example of the lithium-ion secondary battery of the present invention. 本発明のリチウムイオン二次電池の充放電サイクル性能を示すグラフ。The graph which shows the charging/discharging cycle performance of the lithium ion secondary battery of this invention.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。 Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

図1に示すように、本実施形態のリチウムイオン二次電池用負極1は、第1の負極部材2と、第2の負極部材3と備える。第1の負極部材2は、平板状集電体21と、平板状集電体21の少なくとも一方の表面を被覆する第1のスズ皮膜22とを備える。また、第2の負極部材3は、第1のスズ皮膜22上に積層され、電気伝導性を備える細線31からなるメッシュ状集電体32と、細線31の表面を被覆する第2のスズ皮膜33とを備える。 As shown in FIG. 1, the lithium-ion secondary battery negative electrode 1 of the present embodiment includes a first negative electrode member 2 and a second negative electrode member 3. The first negative electrode member 2 includes a plate-shaped current collector 21 and a first tin film 22 that covers at least one surface of the plate-shaped current collector 21. In addition, the second negative electrode member 3 is laminated on the first tin film 22, and the mesh-shaped current collector 32 made of the thin wire 31 having electrical conductivity and the second tin film coating the surface of the thin wire 31. And 33.

平板状集電体21は、電気伝導性を備える材料であればよく特に限定されるわけではないが、例えば、アルミニウム、銅、鋼、チタン等からなるものを用いることができる。また、平板状集電体21の材料としてスズを用いることも可能である。この場合、平板状集電体21が第1のスズ皮膜22を兼ねる。平板状集電体21の厚さは、電池のエネルギー密度を向上させるためには薄い方が良いが、薄すぎると取り扱いが難しく、生産性が低下するため、5〜50μmの範囲とすることが好ましい。また、平板状集電体21は、表面を切削又は溶解して凹凸が形成されていてもよい。 The plate-shaped current collector 21 is not particularly limited as long as it is a material having electric conductivity, but, for example, one made of aluminum, copper, steel, titanium or the like can be used. It is also possible to use tin as the material of the flat plate current collector 21. In this case, the plate-shaped current collector 21 also serves as the first tin film 22. The thickness of the flat plate-shaped current collector 21 is preferably thin in order to improve the energy density of the battery, but if it is too thin, it is difficult to handle and productivity is reduced, so the thickness should be in the range of 5 to 50 μm. preferable. In addition, the flat plate current collector 21 may be cut or melted on the surface to form irregularities.

第1のスズ皮膜22は、100〜1200nmの範囲の厚さを備える。第1のスズ皮膜22は、電気めっき又は無電解めっきにより形成することができるが、平板状集電体21に対する密着性がよく、大面積の皮膜を容易且つ安価に形成することができることから電気めっきにより形成することが好ましい。 The first tin coating 22 has a thickness in the range of 100 to 1200 nm. The first tin film 22 can be formed by electroplating or electroless plating, but the first tin film 22 has good adhesion to the plate-shaped current collector 21, and a large-area film can be formed easily and inexpensively. It is preferably formed by plating.

第1のスズ皮膜22を電気めっきにより形成する場合には、平板状集電体21を硝酸、塩酸、硫酸等の酸に浸漬し、或いは水洗して表面のごみ、酸化被膜等を除去した後、硫酸等の酸に塩化スズ等のスズ塩を溶解させためっき浴に浸漬し、所定の温度で通電することにより行うことができる。この時、より均一な第1のスズ皮膜22を形成させるためにβナフトールや、ゼラチン、クレゾールスルホン酸を適量溶解させてもよい。前記めっき浴は硫酸に代えて水酸化ナトリウム等のアルカリ溶液に塩化スズ等のスズ塩を溶解させたものであってもよい。第1のスズ皮膜22の厚さは、通電時間により管理することができる。 When the first tin film 22 is formed by electroplating, the flat plate current collector 21 is immersed in an acid such as nitric acid, hydrochloric acid or sulfuric acid, or washed with water to remove dust and oxide film on the surface. Alternatively, it can be carried out by immersing in a plating bath in which a tin salt such as tin chloride is dissolved in an acid such as sulfuric acid, and energizing at a predetermined temperature. At this time, β-naphthol, gelatin, and cresol sulfonic acid may be dissolved in appropriate amounts in order to form a more uniform first tin film 22. The plating bath may be one in which a tin salt such as tin chloride is dissolved in an alkaline solution such as sodium hydroxide instead of sulfuric acid. The thickness of the first tin film 22 can be controlled by the energization time.

メッシュ状集電体32を形成する細線31は、電気伝導性を備える材料であればよく特に限定されるわけではないが、例えば、アルミニウム、銅、鋼、チタン等からなるものを用いることができる。また、細線31の材料としてスズを用いることも可能である。この場合、細線31が第2のスズ皮膜33を兼ねる。細線31の材料は、平板状集電体21と同一であってもよく、異なっていてもよい。 The thin wire 31 forming the mesh-shaped current collector 32 is not particularly limited as long as it is a material having electrical conductivity, and for example, one made of aluminum, copper, steel, titanium, or the like can be used. .. It is also possible to use tin as the material of the thin wire 31. In this case, the thin wire 31 also serves as the second tin film 33. The material of the thin wire 31 may be the same as or different from that of the flat plate-shaped current collector 21.

メッシュ状集電体32の厚さは、電池のエネルギー密度を向上させるためには薄い方が良いが、薄すぎると取り扱いが難しく、生産性が低下するため、3〜500μmの範囲とすることが好ましい。 The thickness of the mesh-shaped current collector 32 is preferably thin in order to improve the energy density of the battery, but if it is too thin, it is difficult to handle and productivity is reduced, so the thickness may be in the range of 3 to 500 μm. preferable.

第2のスズ皮膜33は、100〜1200nmの範囲の厚さを備え、第1のスズ皮膜22と同一の方法により形成することができる。このとき、図2に示すように、第2のスズ皮膜33は細線31の表面に形成されるので、第2の負極部材3は第2のスズ皮膜33に囲まれた空間34を備えている。 The second tin film 33 has a thickness in the range of 100 to 1200 nm and can be formed by the same method as the first tin film 22. At this time, as shown in FIG. 2, since the second tin film 33 is formed on the surface of the thin wire 31, the second negative electrode member 3 has the space 34 surrounded by the second tin film 33. ..

