JP6744668B2 - Dry disaggregation/defibration machine - Google Patents

Dry disaggregation/defibration machine Download PDF

Info

Publication number
JP6744668B2
JP6744668B2 JP2018189925A JP2018189925A JP6744668B2 JP 6744668 B2 JP6744668 B2 JP 6744668B2 JP 2018189925 A JP2018189925 A JP 2018189925A JP 2018189925 A JP2018189925 A JP 2018189925A JP 6744668 B2 JP6744668 B2 JP 6744668B2
Authority
JP
Japan
Prior art keywords
defibration
dry
blade
rotating
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018189925A
Other languages
Japanese (ja)
Other versions
JP2020059930A (en
Inventor
雄策 石川
雄策 石川
Original Assignee
株式会社石川総研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社石川総研 filed Critical 株式会社石川総研
Priority to JP2018189925A priority Critical patent/JP6744668B2/en
Publication of JP2020059930A publication Critical patent/JP2020059930A/en
Application granted granted Critical
Publication of JP6744668B2 publication Critical patent/JP6744668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Paper (AREA)

Description

本発明は、パルプを予備解繊し、セルロースナノファイバー製造に供する原料を製造する乾式離解・解繊機に関する。 The present invention relates to a dry-type disaggregation/defibration machine for pre-defibrating pulp and producing a raw material to be used for producing cellulose nanofibers.

セルロースナノファイバーは、強度、弾性、熱安定性等に優れていることから、プラスチック、化粧品、食品、塗料など様々な分野において利用することが期待されている。 Since cellulose nanofibers are excellent in strength, elasticity, thermal stability, etc., they are expected to be used in various fields such as plastics, cosmetics, foods and paints.

セルロースナノファイバーは、パルプを機械的に解繊することにより製造することができる。従来、高圧ホモジナイザーなどの剪断力の強い分散機を用いて何度も解繊処理を行い、セルロース繊維の微細化を行うため、製造に莫大な時間と電力を要する。特許文献1は、微解繊の前に予備解繊をすることにより微解繊の回数を減らすことができるとし、予備解繊としてコニカル型リファイナーを用いることを記載した。しかしながら、コニカル型リファイナーは湿式解繊機であるため、パルプに水等を加えてスラリーや懸濁液にしなくてはならないという問題点がある。 Cellulose nanofibers can be produced by mechanically defibrating pulp. Conventionally, it requires enormous time and electric power to manufacture because cellulose fibers are miniaturized by repeatedly performing defibration treatment using a disperser having a strong shearing force such as a high-pressure homogenizer. Patent Document 1 describes that the number of times of fine defibration can be reduced by performing preliminary defibration before fine defibration, and uses a conical refiner as the preliminary defibration. However, since the conical refiner is a wet defibrating machine, there is a problem that it is necessary to add water or the like to pulp to form a slurry or suspension.

また、従来用いられているコニカル型リファイナーなどの湿式解繊機やボールミルなどの乾式解繊機は、セルロース繊維に機械的剪断力を与えて解繊(叩解)するため、セルロース繊維にダメージを与えることとなる。そのため、従来の解繊機により予備解繊を行った場合、アスペクト比や結晶化度が高いなどの品質の良いセルロースナノファイバーを製造することが困難であるという問題点がある。 In addition, a conventional wet defibrator such as a conical refiner or a dry defibrator such as a ball mill gives a mechanical shearing force to cellulosic fibers to defibrate (beat) it, thereby causing damage to the cellulosic fibers. Become. Therefore, when preliminary defibration is performed using a conventional defibration machine, there is a problem in that it is difficult to produce high-quality cellulose nanofibers having a high aspect ratio and high crystallinity.

特開2018-48235号公報JP, 2008-48235, A

本発明は、乾燥パルプをそのまま予備解繊し、セルロースナノファイバー製造に供する原料を製造する乾式離解・解繊機を提供する。さらに詳しくは、品質の良いセルロースナノファイバーを製造するための原料を製造する乾式離解・解繊機を提供するものである。 The present invention provides a dry defibration/defibration machine for pre-defibrating dry pulp as it is to produce a raw material to be used for the production of cellulose nanofibers. More specifically, the present invention provides a dry defibration/defibration machine for producing a raw material for producing high-quality cellulose nanofibers.

本明細書にて叩解とは、繊維に機械的剪断力を与えて解繊することをいい、離解とは乾燥パルプを繊維の構造的特性に与える影響が少ない状態で解繊することをいう。乾燥パルプとは含水率が約0.01%〜約35%のパルプをいう。 In the present specification, beating refers to defibration by applying mechanical shearing force to fibers, and disaggregation refers to defibration of dry pulp in a state where it has little influence on the structural properties of the fibers. Dry pulp refers to pulp having a moisture content of about 0.01% to about 35%.

上記課題を解決する本発明は次の内容のものである。 The present invention for solving the above problems is as follows.

セルロースナノファイバー製造に供する原料を製造する乾式離解・解繊機であって、
原料を供給する供給口と、
解繊物を排出する排出口と、
該供給口と該排出口との間に位置する解繊室とを備え、
該排出口と解繊室との間には、複数の透孔を有するスクリーンを備え、
該解繊室の内部には回転部を備え、
該回転部は、回転軸と、該回転軸にその軸方向に所定の間隔をおいて固定した複数の板状の固定刃とよりなり、
該固定刃は該回転軸から離れる方向に突出した刃部を備え、
該解繊室の内面には、一以上の突出部を設け、
該突出部は該回転部が回転した際に該刃部が通過する凹部を備える。
A dry defibration/defibration machine for producing raw materials to be used for producing cellulose nanofibers,
A supply port for supplying raw materials,
A discharge port for discharging defibrated material,
A defibration chamber located between the supply port and the discharge port,
A screen having a plurality of through holes is provided between the discharge port and the defibration chamber,
The defibration chamber is provided with a rotating part inside,
The rotating part includes a rotating shaft and a plurality of plate-shaped fixed blades fixed to the rotating shaft at a predetermined interval in the axial direction,
The fixed blade includes a blade portion protruding in a direction away from the rotating shaft,
One or more protrusions are provided on the inner surface of the defibration chamber,
The protrusion has a recess through which the blade passes when the rotating part rotates.

