JP6744388B2 - Electric motor drive device and electric supercharger - Google Patents

Electric motor drive device and electric supercharger Download PDF

Info

Publication number
JP6744388B2
JP6744388B2 JP2018243341A JP2018243341A JP6744388B2 JP 6744388 B2 JP6744388 B2 JP 6744388B2 JP 2018243341 A JP2018243341 A JP 2018243341A JP 2018243341 A JP2018243341 A JP 2018243341A JP 6744388 B2 JP6744388 B2 JP 6744388B2
Authority
JP
Japan
Prior art keywords
phase
power supply
layer
drive
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018243341A
Other languages
Japanese (ja)
Other versions
JP2020108216A (en
Inventor
洋一 遠藤
洋一 遠藤
久和 加藤
久和 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2018243341A priority Critical patent/JP6744388B2/en
Priority to DE102019130174.2A priority patent/DE102019130174A1/en
Publication of JP2020108216A publication Critical patent/JP2020108216A/en
Application granted granted Critical
Publication of JP6744388B2 publication Critical patent/JP6744388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Description

本発明は、電動機駆動装置及び電動過給機に関する。 The present invention relates to an electric motor drive device and an electric supercharger.

従来、電動機によってコンプレッサを駆動することにより、内燃機関の吸気配管に対して過給する電動過給機が開示されている(例えば、特許文献1)。 BACKGROUND ART Conventionally, an electric supercharger that supercharges an intake pipe of an internal combustion engine by driving a compressor with an electric motor has been disclosed (for example, Patent Document 1).

特開2009−89462号公報JP, 2009-89462, A

上述した特許文献1に記載されるような従来技術においては、インバータ回路によって三相交流電動機を駆動することにより、電動過給機を動作させる。一般に、インバータ回路は誘導性サージが生じやすいことから、インバータ回路に使用されるスイッチング素子は、この誘導性サージに耐えうる定格のものを選定する必要がある。大きな誘導性サージに耐えるためにインバータ回路に使用されるスイッチング素子の定格を向上させると、スイッチング素子の素子サイズが大型になる。このため、従来技術においては、電動過給機の駆動装置を小型化することが困難であるという課題があった。 In the conventional technique as described in Patent Document 1 described above, the electric supercharger is operated by driving the three-phase AC motor by the inverter circuit. In general, since an inductive surge is likely to occur in the inverter circuit, it is necessary to select a switching element used in the inverter circuit having a rating that can withstand the inductive surge. If the rating of the switching element used in the inverter circuit is improved to withstand a large inductive surge, the element size of the switching element becomes large. Therefore, the conventional technology has a problem that it is difficult to reduce the size of the drive device of the electric supercharger.

本発明の一態様は、電動過給機の三相交流電動機に各相の駆動電流を供給する駆動素子を有するインバータ回路と、前記インバータ回路の配線パターンが形成される基板と、前記インバータ回路の駆動電源としての単相直流電流が供給される正負電源端子と、前記インバータ回路から前記三相交流電動機に対して前記駆動電流を供給する三相出力端子と、を備え、各相の前記駆動素子が互いに、前記基板の部品面上の位置のうち、前記部品面の中心を対称軸とした回転対称の位置に配置され、前記インバータ回路を構成する素子のうち、基板実装状態での高さがより高い第1素子と、基板実装状態での高さがより低い第2素子とについて、前記第1素子が前記基板の外周部に、前記第2素子が前記基板の内周部に、それぞれ配置される電動機駆動装置である。 One aspect of the present invention includes an inverter circuit including a drive element that supplies a drive current of each phase to a three-phase AC motor of an electric supercharger, a substrate on which a wiring pattern of the inverter circuit is formed, and the inverter circuit. The positive and negative power supply terminals to which a single-phase DC current is supplied as a drive power supply, and a three-phase output terminal to supply the drive current from the inverter circuit to the three-phase AC motor, the drive element for each phase Are arranged at positions on the component surface of the substrate that are rotationally symmetric with respect to the center of the component surface as a symmetry axis, and among the elements that form the inverter circuit, Regarding the first element having a higher height and the second element having a lower height when mounted on the board, the first element is arranged on an outer peripheral portion of the substrate and the second element is arranged on an inner peripheral portion of the substrate. It is a motor drive device.

また、本発明の一態様は、上述の電動機駆動装置において、前記基板は、第1層、第2層、第3層及び第4層の順にして前記対称軸の軸線方向に積層された少なくとも4層の配線パターン面を有し、前記正負電源端子のうちの正電源端子に接続される正電源パターンが前記第1層及び前記第3層に、前記正負電源端子のうちの負電源端子に接続される負電源パターンが前記第2層及び前記第4層に形成される。 Further, according to an aspect of the present invention, in the above-described electric motor drive device, the substrates are at least laminated in the axial direction of the symmetry axis in the order of a first layer, a second layer, a third layer, and a fourth layer. A positive power supply pattern having four layers of wiring pattern surfaces and connected to a positive power supply terminal of the positive and negative power supply terminals is provided on the first layer and the third layer, and a negative power supply terminal of the positive and negative power supply terminals is provided. A negative power source pattern to be connected is formed on the second layer and the fourth layer.

また、本発明の一態様は、電動過給機の三相交流電動機に各相の駆動電流を供給する駆動素子を有するインバータ回路と、前記インバータ回路の配線パターンが形成される基板と、前記インバータ回路の駆動電源としての単相直流電流が供給される正負電源端子と、前記インバータ回路から前記三相交流電動機に対して前記駆動電流を供給する三相出力端子と、を備え、各相の前記駆動素子が互いに、前記基板の部品面上の位置のうち、前記部品面の中心を対称軸とした回転対称の位置に配置され、前記基板は、第1層、第2層、第3層及び第4層の順にして前記対称軸の軸線方向に積層された少なくとも4層の配線パターン面を有し、前記正負電源端子のうちの正電源端子に接続される正電源パターンが前記第1層及び前記第3層に、前記正負電源端子のうちの負電源端子に接続される負電源パターンが前記第2層及び前記第4層に形成され、前記第1層の前記正電源パターンと、前記第2層の前記負電源パターンと、前記第3層の前記正電源パターンと、前記第4層の前記負電源パターンとが、前記対称軸を中心とした所定半径内の位置において、前記対称軸の軸線方向に積層配置されている電動機駆動装置である。 Further, according to one aspect of the present invention, an inverter circuit having a drive element that supplies a drive current of each phase to a three-phase AC motor of an electric supercharger, a substrate on which a wiring pattern of the inverter circuit is formed, and the inverter A positive and negative power supply terminal to which a single-phase DC current is supplied as a drive power supply for the circuit; and a three-phase output terminal that supplies the drive current from the inverter circuit to the three-phase AC electric motor. The driving elements are arranged at positions on the component surface of the substrate that are rotationally symmetrical with respect to the center of the component surface as a symmetry axis, and the substrate includes the first layer, the second layer, the third layer, and A positive power supply pattern connected to a positive power supply terminal of the positive and negative power supply terminals has a wiring pattern surface of at least four layers stacked in the axial direction of the symmetry axis in the order of a fourth layer, and the first layer is the first layer. And a negative power source pattern connected to a negative power source terminal of the positive and negative power source terminals on the second layer and the fourth layer, the third layer, the positive power source pattern of the first layer, and When the negative power supply pattern of the second layer, the positive power supply pattern of the third layer, and the negative power supply pattern of the fourth layer are within a predetermined radius about the axis of symmetry, the symmetry axis It is an electric motor drive device which is laminated and arranged in the axial direction .

また、本発明の一態様は、電動過給機の三相交流電動機に各相の駆動電流を供給する駆動素子を有するインバータ回路と、前記インバータ回路の配線パターンが形成される基板と、前記インバータ回路の駆動電源としての単相直流電流が供給される正負電源端子と、前記インバータ回路から前記三相交流電動機に対して前記駆動電流を供給する三相出力端子と、を備え、各相の前記駆動素子が互いに、前記基板の部品面上の位置のうち、前記部品面の中心を対称軸とした回転対称の位置に配置され、前記基板は、前記対称軸による回転対称の位置にそれぞれ配置される領域であって、三相の前記駆動電流のうちの、第1相駆動電流を供給する前記駆動素子が配置される第1相領域と、第2相駆動電流を供給する前記駆動素子が配置される第2相領域と、第3相駆動電流を供給する前記駆動素子が配置される第3相領域とを有し、前記正負電源端子のうちの正電源端子が前記第1相領域に配置され、前記正負電源端子のうちの負電源端子が前記第2相領域に配置され、前記駆動素子を制御する制御信号が接続される接続部が前記第3相領域に配置される電動機駆動装置である。 Further, according to one aspect of the present invention, an inverter circuit having a drive element that supplies a drive current of each phase to a three-phase AC motor of an electric supercharger, a substrate on which a wiring pattern of the inverter circuit is formed, and the inverter A positive and negative power supply terminal to which a single-phase DC current is supplied as a drive power supply for the circuit; and a three-phase output terminal that supplies the drive current from the inverter circuit to the three-phase AC electric motor. The drive elements are arranged at positions on the component surface of the substrate that are rotationally symmetrical with respect to the center of the component surface, and the substrates are respectively disposed at positions that are rotationally symmetrical about the symmetrical axis. Of the three-phase drive currents, the first-phase region in which the drive element that supplies the first-phase drive current is arranged, and the drive element that supplies the second-phase drive current are arranged in the region. A second phase region and a third phase region in which the drive element that supplies a third phase drive current is arranged, and a positive power supply terminal of the positive and negative power supply terminals is arranged in the first phase region. And a negative power supply terminal of the positive and negative power supply terminals is arranged in the second phase region, and a connecting portion to which a control signal for controlling the drive element is connected is arranged in the third phase region. is there.

