JP6743727B2 - Semiconductor wafer heat treatment method and solar cell manufacturing method - Google Patents

Semiconductor wafer heat treatment method and solar cell manufacturing method Download PDF

Info

Publication number
JP6743727B2
JP6743727B2 JP2017038884A JP2017038884A JP6743727B2 JP 6743727 B2 JP6743727 B2 JP 6743727B2 JP 2017038884 A JP2017038884 A JP 2017038884A JP 2017038884 A JP2017038884 A JP 2017038884A JP 6743727 B2 JP6743727 B2 JP 6743727B2
Authority
JP
Japan
Prior art keywords
partition plate
process tube
semiconductor wafer
heat treatment
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017038884A
Other languages
Japanese (ja)
Other versions
JP2018147942A (en
Inventor
崇 澤井
崇 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017038884A priority Critical patent/JP6743727B2/en
Publication of JP2018147942A publication Critical patent/JP2018147942A/en
Application granted granted Critical
Publication of JP6743727B2 publication Critical patent/JP6743727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、複数の半導体ウェハに対して熱処理を行う熱処理方法およびその半導体ウェハの熱処理方法を用いた太陽電池の製造方法に関する。 The present invention relates to a heat treatment method for performing heat treatment on a plurality of semiconductor wafers and a method for manufacturing a solar cell using the heat treatment method for semiconductor wafers.

横型炉と称される一般的な横型熱処理炉では、プロセスチューブの外側に設置された加熱ヒーターによって加熱された半導体ウェハが、原料ガスと接触することで熱処理がなされる。複数の半導体ウェハに対して、熱処理が均一に実施されるように、加熱ヒーターはプロセスチューブの軸方向に複数ゾーンに分離され、各ゾーンに適切な電力を供給する工夫がなされる。 In a general horizontal heat treatment furnace called a horizontal furnace, a semiconductor wafer heated by a heater installed outside a process tube comes into contact with a source gas to perform heat treatment. The heater is divided into a plurality of zones in the axial direction of the process tube so that the heat treatment is uniformly performed on the plurality of semiconductor wafers, and an appropriate electric power is supplied to each zone.

しかしながら、プロセスチューブの一方の端から導入される原料ガスは、室温に近い温度で導入されるため、半導体ウェハ温度を低下させる原因になる。したがって、プロセスチューブ内のガス導入側に設置された半導体ウェハ群の一端は、導入ガスで半導体ウェハ温度が低下し、熱処理が均一に行われないという課題がある。 However, the source gas introduced from one end of the process tube is introduced at a temperature close to room temperature, which causes a decrease in the semiconductor wafer temperature. Therefore, at one end of the semiconductor wafer group installed on the gas introduction side in the process tube, there is a problem that the temperature of the semiconductor wafer is lowered by the introduced gas and the heat treatment is not uniformly performed.

そこで、上記課題を解決するために、横型炉のガス導入側に隣接した位置に予熱体を配置することにより、導入ガスの温度を昇温する熱処理炉が提案されている(特許文献1)。 Therefore, in order to solve the above problem, a heat treatment furnace has been proposed in which a preheater is arranged at a position adjacent to the gas introduction side of a horizontal furnace to raise the temperature of the introduced gas (Patent Document 1).

特開平5−94980号公報JP-A-5-94980

しかしながら、特許文献1に記載の熱処理炉では、プロセスチューブの軸と垂直に半導体ウェハが設置されているため、半導体ウェハ内の中心部への原料ガスの供給が不足し、半導体ウェハの面内で、熱処理が均一に行われないという課題があった。また、プロセスチューブの軸方向に複数配置された半導体ウェハにおいて、ガス導入側の半導体ウェハの温度が低下する為、複数の半導体ウェハ間での温度の均一性が低下するという課題があった。 However, in the heat treatment furnace described in Patent Document 1, since the semiconductor wafer is installed perpendicularly to the axis of the process tube, the supply of the raw material gas to the central portion of the semiconductor wafer is insufficient, and in the plane of the semiconductor wafer. However, there is a problem that the heat treatment is not performed uniformly. Further, in a plurality of semiconductor wafers arranged in the axial direction of the process tube, the temperature of the semiconductor wafer on the gas introduction side is lowered, and thus there is a problem that the temperature uniformity among the plurality of semiconductor wafers is lowered.