セルロースナノファイバー製造に供する原料を製造する乾式離解・解繊機であって、
原料を供給する供給口と、
解繊物を排出する排出口と、
該供給口と該排出口との間に位置する解繊室とを備え、
該排出口と解繊室との間には、複数の透孔を有するスクリーンを備え、
該解繊室の内部には回転部を備え、
該回転部は、回転軸と、該回転軸にその軸方向に所定の間隔をおいて固定した複数の回転板と、隣り合う該回転板を連結する遊星軸と、該遊星軸に回転自在に配設する遊星刃とよりなり、
該解繊室の内面には一以上の突出部を備え、
該回転軸が回転することにより遠心力で該遊星刃の先端縁が該解繊室の内面方向に向かい、
該遊星刃の先端縁が該解繊室の内面方向に向かった場合の該遊星刃の先端縁と該突出部の先端縁との間には間隙を有する。
A dry defibration/defibration machine for producing raw materials to be used for producing cellulose nanofibers,
A supply port for supplying raw materials,
A discharge port for discharging defibrated material,
A defibration chamber located between the supply port and the discharge port,
A screen having a plurality of through holes is provided between the discharge port and the defibration chamber,
The defibration chamber is provided with a rotating part inside,
The rotating unit includes a rotating shaft, a plurality of rotating plates fixed to the rotating shaft at predetermined intervals in the axial direction, a planetary shaft connecting adjacent rotating plates, and a rotatably rotatable planetary shaft. It consists of a planet blade to be placed,
The inner surface of the defibration chamber is provided with one or more protrusions,
By rotating the rotating shaft, the tip edge of the planetary blade is directed toward the inner surface of the defibration chamber by centrifugal force,
There is a gap between the tip edge of the planet blade and the tip edge of the protrusion when the tip edge of the planet blade is directed toward the inner surface of the defibration chamber.

離解・解繊して結晶化度が60%以上100%未満のセルロース繊維を含有する解繊物を乾燥パルプから製造する。 A defibrated material containing cellulose fibers having a crystallinity of 60% or more and less than 100% after defibration/defibration is produced from dry pulp.

本発明の乾式離解・解繊機は、パルプ等を乾燥したまま予備解繊できる。 The dry disaggregation/defibration machine of the present invention can perform preliminary defibration while the pulp or the like is dried.

本発明の乾式離解・解繊機は繊維の構造的特性に与える影響が少ない状態で解繊(離解)することができるため、本発明の乾式離解・解繊機により製造した原料を用いることにより、品質の良いセルロースナノファイバーを製造することができる。 Since the dry defibration/defibration machine of the present invention can defibrate (defibration) in a state in which the influence on the structural properties of the fiber is small, by using the raw material produced by the dry defibration/defibration machine of the present invention, It is possible to produce a good cellulose nanofiber.

本発明の請求項1に係る乾式離解・解繊機の一例を示す概要図である。It is a schematic diagram showing an example of the dry disaggregation/defibration machine according to claim 1 of the present invention. 図1の回転部の側面を示す概略図である。It is the schematic which shows the side surface of the rotating part of FIG. 刃部の例を示す概略図である。It is the schematic which shows the example of a blade part. 本発明の請求項2に係る乾式離解・解繊機の一例を示す概要図である。It is a schematic diagram which shows an example of the dry disaggregation/defibration machine which concerns on Claim 2 of this invention. の回転部の側面を示す概略図である。FIG. 5 is a schematic view showing a side surface of a rotating unit of FIG. 4 . 遊星刃の例を示す概略図である。It is a schematic diagram showing an example of a planetary blade. スクリーンの例を示す概略図である。It is the schematic which shows the example of a screen. 実施例1の解繊物の写真である。3 is a photograph of the defibrated material of Example 1. 実施例2の解繊物の写真である。5 is a photograph of the defibrated material of Example 2. 実施例3の解繊物の写真である。7 is a photograph of the defibrated material of Example 3. 実施例4の解繊物の写真である。7 is a photograph of the defibrated material of Example 4. 比較例1の写真である。5 is a photograph of Comparative Example 1. 比較例2の解繊物の写真である。5 is a photograph of a defibrated material of Comparative Example 2. 比較例3の解繊物の写真である。7 is a photograph of a defibrated material of Comparative Example 3.

以下、本発明の実施の形態の例について図を参照しながら説明する。尚、本発明は、以下の形態の例に限定されるものではない。 Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. The present invention is not limited to the examples of the following modes.

まず、固定刃を用いた乾式離解・解繊機(請求項1)について説明する。 First, a dry disaggregation/defibration machine using a fixed blade (claim 1) will be described.