また、本発明の一態様は、上述の電動機駆動装置と、前記電動機駆動装置によって駆動される前記三相交流電動機とを備える電動過給機である。 Further, one aspect of the present invention is an electric supercharger including the above-described electric motor drive device and the three-phase AC electric motor driven by the electric motor drive device.

本発明によれば、電動過給機の制御装置を小型化することが可能な電動機駆動装置及び電動過給機を提供することができる。 According to the present invention, it is possible to provide an electric motor drive device and an electric supercharger capable of downsizing the control device of the electric supercharger.

本実施形態に係る電動過給システムの機能構成の一例を示す図である。It is a figure showing an example of functional composition of an electric supercharging system concerning this embodiment. 本実施形態の電動過給機の構造の一例を示す図である。It is a figure which shows an example of the structure of the electric supercharger of this embodiment. 本実施形態の駆動回路の構成の一例を示す図である。It is a figure which shows an example of a structure of the drive circuit of this embodiment. 本実施形態の駆動回路の詳細な構成の一例を示す図である。It is a figure which shows an example of a detailed structure of the drive circuit of this embodiment. 本実施形態の基板の部品面上の素子配置の一例を示す図である。It is a figure which shows an example of element arrangement|positioning on the component surface of the board|substrate of this embodiment. 本実施形態の基板の配線パターンの一例を示す図である。It is a figure which shows an example of the wiring pattern of the board|substrate of this embodiment. 本実施形態の基板の積層状態の一例を示す図である。It is a figure which shows an example of the laminated state of the board|substrate of this embodiment.

[実施形態]
以下、本発明に係る一実施形態について図面を参照して説明する。
図1は、本実施形態に係る電動過給システム1の機能構成の一例を示す図である。
[Embodiment]
An embodiment according to the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing an example of a functional configuration of an electric supercharging system 1 according to the present embodiment.

[電動過給システム1の構成]
電動過給システム1は、制御装置10と、電動過給機20とを備える。電動過給機20は、例えば、エンジンなどの内燃機関が発生する動力によって走行する車両に備えられる。この一例において、電動過給機20は、内燃機関の吸気配管(いずれも不図示。)に対して空気を過給する。例えば、この車両は、内燃機関からの排気によって吸気配管に過給する、いわゆるターボチャージャを備えている。一般的に、ターボチャージャには、運転者がアクセルペダルを踏みこんだ後、ターボチャージャの圧縮機が十分な過給圧を発生させるまでの遅延時間(いわゆる、ターボラグ)が生じる。本実施形態の電動過給機20は、内燃機関の吸気配管においてターボチャージャに並列して配置され、運転者がアクセルペダルを踏みこんだ後、ターボチャージャの圧縮機が十分な過給圧を発生させるまでの期間において過給動作する。電動過給機20は、ターボラグによる内燃機関の出力不足の発生を低減する。
[Configuration of electric supercharging system 1]
The electric supercharging system 1 includes a control device 10 and an electric supercharger 20. The electric supercharger 20 is provided, for example, in a vehicle that is driven by power generated by an internal combustion engine such as an engine. In this example, the electric supercharger 20 supercharges air to an intake pipe (not shown) of the internal combustion engine. For example, this vehicle is provided with a so-called turbocharger that supercharges the intake pipe with the exhaust gas from the internal combustion engine. Generally, a turbocharger has a delay time (so-called turbo lag) after the driver depresses the accelerator pedal until the compressor of the turbocharger generates sufficient supercharging pressure. The electric supercharger 20 of the present embodiment is arranged in parallel with the turbocharger in the intake pipe of the internal combustion engine, and the compressor of the turbocharger generates sufficient supercharging pressure after the driver depresses the accelerator pedal. Will be supercharged during the period up to. The electric supercharger 20 reduces occurrence of insufficient output of the internal combustion engine due to turbo lag.

なお、本実施形態の一例においては、電動過給機20は、ターボチャージャの動作を補うものとして、車両に備えられている場合について説明するが、これに限られない。例えば、電動過給機20は、ターボチャージャが備えられていない車両や、車両以外の内燃機関において利用されるものであってもよい。 Note that, in the example of the present embodiment, a case where the electric supercharger 20 is provided in the vehicle to supplement the operation of the turbocharger will be described, but the present invention is not limited to this. For example, the electric supercharger 20 may be used in a vehicle without a turbocharger or in an internal combustion engine other than the vehicle.

図2は、本実施形態の電動過給機20の構造の一例を示す図である。電動過給機20は、例えば、電動機(モータ)などの駆動部210と、この駆動部210の回転軸RTに接続されるインペラなどの回転部220とを備える。また、同図に示すように、電動過給機20は、制御装置10をその内部に備えていてもよい。 FIG. 2 is a diagram showing an example of the structure of the electric supercharger 20 of the present embodiment. The electric supercharger 20 includes, for example, a drive unit 210 such as an electric motor (motor) and a rotating unit 220 such as an impeller connected to a rotation shaft RT of the drive unit 210. Further, as shown in the figure, the electric supercharger 20 may include the control device 10 therein.

駆動部210は、三相交流電動機を備え、制御装置10の制御に基づいて、回転軸RTを所望の回転数によって回転させる。回転部220は、回転軸RTの回転に伴って回転し、吸入した空気を圧縮し、圧縮した空気を内燃機関の吸気配管に吐出する。 The drive unit 210 includes a three-phase AC motor, and rotates the rotating shaft RT at a desired rotation speed under the control of the control device 10. The rotating part 220 rotates with the rotation of the rotation axis RT, compresses the sucked air, and discharges the compressed air to the intake pipe of the internal combustion engine.

図1に戻り、制御装置10についての説明を続ける。制御装置10は、制御部100と、駆動回路160とを備えている。
制御部100は、CPUなどの演算機能を備えており、駆動指令取得部110と、制御モード判定部120と、駆動信号出力部130とを、その機能部として備える。
駆動指令取得部110は、電動過給機20の駆動部210に対する駆動指令CMを取得する。駆動指令CMは、上位制御装置30から出力される。上位制御装置30とは、例えば、内燃機関を制御する装置(例えば、車載ECU;Electronic Control Unit)である。上位制御装置30は、車両の運転者によるアクセル操作を検出し、検出したアクセル操作に応じた駆動指令CMを出力する。この駆動指令CMには、電動過給機20の過給動作の開始指令や、電動過給機20の過給動作の停止指令が含まれている。
Returning to FIG. 1, the description of the control device 10 will be continued. The control device 10 includes a control unit 100 and a drive circuit 160.
The control unit 100 has an arithmetic function such as a CPU, and includes a drive command acquisition unit 110, a control mode determination unit 120, and a drive signal output unit 130 as its functional units.
The drive command acquisition unit 110 acquires a drive command CM for the drive unit 210 of the electric supercharger 20. The drive command CM is output from the host controller 30. The host control device 30 is, for example, a device that controls an internal combustion engine (for example, an in-vehicle ECU; Electronic Control Unit). The host controller 30 detects an accelerator operation by the driver of the vehicle and outputs a drive command CM according to the detected accelerator operation. The drive command CM includes a command to start the supercharging operation of the electric supercharger 20 and a command to stop the supercharging operation of the electric supercharger 20.

制御モード判定部120は、駆動指令取得部110が取得する駆動指令CMと、駆動部210の所定の停止条件とに基づいて、電動過給機20の制御モードMDを判定する。この制御モードMDには、一例として、駆動部210を所定の駆動力によって駆動する駆動モードMD1と、駆動部210を駆動状態から停止させる減速モードMD2などがある。 The control mode determination unit 120 determines the control mode MD of the electric supercharger 20 based on the drive command CM acquired by the drive command acquisition unit 110 and a predetermined stop condition of the drive unit 210. The control mode MD includes, for example, a drive mode MD1 that drives the drive unit 210 with a predetermined drive force, and a deceleration mode MD2 that stops the drive unit 210 from the drive state.

駆動信号出力部130は、駆動回路160に対して、制御モード判定部120の判定結果に応じてスイッチ素子Trのオン状態及びオフ状態を制御する駆動信号DSを出力する。 The drive signal output unit 130 outputs to the drive circuit 160 a drive signal DS that controls the on state and the off state of the switch element Tr according to the determination result of the control mode determination unit 120.