尚、第2の負極部材3において、メッシュ状集電体32は、細線31を縦横に編んだものでもよく、電気伝導性を備える材料からなる箔にパンチングメタルのように均一に穴が形成されているものであってもよい。また、メッシュ状集電体32は、金属板等の電気伝導性を備える材料からなる平板に千鳥状に切れ目を入れながら広げて菱形や亀甲形に成形したエキスパンドメタルであってもよい。細線を編んだクロス状のメッシュの場合、折り曲げたり、伸ばしたりした際に、細線間の隙間が開いたり、閉じたりするため、隙間の間隔が一定にならず、第2の負極部材3の製造時にわずかな力が加えられても変形し、第2の負極部材3の製造が難しくなる。一方、細線を編んだクロス状のメッシュに比べ、パンチングメタルやエキスパンドメタルは、折り曲げたりしたときに、ある程度の硬さがあるため、形状が固定されやすく、多少の伸び縮みに対しても、隙間が開いたり、閉じたりしない。そのため、円筒セルや捲回型のような、セル内で第2の負極部材3が曲がるようなセルでは、パンチングメタルやエキスパンドメタルの方が細線を編んだクロス状のメッシュよりも望ましい。また、パンチングメタルやエキスパンドメタルは、折り曲げたりすることもできるため、フレキシブルな形状の電池にも応用することができる。 In addition, in the second negative electrode member 3, the mesh-shaped current collector 32 may be a fine wire 31 knitted in the vertical and horizontal directions, and holes formed uniformly in a foil made of a material having electric conductivity like punching metal. It may be Further, the mesh-shaped current collector 32 may be an expanded metal that is formed into a rhombic shape or a hexagonal shape by forming a flat plate made of a material having electrical conductivity, such as a metal plate, in a zigzag shape while expanding the zigzag shape. In the case of a cross-shaped mesh formed by knitting fine wires, the gap between the thin wires opens or closes when bent or stretched, so that the distance between the gaps is not constant, and the second negative electrode member 3 is manufactured. At times, even if a slight force is applied, it is deformed, and it becomes difficult to manufacture the second negative electrode member 3. On the other hand, punching metal and expanded metal have some hardness when bent or bent, as compared to a cloth mesh made by knitting fine wires, so the shape is easily fixed, and even if it expands or shrinks a little, Does not open or close. Therefore, in a cell in which the second negative electrode member 3 is bent in the cell, such as a cylindrical cell or a wound type, punching metal or expanded metal is more preferable than a cross mesh formed by knitting fine wires. Further, since punching metal and expanded metal can be bent, they can be applied to a battery having a flexible shape.

メッシュ状集電体32が、細線31を縦横に編んだものである場合、細線31の間隔(目開き)は例えば1〜50μmの範囲となっている。また、メッシュ状集電体32が、エキスパンドメタルからなる場合には、例えば、ストランド幅0.001〜10mm、開口短辺寸法0.01〜10mm、開口長辺寸法0.05〜50mmの範囲となっている。 When the mesh-shaped current collector 32 is formed by knitting the fine wires 31 in the vertical and horizontal directions, the interval (opening) of the fine wires 31 is in the range of 1 to 50 μm, for example. When the mesh current collector 32 is made of expanded metal, for example, the strand width is 0.001 to 10 mm, the opening short side dimension is 0.01 to 10 mm, and the opening long side dimension is 0.05 to 50 mm. Has become.

第2の負極部材3における空間34の径は、後述のリチウムイオン二次電池4を形成したときに、電解液が浸潤しやすく、抵抗の増加につながらないように、メッシュ状集電体32が、細線31を縦横に編んだものである場合には、0.001〜48μmの範囲とすることが好ましく、1〜40μmの範囲とすることがさらに好ましい。また、第2の負極部材3における空間34の径は、メッシュ状集電体32が、エキスパンドメタルからなる場合には、0.001μm〜10mmの範囲とすることが好ましく、1〜500μmの範囲とすることがさらに好ましい。また、第2の負極部材3の空隙率は、メッシュ状集電体32が、細線31を縦横に編んだものである場合と、エキスパンドメタルからなる場合とのいずれの場合にも1%以上であることが好ましい。 The diameter of the space 34 in the second negative electrode member 3 is set such that the mesh-shaped current collector 32 has a diameter such that the electrolytic solution is easily infiltrated when the lithium ion secondary battery 4 described below is formed and the resistance does not increase. When the fine wire 31 is knitted in the longitudinal and lateral directions, it is preferably in the range of 0.001 to 48 μm, and more preferably in the range of 1 to 40 μm. Further, the diameter of the space 34 in the second negative electrode member 3 is preferably in the range of 0.001 μm to 10 mm when the mesh current collector 32 is made of expanded metal, and is in the range of 1 to 500 μm. More preferably. The porosity of the second negative electrode member 3 is 1% or more in both cases where the mesh-shaped current collector 32 is formed by knitting the fine wire 31 in the longitudinal and lateral directions and in the case where it is made of expanded metal. Preferably.

本実施形態では、リチウムイオン二次電池用負極1の例として、第1の負極部材2上に1つの第2の負極部材3が積層されているものを示している。しかし、リチウムイオン二次電池用負極1は第1の負極部材2上に少なくとも1つの第2の負極部材3が積層されていればよく、さらに多数の第2の負極部材3が積層されていてもよい。第2の負極部材3の数は特に限定されるわけではないが、製造を容易とするために、1〜5の範囲であることが好ましい。 In the present embodiment, as an example of the negative electrode 1 for a lithium ion secondary battery, one in which one second negative electrode member 3 is laminated on the first negative electrode member 2 is shown. However, the negative electrode 1 for a lithium-ion secondary battery only needs to have at least one second negative electrode member 3 laminated on the first negative electrode member 2, and more negative electrode members 3 may be further laminated. Good. The number of the second negative electrode member 3 is not particularly limited, but is preferably in the range of 1 to 5 in order to facilitate manufacturing.

また、第1の負極部材2は、導電性を有し、集電体としても機能するため、第1の負極部材2と第2の負極部材3との間に、負極活物質を含む合剤層を配設してもよい。前記負極活物質としては、例えば、人造黒鉛、天然黒鉛、ハードカーボン、ソフトカーボン、シリコン、酸化シリコン、スズ、銀、アルミ、亜鉛、鉛、ゲルマニウム、リチウム等、又はそれらの合金を挙げることができる。前記負極活物質を含む合剤層は、前記負極活物質に結着剤や導電助剤等を加えて、スラリーを作製し、第1の負極部材2の上に該スラリーを塗工してもよく、前記負極活物質からなる箔を第1の負極部材2の上に配置してもよい。その後、上述の合剤層上に、第2の負極部材3を配置する。 Further, since the first negative electrode member 2 has conductivity and also functions as a current collector, a mixture containing a negative electrode active material is provided between the first negative electrode member 2 and the second negative electrode member 3. Layers may be provided. Examples of the negative electrode active material include artificial graphite, natural graphite, hard carbon, soft carbon, silicon, silicon oxide, tin, silver, aluminum, zinc, lead, germanium, lithium and the like, or alloys thereof. .. The mixture layer containing the negative electrode active material is prepared by adding a binder, a conductive auxiliary agent or the like to the negative electrode active material to prepare a slurry, and applying the slurry on the first negative electrode member 2. Of course, a foil made of the negative electrode active material may be arranged on the first negative electrode member 2. Then, the second negative electrode member 3 is arranged on the above-mentioned mixture layer.

本実施形態のリチウムイオン二次電池用負極1は、例えば、図3に示すリチウムイオン二次電池4に用いることができる。 The lithium-ion secondary battery negative electrode 1 of the present embodiment can be used, for example, in the lithium-ion secondary battery 4 shown in FIG.