図1、2に示すように、本発明のセルロースナノファイバー製造に供する原料を製造する乾式離解・解繊機1はパルプ等を供給する供給口3と、解繊物を排出する排出口5と、供給口3と排出口5との間に位置する解繊室7とを備える。該排出口3と解繊室7との間には、複数の透孔31を有するスクリーン9を備える。該解繊室7の内部には回転部11aを備える。該回転部11aは、回転軸13aと、回転軸13aにその軸方向に所定の間隔33をおいて固定した複数の板状の固定刃17とよりなる。固定刃17は、回転軸13aから離れる方向に突出した刃部15を備える。解繊室7の内面35には、一以上の突出部19aを設ける。突出部19aは回転部11aが回転した際に固定刃17の刃部15が通過する凹部を21備える。解繊室7には、一例として解繊室7の内部を点検・部品を交換したりするための蓋部41を設ける。 As shown in FIGS. 1 and 2, a dry defibration/defibration machine 1 for producing a raw material to be used for producing cellulose nanofibers of the present invention has a supply port 3 for supplying pulp and the like, and a discharge port 5 for discharging defibrated material, A defibration chamber 7 located between the supply port 3 and the discharge port 5 is provided. A screen 9 having a plurality of through holes 31 is provided between the discharge port 3 and the defibration chamber 7. Inside the disentanglement chamber 7, a rotating portion 11a is provided. The rotating portion 11a includes a rotating shaft 13a and a plurality of plate-shaped fixed blades 17 fixed to the rotating shaft 13a at predetermined intervals 33 in the axial direction. The fixed blade 17 includes a blade portion 15 protruding in a direction away from the rotating shaft 13a. The inner surface 35 of the disentanglement chamber 7 is provided with one or more protrusions 19a. The protruding portion 19a includes a concave portion 21 through which the blade portion 15 of the fixed blade 17 passes when the rotating portion 11a rotates. As an example, the disentanglement chamber 7 is provided with a lid 41 for inspecting the inside of the disentanglement chamber 7 and replacing parts.

固定刃17における刃部15の形状は特に限定はないが、一例として波型状(図3、A)、略三角状(図3、B)、略矩形状(図3、C)等が挙げられる。固定刃17の厚さは特に限定はなく、一例として下限は6mm、上限は35mmとし、好ましくは下限12mm上限25mmとする。1枚の固定刃17に備えさせる刃部15の数は特に限定はなく、一例として下限は2枚、上限は16枚とし、好ましくは下限4枚、上限9枚とする。固定刃17の枚数には特に限定はない。各固定刃17における刃部15の数は、それぞれ異なるものでもよく、好ましくは同数とする。隣り合う刃部15相互の位置は特に限定はなく、好ましくは、固定刃17の刃部先端47と隣り合う固定刃17の刃部先端47とは、回転軸13a方向に重ならないようにする(図1、2参照)。 The shape of the blade portion 15 of the fixed blade 17 is not particularly limited, but examples thereof include a corrugated shape (FIG. 3, A), a substantially triangular shape (FIG. 3, B), a substantially rectangular shape (FIG. 3, C), and the like. To be The thickness of the fixed blade 17 is not particularly limited, and as an example, the lower limit is 6 mm and the upper limit is 35 mm, preferably the lower limit is 12 mm and the upper limit is 25 mm. The number of blades 15 provided in one fixed blade 17 is not particularly limited, and as an example, the lower limit is 2 and the upper limit is 16, and preferably the lower limit is 4 and the upper limit is 9. The number of fixed blades 17 is not particularly limited. The number of blade portions 15 in each fixed blade 17 may be different, and preferably the same number. The positions of the adjacent blades 15 are not particularly limited, and preferably, the blade tip 47 of the fixed blade 17 and the blade tip 47 of the adjacent fixed blade 17 do not overlap in the direction of the rotation axis 13a ( 1 and 2).

固定刃17が回転することにより、刃部15は乾燥したままのパルプ繊維をひっかけて回転し、刃部15が突出部19aの凹部21を通過する際に、パルプ繊維を離解・解繊する。 As the fixed blade 17 rotates, the blade portion 15 catches the dried pulp fiber and rotates, and when the blade portion 15 passes through the concave portion 21 of the protruding portion 19a, the pulp fiber is disintegrated and disentangled.

次に、遊星刃を用いた乾式離解・解繊機(請求項2)について説明する。 Next, a dry defibration/defibration machine using a planetary blade (claim 2) will be described.

図4、5に示すように、本発明のセルロースナノファイバー製造に供する原料を製造する乾式離解・解繊機1はパルプ等を供給する供給口3と、解繊物を排出する排出口5と、供給口3と排出口5との間に位置する解繊室7とを備える。排出口3と解繊室7との間には、複数の透孔31を有するスクリーン9を備える。解繊室7の内部には回転部11bを備える。該回転部11bは、回転軸13bと、回転軸13bにその軸方向に所定の間隔をおいて固定した複数の回転板23と、隣り合う該回転板23を連結する遊星軸25と、遊星軸25に回転自在に配設する遊星刃27とよりなる。解繊室7の内面35には、一以上の突出部19bを備える。回転軸7が回転することにより、遠心力により遊星刃27の先端縁29が該解繊室内面35の方向に向かい、その際、遊星刃27の先端縁29と該突出部19bの先端縁37との間には間隙39を有する。解繊室7には、一例として解繊室7の内部を点検・部品を交換したりするための蓋部41を設ける。 As shown in FIGS. 4 and 5, a dry defibration/defibration machine 1 for producing a raw material to be used for producing the cellulose nanofibers of the present invention has a supply port 3 for supplying pulp and the like, and a discharge port 5 for discharging defibrated material, A defibration chamber 7 located between the supply port 3 and the discharge port 5 is provided. A screen 9 having a plurality of through holes 31 is provided between the discharge port 3 and the defibration chamber 7. Inside the defibration chamber 7, a rotating part 11b is provided. The rotating portion 11b includes a rotating shaft 13b, a plurality of rotating plates 23 fixed to the rotating shaft 13b at predetermined intervals in the axial direction, a planetary shaft 25 connecting adjacent rotating plates 23, and a planetary shaft. 25 and a planetary blade 27 that is rotatably arranged. The inner surface 35 of the defibration chamber 7 is provided with one or more protrusions 19b. Due to the rotation of the rotating shaft 7, the tip edge 29 of the planetary blade 27 is directed toward the defibration chamber inner surface 35 by centrifugal force, and at that time, the tip edge 29 of the planetary blade 27 and the tip edge 37 of the protruding portion 19b. There is a gap 39 between and. As an example, the disentanglement chamber 7 is provided with a lid 41 for inspecting the inside of the disentanglement chamber 7 and replacing parts.