駆動回路160とは、駆動部210の三相交流電動機に対して駆動電流DCを供給するインバータ回路である。駆動回路160は、電動過給機20の三相交流電動機に各相の駆動電流DCを供給するスイッチ素子Tr(駆動素子)を有する。駆動回路160は、制御部100が実装される基板とは別基板(基板50)に実装される。基板50には、駆動回路160の配線パターンが形成される。この駆動回路160の一例について、図3を参照して説明する。 The drive circuit 160 is an inverter circuit that supplies a drive current DC to the three-phase AC motor of the drive unit 210. The drive circuit 160 includes a switch element Tr (drive element) that supplies the drive current DC of each phase to the three-phase AC motor of the electric supercharger 20. The drive circuit 160 is mounted on a board (board 50) different from the board on which the controller 100 is mounted. The wiring pattern of the drive circuit 160 is formed on the substrate 50. An example of the drive circuit 160 will be described with reference to FIG.

図3は、本実施形態の駆動回路160の構成の一例を示す図である。この一例において、駆動部210は、三相交流電動機を備えており、各相(U相、V相及びW相)のコイル(不図示)に供給される三相駆動電流によって動作する。駆動回路160は、三相インバータ回路であり、電源部40から供給される直流電力を、三相駆動電流に変換する。
具体的には、駆動回路160は、電源部40から駆動電源としての単相直流電流が供給される正電源端子TPW1及び負電源端子TPW2を備えている。また、駆動回路160は、コンデンサCPと、各相の上下スイッチ素子Tr(U相スイッチ素子TrU1、U相スイッチ素子TrU2、V相スイッチ素子TrV1、V相スイッチ素子TrV2、W相スイッチ素子TrW1及びW相スイッチ素子TrW2)とを備えている。コンデンサCP及び各相の上下スイッチ素子Trは、それぞれ正電源端子TPW1と負電源端子TPW2との間に接続される。コンデンサCPは、いわゆるバイパスコンデンサとして機能し、三相出力端子Tから出力される電流波形のリプルを低減する。各相の上下スイッチ素子Trの中点は、三相出力端子T(U相出力端子TU、V相出力端子TV及びW相出力端子TW)に接続される。三相出力端子Tは、駆動部210に接続され、駆動部210に対して三相駆動電流を出力する。この三相駆動電流とは、駆動回路160が出力する駆動電流DCの一例である。
FIG. 3 is a diagram showing an example of the configuration of the drive circuit 160 of this embodiment. In this example, the drive unit 210 includes a three-phase AC motor, and operates by a three-phase drive current supplied to coils (not shown) of each phase (U phase, V phase, and W phase). The drive circuit 160 is a three-phase inverter circuit, and converts the DC power supplied from the power supply unit 40 into a three-phase drive current.
Specifically, the drive circuit 160 includes a positive power supply terminal TPW1 and a negative power supply terminal TPW2 to which a single-phase DC current as a drive power supply is supplied from the power supply unit 40. Further, the drive circuit 160 includes the capacitor CP and the upper and lower switch elements Tr of each phase (U-phase switch element TrU1, U-phase switch element TrU2, V-phase switch element TrV1, V-phase switch element TrV2, W-phase switch element TrW1 and W). Phase switch element TrW2). The capacitor CP and the upper and lower switch elements Tr of each phase are respectively connected between the positive power supply terminal TPW1 and the negative power supply terminal TPW2. The capacitor CP functions as a so-called bypass capacitor and reduces ripple of the current waveform output from the three-phase output terminal T. The middle point of the upper and lower switch elements Tr of each phase is connected to the three-phase output terminal T (U-phase output terminal TU, V-phase output terminal TV and W-phase output terminal TW). The three-phase output terminal T is connected to the drive unit 210 and outputs a three-phase drive current to the drive unit 210. The three-phase drive current is an example of the drive current DC output by the drive circuit 160.

スイッチ素子Trは、例えば、MOSトランジスタなどの半導体スイッチ素子であり、ベース端子(又はゲート端子)に供給される駆動信号DSに基づいて動作する。
なお、スイッチ素子Trには、スイッチ素子Trの内部の半導体接合に起因して、コレクタ端子及びエミッタ端子(又は、ソース端子及びドレイン端子)間に寄生ダイオード(又はボディダイオード)が生じる。同図には、この寄生ダイオードを還流ダイオードD(還流ダイオードDU1〜還流ダイオードDW2)として示す。
The switch element Tr is, for example, a semiconductor switch element such as a MOS transistor, and operates based on the drive signal DS supplied to the base terminal (or gate terminal).
In the switch element Tr, a parasitic diode (or body diode) occurs between the collector terminal and the emitter terminal (or the source terminal and the drain terminal) due to the semiconductor junction inside the switch element Tr. In the figure, this parasitic diode is shown as a free wheeling diode D (free wheeling diode DU1 to free wheeling diode DW2).

図1に戻り、駆動回路160は、制御部100の駆動信号出力部130から出力される駆動信号DSに基づいて、電源部40から供給される直流電力PWを電力変換し、駆動電流DCとして電動過給機20の駆動部210に対して出力する。駆動回路160は、電動機駆動装置の一例である。
なお、本実施形態において、直流電力PWの電圧は、一例として12[V]である。
Returning to FIG. 1, the drive circuit 160 performs power conversion of the DC power PW supplied from the power supply unit 40 based on the drive signal DS output from the drive signal output unit 130 of the control unit 100, and drives it as a drive current DC. Output to the drive unit 210 of the supercharger 20. The drive circuit 160 is an example of an electric motor drive device.
In the present embodiment, the voltage of the DC power PW is 12 [V] as an example.

[駆動回路160の構成]
次に、図4を参照して、本実施形態の駆動回路160の詳細な構成について説明する。
図4は、本実施形態の駆動回路160の詳細な構成の一例を示す図である。同図には、駆動回路160が備える各相駆動回路のうち、U相駆動回路160Uを例示する。なお、駆動回路160が備えるV相駆動回路、W相駆動回路については、U相駆動回路160Uと同様の構成であるため、その説明を省略する。
[Configuration of drive circuit 160]
Next, with reference to FIG. 4, a detailed configuration of the drive circuit 160 of the present embodiment will be described.
FIG. 4 is a diagram showing an example of a detailed configuration of the drive circuit 160 of this embodiment. In the figure, a U-phase drive circuit 160U is illustrated among the phase drive circuits included in the drive circuit 160. Note that the V-phase drive circuit and the W-phase drive circuit included in the drive circuit 160 have the same configurations as the U-phase drive circuit 160U, and therefore description thereof will be omitted.

U相駆動回路160Uは、上述したU相スイッチ素子TrU1、U相スイッチ素子TrU2をそれぞれ2素子ずつ備える。換言すれば、U相駆動回路160Uは、U相スイッチ素子TrU1Aと、U相スイッチ素子TrU1Bとを、U相スイッチ素子TrU1として備える。また、U相駆動回路160Uは、U相スイッチ素子TrU2Aと、U相スイッチ素子TrU2Bとを、U相スイッチ素子TrU2として備える。 The U-phase drive circuit 160U includes two U-phase switch elements TrU1 and two U-phase switch elements TrU2 described above. In other words, the U-phase drive circuit 160U includes the U-phase switch element TrU1A and the U-phase switch element TrU1B as the U-phase switch element TrU1. Further, the U-phase drive circuit 160U includes a U-phase switch element TrU2A and a U-phase switch element TrU2B as the U-phase switch element TrU2.

また、U相駆動回路160Uは、電解コンデンサCEと、セラミックコンデンサCCとを、上述したコンデンサCP(容量素子)として備える。つまり、U相駆動回路160Uは、2種類のバイパスコンデンサを備える。ここで、セラミックコンデンサCCは、電解コンデンサCEに比べて高周波特性が優れ単位体積当たりの静電容量が小さい。
なお、電解コンデンサCEは、コンデンサCPの種類の中で、高周波特性が比較的劣り、単位体積当たりの静電容量が大きい種類の一例である。また、セラミックコンデンサCCは、コンデンサCPの種類の中で、高周波特性が比較的優れ、単位体積当たりの静電容量が小さい種類の一例である。
Further, the U-phase drive circuit 160U includes the electrolytic capacitor CE and the ceramic capacitor CC as the above-mentioned capacitor CP (capacitance element). That is, the U-phase drive circuit 160U includes two types of bypass capacitors. Here, the ceramic capacitor CC has excellent high-frequency characteristics and a smaller capacitance per unit volume than the electrolytic capacitor CE.
It should be noted that the electrolytic capacitor CE is an example of a type in which the high frequency characteristics are relatively poor and the capacitance per unit volume is large among the types of the capacitors CP. Further, the ceramic capacitor CC is an example of a type having a relatively high high-frequency characteristic and a small capacitance per unit volume among the types of the capacitors CP.