リチウムイオン二次電池4は、セル5の内部に、リチウムイオン二次電池用負極1と、電解液が含浸されたセパレータ6と、正極7とが配置されることにより構成されている。リチウムイオン二次電池4において、リチウムイオン二次電池用負極1は第2の負極部材2がセパレータ6を介して正極7に対向するように配置される。正極7は、正極集電体71と正極合剤層72とを備え、正極合剤層72がセパレータ6に対向するように配置される。また、リチウムイオン二次電池用負極1の平板状集電体21及びメッシュ状集電体32には負極リード8が接続されており、正極7の正極集電体71には正極リード9が接続されている。 The lithium-ion secondary battery 4 is configured by arranging a lithium-ion secondary battery negative electrode 1, a separator 6 impregnated with an electrolytic solution, and a positive electrode 7 inside a cell 5. In the lithium-ion secondary battery 4, the lithium-ion secondary battery negative electrode 1 is arranged so that the second negative electrode member 2 faces the positive electrode 7 with the separator 6 interposed therebetween. The positive electrode 7 includes a positive electrode current collector 71 and a positive electrode mixture layer 72, and is arranged so that the positive electrode mixture layer 72 faces the separator 6. Further, the negative electrode lead 8 is connected to the flat plate-shaped current collector 21 and the mesh current collector 32 of the negative electrode 1 for the lithium ion secondary battery, and the positive electrode lead 9 is connected to the positive electrode current collector 71 of the positive electrode 7. Has been done.

リチウムイオン二次電池4において、セパレータ6としては例えばポリエチレン等の合成樹脂からなるものを用いることができる。また、セパレータ6に含浸される電解液としては、次の一般式(1)で表されるリン酸エステルを溶媒として、該溶媒に支持塩としてリチウム塩を溶解させたものを用いることができる。 In the lithium-ion secondary battery 4, the separator 6 may be made of synthetic resin such as polyethylene. Further, as the electrolytic solution with which the separator 6 is impregnated, it is possible to use a solution obtained by dissolving a lithium salt as a supporting salt in the solvent using a phosphoric acid ester represented by the following general formula (1) as a solvent.

一般式(1)において、R、R、Rは、アルキル基、アルケニル基、アルキニル基等の直鎖状炭化水素基又はその水素の一部をフッ素で置換した基であり、相互に同一であってもよく、異なっていてもよい。また、前記直鎖状炭化水素基は炭素数が多くなると粘度が高くなり過ぎ、取り扱いが困難になるので、炭素数7以下であることが好ましく、炭素数3以下であることがさらに好ましい。 In the general formula (1), R 1 , R 2 , and R 3 are linear hydrocarbon groups such as alkyl groups, alkenyl groups, and alkynyl groups, or groups in which some of the hydrogen atoms are replaced with fluorine, and It may be the same or different. Further, since the viscosity of the straight-chain hydrocarbon group becomes too high when the number of carbon atoms is large and the handling becomes difficult, the number of carbon atoms is preferably 7 or less, and more preferably 3 or less.

前記リン酸エステルとしては、適度の粘度と、支持塩であるリチウム塩に対する高い溶解度とを備える点で、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリストリフルオロエチル等が好ましい。 The phosphoric acid ester is preferably, for example, trimethyl phosphate, triethyl phosphate, tristrifluoroethyl phosphate, or the like, because it has an appropriate viscosity and a high solubility in a lithium salt that is a supporting salt.

前記リチウム塩としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、Li2SO、LiPO、LiHPO、LiHPO、LiCFSO、LiCSO、イミドアニオンからなるLiN(FSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiN(CFSO)(CSO)、5員環構造を有するLiN(CFSO(CF)、6員環構造を有するLiN(CFSO(CF等を挙げることができる。また、前記リチウム塩として、LiPFの少なくとも1つのフッ素原子をフッ化アルキル基で置換したLiPF(CF)、LiPF(C)、LiPF(C)、LiPF(CF、LiPF(CF)(C)、LiPF(CF等を挙げることもできる。この場合、電解液のpHは4〜10の範囲であることが好ましい。 Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , Li 2 SO 4 , Li 3 PO 4 , Li 2 HPO 4 , LiH 2 PO 4 , LiCF 3 SO 3 , and LiC. 4 F 9 SO 3, LiN ( FSO 2) consisting of an imide anion 2, LiN (CF 3 SO 2 ) 2, LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) (C 2 F 5 SO 2), LiN (CF 3 SO 2) (C 4 F 9 SO 2), LiN containing a five-membered ring structure (CF 2 SO 2) 2 ( CF 2), LiN having a six-membered ring structure (CF 2 SO 2 ) 2 (CF 2 ) 2 and the like. Furthermore, as the lithium salt, LiPF 5 (CF 3) to at least one fluorine atom substituted with the fluoroalkyl group LiPF 6, LiPF 5 (C 2 F 5), LiPF 5 (C 3 F 7), LiPF 4 (CF 3) 2, LiPF 4 (CF 3) (C 2 F 5), may also be mentioned LiPF 3 (CF 3) 3 and the like. In this case, the pH of the electrolytic solution is preferably in the range of 4-10.

尚、電解液のpHが4〜10であれば、60体積%以下の量の添加剤を加えてもよい。添加剤としては、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、プロピレンカーボネート(PC)、エーテル基を有するジメトキシエタン、ジエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、(無水)コハク酸、(無水)マレイン酸、γ−ブチロラクトン、γ−バレロラクトン、エチレンサルファイト、スルホラン、イオン液体、ホウ酸エステル、アセトニトリル、ホスファゼン等、又はそれらの一部の水素基をフッ素化したもの等を挙げることができる。 If the pH of the electrolytic solution is 4 to 10, an additive amount of 60% by volume or less may be added. As the additive, vinylene carbonate (VC), vinyl ethylene carbonate (VEC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), propylene carbonate (PC), ether Group-containing dimethoxyethane, diethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, triethylene glycol dimethyl ether, (anhydrous) succinic acid, (anhydrous) maleic acid, γ-butyrolactone, γ-valerolactone, ethylene sulfite, sulfolane, ionic liquid, borohydride Examples thereof include acid ester, acetonitrile, phosphazene, and the like, or those obtained by fluorinating a part of hydrogen groups thereof.