遊星刃27を用いた場合の回転部11bにおいて、回転23の枚数は特に限定はない。遊星軸25の本数は、一例として下限2本、上限8本とし、好ましくは下限3本、上限6本とする。隣り合う回転板23を連結する遊星軸25に配設する遊星刃27の枚数は特に限定はなく、一例として下限1枚、上限10枚とし、図5には2枚の場合を示す。すべての遊星軸25に遊星刃27を配設してもよく、一部の遊星軸25に遊星刃27を配設してもよい。遊星刃27は、回転板23が回転した際に遊星軸25に配設した位置がずれないようにするのが好ましく、遊星軸25に遊星刃27の幅よりわずかに広い溝を作りそこに遊星刃27を備えさせたり、遊星刃27を配設する両側に突出部を設けたりなどする。 In the rotating unit 11b using the planetary blade 27, the number of the rotating plates 23 is not particularly limited. As an example, the number of planetary shafts 25 is set to a lower limit of 2 and an upper limit of 8, and preferably a lower limit of 3 and an upper limit of 6. There is no particular limitation on the number of planet blades 27 arranged on the planetary shafts 25 that connect the rotating plates 23 adjacent to each other. For example, the lower limit is 1 and the upper limit is 10, and FIG. 5 shows the case of two. The planetary blades 27 may be arranged on all the planetary shafts 25, or the planetary blades 27 may be arranged on a part of the planetary shafts 25. It is preferable that the planetary blades 27 should not be displaced from the positions arranged on the planetary shafts 25 when the rotary plate 23 rotates, and a groove slightly wider than the width of the planetary blades 27 should be formed on the planetary shafts 25 there. For example, the blade 27 may be provided, or protrusions may be provided on both sides of the planetary blade 27.

(遊星刃の形状と枚数)遊星刃27の形状は特に限定はないが、一例として略多角形、略円形、略楕円形などが挙げられ、好ましくは略長方形などが挙げられる。遊星刃27の先端縁29は、一例として略直線(図6、A)、弧状(図6、B)、凹凸状(図6、C)、ジグザグ状(図6、D)などが挙げられ、好ましくは解繊室の内面35のほうに膨らむようにする(図1参照)。 (Shape and Number of Planetary Blades) The shape of the planetary blades 27 is not particularly limited, but examples thereof include a substantially polygonal shape, a substantially circular shape, a substantially elliptical shape, and preferably a substantially rectangular shape. The tip edge 29 of the planetary blade 27 is, for example, a substantially straight line (FIG. 6, A), an arc shape (FIG. 6, B), an uneven shape (FIG. 6, C), a zigzag shape (FIG. 6, D), or the like. It is preferable that the inner surface 35 of the defibration chamber bulges (see FIG. 1).

突出部19bの先端37形状は特に限定はなく、一例として略直線、遊星刃27の先端縁29の方に膨らむ弧状、凹凸状(図参照)、ジグザグ状などが挙げられる。
The shape of the tip 37 of the protrusion 19b is not particularly limited, and examples thereof include a substantially straight line, an arc shape bulging toward the tip edge 29 of the planetary blade 27, an uneven shape (see FIG. 4 ), and a zigzag shape.

回転板23が回転し、遊星刃27が突出部19bの内方を通過する際に、パルプが離解・解繊される。遊星刃27の先端縁29と突出部19bの先端縁37との間の間隙39は、一例として下限は0.5mm、上限は12mmとし、好ましくは下限1mm上限5mmとする。 When the rotary plate 23 rotates and the planetary blades 27 pass inside the protrusions 19b, the pulp is disintegrated and disentangled. The gap 39 between the tip edge 29 of the planetary blade 27 and the tip edge 37 of the protruding portion 19b is, for example, a lower limit of 0.5 mm and an upper limit of 12 mm, preferably a lower limit of 1 mm and an upper limit of 5 mm.

固定刃を用いた場合と遊星刃を用いた場合の共通する事項について説明する。 Items common to the case of using the fixed blade and the case of using the planetary blade will be described.

本発明の乾式離解・解繊機1は、含水率が約0.01%〜約35%の乾燥パルプをスラリーや懸濁することなく、そのまま供給口3に投入して離解・解繊することができる。回転部11a、bを回転させる手段は、特に限定はなく、一般的なモーター45を用いるなどすればよい。排出口3に接続された吸引手段により、スクリーン9を通過した乾燥パルプの離解・解繊物が排出口3より排出される。排出口3の吸引手段は、市販の吸引器を用いるなど一般的な吸引手段を用いればよい。 The dry disaggregation/defibration machine 1 of the present invention can directly disintegrate/defibrate the dry pulp having a water content of about 0.01% to about 35% into the supply port 3 without slurry or suspension. The means for rotating the rotating portions 11a, 11b is not particularly limited, and a general motor 45 may be used. By the suction means connected to the discharge port 3, the disintegrated/defibrated material of the dried pulp that has passed through the screen 9 is discharged from the discharge port 3. As the suction means for the discharge port 3, a general suction means such as a commercially available suction device may be used.