本発明は上記のような問題を解決するためになされたものであり、熱処理炉を用いて、均一性の優れた熱処理を行う半導体ウェハの熱処理方法、太陽電池の製造方法を得ることを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to obtain a heat treatment method for a semiconductor wafer and a method for manufacturing a solar cell, which perform heat treatment with excellent uniformity using a heat treatment furnace. To do.

上述した課題を解決し、目的を達成するために、本発明の半導体ウェハの熱処理方法は、筒状のプロセスチューブに、プロセスチューブの軸と平行に複数の半導体ウェハを設置する半導体ウェハ設置工程と、プロセスチューブの一方の端に設けられたガス導入口から原料ガスを供給しながら前記プロセスチューブを加熱することによって、半導体ウェハを熱処理する熱処理工程とを備えた熱処理方法であって、ガス導入口と半導体ウェハとの間に、プロセスチューブの軸と垂直に配置され、プロセスチューブの内周と接する複数の仕切り板を有し、仕切り板に設けられた開口を通して原料ガスを供給し、複数の仕切り板は、ガス導入口側から導入口側第1仕切り板、導入口側第2仕切り板、中央開口仕切り板、ウェハ側仕切り板の順に設置され、ガス導入口側に設置された導入口側第1仕切り板が、周方向の端部の第1位置の切欠きによりプロセスチューブの内周との間に形成された第1開口を備え、導入口側第2仕切り板が、周方向の端部の第1位置とは異なる第2位置の切欠きによりプロセスチューブの内周との間に形成された第2開口を備え、中央開口仕切り板が、中央部に形成された1個の中央開口を備え、ウェハ側仕切り板が、原料ガスを分散させる複数の開口である分散開口を備えたことを特徴とする。

In order to solve the above problems and achieve the object, a semiconductor wafer heat treatment method of the present invention is a semiconductor wafer installation step of installing a plurality of semiconductor wafers in a cylindrical process tube in parallel with the axis of the process tube. A heat treatment step of heat-treating a semiconductor wafer by heating the process tube while supplying a raw material gas from a gas introduction port provided at one end of the process tube. Between the semiconductor wafer and the semiconductor wafer, it has a plurality of partition plates arranged perpendicular to the axis of the process tube and in contact with the inner circumference of the process tube, and the source gas is supplied through the openings provided in the partition plate to provide a plurality of partition plates. The plates are installed in this order from the gas inlet side to the inlet side first partition plate, the inlet side second partition plate, the central opening partition plate, and the wafer side partition plate, and the inlet side first partition plate is installed on the gas inlet side. The first partition plate has a first opening formed between itself and the inner circumference of the process tube by the notch at the first position of the end portion in the circumferential direction, and the second partition plate on the inlet side is the end portion in the circumferential direction. Is provided with a second opening formed between the inner circumference of the process tube and a notch at a second position different from the first position, and the central opening partition plate has one central opening formed at the central portion. The wafer-side partition plate is provided with a plurality of dispersion openings for distributing the raw material gas .

本発明によれば、半導体ウェハ内の中心部への原料ガスの供給を促すことにより、半導体ウェハの面内での熱処理の均一性を向上するとともに、プロセスチューブの軸方向に複数配置された半導体ウェハ間での温度の均一性を向上することで、半導体ウェハ間での熱処理の均一性を向上するができる。 According to the present invention, by promoting the supply of the source gas to the central portion of the semiconductor wafer, the uniformity of the heat treatment in the plane of the semiconductor wafer is improved, and a plurality of semiconductors arranged in the axial direction of the process tube are provided. By improving the temperature uniformity between the wafers, the uniformity of the heat treatment between the semiconductor wafers can be improved.