[コンデンサCPの配置]
コンデンサCPは、電解コンデンサCEと、セラミックコンデンサCCとのうち、セラミックコンデンサCCは、スイッチ素子Trのより近くに配置される。すなわち、セラミックコンデンサCCとスイッチ素子Trとの間のパターン距離LCが、電解コンデンサCEとスイッチ素子Trとの間のパターン距離LEよりも短くされて、電解コンデンサCEとセラミックコンデンサCCとが配置される。つまり、パターン距離LCは、パターン距離LEよりも短い。
駆動回路160は、スイッチ素子Trから生じるリプルのうち、高周波のリプルをセラミックコンデンサCCによって除去し、低周波のリプルを電解コンデンサCEによって除去する。
[Arrangement of Capacitor CP]
Of the electrolytic capacitor CE and the ceramic capacitor CC, the capacitor CP is arranged such that the ceramic capacitor CC is arranged closer to the switch element Tr. That is, the pattern distance LC between the ceramic capacitor CC and the switch element Tr is made shorter than the pattern distance LE between the electrolytic capacitor CE and the switch element Tr, and the electrolytic capacitor CE and the ceramic capacitor CC are arranged. .. That is, the pattern distance LC is shorter than the pattern distance LE.
The drive circuit 160 removes high frequency ripples from the ripples generated from the switch element Tr by the ceramic capacitor CC and removes low frequency ripples by the electrolytic capacitor CE.

[コンデンサCPの種類ごとの素子数]
なお、一般にセラミックコンデンサCCは、電解コンデンサCEに比べて単位面積当たりの抵抗値(等価直列抵抗;Equivalent series resistance(ESR))及び単位面積当たりの静電容量がいずれも小さいという性質を有する。このため、コンデンサCPをセラミックコンデンサCCのみで構成した場合、等価直列抵抗が小さくなるものの、静電容量を所定値にした場合に実装面積が大きくなる。一方、コンデンサCPを電解コンデンサCEのみで構成した場合、等価直列抵抗が大きくなり、リプルを低減させにくい。
本実施形態の制御装置10は、一相あたりのセラミックコンデンサCCの素子数と、電解コンデンサCEの素子数との比を、一例として2:1程度にすることにより、実装面積の低減とリプルの低減とを両立させる。例えば、本実施形態の制御装置10は、一相あたり4素子のセラミックコンデンサCC(セラミックコンデンサCC1〜CC4)と、一層あたり2素子の電解コンデンサCE(電解コンデンサCE1〜CE2)とを備える。
[Number of elements for each type of capacitor CP]
Generally, the ceramic capacitor CC has a property that the resistance value per unit area (equivalent series resistance; ESR) and the electrostatic capacitance per unit area are smaller than those of the electrolytic capacitor CE. Therefore, when the capacitor CP is composed of only the ceramic capacitor CC, the equivalent series resistance is reduced, but the mounting area is increased when the capacitance is set to a predetermined value. On the other hand, when the capacitor CP is composed of only the electrolytic capacitor CE, the equivalent series resistance increases and it is difficult to reduce ripple.
The controller 10 of the present embodiment reduces the mounting area and reduces the ripple by setting the ratio of the number of elements of the ceramic capacitor CC and the number of elements of the electrolytic capacitor CE per phase to about 2:1. Achieve both reduction. For example, the control device 10 of the present embodiment includes a ceramic capacitor CC having four elements per phase (ceramic capacitors CC1 to CC4) and an electrolytic capacitor CE having two elements per layer (electrolytic capacitors CE1 to CE2).

[各相素子の回転対称配置]
次に、図5を参照して、本実施形態の駆動回路160が実装される基板50の部品面上の素子配置について説明する。
図5は、本実施形態の基板50の部品面上の素子配置の一例を示す図である。ここで、上述した電動過給機20の三相電動機(駆動部210)は、回転軸RTを回転中心にした(すなわち円形の)底面形状を有し、回転軸RTの軸線方向に延びる筒状の外形を有している。本実施形態の基板50は、この三相電動機の外形に応じた形状(すなわち円形)の外形を有する。このように基板50の外形が円形であるため、電動過給機20は、駆動部210と、制御装置10とを一体化した場合の外形寸法が小型化される。
一方、基板50を円形にした場合において、駆動回路160を構成する各相の素子をどのように配置すべきかが問題となる。以下、本実施形態の駆動回路160における素子配置の一例について説明する。
[Rotation symmetrical arrangement of each phase element]
Next, with reference to FIG. 5, an element arrangement on the component surface of the substrate 50 on which the drive circuit 160 of the present embodiment is mounted will be described.
FIG. 5 is a diagram showing an example of element arrangement on the component surface of the substrate 50 of the present embodiment. Here, the three-phase electric motor (drive unit 210) of the electric supercharger 20 described above has a bottom surface shape with the rotation axis RT as the center of rotation (that is, a circular shape), and has a tubular shape extending in the axial direction of the rotation axis RT. It has the outer shape of. The board 50 of the present embodiment has an outer shape of a shape (that is, a circle) corresponding to the outer shape of the three-phase electric motor. Since the board 50 has a circular outer shape as described above, the electric supercharger 20 has a smaller outer dimension when the drive unit 210 and the control device 10 are integrated.
On the other hand, when the substrate 50 is formed in a circular shape, how to arrange the elements of each phase forming the drive circuit 160 becomes a problem. Hereinafter, an example of element arrangement in the drive circuit 160 of the present embodiment will be described.

基板50には、上述した電源端子TPWと、三相出力端子Tと、インバータ回路の各相の素子とが配置される。
基板50において、これらの端子及び素子は、基板50の中央部を中心とした中心角120度の扇形の領域に分割配置される。
ここで、U相出力端子TUが配置される位置と、基板50の中心とを結ぶ線分をU相配置軸AxUとする。また、V相出力端子TVが配置される位置と、基板50の中心とを結ぶ線分をV相配置軸AxVとし、W相出力端子TWが配置される位置と、基板50の中心とを結ぶ線分をW相配置軸AxWとする。これら、U相配置軸AxUとV相配置軸AxV、V相配置軸AxVとW相配置軸AxW、及びW相配置軸AxWとU相配置軸AxUは、互いに120度を成す。
以下の説明において、U相配置軸AxUとV相配置軸AxVとの間の基板50上の領域をU相領域ARUと称する。また、V相配置軸AxVとW相配置軸AxWとの間の基板50上の領域をV相領域ARVと称し、W相配置軸AxWとU相配置軸AxUとの間の基板50上の領域をW相領域ARWと称する。
The power supply terminal TPW, the three-phase output terminal T, and the elements of each phase of the inverter circuit are arranged on the substrate 50.
On the substrate 50, these terminals and elements are divided and arranged in a fan-shaped region having a central angle of 120 degrees centered on the central portion of the substrate 50.
Here, a line segment connecting the position where the U-phase output terminal TU is arranged and the center of the substrate 50 is defined as a U-phase arrangement axis AxU. A line segment connecting the position where the V-phase output terminal TV is arranged and the center of the substrate 50 is defined as the V-phase arrangement axis AxV, and the position where the W-phase output terminal TW is arranged and the center of the substrate 50 are connected. The line segment is the W-phase arrangement axis AxW. These U-phase arrangement axis AxU and V-phase arrangement axis AxV, V-phase arrangement axis AxV and W-phase arrangement axis AxW, and W-phase arrangement axis AxW and U-phase arrangement axis AxU form 120 degrees with each other.
In the following description, an area on the substrate 50 between the U-phase arrangement axis AxU and the V-phase arrangement axis AxV is referred to as a U-phase area ARU. An area on the substrate 50 between the V-phase arrangement axis AxV and the W-phase arrangement axis AxW is referred to as a V-phase area ARV, and an area on the substrate 50 between the W-phase arrangement axis AxW and the U-phase arrangement axis AxU. Is referred to as a W-phase region ARW.

[スイッチ素子Tr・コンデンサCPの配置]
U相領域ARUには、インバータ回路を構成する各素子のうち、U相の素子が配置される。すなわち、U相領域ARUには、U相スイッチ素子TrUと、U相セラミックコンデンサCCUと、U相電解コンデンサCEUとが配置される。
V相領域ARV及びW相領域ARWについても、U相領域ARUと同様に、インバータ回路を構成する各素子のうち、各相の素子が配置される。すなわち、V相領域ARVには、V相スイッチ素子TrVと、V相セラミックコンデンサCCVと、V相電解コンデンサCEVとが配置される。W相領域ARWには、W相スイッチ素子TrWと、W相セラミックコンデンサCCWと、W相電解コンデンサCEWとが配置される。
[Arrangement of switch element Tr and capacitor CP]
In the U-phase region ARU, U-phase elements among the elements forming the inverter circuit are arranged. That is, the U-phase switching element TrU, the U-phase ceramic capacitor CCU, and the U-phase electrolytic capacitor CEU are arranged in the U-phase region ARU.
Similarly to the U-phase region ARU, the V-phase region ALV and the W-phase region ARW are also provided with the elements of the respective phases among the elements constituting the inverter circuit. That is, the V-phase switch element TrV, the V-phase ceramic capacitor CCV, and the V-phase electrolytic capacitor CEV are arranged in the V-phase region ARV. A W-phase switch element TrW, a W-phase ceramic capacitor CCW, and a W-phase electrolytic capacitor CEW are arranged in the W-phase region ARW.