刃部15又は遊星刃27の先端縁29の周速は、一例として下限は500m/分、上限は3000m/分とし、好ましくは下限1000m/分、上限2000m/分とする。吸引条件として離解・解繊物のスクリーン9における通過速度を、一例として下限は10m/秒、上限は40m/秒とし、好ましくは下限15m/秒、上限30m/秒とする。 The peripheral speed of the blade portion 15 or the tip edge 29 of the planetary blade 27 is, for example, a lower limit of 500 m/min and an upper limit of 3000 m/min, preferably a lower limit of 1000 m/min and an upper limit of 2000 m/min. As a suction condition, for example, the passing speed of the disaggregated/defibrated material through the screen 9 is set to a lower limit of 10 m/sec and an upper limit of 40 m/sec, preferably a lower limit of 15 m/sec and an upper limit of 30 m/sec.

スクリーン9は、複数の透孔31を有する(図7参照)。透孔31の形状は特に限定はなく、一例として略円形、略楕円系形とする。透孔の径は特に限定はなく、一例として下限は0.1mm、上限は50mmとし、好ましくは下限0.5mm、上限12mmとする。スクリーン9の開口率は特に限定はなく、一例として下限は3%、上限は95%とし、好ましくは下限10%、上限40%とする。透孔の径を大きくすることにより離解・解繊された繊維長は長くなり、径を小さくすることにより離解・解繊された繊維長は短くなる。スクリーン9は着脱自在とすることにより、所望の透孔31を有するスクリーン9に容易に交換できるようになる。 The screen 9 has a plurality of through holes 31 (see FIG. 7). The shape of the through hole 31 is not particularly limited and is, for example, a substantially circular shape or a substantially elliptical shape. The diameter of the through hole is not particularly limited, and for example, the lower limit is 0.1 mm and the upper limit is 50 mm, preferably the lower limit is 0.5 mm and the upper limit is 12 mm. The aperture ratio of the screen 9 is not particularly limited, and as an example, the lower limit is 3% and the upper limit is 95%, preferably the lower limit is 10% and the upper limit is 40%. By increasing the diameter of the through holes, the fiber length that has been defibrated and defibrated increases, and by decreasing the diameter, the fiber length that has been defibrated and defibrated decreases. By making the screen 9 detachable, it becomes possible to easily replace the screen 9 with the desired through hole 31.

突出部19aにおける凹部21と固定刃15の刃部先端47との間隔、又は突出部19bの先端縁37と遊星刃27の先端縁29との間隔を変えることにより、パルプの離解・解繊状態を変えることができる。例えば、該間隔を狭くすることにより、解繊後のパルプのかさ密度は大きくなる。一例として、突出部19a、bは解繊室7の内面35から出入可能に配設してもよい。突出部19a、bを出入可能にする手段としては、特に限定はなく、例えば、解繊室7に溝49を形成し、溝49に通常用いられるねじ手段等を介して配設する。突出部19a、bを備える位置は特に限定はなく、一例として、蓋部41に取り付ける。 Pulp disintegration/defibration state by changing the distance between the concave portion 21 of the protrusion 19a and the blade tip 47 of the fixed blade 15 or the distance between the tip edge 37 of the protrusion 19b and the tip edge 29 of the planetary blade 27. Can be changed. For example, the bulk density of the pulp after defibration is increased by narrowing the interval. As an example, the protrusions 19a and 19b may be arranged so as to be able to move in and out from the inner surface 35 of the defibration chamber 7. The means for allowing the projecting portions 19a, 19b to enter and leave is not particularly limited, and for example, a groove 49 is formed in the disentanglement chamber 7, and the groove 49 is provided via a screw means or the like that is normally used. The position at which the protrusions 19a and 19b are provided is not particularly limited, and is attached to the lid 41 as an example.

上記固定刃17又は遊星刃27を備える乾式離解・解繊機1は、結晶化度が60%以上100%未満のセルロース繊維を含有する解繊物を乾燥パルプから製造することができる。 The dry disaggregation/defibration machine 1 including the fixed blade 17 or the planetary blade 27 can produce a defibrated material containing cellulose fibers having a crystallinity of 60% or more and less than 100% from dry pulp.

次に実施例、比較例を挙げ、本発明を説明するが、本発明はこれらの実施例に何ら制約されるものではない。 Next, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

(供試材料)
供試材料として、針葉樹材シート(NBKP、アラバマリバー社製)と無添加、無漂白のトイレットペーパー(王子製紙株式会社製、商品名:ネピアネピネピ(登録商標))を使用した。いずれも、適当な大きさに切断したものを解繊処理に供した。
(Sample material)
As a test material, a softwood sheet (NBKP, manufactured by Alabama River Co.) and additive-free, unbleached toilet paper (manufactured by Oji Paper Co., Ltd., trade name: Napier Nepinepi (registered trademark)) were used. In each case, a piece cut into an appropriate size was subjected to a defibration treatment.

(固定刃を備えた乾式離解・解繊機)
固定刃17を備えた乾式離解・解繊機は、固定刃17の枚数は5枚、固定刃17の1枚当たりの刃部15の数は6個、刃部15の形状は波型状のものを用いた。
(Dry defibration/defibration machine with fixed blade)
The dry disaggregation/defibration machine equipped with the fixed blades 17 has five fixed blades 17, six fixed blades 15 and a corrugated blade 15. Was used.

(遊星刃を備えた乾式離解・解繊機)
遊星刃27を備えた乾式離解・解繊機は、回転部における遊星刃27の先端縁29の形状は、ジグザグ形状とした。回転板23は5枚、遊星軸25は8本、隣り合う回転板23の間には遊星刃27を2枚ずつ備えるものを用いた。
(Dry defibration/defibration machine equipped with a planetary blade)
In the dry disaggregation/defibration machine provided with the planetary blade 27, the tip edge 29 of the planetary blade 27 in the rotating part has a zigzag shape. There were used five rotary plates 23, eight planetary shafts 25, and two planetary blades 27 between adjacent rotary plates 23.