図1は、実施の形態1に用いる熱処理炉の断面図である。FIG. 1 is a sectional view of a heat treatment furnace used in the first embodiment. 図2は、実施の形態1に用いるプロセスチューブの要部を示す斜視図である。FIG. 2 is a perspective view showing a main part of the process tube used in the first embodiment. 図3は、プロセスチューブの軸方向から導入口側第1仕切り板11を見た平面図である。FIG. 3 is a plan view of the inlet side first partition plate 11 viewed from the axial direction of the process tube. 図4は、プロセスチューブの軸方向から導入口側第2仕切り板21を見た平面図である。FIG. 4 is a plan view of the introduction port side second partition plate 21 viewed from the axial direction of the process tube. 図5は、プロセスチューブの軸方向から中央開口仕切り板31を見た平面図である。FIG. 5 is a plan view of the central opening partition plate 31 seen from the axial direction of the process tube. 図6は、プロセスチューブの軸方向からウェハ側仕切り板41を見た平面図である。FIG. 6 is a plan view of the wafer side partition plate 41 viewed from the axial direction of the process tube. 図7は、半導体ウェハ5を設置した位置でのプロセスチューブ1の軸方向と垂直方向の断面図である。FIG. 7 is a cross-sectional view of the process tube 1 at a position where the semiconductor wafer 5 is installed in a direction perpendicular to the axial direction. 図8は、実施の形態2に用いるウェハ側仕切り板51をプロセスチューブ1の軸方向から見た平面図である。FIG. 8 is a plan view of the wafer side partition plate 51 used in the second embodiment as seen from the axial direction of the process tube 1. 図9は、実施の形態3に用いるウェハ側仕切り板61をプロセスチューブ1の軸方向から見た平面図である。FIG. 9 is a plan view of the wafer side partition plate 61 used in the third embodiment as seen from the axial direction of the process tube 1.

1 プロセスチューブ、2 ガス導入口、3 排気口、4 半導体ウェハ設置ボート、5 半導体ウェハ、6 ヒーター、7 均熱領域、8 熱処理炉、9 ガス導入端部、11 導入口側第1仕切り板、12 第1開口、21 導入口側第2仕切り板、22 第2開口、31 中央開口仕切り板、32 中央開口、41 ウェハ側仕切り板、42 分散開口、51 ウェハ側仕切り板、52 分散開口、61 ウェハ側仕切り板、62 分散開口 1 process tube, 2 gas introduction port, 3 exhaust port, 4 semiconductor wafer installation boat, 5 semiconductor wafer, 6 heater, 7 soaking area, 8 heat treatment furnace, 9 gas introduction end, 11 introduction port side first partition plate, 12 1st opening, 21 2nd opening side partition plate, 22 2nd opening, 31 Central opening partition plate, 32 Central opening, 41 Wafer side partition plate, 42 Dispersion opening, 51 Wafer side partition plate, 52 Dispersion opening, 61 Wafer side partition plate, 62 distributed openings

以下に添付図面を参照して、この発明の実施の形態にかかる半導体ウェハの熱処理方法
およびその半導体ウェハの熱処理方法を用いた太陽電池の製造方法を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではなく、この発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。
Exemplary embodiments of a heat treatment method for a semiconductor wafer and a method for manufacturing a solar cell using the heat treatment method for a semiconductor wafer according to the present invention will be described below in detail with reference to the accompanying drawings. It should be noted that the present invention is not limited to the embodiments, and can be changed as appropriate without departing from the gist of the present invention. Further, in the drawings shown below, the scale of each member may be different from the actual scale for easy understanding. The same applies between the drawings.