ここで、各相のスイッチ素子Trは、互いに、基板50の部品面上の位置のうち、部品面の中心を回転対称軸AxRSとした回転対称の位置に配置される。
具体的には、V相スイッチ素子TrVは、U相スイッチ素子TrUが配置される基板50の部品面上の位置を、基板50の中心を回転対称軸AxRSにして120度回転させた位置に配置される。また、W相スイッチ素子TrWは、U相スイッチ素子TrUが配置される基板50の部品面上の位置を、基板50の中心を回転対称軸AxRSにして240度回転させた位置に配置される。
Here, the switching elements Tr of the respective phases are arranged at positions of rotational symmetry with respect to each other, of the positions on the component surface of the substrate 50, with the center of the component surface being the rotational symmetry axis AxRS.
Specifically, the V-phase switch element TrV is arranged at a position where the position on the component surface of the substrate 50 where the U-phase switch element TrU is arranged is rotated by 120 degrees with the center of the substrate 50 as the rotational symmetry axis AxRS. To be done. Further, the W-phase switch element TrW is arranged at a position where the position on the component surface of the substrate 50 on which the U-phase switch element TrU is arranged is rotated by 240 degrees with the center of the substrate 50 as the rotational symmetry axis AxRS.

また、各相のコンデンサCPは、互いに、基板50の部品面上の位置のうち、部品面の中心を回転対称軸AxRSとした回転対称の位置に配置される。
具体的には、V相セラミックコンデンサCCVは、U相セラミックコンデンサCCUが配置される基板50の部品面上の位置を、基板50の中心を回転対称軸AxRSにして120度回転させた位置に配置される。V相電解コンデンサCEVは、U相電解コンデンサCEUが配置される基板50の部品面上の位置を、基板50の中心を回転対称軸AxRSにして240度回転させた位置に配置される。
同様に、W相セラミックコンデンサCCWは、U相セラミックコンデンサCCUが配置される基板50の部品面上の位置を、基板50の中心を回転対称軸AxRSにして120度回転させた位置に配置される。W相電解コンデンサCEWは、U相電解コンデンサCEUが配置される基板50の部品面上の位置を、基板50の中心を回転対称軸AxRSにして240度回転させた位置に配置される。
Further, the capacitors CP of the respective phases are arranged at positions on the component surface of the substrate 50, which are rotationally symmetrical with respect to the rotational symmetrical axis AxRS with the center of the component surface.
Specifically, the V-phase ceramic capacitor CCV is arranged at a position where the position of the U-phase ceramic capacitor CCU on the component surface of the substrate 50 is rotated by 120 degrees with the center of the substrate 50 as the rotational symmetry axis AxRS. To be done. The V-phase electrolytic capacitor CEV is arranged at a position where the position on the component surface of the substrate 50 where the U-phase electrolytic capacitor CEU is arranged is rotated by 240 degrees with the center of the substrate 50 as the rotational symmetry axis AxRS.
Similarly, the W-phase ceramic capacitor CCW is arranged at a position where the position of the U-phase ceramic capacitor CCU on the component surface of the substrate 50 is rotated by 120 degrees with the center of the substrate 50 as the rotational symmetry axis AxRS. .. The W-phase electrolytic capacitor CEW is arranged at a position where the position on the component surface of the substrate 50 where the U-phase electrolytic capacitor CEU is arranged is rotated by 240 degrees with the center of the substrate 50 as the rotational symmetry axis AxRS.

なお、本実施形態のセラミックコンデンサCCは、電解コンデンサCEに比べて基板50に実装した状態における部品の高さ(すなわち、実装高さ)が低い。同図に示すように、電解コンデンサCEは基板50の外周部に、セラミックコンデンサCCは基板50の内周部に、それぞれ配置される。すなわち、本実施形態の基板50には、実装高さが比較的高い素子(例えば電解コンデンサCE)が外周部に、実装高さが比較的低い素子(例えばセラミックコンデンサCC)が内周部に、それぞれ配置される。
上述したように、制御装置10と電動過給機20とが一体化されて構成される場合において、基板50の内周部は、駆動部210の中心部(すなわち、回転軸RTが配置される部分)に対応する位置に配置される。ここで、駆動部210の中心部には、回転軸RTや、回転軸RTの回転角を検出するホール素子基板(不図示)などの構造物が配置されるため、部品の空間配置上の制約が比較的大きい。本実施形態の基板50は、基板の内周部の実装高さを低く抑えているため、駆動部210の中心部の構造物(例えば、回転軸RTやホール素子基板)との配置上の干渉を低減することができる。このため、本実施形態の制御装置10によれば、基板50と駆動部210とをより接近させて配置することができ、制御装置10と電動過給機20とが一体化されて構成される場合において、装置を小型化することができる。
The ceramic capacitor CC of the present embodiment has a lower component height (that is, mounting height) when mounted on the substrate 50 than the electrolytic capacitor CE. As shown in the figure, the electrolytic capacitor CE is arranged on the outer peripheral portion of the substrate 50, and the ceramic capacitor CC is arranged on the inner peripheral portion of the substrate 50. That is, on the substrate 50 of the present embodiment, an element having a relatively high mounting height (for example, electrolytic capacitor CE) is provided on the outer peripheral portion, and an element having a relatively low mounting height (for example, ceramic capacitor CC) is provided on the inner peripheral portion, Each is arranged.
As described above, in the case where the control device 10 and the electric supercharger 20 are integrally configured, the inner peripheral portion of the substrate 50 has the central portion of the drive unit 210 (that is, the rotation axis RT is arranged). Part) is arranged at a position corresponding to. Here, since the rotating shaft RT and a structure such as a Hall element substrate (not shown) that detects the rotation angle of the rotating shaft RT are arranged in the central portion of the driving unit 210, there are restrictions on the spatial arrangement of components. Is relatively large. Since the board 50 of the present embodiment suppresses the mounting height of the inner peripheral portion of the board to a low level, it interferes with the structure of the central portion of the drive unit 210 (for example, the rotation axis RT or the Hall element board). Can be reduced. Therefore, according to the control device 10 of the present embodiment, the board 50 and the drive unit 210 can be arranged closer to each other, and the control device 10 and the electric supercharger 20 are integrated. In some cases, the device can be downsized.

[電源端子TPW・コネクタCNの配置]
本実施形態において一例として、電源端子TPWのうち正電源端子TPW1は、U相領域ARUに配置される。負電源端子TPW2は、V相領域ARVに配置される。
[Arrangement of power supply terminal TPW and connector CN]
In the present embodiment, as an example, the positive power supply terminal TPW1 of the power supply terminals TPW is arranged in the U-phase region ARU. Negative power supply terminal TPW2 is arranged in V-phase region ARV.

ここで、電源端子TPWは、直流電源を基板50に供給する端子であり、正電源端子TPW1及び負電源端子TPW2の2種類の端子がある。一方、基板50の部品面において配置可能な領域には、U相領域ARU、V相領域ARV及びW相領域ARWの3領域がある。上述したように、基板50の中心を回転対称軸AxRSにした回転対称の位置に部品を配置することとして、例えば正電源端子TPW1をU相領域ARUに、負電源端子TPW2をV相領域ARVにそれぞれ配置した場合、W相領域ARWには、これら端子の実装面積に応じた未実装領域が生じることになる。 Here, the power supply terminal TPW is a terminal that supplies a DC power supply to the substrate 50, and there are two types of terminals, a positive power supply terminal TPW1 and a negative power supply terminal TPW2. On the other hand, the regions that can be arranged on the component surface of the substrate 50 include three regions: a U-phase region ARU, a V-phase region ARW, and a W-phase region ARW. As described above, by arranging components at rotationally symmetric positions with the center of the substrate 50 as the rotational symmetry axis AxRS, for example, the positive power supply terminal TPW1 is in the U-phase region ARU and the negative power supply terminal TPW2 is in the V-phase region ARV. When each is arranged, an unmounted region corresponding to the mounting area of these terminals is generated in the W-phase region ARW.

本実施形態において、このW相領域ARWには、コネクタCNが配置される。このコネクタCNとは、一例として、制御部100から出力される駆動信号DSの供給配線が接続される接続部である。 In the present embodiment, the connector CN is arranged in this W-phase region ARW. The connector CN is, for example, a connection unit to which the supply wiring of the drive signal DS output from the control unit 100 is connected.