(運転条件)
上記各乾式離解・解繊機は、スクリーン9の開口率は22.7%とし、スクリーン9の透孔は円形、直径は4.5mm又は1.0mmとした。運転条件は、いずれも周速1.85m/分、スクリーン9の通過速度は、18m/秒とした。
(Operating conditions)
In each of the dry defibrating and defibrating machines, the aperture ratio of the screen 9 was 22.7%, the through hole of the screen 9 was circular, and the diameter was 4.5 mm or 1.0 mm. The operating conditions were such that the peripheral speed was 1.85 m/min, and the passing speed of the screen 9 was 18 m/sec.

(ボールミルの条件)
比較例として使用したボールミルは、Retsch社製のPM400を用いた。回転速度は100rpmとし、温度上昇等を避けるため、回転時間2分、休憩時間2分の交互運転とした。運転時間は、回転時間と休憩時間の合計時間とした。
(Condition of ball mill)
The ball mill used as a comparative example was PM400 manufactured by Retsch. The rotation speed was 100 rpm, and alternate operation was performed for 2 minutes for a rotation time and 2 minutes for a rest time in order to avoid temperature increase. The driving time was the total time of rotation time and rest time.

≪かさ密度の目視確認≫
針葉樹材シートを表1に示す条件等で針葉樹材シートの解繊後、200mlのビーカーに入れてかさ密度を目視にて確認した結果を図8〜図14に示す。図8は実施例1、図9は実施例2、図10は実施例3、図11は実施例4、図12は比較例1、図13は比較例2、図14は比較例3である。
<<Visual confirmation of bulk density>>
8 to 14 show the results obtained by defibrating the softwood sheet under the conditions shown in Table 1 and the like and then placing it in a 200 ml beaker and visually confirming the bulk density. 8 shows Example 1, FIG. 9 shows Example 2, FIG. 10 shows Example 3, FIG. 11 shows Example 4, FIG. 12 shows Comparative Example 1, FIG. 13 shows Comparative Example 2, and FIG. 14 shows Comparative Example 3. ..

実施例1〜4、比較例1〜3の解繊の条件等を表1に示す。 Table 1 shows the defibration conditions of Examples 1 to 4 and Comparative Examples 1 to 3.

図8〜図14から分かるとおり、ボールミルでは乾燥した針葉樹材シートは解繊することができないが、本発明の乾式離解・解繊機は針葉樹材シートを乾燥したまま細かい繊維状に解繊することができた。 As can be seen from FIGS. 8 to 14, the dried softwood sheet cannot be defibrated with a ball mill, but the dry disaggregation/defibration machine of the present invention can defibrate the softwood sheet into fine fibrous shapes while being dried. did it.

≪濾水度の測定≫
次に、本発明の乾式離解・解繊機による解繊状態を知るために濾水度の測定を行った。濾水度は、JIS P8121−2「カナダ標準ろ水度」に従って測定した。濾水度の測定は、供試材料としてトイレットペーパーを用いた。
<<Measurement of freeness>>
Next, the freeness was measured in order to know the defibrated state by the dry defibration/defibration machine of the present invention. The freeness was measured according to JIS P8121-2 "Canadian Standard Freeness". To measure the freeness, toilet paper was used as a test material.

上記濾水度の測定結果を表2に示す。 Table 2 shows the measurement results of the freeness.

本発明の乾式離解・予備解繊機を用いて解繊した場合(実施例5〜8)は、ボールミルを用いて解繊した場合(比較例4,5)に比べて、濾水度は小さく、離解・解繊効果が高いことが分かった。 In the case of defibrating using the dry defibration/pre-defibration machine of the present invention (Examples 5 to 8), the freeness is smaller than that in the case of defibrating using a ball mill (Comparative Examples 4 and 5), It was found that the disaggregation/defibration effect was high.

≪結晶化度の測定≫
本発明の乾式離解・解繊機を用いて解繊した後の結晶化度を測定した。
<<Measurement of crystallinity>>
The degree of crystallinity after defibration was measured using the dry defibration/defibration machine of the present invention.

(供試材料の前処理)
前述のとおり、針葉樹材シートはそのままの乾燥した状態でボールミルによる解繊処理をおこなっても、繊維状にほぐれない。そのため、結晶化度の測定にあたり、供試材料を本発明の乾式離解・解繊機による前処理を行った。前処理には、先端縁29の形状がジグザグ型の遊星刃27を備える乾式離解・解繊機を用いた。回転板23は5枚、遊星軸25は8本、隣り合う回転板23の間には遊星刃27を2枚ずつ配設し、スクリーン9の透孔は、直径30mmの円形とし、針葉樹材シートを1辺が約100mmとなるように切断してから供給口3に供給し、周速1.85m/分、通過速度は18m/分とした。
(Pretreatment of test material)
As described above, even if the softwood sheet is subjected to a defibration treatment with a ball mill in a dry state as it is, it does not loosen into a fibrous shape. Therefore, in measuring the crystallinity, the sample material was pretreated by the dry disintegration/defibration machine of the present invention. For the pretreatment, a dry defibration/defibration machine having a planetary blade 27 having a zigzag-shaped tip edge 29 was used. Five rotary plates 23, eight planetary shafts 25, two planetary blades 27 are provided between adjacent rotary plates 23, and the through holes of the screen 9 are circular with a diameter of 30 mm. Was cut to have a side of about 100 mm and then supplied to the supply port 3, and the peripheral speed was 1.85 m/min and the passing speed was 18 m/min.