実施の形態1.
図1は、本発明の実施の形態1にかかる熱処理方法に用いる熱処理炉8の構成を示す図である。図2は、本発明の実施の形態1の熱処理方法に用いるプロセスチューブ1の要部を示す斜視図である。図1、図2に示すように、実施の形態にかかる熱処理炉8は、石英ガラス製の円筒状のプロセスチューブ1と、プロセスチューブ1の外周に配置された円筒状のヒーター6を有する。プロセスチューブ1は、軸方向に同一の断面形状を有する円筒状で、耐熱性を有し、内部に原料ガスが流される。プロセスチューブ1の一方の端はガス導入端部9によって閉塞されている。ガス導入端部9には、原料ガスを導入するガス導入口2が設けられており、ガス導入口2には、ガス導入用の配管が接続されている。プロセスチューブ1の他方の端は、半導体ウェハ5をプロセスチューブ1内に配置するために開放端となっており、扉が開閉可能に設置されている。プロセスチューブ1の開放端の周縁部にはガス排出口3が設けられている。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of a heat treatment furnace 8 used in the heat treatment method according to the first embodiment of the present invention. FIG. 2 is a perspective view showing a main part of the process tube 1 used in the heat treatment method according to the first embodiment of the present invention. As shown in FIGS. 1 and 2, the heat treatment furnace 8 according to the embodiment has a cylindrical process tube 1 made of quartz glass and a cylindrical heater 6 arranged on the outer periphery of the process tube 1. The process tube 1 has a cylindrical shape having the same cross-sectional shape in the axial direction, has heat resistance, and a source gas is flown inside. One end of the process tube 1 is closed by a gas introduction end 9. A gas introduction port 2 for introducing the raw material gas is provided at the gas introduction end portion 9, and a gas introduction pipe is connected to the gas introduction port 2. The other end of the process tube 1 is an open end for disposing the semiconductor wafer 5 in the process tube 1, and a door is installed so as to be openable and closable. A gas outlet 3 is provided at the peripheral portion of the open end of the process tube 1.

本実施の形態にかかる熱処理炉8では、石英ガラス製の半導体ウェハ設置ボート4に半導体ウェハ5を複数枚設置し、プロセスチューブ1に挿入する。半導体ウェハ5はプロセスチューブ1の軸方向に平行に設置する。ここで、半導体ウェハ5は例えば太陽電池を製造するためのシリコン基板である。半導体ウェハ5は小ボートにプロセスチューブ1の軸方向と平行に複数枚並べて設置されており、さらに小ボートはプロセスチューブ1の軸方向に複数個並べて半導体ウェハ設置ボート4の上に設置されている。 In the heat treatment furnace 8 according to the present embodiment, a plurality of semiconductor wafers 5 are set on the quartz glass semiconductor wafer setting boat 4 and inserted into the process tube 1. The semiconductor wafer 5 is installed parallel to the axial direction of the process tube 1. Here, the semiconductor wafer 5 is, for example, a silicon substrate for manufacturing a solar cell. A plurality of semiconductor wafers 5 are installed side by side in a small boat in parallel with the axial direction of the process tube 1, and further, a plurality of small boats are arranged in the axial direction of the process tube 1 and installed on the semiconductor wafer installation boat 4. ..

プロセスチューブ1の外周部には、半導体ウェハ5の均熱領域7を取り囲むようにヒーター6が設置される。なお、半導体ウェハ5の均熱領域7とは、プロセスチューブ1内の半導体ウェハ5が配置される領域である。 A heater 6 is installed on the outer peripheral portion of the process tube 1 so as to surround the soaking area 7 of the semiconductor wafer 5. The soaking area 7 of the semiconductor wafer 5 is an area in the process tube 1 where the semiconductor wafer 5 is arranged.

プロセスチューブ1のガス導入端部9側には原料ガスを導入するガス導入口2が備え付けられており、そこから窒素・酸素・オキシ塩化リンなどの混合ガスが原料ガスとして供給され、図1の矢印の方向に流れ、排気口3から排気される。 A gas introduction port 2 for introducing a raw material gas is provided on the gas introduction end 9 side of the process tube 1, and a mixed gas of nitrogen, oxygen, phosphorus oxychloride and the like is supplied from there as a raw material gas, It flows in the direction of the arrow and is exhausted from the exhaust port 3.

半導体ウェハ設置ボート4とガス導入端部9との間には、半導体ウェハ設置ボート4や半導体ウェハ5に干渉しないガス導入側空間があり、ガス導入側空間もヒーター6の影響を受けて高温になっている。そこに仕切り板を複数枚設置する。 Between the semiconductor wafer installation boat 4 and the gas introduction end portion 9, there is a gas introduction side space that does not interfere with the semiconductor wafer installation boat 4 and the semiconductor wafer 5, and the gas introduction side space is also affected by the heater 6 and becomes high temperature. Has become. A plurality of partition boards are installed there.