すなわち、基板50は、回転対称軸AxRSによる回転対称の位置にそれぞれ配置される領域であって、三相の駆動電流DCのうちの、U相駆動電流を供給するスイッチ素子Trが配置されるU相領域ARU(第1相領域)と、V相駆動電流を供給するスイッチ素子Trが配置されるV相領域ARV(第2相領域)と、W相駆動電流を供給するスイッチ素子Trが配置されるW相領域ARW(第3相領域)とを有する。
また、電源端子TPWのうちの正電源端子TPW1がU相領域ARUに配置され、電源端子TPWのうちの負電源端子TPW2がV相領域ARVに配置され、スイッチ素子Trを制御する制御信号(例えば、駆動信号DS)が接続されるコネクタCNがW相領域ARWに配置される。
That is, the substrate 50 is a region that is arranged at each position of rotational symmetry with respect to the rotational symmetry axis AxRS, and the switching element Tr that supplies the U-phase driving current of the three-phase driving current DC is arranged U. A phase region ARU (first phase region), a V phase region ARV (second phase region) in which a switch element Tr that supplies a V phase drive current is arranged, and a switch element Tr that supplies a W phase drive current are arranged. And a W-phase region ARW (third-phase region).
Further, the positive power supply terminal TPW1 of the power supply terminals TPW is arranged in the U-phase area ARU, the negative power supply terminal TPW2 of the power supply terminals TPW is arranged in the V-phase area ARV, and a control signal for controlling the switch element Tr (for example, , The drive signal DS) is connected to the connector CN in the W-phase region ARW.

[電源配線パターンの配置]
次に、図6を参照して、本実施形態の基板50の配線パターンの一例について説明する。
図6は、本実施形態の基板50の配線パターンの一例を示す図である。基板50は、2面以上の複数の配線パターン面を有する。一例として、本実施形態の50は、第1層LY1〜第4層LY4の4層の配線パターン面を有する4層基板である。同図には、基板50に形成される配線パターンのうち、ある配線層(例えば、第1層LY1)の配線パターンの一例を示す。
[Power wiring pattern layout]
Next, with reference to FIG. 6, an example of the wiring pattern of the substrate 50 of the present embodiment will be described.
FIG. 6 is a diagram showing an example of a wiring pattern of the substrate 50 of this embodiment. The substrate 50 has two or more wiring pattern surfaces. As an example, 50 of the present embodiment is a four-layer substrate having four-layer wiring pattern surfaces of the first layer LY1 to the fourth layer LY4. In the figure, an example of the wiring pattern of a certain wiring layer (for example, the first layer LY1) among the wiring patterns formed on the substrate 50 is shown.

基板50には、電源配線パターンPHと、グランド配線パターンPGと、出力配線パターンPOとが形成される。
ここで、電源配線パターンPHとは、正電源端子TPW1に電気的に接続され、基板50に実装される各素子に正電源を供給する配線パターンである。グランド配線パターンPGとは、負電源端子TPW2に電気的に接続され、基板50に実装される各素子に負電源(基準電位)を供給する配線パターンである。出力配線パターンPOとは、相ごとの三相出力端子Tに接続され、スイッチ素子Trから三相出力端子Tに対して駆動電流DCを供給する配線パターンである。
具体的には、U相領域ARUには、U相電源配線パターンPHUと、U相グランド配線パターンPGUと、U相出力配線パターンPOUとが形成される。V相領域ARVには、V相電源配線パターンPHVと、V相グランド配線パターンPGVと、V相出力配線パターンPOVとが形成させる。W相領域ARWには、W相電源配線パターンPHWと、W相グランド配線パターンPGWと、W相出力配線パターンPOWとが形成される。これら各配線パターンのうち、U相電源配線パターンPHUと、V相電源配線パターンPHVと、W相電源配線パターンPHWとは、基板50において互いに電気的に接続されている。また、U相グランド配線パターンPGUと、V相グランド配線パターンPGVと、W相グランド配線パターンPGWとは、基板50において互いに電気的に接続されている。
A power supply wiring pattern PH, a ground wiring pattern PG, and an output wiring pattern PO are formed on the substrate 50.
Here, the power supply wiring pattern PH is a wiring pattern that is electrically connected to the positive power supply terminal TPW1 and supplies a positive power supply to each element mounted on the substrate 50. The ground wiring pattern PG is a wiring pattern that is electrically connected to the negative power supply terminal TPW2 and supplies a negative power supply (reference potential) to each element mounted on the substrate 50. The output wiring pattern PO is a wiring pattern that is connected to the three-phase output terminal T for each phase and supplies the drive current DC from the switch element Tr to the three-phase output terminal T.
Specifically, a U-phase power supply wiring pattern PHU, a U-phase ground wiring pattern PGU, and a U-phase output wiring pattern POU are formed in the U-phase area ARU. A V-phase power wiring pattern PHV, a V-phase ground wiring pattern PGV, and a V-phase output wiring pattern POV are formed in the V-phase region ARV. A W-phase power supply wiring pattern PHW, a W-phase ground wiring pattern PGW, and a W-phase output wiring pattern POW are formed in the W-phase region ARW. Among these wiring patterns, the U-phase power supply wiring pattern PHU, the V-phase power supply wiring pattern PHV, and the W-phase power supply wiring pattern PHW are electrically connected to each other on the substrate 50. Further, the U-phase ground wiring pattern PGU, the V-phase ground wiring pattern PGV, and the W-phase ground wiring pattern PGW are electrically connected to each other on the substrate 50.

本実施形態の基板50において、各相の電源配線パターンPHどうし、及び各相のグランド配線パターンPGどうしは、いずれも基板50の中心領域CTにおいて互いに電気的に接続されている。
例えば、同図に示すように、U相電源配線パターンPHUと、V相電源配線パターンPHVと、W相電源配線パターンPHWとは、基板50の中心領域CTにおいて互いに電気的に接続されている。
また、同図には示していないが、U相グランド配線パターンPGUと、V相グランド配線パターンPGVと、W相グランド配線パターンPGWとは、基板50の他の配線層(例えば、第2層LY2)の基板50の中心領域CTにおいて互いに電気的に接続されている。
In the substrate 50 of the present embodiment, the power wiring patterns PH of each phase and the ground wiring patterns PG of each phase are electrically connected to each other in the central region CT of the substrate 50.
For example, as shown in the figure, the U-phase power supply wiring pattern PHU, the V-phase power supply wiring pattern PHV, and the W-phase power supply wiring pattern PHW are electrically connected to each other in the central region CT of the substrate 50.
Although not shown in the figure, the U-phase ground wiring pattern PGU, the V-phase ground wiring pattern PGV, and the W-phase ground wiring pattern PGW are different wiring layers of the substrate 50 (for example, the second layer LY2). 2) are electrically connected to each other in the central region CT of the substrate 50.

図7は、本実施形態の基板50の積層状態の一例を示す図である。本実施形態における一例として、基板50は、第2基板BD2(いわゆる両面基板基材)を第1基板BD1及び第3基板BD3(いわゆるプリプレグ)によって挟んで構成される4層基板である。
すなわち、基板50は、第1層LY1、第2層LY2、第3層LY3及び第4層LY4の順にして回転対称軸AxRSの軸線方向に積層された少なくとも4層の配線パターン面を有している。
本実施形態の基板50は、電源端子TPWのうちの正電源端子TPW1に接続される正電源パターンが第1層LY1及び第3層LY3に、電源端子TPWのうちの負電源端子TPW2に接続される負電源パターンが第2層LY2及び第4層LY4に形成される。
ここで、正電源パターンとは、一例として、上述した電源配線パターンPHである。また、負電源パターンとは、一例として、上述したグランド配線パターンPGである。
このように構成された基板50によれば、第1基板BD1の両面において電源配線パターンPHとグランド配線パターンPGとが対向し、第2基板BD2の両面においてグランド配線パターンPGと電源配線パターンPHとが対向し、さらに、第3基板BD3の両面においても電源配線パターンPHとグランド配線パターンPGとが対向する。このため、電源配線パターンPHとグランド配線パターンPGとの間の電源インピーダンスが低減されるため、誘導性サージなどを原因とする電源電圧変動を低減することができる。
FIG. 7 is a diagram showing an example of a stacked state of the substrates 50 of this embodiment. As an example in the present embodiment, the substrate 50 is a four-layer substrate configured by sandwiching a second substrate BD2 (so-called double-sided substrate base material) with a first substrate BD1 and a third substrate BD3 (so-called prepreg).
That is, the substrate 50 has a wiring pattern surface of at least four layers laminated in the axial direction of the rotational symmetry axis AxRS in the order of the first layer LY1, the second layer LY2, the third layer LY3, and the fourth layer LY4. ing.
In the substrate 50 of this embodiment, the positive power supply pattern connected to the positive power supply terminal TPW1 of the power supply terminals TPW is connected to the first layer LY1 and the third layer LY3, and the negative power supply terminal TPW2 of the power supply terminals TPW is connected. A negative power source pattern is formed on the second layer LY2 and the fourth layer LY4.
Here, the positive power supply pattern is, for example, the above-described power supply wiring pattern PH. The negative power supply pattern is, for example, the above-mentioned ground wiring pattern PG.
According to the substrate 50 thus configured, the power supply wiring pattern PH and the ground wiring pattern PG face each other on both sides of the first substrate BD1, and the ground wiring pattern PG and the power supply wiring pattern PH face each other on both sides of the second substrate BD2. And the power supply wiring pattern PH and the ground wiring pattern PG also face each other on both surfaces of the third substrate BD3. Therefore, the power supply impedance between the power supply wiring pattern PH and the ground wiring pattern PG is reduced, so that it is possible to reduce the power supply voltage fluctuation caused by an inductive surge or the like.