(X線回折の方法)
結晶化度は、試料のX線回折を測定することで求めた。X線回折の測定は、適当量の試料をアルミキャップに乗せ、X線回折測定装置(SmartLab、株式会社リガク製)を用いて測定した。結晶化度の算出は(L.Segal,J.J.Greely,etal,Text.Res.J.,29,786,1959)、および、Kamideらの手法(K.Kamide et al,Polymer J.,17,909,1985)を参考に行い、X線回折図の2θ=8°〜45°の回折強度をベースラインとして、2θ=22.6°の002面の回折強度と2θ=18.5°のアモルファス部分の回折強度から次式により算出した。
Xc=(I002c―Ia)/I002c×100
Xc=セルロースの結晶化度(%)
I002c:2θ=22.6°、002面の回折強度
Ia:2θ=18.5°、アモルファス部分の回折強度
(Method of X-ray diffraction)
The crystallinity was determined by measuring the X-ray diffraction of the sample. The X-ray diffraction was measured by placing an appropriate amount of the sample on an aluminum cap and using an X-ray diffraction measuring device (SmartLab, manufactured by Rigaku Corporation). The crystallinity is calculated (L. Segal, J. J. Greeley, et al, Text. Res. J., 29, 786, 1959) and the method of Kamide et al. (K. Kamide et al, Polymer J., J. 17, 909, 1985), and the diffraction intensity of 2θ=8° to 45° in the X-ray diffraction diagram as a baseline, the diffraction intensity of the 002 plane at 2θ=22.6° and 2θ=18.5°. It was calculated from the diffraction intensity of the amorphous part of
Xc=(I002c-Ia)/I002c×100
Xc = Crystallinity of cellulose (%)
I002c: 2θ = 22.6°, diffraction intensity of 002 plane Ia: 2θ = 18.5°, diffraction intensity of amorphous part

結晶化度の測定結果を表3に示す。 The results of measuring the crystallinity are shown in Table 3.

本発明の乾式離解・解繊機を用いた場合、セルロース繊維の結晶化度は高いままであり、本発明の乾式離解・解繊機により製造されるセルロース繊維の結晶化度はいずれも85%を超えていた。 When the dry disaggregation/defibration machine of the present invention is used, the crystallinity of the cellulose fibers remains high, and the crystallinity of the cellulose fibers produced by the dry disaggregation/defibration machine of the present invention exceeds 85%. Was there.

1 乾式離解・解繊機
3 供給口
5 排出口
7 解繊室
9 スクリーン
11a 回転部
11b 回転部
13a 回転軸
13b 回転軸
15 刃部
17 固定刃
19a 突出部
19b 突出部
21 凹部
23 回転板
25 遊星軸
27 遊星刃
29 先端縁
31 透孔
33 間隔
35 内面
37 先端縁
39 間隙
41 蓋部
43 ねじ手段
45 モーター
47 刃部先端
49 溝


1 Dry Disaggregation and Disentangler 3 Supply Port 5 Discharge Port 7 Disentanglement Chamber 9 Screen 11a Rotating Part 11b Rotating Part 13a Rotating Shaft 13b Rotating Shaft 15 Blade 17 Fixed Blade 19a Projecting 19b Projecting 21 Recess 23 Rotating Plate 25 Planetary Axis 27 Planetary Blade 29 Tip Edge 31 Through Hole 33 Space 35 Inner Surface 37 Tip Edge 39 Gap 41 Lid 43 Screw Means 45 Motor 47 Blade Tip 49 Groove


Claims (3)