また、充放電を繰り返すことで、スズが膨張収縮を繰り返し、微粒子化して集電体から剥離し、液中に拡散しないようにするため、上述の電解液に重合開始剤やポリマーを加え、ゲル化させてもよい。前記重合開始剤やポリマーとしては、のポリフッ化ビニリデン・ヘキサフルオロプロピレン(PVDF−HFP)、(ポリ)アクリロニトリル、(ポリ)アクリル酸、ポリメチルメタクリレート等を用いることができるが、これらに限定されるわけではない。また、これらに、架橋剤を加えてもよい。前記電解液をゲル化させるために、電池を作製したのち、電池ごと温め、該電解液を熱重合させて使用することができるが、最初に数サイクル充放電したのちに、温めてゲル化させてもよい。 In addition, by repeating charge and discharge, tin repeatedly expands and contracts, becomes fine particles and peels from the current collector, and in order to prevent diffusion into the liquid, a polymerization initiator or a polymer is added to the above-mentioned electrolytic solution, You may make it. As the polymerization initiator and the polymer, polyvinylidene fluoride/hexafluoropropylene (PVDF-HFP), (poly)acrylonitrile, (poly)acrylic acid, polymethylmethacrylate, etc. can be used, but are not limited thereto. Do not mean. Moreover, you may add a crosslinking agent to these. In order to gel the electrolytic solution, after preparing a battery, the battery can be warmed together with the battery, and the electrolytic solution can be thermally polymerized to be used. May be.

また、液中へのスズ微粒子の拡散を防ぐ方法として、固体電解質を用いることもできる。前記固体電解質としては、LiPOやLiLaZr12、La2/3−xLiTiO、Li0.33La0.55TiO、Li1.3Al0.7Ti1.3(PO等の酸化物固体電解質、LiGe、(a,x,yは任意の値)、LiSiPSCl、LSPS(Li 10.35 [Sn0.27Si1.08]P1.6512(Li3.45[Sn0.09Si0.36]P0.55 ))等、又はそれらにハロゲン元素を追加した硫黄系の固体電解質、ポリエチレンオキサイド(PEO)、ポリエチレンオキサイド−LiTFSI、リン酸リチウムオキシナイトライド(LiPON)等を用いることができる。これらの材料は揮発しないため、液体の電解質に比べ、安全性の向上にも寄与すると考えられる。 A solid electrolyte can also be used as a method for preventing the diffusion of tin fine particles into the liquid. The solid as the electrolyte, Li 3 PO 4 and Li 7 La 3 Zr 2 O 12 , La 2/3-x Li x TiO 3, Li 0.33 La 0.55 TiO 3, Li 1.3 Al 0.7 An oxide solid electrolyte such as Ti 1.3 (PO 4 ) 3 , Li a Ge x P y S z , (a, x, y are arbitrary values), LiSiPSCl, LS S PS (Li 10.35 [Sn 0 .27 Si 1.08 ]P 1.65 S 12 (Li 3.45 [Sn 0.09 Si 0.36 ]P 0.55 S 4 )) or a sulfur-based solid obtained by adding a halogen element thereto. An electrolyte, polyethylene oxide (PEO), polyethylene oxide-LiTFSI, lithium phosphate oxynitride (LiPON), or the like can be used. Since these materials do not volatilize, they are considered to contribute to the improvement of safety as compared with liquid electrolytes.

前記電解液における前記支持塩の濃度は、0.1〜3mol/Lの範囲とすることが好ましく、0.6〜1.5mol/Lの範囲とすることがさらに好ましい。 The concentration of the supporting salt in the electrolytic solution is preferably in the range of 0.1 to 3 mol/L, more preferably 0.6 to 1.5 mol/L.

正極7における集電体71は、電気伝導性を備える材料であればよく特に限定されるわけではないが、例えば、アルミニウム、銅、鋼、チタン等からなるものを用いることができる。集電体71の厚さは、電池のエネルギー密度を向上させるためには薄い方が良いが、薄すぎると取り扱いが難しく、生産性が低下するため、5〜50μmの範囲とすることが好ましい。 The current collector 71 in the positive electrode 7 is not particularly limited as long as it is a material having electrical conductivity, and, for example, one made of aluminum, copper, steel, titanium or the like can be used. The thickness of the current collector 71 is preferably thin in order to improve the energy density of the battery, but if it is too thin, it is difficult to handle and productivity is reduced, so the thickness is preferably in the range of 5 to 50 μm.

正極7における正極合剤層72は、正極活物質と、ポリフッ化ビニリデン(PVDF)等の結着剤とを適量混合し、N−メチルピロリドンで希釈することにより作製したスラリーを、ドクターブレード法等により集電体71に塗工、塗布することにより形成することができる。正極合剤層72は、全量に対する正極活物質の含有率が高い方が好ましく、例えば該含有率が85質量%以上であることが好ましい。また、正極合剤層72は、前記正極活物質と前記結着剤との他に導電助剤を含んでいてもよい。 The positive electrode mixture layer 72 in the positive electrode 7 is prepared by mixing an appropriate amount of a positive electrode active material and a binder such as polyvinylidene fluoride (PVDF), and diluting the slurry with N-methylpyrrolidone to prepare a doctor blade method or the like. It can be formed by applying and applying to the current collector 71. The positive electrode mixture layer 72 preferably has a high content rate of the positive electrode active material with respect to the total amount, and for example, the content rate is preferably 85% by mass or more. Further, the positive electrode mixture layer 72 may include a conductive auxiliary agent in addition to the positive electrode active material and the binder.

前記正極活物質としては、LiMnO、LiMn(0<x<2)、LiMnO、LixMn1.5Ni0.5(0<x<2)等層状構造を備えるマンガン酸リチウム又はスピネル構造を備えるマンガン酸リチウム、LiCo、LiNiO又はその遷移金属の一部を他の金属で置換した化合物、LiNi1/3Co1/3Mn1/3等の特定の遷移金属が全体の半数を超えないリチウム遷移金属酸化物、これらのリチウム遷移金属酸化物において化学量論的組成よりもLiを過剰にした化合物、LiFePO等のオリビン構造を備える化合物等を挙げることができる。 As the positive electrode active material, a layered structure such as LiMnO 2 , Li x Mn 2 O 4 (0<x<2), Li 2 MnO 3 , and LixMn 1.5 Ni 0.5 O 4 (0<x<2) is used. Lithium manganate provided or lithium manganate provided with a spinel structure, LiCo 2 O 2 , LiNiO 2 or a compound obtained by substituting a part of the transition metal with another metal, LiNi 1/3 Co 1/3 Mn 1/3 O 2 Lithium transition metal oxides in which a specific transition metal such as does not exceed half of the total, compounds in which Li is in excess of stoichiometric composition in these lithium transition metal oxides, compounds having an olivine structure such as LiFePO 4 Etc. can be mentioned.

また、前記正極活物質として、これらの金属酸化物の金属の一部をAl、Fe、P、Ti、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等で置換した材料も用いることができる。特に、LiαNiβCoγAlδ(1≦α≦2、β+γ+δ=1、β≧0.7、γ≦0.2)又はLiαNiβCoγMnδ(1≦α≦1.2、β+γ+δ=1、β≧0.1、γ≦0.2)であることが好ましい。 Further, as the positive electrode active material, a part of the metal of these metal oxides is Al, Fe, P, Ti, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te. Materials substituted with Zn, La, or the like can also be used. In particular, Li α Ni β Co γ Al δ O 2 (1≦α≦2, β+γ+δ=1, β≧0.7, γ≦0.2) or Li α Ni β Co γ Mn δ O 2 (1≦α ≦1.2, β+γ+δ=1, β≧0.1, γ≦0.2) are preferable.