また、同図に示すように、第1層LY1の正電源パターンと、第2層LY2の負電源パターンと、第3層LY3の正電源パターンと、第4層LY4の負電源パターンとが、回転対称軸AxRSを中心とした所定半径内の位置(中心領域CT)において、回転対称軸AxRSの軸線方向に積層配置されている。 Further, as shown in the figure, the positive power source pattern of the first layer LY1, the negative power source pattern of the second layer LY2, the positive power source pattern of the third layer LY3, and the negative power source pattern of the fourth layer LY4 are At a position (center region CT) within a predetermined radius centered on the rotational symmetry axis AxRS, they are stacked in the axial direction of the rotational symmetry axis AxRS.

[実施形態のまとめ]
以上説明したように、本実施形態の駆動回路160は、駆動部210の形状(すなわち、円筒形)に応じた形状(すなわち、円形状)の基板50に実装される。本実施形態の駆動回路160は、基板50の外形と駆動部210の外形とを対応させた構成であるため、制御装置10、駆動回路160及び電動過給機20が一体化される場合に、装置全体を小型化することができる。
また、本実施形態の駆動回路160は、各相のスイッチ素子Trが互いに、基板50の部品面上の位置のうち、部品面の中心を回転対称軸AxRSとした回転対称の位置に配置される。このため、本実施形態の駆動回路160は、スイッチ素子Trの直流電力PWの供給経路の配線パターン、及び駆動電流DCの出力経路の配線パターンが、各相間において均等化される。このため、本実施形態の駆動回路160によれば、各相に存在する寄生インダクタンス成分が相間において均等化され、誘導性サージ電圧を低減することができる。
すなわち、本実施形態の駆動回路160によれば、電動過給システム1を小型化しつつ、誘導性サージ電圧を低減することができる。
[Summary of Embodiments]
As described above, the drive circuit 160 of this embodiment is mounted on the substrate 50 having a shape (that is, a circular shape) corresponding to the shape (that is, a cylindrical shape) of the driving unit 210. Since the drive circuit 160 of the present embodiment has a configuration in which the outer shape of the substrate 50 and the outer shape of the drive unit 210 are made to correspond to each other, when the control device 10, the drive circuit 160, and the electric supercharger 20 are integrated, The entire device can be miniaturized.
Further, in the drive circuit 160 of the present embodiment, the switch elements Tr of the respective phases are arranged at positions of rotational symmetry with respect to each other among the positions on the component surface of the substrate 50 with the center of the component surface as the rotational symmetry axis AxRS. .. Therefore, in the drive circuit 160 of the present embodiment, the wiring pattern of the supply path of the DC power PW of the switch element Tr and the wiring pattern of the output path of the drive current DC are equalized between the phases. Therefore, according to the drive circuit 160 of the present embodiment, the parasitic inductance components existing in each phase are equalized between the phases, and the inductive surge voltage can be reduced.
That is, according to the drive circuit 160 of the present embodiment, it is possible to reduce the inductive surge voltage while downsizing the electric supercharging system 1.

また、本実施形態の駆動回路160は、バイパスコンデンサとして機能するコンデンサCPについても、部品面の中心を回転対称軸AxRSとした回転対称の位置に配置される。このため、本実施形態の駆動回路160によれば、誘導性サージ電圧を各相間において均等に低減することができる。 Further, in the drive circuit 160 of this embodiment, the capacitor CP that functions as a bypass capacitor is also arranged at a rotationally symmetric position with the center of the component surface as the rotational symmetry axis AxRS. Therefore, according to the drive circuit 160 of the present embodiment, the inductive surge voltage can be reduced evenly between the phases.

また、本実施形態の駆動回路160は、正電源パターンと、負電源パターンとが、基板50の中心領域CTにおいて積層配置される。このため、本実施形態の駆動回路160によれば、基板50の中心部において、電源インピーダンスが低減される。基板50の中心部は、各相のスイッチ素子Trから等距離にあるため、電源インピーダンスが各相に対して均等に低減される。したがって、本実施形態の駆動回路160によれば、各相に存在する寄生インダクタンス成分が相間において均等化され、誘導性サージ電圧を低減することができる。 In addition, in the drive circuit 160 of the present embodiment, the positive power supply pattern and the negative power supply pattern are stacked and arranged in the central region CT of the substrate 50. Therefore, according to the drive circuit 160 of the present embodiment, the power source impedance is reduced in the central portion of the substrate 50. Since the central portion of the substrate 50 is equidistant from the switching element Tr of each phase, the power source impedance is reduced uniformly for each phase. Therefore, according to the drive circuit 160 of the present embodiment, the parasitic inductance components existing in each phase are equalized between the phases, and the inductive surge voltage can be reduced.

以上、本発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。また、本発明の趣旨を逸脱しない範囲で上述の各実施形態に記載の構成及び動作を任意に組み合わせることができる。 Although the embodiment of the present invention has been described in detail above with reference to the drawings, the specific configuration is not limited to this embodiment, and appropriate modifications may be made without departing from the spirit of the present invention. it can. Further, the configurations and operations described in the above embodiments can be arbitrarily combined without departing from the spirit of the present invention.

なお、上述の各装置は内部にコンピュータを有している。そして、上述した各装置の各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。 Each of the above-mentioned devices has a computer inside. The process of each process of each device described above is stored in a computer-readable recording medium in the form of a program, and the above process is performed by the computer reading and executing the program. Here, the computer-readable recording medium refers to a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Further, the computer program may be distributed to the computer via a communication line, and the computer that receives the distribution may execute the program.

また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。
さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
Further, the program may be for realizing a part of the functions described above.
Further, it may be a so-called difference file (difference program) that can realize the functions described above in combination with a program already recorded in the computer system.

1…電動過給システム、10…制御装置、100…制御部、110…駆動指令取得部、120…制御モード判定部、130…駆動信号出力部、160…駆動回路、20、20a…電動過給機、210…駆動部、220…回転部、30…上位制御装置、40…電源部、50…基板、CM…駆動指令、DC…駆動電流、PW…直流電力、Tr…スイッチ素子、TPW…電源端子、T…三相出力端子、CP…コンデンサ、CE…電解コンデンサ、CC…セラミックコンデンサ、CN…コネクタ、LY…層、AxRS…回転対称軸 DESCRIPTION OF SYMBOLS 1... Electric supercharge system, 10... Control device, 100... Control part, 110... Drive command acquisition part, 120... Control mode determination part, 130... Drive signal output part, 160... Drive circuit, 20, 20a... Electric supercharge Machine, 210... Driving unit, 220... Rotating unit, 30... Host controller, 40... Power supply unit, 50... Substrate, CM... Drive command, DC... Drive current, PW... DC power, Tr... Switch element, TPW... Power supply Terminal, T... Three-phase output terminal, CP... Capacitor, CE... Electrolytic capacitor, CC... Ceramic capacitor, CN... Connector, LY... Layer, AxRS... Rotation symmetry axis

Claims (5)