セルロースナノファイバー製造に供する原料を製造する乾式離解・解繊機であって、
原料を供給する供給口と、
解繊物を排出する排出口と、
該供給口と該排出口との間に位置する解繊室とを備え、
該排出口と解繊室との間には、複数の透孔を有するスクリーンを備え、
該解繊室の内部には回転部を備え、
該回転部は、回転軸と、該回転軸にその軸方向に所定の間隔をおいて固定した複数の板状の固定刃とよりなり、
該固定刃は該回転軸から離れる方向に突出した刃部を備え、
該解繊室の内面には、一以上の突出部を設け、
該突出部は該回転部が回転した際に該刃部が通過する凹部を備えることを特徴とする乾式離解・解繊機。
A dry defibration/defibration machine for producing raw materials to be used for producing cellulose nanofibers,
A supply port for supplying raw materials,
A discharge port for discharging defibrated material,
A defibration chamber located between the supply port and the discharge port,
A screen having a plurality of through holes is provided between the discharge port and the defibration chamber,
The defibration chamber is provided with a rotating part inside,
The rotating part includes a rotating shaft and a plurality of plate-shaped fixed blades fixed to the rotating shaft at a predetermined interval in the axial direction,
The fixed blade includes a blade portion protruding in a direction away from the rotating shaft,
One or more protrusions are provided on the inner surface of the defibration chamber,
The dry disaggregation/defibration machine, wherein the protruding portion is provided with a concave portion through which the blade portion passes when the rotating portion rotates.
セルロースナノファイバー製造に供する原料を製造する乾式離解・解繊機であって、
原料を供給する供給口と、
解繊物を排出する排出口と、
該供給口と該排出口との間に位置する解繊室とを備え、
該排出口と解繊室との間には、複数の透孔を有するスクリーンを備え、
該解繊室の内部には回転部を備え、
該回転部は、回転軸と、該回転軸にその軸方向に所定の間隔をおいて固定した複数の回転板と、隣り合う回転板を連結する遊星軸と、該遊星軸に回転自在に配設する遊星刃とよりなり、
該解繊室の内面には一以上の突出部を備え、
該回転軸が回転することにより遠心力で該遊星刃の先端縁が該解繊室の内面方向に向かい、
該遊星刃の先端縁が該解繊室の内面方向に向かった場合に該遊星刃の先端縁と該突出部の先端縁との間には間隙を有し、
結晶化度が60%以上100%未満のセルロース繊維を含有する解繊物を乾燥パルプから製造することを特徴とする乾式離解・解繊機。
A dry defibration/defibration machine for producing raw materials to be used for producing cellulose nanofibers,
A supply port for supplying raw materials,
An outlet for discharging defibrated material,
A defibration chamber located between the supply port and the discharge port,
A screen having a plurality of through holes is provided between the discharge port and the defibration chamber,
A rotating part is provided inside the defibration chamber,
The rotating unit includes a rotating shaft, a plurality of rotating plates fixed to the rotating shaft at predetermined intervals in the axial direction, a planetary shaft connecting adjacent rotating plates, and a rotatably arranged planetary shaft. It consists of a planet blade to be installed,
The inner surface of the defibration chamber is provided with one or more protrusions,
By rotating the rotating shaft, the tip edge of the planetary blade is directed toward the inner surface of the defibration chamber by centrifugal force,
Leading edge of the planetary blade have a gap between the leading edge of the leading edge and the projecting portion of the planetary cutter when toward the inner surface direction of該解繊室,
A dry defibration/defibration machine, which is characterized in that a defibrated material containing cellulose fibers having a crystallinity of 60% or more and less than 100% is produced from dry pulp .
結晶化度が60%以上100%未満のセルロース繊維を含有する解繊物を乾燥パルプから製造する請求項1の乾式離解・解繊機。 The dry defibration/defibration machine according to claim 1, wherein a defibrated material containing cellulose fibers having a crystallinity of 60% or more and less than 100% is produced from dry pulp.
JP2018189925A 2018-10-05 2018-10-05 Dry disaggregation/defibration machine Active JP6744668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018189925A JP6744668B2 (en) 2018-10-05 2018-10-05 Dry disaggregation/defibration machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018189925A JP6744668B2 (en) 2018-10-05 2018-10-05 Dry disaggregation/defibration machine

Publications (2)

Publication Number Publication Date
JP2020059930A JP2020059930A (en) 2020-04-16
JP6744668B2 true JP6744668B2 (en) 2020-08-19

Family

ID=70219402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018189925A Active JP6744668B2 (en) 2018-10-05 2018-10-05 Dry disaggregation/defibration machine

Country Status (1)

Country Link
JP (1) JP6744668B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2694474B2 (en) * 1990-07-26 1997-12-24 トスコ 株式会社 Fibrillation equipment for natural cellulose fibers
JP2007111631A (en) * 2005-10-20 2007-05-10 Nishi Nippon Gijutsu Kaihatsu Kk Cutter structure for vertical type coarse crusher and mounting method of the same
US20100151527A1 (en) * 2007-03-30 2010-06-17 Takashi Endo Fine fibrous cellulosic material and process for producing the same
JP6372065B2 (en) * 2013-10-09 2018-08-15 セイコーエプソン株式会社 Sheet manufacturing apparatus and defibrating unit
JP6821168B2 (en) * 2016-06-28 2021-01-27 トラスト企画株式会社 How to miniaturize plant cellulose
CN106311042A (en) * 2016-10-18 2017-01-11 中山市为客包装制品有限公司 Pulping agitator

Also Published As

Publication number Publication date
JP2020059930A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP6622219B2 (en) Highly efficient production of nanofibrillated cellulose
ES2810048T3 (en) Procedure for the production of nanofibrillar cellulose suspensions
RU2596521C2 (en) Cellulose nanofilaments with high coefficient of drawing and production methods thereof
US8752776B2 (en) Apparatus and method for the processing of cellulose fibres
KR20090048604A (en) Process for producing fibrillated fibers
JP5988843B2 (en) Composite material
JP5317289B2 (en) How to beat the yarn or sliver
WO2014045209A1 (en) Method and device for defibrating fibre-containing material to produce micro-fibrillated cellulose
US20130276998A1 (en) Pretreatment apparatus for removing pith from cornstalk, pulp manufacturing method using cornstalk, and paper manufacturing method using cornstalk pulp
WO2012099091A1 (en) Pulp preparation method
JP6744668B2 (en) Dry disaggregation/defibration machine
US8721841B2 (en) Pulper treating fiber mass
JP2023540959A (en) Microfibrillated cellulose-containing pulp sheet with improved mechanical properties
JP2018059224A (en) Manufacturing apparatus of cellulose nanofiber and method for manufacturing cellulose nanofiber
JP2019157315A (en) Carbon fiber non-woven fabric and composite
FI125948B (en) Papermaking procedure
JP6098370B2 (en) Composite material and manufacturing method thereof
JP6829174B2 (en) Carbon fiber non-woven fabric
JP7373430B2 (en) Manufacturing method of recycled aramid paper
JP2012057268A (en) Method for producing microfibrous cellulose
CN215668727U (en) A beating machine that is used for black card paper production to make beating evenly
JP2022541699A (en) Composition of microfibrillated cellulose with increased tensile properties and method of producing same
US20230092526A1 (en) Mobile dispersion system and methods for the resuspension of partially-dried microfibrillated cellulose
Sahoo et al. PROCESSING AND CHARACTERIZATION OF MICRO AND NANOCELLULOSE FIBRES PRODUCED BY A LAB VALLEY BEATER (LVB) AND A SUPER MASSCOLLOIDER (SMC).
JP2022088181A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190729

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190729

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200728

R150 Certificate of patent or registration of utility model

Ref document number: 6744668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250