前記正極活物質は、前記化合物のいずれか1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the positive electrode active material, one of the above compounds may be used alone, or two or more thereof may be used in combination.

正極7では、正極合剤層72に代えて、硫化鉄、二硫化鉄、硫黄、ポリスルフィド、LiVO等を正極活物質として用いることもできる。また、ニトロキシルラジカル部分構造をとるニトロキシル化合物等のラジカル材料を用いることもできる。これらの正極活物質の場合、電池内にリチウム源がないため、リチウム源との短絡や、蒸着等によって、あらかじめ、負極にリチウムをドープさせておくことが望ましい。 In the positive electrode 7, iron sulfide, iron disulfide, sulfur, polysulfide, Li 3 VO 4, or the like can be used as the positive electrode active material instead of the positive electrode mixture layer 72. Further, a radical material such as a nitroxyl compound having a nitroxyl radical partial structure can also be used. In the case of these positive electrode active materials, since there is no lithium source in the battery, it is desirable to dope the negative electrode with lithium in advance by short-circuiting with the lithium source, vapor deposition, or the like.

次に、本発明の実施例及び比較例を示す。 Next, examples and comparative examples of the present invention will be shown.

〔参考例1〜4、比較参考例1〕
本参考例では、まず、厚さ20μmの銅箔(50mm×50mm)を平板状集電体21として、その表面を硫酸で洗浄し、一方の表面をエポキシテープでマスキングして、50℃に加温した無電解めっき浴に浸漬し、マスキングされていない表面に第1のスズ皮膜22を形成した。次に、第1のスズ皮膜22が形成された平板状集電体21を26mm×44mmの大きさに切断して第1の負極部材2とした。このとき、浸漬時間を調整し、それぞれ230nm、440nm、770nm、1200nm、2000nmの厚さの第1のスズ皮膜22を備える5種の第1の負極部材2を作製した。
[Reference Examples 1 to 4 and Comparative Reference Example 1]
In this reference example, first, a copper foil (50 mm×50 mm) having a thickness of 20 μm was used as a flat plate current collector 21, the surface thereof was washed with sulfuric acid, one surface thereof was masked with an epoxy tape, and heated to 50° C. It was immersed in a warm electroless plating bath to form a first tin film 22 on the unmasked surface. Next, the flat plate-shaped current collector 21 on which the first tin film 22 was formed was cut into a size of 26 mm×44 mm to form the first negative electrode member 2. At this time, the immersion time was adjusted, and five types of first negative electrode members 2 each having the first tin film 22 having a thickness of 230 nm, 440 nm, 770 nm, 1200 nm, and 2000 nm were produced.

次に、正極活物質としてのLiCoOと、導電助剤と、バインダーとしてのポリフッ化ビニリデン(PVDF)とを、92:4:4の質量比で混合してスラリーを調製し、得られたスラリーを厚さ15μmのアルミニウム箔(50mm×50mm)にドクターブレード法により塗工し、正極合剤層を形成した。前記正極合剤層が形成されたアルミニウム箔を25mm×44mmの大きさに切断して正極とした。 Next, LiCoO 2 as a positive electrode active material, a conductive auxiliary agent, and polyvinylidene fluoride (PVDF) as a binder were mixed at a mass ratio of 92:4:4 to prepare a slurry, and the obtained slurry was obtained. Was applied to a 15 μm thick aluminum foil (50 mm×50 mm) by the doctor blade method to form a positive electrode mixture layer. The aluminum foil having the positive electrode mixture layer formed thereon was cut into a size of 25 mm×44 mm to obtain a positive electrode.

次に、それぞれの第1の負極部材2と前記正極との間に厚さ25μmのポリエチレンセパレータ(30mm×50mm)を配設し、該ポリエチレンセパレータに電解液を含浸させたものをラミネートセルに真空封止し、図1に示す第1の負極部材2を負極とする5種のリチウムイオン二次電池を作製した。前記電解液は、リン酸トリエチル溶媒に、LiPFを1.0mol/Lの濃度で含む。 Next, a polyethylene separator (30 mm×50 mm) having a thickness of 25 μm is arranged between each first negative electrode member 2 and the positive electrode, and the polyethylene separator impregnated with the electrolytic solution is vacuumed in a laminate cell. Five types of lithium-ion secondary batteries were produced by sealing and using the first negative electrode member 2 shown in FIG. 1 as a negative electrode. The electrolytic solution contains LiPF 6 at a concentration of 1.0 mol/L in a triethyl phosphate solvent.

次に、前記リチウムイオン二次電池を、25℃の環境下、0.1mAの充電電流で上限電位4.05Vまで充電し、10分間の休止後、2.5Vまで放電する操作を1サイクルとして、該操作を10サイクル行い、各サイクル後の放電容量(mAh)を測定し、第1の負極部材2の充放電サイクル性能を評価した。 Next, the lithium-ion secondary battery was charged to a maximum potential of 4.05 V with a charging current of 0.1 mA in an environment of 25° C., and after 10 minutes of rest, discharged to 2.5 V as one cycle. The operation was performed 10 cycles, the discharge capacity (mAh) after each cycle was measured, and the charge/discharge cycle performance of the first negative electrode member 2 was evaluated.

第1のスズ皮膜22の厚さが230nmの場合を参考例1、440nmの場合を参考例2、770nmの場合を参考例3、1200nmの場合を参考例4、2000nmの場合を比較参考例1として、結果を図4に示す。 The case where the thickness of the first tin film 22 is 230 nm is Reference Example 1, the case of 440 nm is Reference Example 2, the case of 770 nm is Reference Example 3, the case of 1200 nm is Reference Example 4, and the case of 2000 nm is Comparative Reference Example 1 The results are shown in FIG.

図4から、第1のスズ皮膜22の厚さが2000nmである比較参考例1の場合にはサイクルを重ねるに従って放電容量が低下しているのに対し、第1のスズ皮膜22の厚さが230〜1200nmである参考例1〜4の場合にはサイクルを重ねても当初の放電容量が保持されており、優れた充放電サイクル性能を備えていることが明らかである。 From FIG. 4, in the case of Comparative Reference Example 1 in which the thickness of the first tin film 22 is 2000 nm, the discharge capacity decreases as the cycle is repeated, while the thickness of the first tin film 22 decreases. In the case of Reference Examples 1 to 4 having a wavelength of 230 to 1200 nm, the initial discharge capacity is maintained even after repeated cycles, and it is clear that excellent charge/discharge cycle performance is provided.

このことから、100〜1200nmの厚さの第1のスズ皮膜22を備える第1の負極部材2に第2の負極部材3を積層したリチウムイオン二次電池用負極1を用いるリチウムイオン二次電池によれば、充放電サイクル性能の低下を抑制することができ、しかも所要のエネルギー容量を確保することができるものと期待される。 From this, a lithium ion secondary battery using the negative electrode 1 for a lithium ion secondary battery in which the second negative electrode member 3 is laminated on the first negative electrode member 2 having the first tin film 22 having a thickness of 100 to 1200 nm. According to this, it is expected that the deterioration of the charge/discharge cycle performance can be suppressed and that the required energy capacity can be secured.