電動過給機の三相交流電動機に各相の駆動電流を供給する駆動素子を有するインバータ回路と、
前記インバータ回路の配線パターンが形成される基板と、
前記インバータ回路の駆動電源としての単相直流電流が供給される正負電源端子と、
前記インバータ回路から前記三相交流電動機に対して前記駆動電流を供給する三相出力端子と、
を備え、
各相の前記駆動素子が互いに、前記基板の部品面上の位置のうち、前記部品面の中心を対称軸とした回転対称の位置に配置され
前記インバータ回路を構成する素子のうち、基板実装状態での高さがより高い第1素子と、基板実装状態での高さがより低い第2素子とについて、前記第1素子が前記基板の外周部に、前記第2素子が前記基板の内周部に、それぞれ配置される
電動機駆動装置。
An inverter circuit having a drive element that supplies a drive current of each phase to a three-phase AC motor of the electric supercharger,
A substrate on which a wiring pattern of the inverter circuit is formed,
A positive/negative power supply terminal to which a single-phase DC current is supplied as a drive power supply for the inverter circuit,
A three-phase output terminal for supplying the drive current from the inverter circuit to the three-phase AC motor,
Equipped with
Among the positions on the component surface of the substrate, the drive elements of each phase are arranged at rotationally symmetric positions with the center of the component surface as the axis of symmetry .
Of the elements forming the inverter circuit, the first element having a higher height in the board-mounted state and the second element having a lower height in the board-mounted state are the outer circumferences of the board. And the second element is disposed on the inner peripheral portion of the substrate .
前記基板は、第1層、第2層、第3層及び第4層の順にして前記対称軸の軸線方向に積層された少なくとも4層の配線パターン面を有し、
前記正負電源端子のうちの正電源端子に接続される正電源パターンが前記第1層及び前記第3層に、前記正負電源端子のうちの負電源端子に接続される負電源パターンが前記第2層及び前記第4層に形成される
請求項に記載の電動機駆動装置。
The substrate has a wiring pattern surface of at least four layers laminated in the axial direction of the axis of symmetry in the order of a first layer, a second layer, a third layer and a fourth layer,
The positive power supply pattern connected to the positive power supply terminal of the positive and negative power supply terminals is the first layer and the third layer, and the negative power supply pattern connected to the negative power supply terminal of the positive and negative power supply terminals is the second layer. The motor drive device according to claim 1 , wherein the motor drive device is formed in a layer and the fourth layer.
電動過給機の三相交流電動機に各相の駆動電流を供給する駆動素子を有するインバータ回路と、
前記インバータ回路の配線パターンが形成される基板と、
前記インバータ回路の駆動電源としての単相直流電流が供給される正負電源端子と、
前記インバータ回路から前記三相交流電動機に対して前記駆動電流を供給する三相出力端子と、
を備え、
各相の前記駆動素子が互いに、前記基板の部品面上の位置のうち、前記部品面の中心を対称軸とした回転対称の位置に配置され
前記基板は、第1層、第2層、第3層及び第4層の順にして前記対称軸の軸線方向に積層された少なくとも4層の配線パターン面を有し、
前記正負電源端子のうちの正電源端子に接続される正電源パターンが前記第1層及び前記第3層に、前記正負電源端子のうちの負電源端子に接続される負電源パターンが前記第2層及び前記第4層に形成され、
前記第1層の前記正電源パターンと、前記第2層の前記負電源パターンと、前記第3層の前記正電源パターンと、前記第4層の前記負電源パターンとが、前記対称軸を中心とした所定半径内の位置において、前記対称軸の軸線方向に積層配置されている
電動機駆動装置。
An inverter circuit having a drive element that supplies a drive current of each phase to a three-phase AC motor of the electric supercharger,
A substrate on which a wiring pattern of the inverter circuit is formed,
A positive/negative power supply terminal to which a single-phase DC current is supplied as a drive power supply for the inverter circuit,
A three-phase output terminal for supplying the drive current from the inverter circuit to the three-phase AC motor,
Equipped with
Among the positions on the component surface of the substrate, the drive elements of each phase are arranged at rotationally symmetric positions with the center of the component surface as the axis of symmetry .
The substrate has a wiring pattern surface of at least four layers laminated in the axial direction of the axis of symmetry in the order of a first layer, a second layer, a third layer and a fourth layer,
The positive power supply pattern connected to the positive power supply terminal of the positive and negative power supply terminals is the first layer and the third layer, and the negative power supply pattern connected to the negative power supply terminal of the positive and negative power supply terminals is the second layer. A layer and the fourth layer,
The positive power source pattern of the first layer, the negative power source pattern of the second layer, the positive power source pattern of the third layer, and the negative power source pattern of the fourth layer are centered on the axis of symmetry. At a position within the predetermined radius, the electric motor drive device is laminated in the axial direction of the axis of symmetry .
電動過給機の三相交流電動機に各相の駆動電流を供給する駆動素子を有するインバータ回路と、
前記インバータ回路の配線パターンが形成される基板と、
前記インバータ回路の駆動電源としての単相直流電流が供給される正負電源端子と、
前記インバータ回路から前記三相交流電動機に対して前記駆動電流を供給する三相出力端子と、
を備え、
各相の前記駆動素子が互いに、前記基板の部品面上の位置のうち、前記部品面の中心を対称軸とした回転対称の位置に配置され
前記基板は、前記対称軸による回転対称の位置にそれぞれ配置される領域であって、三相の前記駆動電流のうちの、第1相駆動電流を供給する前記駆動素子が配置される第1相領域と、第2相駆動電流を供給する前記駆動素子が配置される第2相領域と、第3相駆動電流を供給する前記駆動素子が配置される第3相領域とを有し、
前記正負電源端子のうちの正電源端子が前記第1相領域に配置され、前記正負電源端子のうちの負電源端子が前記第2相領域に配置され、前記駆動素子を制御する制御信号が接続される接続部が前記第3相領域に配置される
電動機駆動装置。
An inverter circuit having a drive element that supplies a drive current of each phase to a three-phase AC motor of the electric supercharger,
A substrate on which a wiring pattern of the inverter circuit is formed,
A positive/negative power supply terminal to which a single-phase DC current is supplied as a drive power supply for the inverter circuit,
A three-phase output terminal for supplying the drive current from the inverter circuit to the three-phase AC motor,
Equipped with
Among the positions on the component surface of the substrate, the drive elements of each phase are arranged at rotationally symmetric positions with the center of the component surface as the axis of symmetry .
The substrate is a region arranged at each of rotationally symmetric positions with respect to the axis of symmetry, and a first phase of the three-phase drive currents in which the drive element that supplies a first-phase drive current is disposed. A region, a second phase region in which the drive element that supplies the second phase drive current is disposed, and a third phase region in which the drive element that supplies the third phase drive current is disposed,
A positive power supply terminal of the positive and negative power supply terminals is arranged in the first phase region, a negative power supply terminal of the positive and negative power supply terminals is arranged in the second phase region, and a control signal for controlling the drive element is connected. The motor drive device in which the connected portion is arranged in the third phase region .
請求項1から請求項のいずれか一項に記載の電動機駆動装置と、
前記電動機駆動装置によって駆動される前記三相交流電動機と、
を備える電動過給機。
An electric motor drive device according to any one of claims 1 to 4 ,
The three-phase AC motor driven by the motor drive device,
Electric supercharger equipped with.
JP2018243341A 2018-12-26 2018-12-26 Electric motor drive device and electric supercharger Active JP6744388B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018243341A JP6744388B2 (en) 2018-12-26 2018-12-26 Electric motor drive device and electric supercharger
DE102019130174.2A DE102019130174A1 (en) 2018-12-26 2019-11-08 ELECTRIC MOTOR DRIVE DEVICE AND ELECTRIC CHARGER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243341A JP6744388B2 (en) 2018-12-26 2018-12-26 Electric motor drive device and electric supercharger

Publications (2)

Publication Number Publication Date
JP2020108216A JP2020108216A (en) 2020-07-09
JP6744388B2 true JP6744388B2 (en) 2020-08-19

Family

ID=71079778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243341A Active JP6744388B2 (en) 2018-12-26 2018-12-26 Electric motor drive device and electric supercharger

Country Status (2)

Country Link
JP (1) JP6744388B2 (en)
DE (1) DE102019130174A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1127959A (en) * 1997-07-08 1999-01-29 Toshiba Fa Syst Eng Kk Inverter
JP5223280B2 (en) 2007-09-27 2013-06-26 株式会社Ihi Turbocharger control system with electric motor
JP5381181B2 (en) * 2009-03-10 2014-01-08 日産自動車株式会社 Mechanical and electric integrated drive
JP5433643B2 (en) * 2011-07-15 2014-03-05 三菱重工業株式会社 Electric supercharging device and multistage supercharging system

Also Published As

Publication number Publication date
JP2020108216A (en) 2020-07-09
DE102019130174A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
US7675192B2 (en) Active DC bus filter for fuel cell applications
CN106458001A (en) Vehicle driving apparatus
JP6744388B2 (en) Electric motor drive device and electric supercharger
CN111149283A (en) Motor module and electric power steering apparatus
WO2022107809A1 (en) Power conversion device
US9523362B2 (en) Vehicular electric compressor
US11223296B2 (en) Power conversion device
JP6149611B2 (en) Inverter device and vehicle drive device
JP2013059158A (en) Electric vehicle
JP2022011145A (en) Inverter device
US20080309262A1 (en) Multiple Phase Electric Motor and Drive
JP2000324892A (en) Inverter drive motor
WO2019070064A1 (en) Motor module and electric power steering apparatus
JP2009189171A (en) Vehicle drive unit
CN111164864B (en) Motor module and electric power steering apparatus
WO2023058722A1 (en) Motor driving circuit board, motor, and pump device
US11606057B2 (en) Electromagnetic filtering of a control circuit of an electric motor
WO2024070595A1 (en) Motor driving circuit board, motor, and pump device
US20220289033A1 (en) Vehicle control method and vehicle drive system
KR101239237B1 (en) Motor drive apparatus for vehicle having noise reduction structure
JP7380543B2 (en) In-vehicle inverter equipment and in-vehicle fluid machinery
KR101289288B1 (en) Motor drive apparatus for vehicle having noise reduction structure
JP2024005600A (en) Motor control unit, motor and pump device
JP7206722B2 (en) motor generator controller
JP2023152052A (en) Electric power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200730

R150 Certificate of patent or registration of utility model

Ref document number: 6744388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250