〔実施例1〕
本実施例では、まず、厚さ10μmの銅箔を平板状集電体21とした以外は、前記参考例1〜4と同一にして、その一方の表面に無電解めっきにより400nmの厚さの第1のスズ皮膜22を形成した。次に、第1のスズ皮膜22が形成された平板状集電体21を直径14mmの円盤状に打ち抜いて第1の負極部材2とした。
[Example 1]
In this example, first, except that a 10 μm-thick copper foil was used as the plate-shaped current collector 21, the same as in Reference Examples 1 to 4, one surface of which had a thickness of 400 nm by electroless plating. The first tin film 22 was formed. Next, the flat plate-shaped current collector 21 on which the first tin film 22 was formed was punched out into a disk shape having a diameter of 14 mm to obtain the first negative electrode member 2.

次に、図5に示す銅製エキスパンドメタル(コスモ株式会社製)34の一方の端部の表裏両面をエポキシテープでマスキングした以外は、第1の負極部材2と同一にして、マスキングされていない部分に無電解めっきにより400nmの厚さの第2のスズ皮膜(図示せず)を形成した。エキスパンドメタル34は、26μmの厚さを備え、図5に示すように、ストランド幅Wが0.14mm、開口短辺寸法SWが0.64mm、開口長辺寸法LWが1.3mmのメッシュ状集電体となっている。 Next, an unmasked portion is the same as the first negative electrode member 2 except that both the front and back surfaces of one end of the copper expanded metal 34 (manufactured by Cosmo Co., Ltd.) shown in FIG. 5 are masked with epoxy tape. A second tin film (not shown) having a thickness of 400 nm was formed by electroless plating. The expanded metal 34 has a thickness of 26 μm, and as shown in FIG. 5, a mesh-shaped collection having a strand width W of 0.14 mm, an opening short side dimension SW of 0.64 mm, and an opening long side dimension LW of 1.3 mm. It is an electric body.

次に、エキスパンドメタル34の第2のスズ皮膜を形成した部分を直径14mmの円盤状に打ち抜いて第2の負極部材3とする一方、第2の負極部材3に連接するエキスパンドメタル34の第2のスズ皮膜が形成されていない部分(マスキングされていた部分)を直径14mmの半円盤状に打ち抜き、リード部35を形成した。 Next, the portion of the expanded metal 34 on which the second tin film is formed is punched out into a disk shape having a diameter of 14 mm to form the second negative electrode member 3, while the second portion of the expanded metal 34 connected to the second negative electrode member 3 is punched out. The portion where the tin film was not formed (the portion which was masked) was punched out into a semi-disc shape having a diameter of 14 mm to form the lead portion 35.

次に、図6に示すように、直径20mm、厚さ2mmのステンレス製下蓋11の上に、直径15mm、厚さ1mmのステンレス製のスペーサ12、第1の負極部材2、第2の負極部材3、直径19mm、厚さ20μmのポリエチレン製セパレータ13、対極としての直径16mm、厚さ100μmのリチウム箔14を積層し、セパレータ13に電解液を含浸させたものを、外径1.8mm、内部の深さ2mmの有底円筒状体からなるステンレス製上蓋15で密封して、リチウムイオン二次電池としてのコインセル(ハーフセル)16を作製した。このとき、第1の負極部材2は第1のスズ皮膜22が第2の負極部材3側となるように配設されている。また、リード部材35は図6に一点鎖線で示すように折り曲げて下蓋11とスペーサ12との間に挿入されていることにより、第2の負極部材3からの集電を促進する機能を有している。 Next, as shown in FIG. 6, on a stainless steel lower lid 11 having a diameter of 20 mm and a thickness of 2 mm, a spacer 12 made of stainless steel having a diameter of 15 mm and a thickness of 1 mm, a first negative electrode member 2, and a second negative electrode. A member 3, a separator 13 made of polyethylene having a diameter of 19 mm and a thickness of 20 μm, a lithium foil 14 having a diameter of 16 mm as a counter electrode and a thickness of 100 μm, which are laminated and impregnated with an electrolytic solution, have an outer diameter of 1.8 mm, A coin cell (half cell) 16 as a lithium ion secondary battery was produced by sealing with a stainless steel upper lid 15 having a bottomed cylindrical body having a depth of 2 mm. At this time, the first negative electrode member 2 is arranged such that the first tin film 22 is on the second negative electrode member 3 side. Further, the lead member 35 has a function of promoting current collection from the second negative electrode member 3 by being bent and inserted between the lower lid 11 and the spacer 12 as shown by a dashed line in FIG. doing.

前記電解液は、リン酸トリエチル/ジメチルカーボネート(DEC)/フルオロエチレンカーボネート(FEC)(8/1/1=vol%)溶媒に、LiPFを1.0mol/Lの濃度で含む。また、コインセル16は、下蓋11を一方の電極板とし、上蓋15を対極板とする一方、下蓋11と上蓋15との間には、絶縁体からなるパッキン(図示せず)が配設されている。尚、スペーサ12は、下蓋11と上蓋15とに挟まれた第1の負極部材2、第2の負極部材3、セパレータ13、対極としてのリチウム箔14をそれぞれ隣接する部材に密着させる機能を有している。 The electrolyte solution contains LiPF 6 in a concentration of 1.0 mol/L in a triethyl phosphate/dimethyl carbonate (DEC)/fluoroethylene carbonate (FEC) (8/1/1=vol%) solvent. The coin cell 16 has the lower lid 11 as one electrode plate and the upper lid 15 as a counter electrode plate, and a packing (not shown) made of an insulator is provided between the lower lid 11 and the upper lid 15. Has been done. The spacer 12 has a function of bringing the first negative electrode member 2, the second negative electrode member 3, the separator 13, and the lithium foil 14 as the counter electrode sandwiched between the lower lid 11 and the upper lid 15 into close contact with the adjacent members. Have

次に、本実施例で得られたコインセル16に、0.1〜2Vの範囲の電圧で1Cの電流量による充放電を15サイクル繰り返したところ、初期充電容量0.4mAhに対し、15サイクル後の維持率は111%であった。結果を図7に示す。 Next, the coin cell 16 obtained in this example was repeatedly charged and discharged with a current amount of 1 C for 15 cycles at a voltage in the range of 0.1 to 2 V. After 15 cycles, the initial charge capacity was 0.4 mAh. The maintenance rate was 111%. The results are shown in Fig. 7.

本実施例で得られたコインセル16において、サイクルを繰り返すうちに充電容量が上昇した理由は、前記電解液がメッシュ状集電体としてのエキスパンドメタル34の孔部(開口)から第2の負極部材3の奥部まで次第に染み込み、反応面積が増加したためと考えられる。 In the coin cell 16 obtained in this example, the reason why the charge capacity increased during repeated cycles was that the electrolytic solution was formed from the holes (openings) of the expanded metal 34 as the mesh-shaped current collector to the second negative electrode member. It is considered that the reaction area increased because it soaked into the inner part of No. 3 gradually.

〔実施例2〕
本実施例では、第1の負極部材2上に第2の負極部材3を2枚積層した以外は実施例1と全く同一にして、リチウムイオン二次電池としてのコインセル16を作製した。
[Example 2]
In this example, a coin cell 16 as a lithium ion secondary battery was produced in exactly the same manner as in Example 1 except that two second negative electrode members 3 were laminated on the first negative electrode member 2.

次に、本実施例で得られたコインセル16に、0.1〜2Vの範囲の電圧で1Cの電流量による充放電を15サイクル繰り返したところ、初期充電容量0.63mAhに対し、15サイクル後の維持率は100%であった。結果を図7に示す。 Next, the coin cell 16 obtained in this example was repeatedly charged and discharged for 15 cycles with a current amount of 1 C at a voltage in the range of 0.1 to 2 V. After 15 cycles, the initial charge capacity was 0.63 mAh. Was maintained at 100%. The results are shown in Fig. 7.

〔実施例3〕
本実施例では、電解液に、リン酸トリエチル/ジメチルカーボネート(DMC)/FEC(80/1/1=vol%)に、8wt%のPVDF−HFPを混合し、更に、LiPFを1.0mol/Lで溶解したものを用いた以外は、実施例1と全く同一にして、コインセル16を作製した。
[Example 3]
In this example, triethyl phosphate/dimethyl carbonate (DMC)/FEC (80/1/1=vol%) was mixed with 8 wt% of PVDF-HFP in the electrolytic solution, and further 1.0 mol of LiPF 6 was added. A coin cell 16 was produced in exactly the same manner as in Example 1 except that the one dissolved in /L was used.

次に、本実施例で得られたコインセル16を60℃の状態で1時間温めて前記電解液をゲル化させた後、0.1〜2Vの範囲の電圧で1Cの電流量による充放電を15サイクル繰り返したところ、初期充電容量0.36mAhに対し、15サイクル後の維持率は99%であった。結果を図7に示す。 Next, the coin cell 16 obtained in this example was warmed at 60° C. for 1 hour to gelate the electrolytic solution, and then charged and discharged with a current amount of 1 C at a voltage in the range of 0.1 to 2V. When 15 cycles were repeated, the retention rate after 15 cycles was 99% with respect to the initial charge capacity of 0.36 mAh. The results are shown in Fig. 7.

電解液をゲル化させた本実施例のコインセル16は、電解液が液体である実施例1のコインセル16とほぼ同程度の容量維持率を示し、初期から一定の容量維持率を示し、信頼性が高い電池であるといえる。 The coin cell 16 of the present embodiment in which the electrolytic solution is gelled exhibits a capacity retention ratio that is substantially the same as that of the coin cell 16 of the embodiment 1 in which the electrolytic solution is a liquid, shows a constant capacity maintenance ratio from the initial stage, and has high reliability. Can be said to be a high battery.

〔比較例1〕
本比較例では、第1の負極部材2上に第2の負極部材3を全く積層しなかった以外は実施例1と全く同一にして、リチウムイオン二次電池としてのコインセル16を作製した。
[Comparative Example 1]
In this comparative example, a coin cell 16 as a lithium ion secondary battery was produced in exactly the same manner as in Example 1 except that the second negative electrode member 3 was not laminated at all on the first negative electrode member 2.

次に、本比較例で得られたコインセル16に、0.1〜2Vの範囲の電圧で1Cの電流量による充放電を15サイクル繰り返したところ、初期充電容量0.14mAhに対し、15サイクル後の維持率は91%であった。結果を図7に示す。 Next, the coin cell 16 obtained in this comparative example was repeatedly charged and discharged with a current amount of 1 C at a voltage in the range of 0.1 to 2 V for 15 cycles, and after 15 cycles for an initial charge capacity of 0.14 mAh. The maintenance rate was 91%. The results are shown in Fig. 7.

図7から、第2の負極部材3を備える実施例1、2のリチウムイオン二次電池(コインセル16)によれば、充放電サイクル性能の低下を抑制することができ、しかも所要のエネルギー容量を確保することができることが明らかである。また、実施例2のリチウムイオン二次電池によれば、実施例1のリチウムイオン二次電池より第2の負極部材3の数を多くすることによりさらに大きなエネルギー容量を確保することができることが明らかである。 From FIG. 7, according to the lithium-ion secondary batteries (coin cell 16) of Examples 1 and 2 including the second negative electrode member 3, it is possible to suppress the deterioration of the charge/discharge cycle performance and to obtain the required energy capacity. It is clear that they can be secured. Further, according to the lithium-ion secondary battery of Example 2, it is clear that a larger energy capacity can be secured by increasing the number of the second negative electrode members 3 as compared with the lithium-ion secondary battery of Example 1. Is.

一方、第2の負極部材3を全く備えない比較例1のリチウムイオン二次電池によれば、実施例1、2のリチウムイオン二次電池に比較して十分なエネルギー容量を確保することができないばかりか、充放電サイクル性能の低下を抑制する点でも実施例1、2のリチウムイオン二次電池に劣ることが明らかである。 On the other hand, according to the lithium ion secondary battery of Comparative Example 1 that does not include the second negative electrode member 3 at all, sufficient energy capacity cannot be secured as compared with the lithium ion secondary batteries of Examples 1 and 2. In addition, it is apparent that the lithium ion secondary batteries of Examples 1 and 2 are inferior to the lithium ion secondary batteries in terms of suppressing deterioration of charge/discharge cycle performance.

1…リチウムイオン二次電池用負極、 2…第1の負極部材、 3…第2の負極部材、 4、16…リチウムイオン二次電池、 21…平板状集電体、 22…第1のスズ皮膜、31…細線、 32、34…メッシュ状集電体、 33…第2のスズ皮膜。 DESCRIPTION OF SYMBOLS 1... Negative electrode for lithium ion secondary batteries, 2... 1st negative electrode member, 3... 2nd negative electrode member, 4, 16... Lithium ion secondary battery, 21... Flat-plate collector, 22... 1st tin Film, 31... Fine wire, 32, 34... Mesh current collector, 33... Second tin film.

Claims (3)

セル内部に、リチウムイオン二次電池用負極と、電解液が含侵されたセパレータと、正極とが配置されることにより構成されるリチウムイオン二次電池に用いられるリチウムイオン二次電池用負極であって、
平板状集電体と、該平板状集電体の表面を被覆する100〜1200nmの範囲の厚さの第1のスズ皮膜を備える第1の負極部材と、
電気伝導性を備えるメッシュ状集電体と、該メッシュ状集電体の表面を被覆する100〜1200nmの範囲の厚さの第2のスズ皮膜を備え、該第2のスズ皮膜に囲まれた空間を有する第2の負極部材とを備え、
該第1の負極部材の第1のスズ皮膜上に少なくとも1つの該第2の負極部材が積層されていることを特徴とするリチウムイオン二次電池用負極。
A lithium-ion secondary battery negative electrode used in a lithium-ion secondary battery, which comprises a negative electrode for a lithium-ion secondary battery, a separator impregnated with an electrolytic solution, and a positive electrode arranged inside a cell. There
A plate-shaped current collector, and a first negative electrode member including a first tin film having a thickness in the range of 100 to 1200 nm that covers the surface of the plate-shaped current collector,
A mesh-shaped current collector having electrical conductivity and a second tin film having a thickness in the range of 100 to 1200 nm that covers the surface of the mesh-shaped current collector are provided, and the second tin film is surrounded by the second tin film. A second negative electrode member having a space,
A negative electrode for a lithium ion secondary battery, wherein at least one second negative electrode member is laminated on the first tin film of the first negative electrode member.
請求項1記載のリチウムイオン二次電池用負極において、前記第1のスズ皮膜又は、前記第2のスズ皮膜はめっきにより形成されていることを特徴とするリチウムイオン二次電池用負極。 The negative electrode for a lithium ion secondary battery according to claim 1, wherein the first tin film or the second tin film is formed by plating. 平板状集電体と、該平板状集電体の一方の表面を被覆する100〜1200nmの範囲の厚さの第1のスズ皮膜を備える第1の負極部材と、電気伝導性を備えるメッシュ状集電体と、該メッシュ状集電体の表面を被覆する100〜1200nmの範囲の厚さの第2のスズ皮膜を備え、該第2のスズ皮膜に囲まれた空間を有する第2の負極部材とを備え、該第1の負極部材の第1のスズ皮膜上に該第2の負極部材が積層されている負極と、
該第2の負極部材に対向して配置された正極と、
電解液とを備えることを特徴とするリチウムイオン二次電池。
A plate-shaped current collector, a first negative electrode member having a first tin film with a thickness in the range of 100 to 1200 nm that covers one surface of the plate-shaped current collector, and a mesh shape having electrical conductivity A second negative electrode including a current collector and a second tin film having a thickness in the range of 100 to 1200 nm that covers the surface of the mesh current collector, and having a space surrounded by the second tin film. A negative electrode in which the second negative electrode member is laminated on the first tin film of the first negative electrode member,
A positive electrode arranged to face the second negative electrode member,
A lithium ion secondary battery comprising an electrolytic solution.
JP2017226668A 2017-01-26 2017-11-27 Negative electrode for lithium-ion secondary battery and lithium-ion secondary battery Active JP6745782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810067791.8A CN108365170B (en) 2017-01-26 2018-01-24 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017012581 2017-01-26
JP2017012581 2017-01-26
JP2017198321 2017-10-12
JP2017198321 2017-10-12

Publications (2)

Publication Number Publication Date
JP2019061941A JP2019061941A (en) 2019-04-18
JP6745782B2 true JP6745782B2 (en) 2020-08-26

Family

ID=66177588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017226668A Active JP6745782B2 (en) 2017-01-26 2017-11-27 Negative electrode for lithium-ion secondary battery and lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JP6745782B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068094A (en) * 1999-08-25 2001-03-16 Hyogo Prefecture Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP4123507B2 (en) * 2002-04-04 2008-07-23 ソニー株式会社 Battery and negative electrode manufacturing method
FR2901641B1 (en) * 2006-05-24 2009-04-24 Electricite De France TEXTILE ELECTRODE AND ACCUMULATOR CONTAINING SUCH AN ELECTRODE
JP5055921B2 (en) * 2006-09-29 2012-10-24 日立電線株式会社 Negative electrode for lithium ion secondary battery and method for producing the same
JP5131686B2 (en) * 2007-12-12 2013-01-30 アオイ電子株式会社 Solid electrolyte lithium secondary battery
JP2009205961A (en) * 2008-02-28 2009-09-10 Kanto Gakuin Univ Surface Engineering Research Institute Manufacturing method of negative electrode for lithium secondary battery
JP2009266492A (en) * 2008-04-23 2009-11-12 Toyota Motor Corp Power collector, its manufacturing method, negative electrode body, its manufacturing method, and lithium ion secondary battery
JP5755400B2 (en) * 2008-05-23 2015-07-29 出光興産株式会社 Negative electrode mixture, negative electrode mixture mixture, negative electrode, all solid lithium battery and apparatus
JP5389391B2 (en) * 2008-07-31 2014-01-15 出光興産株式会社 Electrode material sheet for lithium battery, solid lithium battery, and device including solid lithium battery
JP5570843B2 (en) * 2009-09-25 2014-08-13 三洋電機株式会社 Lithium ion secondary battery
JP5780880B2 (en) * 2011-08-09 2015-09-16 日東電工株式会社 Lithium secondary battery and negative electrode thereof

Also Published As

Publication number Publication date
JP2019061941A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP3702318B2 (en) Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode
JP5313761B2 (en) Lithium ion battery
JP6258641B2 (en) Non-aqueous electrolyte secondary battery
KR20180052638A (en) Coated cathode active material for battery cells
JP5264271B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
US11515538B2 (en) In-situ polymerization to protect lithium metal electrodes
US11735725B2 (en) Ceramic coating for lithium or sodium metal electrodes
KR20210049114A (en) Solid polymer matrix electrolyte (PME) for rechargeable lithium batteries, and batteries made using the same
US11417888B2 (en) Electrode additives and coatings for minimizing cathode transition metal dissolution
JP2011159596A (en) Secondary battery and method of manufacturing the same
JP2014225324A (en) Nonaqueous electrolyte secondary cell
JP2018531498A6 (en) Method for manufacturing lithium ion storage battery
JP2018531498A (en) Method for manufacturing lithium ion storage battery
CN111081968A (en) Negative electrode for lithium secondary battery and method for manufacturing same
US11165052B2 (en) Lithium alloy-based electrodes for electrochemical cells and methods for making the same
JP2013131427A (en) Laminated battery
US20210184199A1 (en) Methods of lithiating metal anodes using electrolytes
JP2014127333A (en) Positive electrode collector foil of lithium ion secondary battery, and lithium ion secondary battery
JP2005108521A (en) Thin film electrode, manufacturing method of the same, and lithium secondary battery using the thin film electrode
CN108365171A (en) Lithium ion secondary battery cathode and its manufacturing method and lithium rechargeable battery
KR20220046267A (en) Anodeless lithium secondary battery and preparing method thereof
JP2018120849A (en) Negative electrode for lithium ion secondary battery, manufacturing method of the same, and lithium ion secondary battery
JP2017134923A (en) Negative electrode for lithium secondary battery, lithium secondary battery and manufacturing methods thereof
US20230129069A1 (en) Method of coating electroactive materials with conductive polymers
JP6745782B2 (en) Negative electrode for lithium-ion secondary battery and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200804

R150 Certificate of patent or registration of utility model

Ref document number: 6745782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150