図2では、熱処理炉8のうち、プロセスチューブ1、半導体ウェハ5、第1開口11、導入口側第2仕切り板21、中央開口仕切り板31、ウェハ側仕切り板41のみを斜視図で記載している。半導体ウェハ5は、プロセスチューブ1の軸方向と平行に複数枚並べて設置され、さらにプロセスチューブ1の軸方向と平行に複数枚並べたものを1組として、プロセスチューブ1の軸方向に複数組並べて設置される。 In FIG. 2, only the process tube 1, the semiconductor wafer 5, the first opening 11, the inlet side second partition plate 21, the central opening partition plate 31, and the wafer side partition plate 41 of the heat treatment furnace 8 are illustrated in a perspective view. ing. A plurality of semiconductor wafers 5 are arranged side by side in parallel with the axial direction of the process tube 1, and a plurality of semiconductor wafers 5 are arranged in parallel with the axial direction of the process tube 1 as one set. It is installed.

仕切り板は石英製であり、プロセスチューブ1の内周に溶接して固定される。あるいは、仕切り板間に仕切り板接続部材を配置して溶接して複数の仕切り板を固定し、プロセスチューブ1内のガス導入側空間に設置しても良い。 The partition plate is made of quartz and is fixed by welding to the inner circumference of the process tube 1. Alternatively, a partition plate connecting member may be arranged between the partition plates and welded to fix a plurality of partition plates, and the partition plates may be installed in the gas introduction side space in the process tube 1.

仕切り板は、半導体ウェハ設置ボート4とガス導入口2との間に、ガス導入口2側から、導入口側第1仕切り板11A、導入口側第2仕切り板21A、導入口側第1仕切り板11B、導入口側第2仕切り板21B、中央開口仕切り板31、ウェハ側仕切り板41、の順に、プロセスチューブ1の軸方向に垂直に、互いに平行に等間隔で設置される。仕切り板の板厚は例えば3mmで、仕切り板の間隔は例えば20mmである。 The partition plate is provided between the semiconductor wafer installation boat 4 and the gas introduction port 2 from the gas introduction port 2 side from the introduction port side first partition plate 11A, the introduction port side second partition plate 21A, the introduction port side first partition plate. The plate 11B, the inlet-side second partition plate 21B, the central opening partition plate 31, and the wafer-side partition plate 41 are arranged in this order vertically to the axial direction of the process tube 1 and parallel to each other at equal intervals. The partition plate has a thickness of, for example, 3 mm, and the partition plate has an interval of, for example, 20 mm.

図3に、プロセスチューブ1の軸方向から導入口側第1仕切り板11A、11Bを見た平面図を示す。第1仕切り板11Aと11Bとは同一の形状である。導入口側第1仕切り板11Aは、複数の仕切り板のうち、ガス導入口2に最も近い位置に設置される。導入口側第1仕切り板11A、11Bは、石英製で、外径がプロセスチューブ1の内径と等しい円板状の外形形状であり、円周の一部を直線状に切断してD型形状とした第1D型切断部を有し、第1D型切断部を周方向の端部の第1位置である下部にしてプロセスチューブ内に設置することで、プロセスチューブ1の内周下部との間に第1開口12を形成する。図3では、プロセスチューブ1を破線で示している。なお、第1位置を下部に設ける構成について説明したが、第1位置は下部に限らない。周方向の端部であればどの位置にあっても良い。 FIG. 3 shows a plan view of the introduction port side first partition plates 11A and 11B viewed from the axial direction of the process tube 1. The first partition plates 11A and 11B have the same shape. The inlet-side first partition plate 11A is installed at a position closest to the gas inlet 2 among the plurality of partition plates. The inlet-side first partition plates 11A and 11B are made of quartz and have a disk-shaped outer shape whose outer diameter is equal to the inner diameter of the process tube 1. A part of the circumference is cut linearly to form a D-shape. By having the first D-type cutting portion and the first D-type cutting portion as the lower portion which is the first position of the end portion in the circumferential direction and installing the same in the process tube, the space between the lower portion of the inner circumference of the process tube 1 is reduced. The first opening 12 is formed in. In FIG. 3, the process tube 1 is shown by a broken line. Although the configuration in which the first position is provided in the lower portion has been described, the first position is not limited to the lower portion. It may be located at any position as long as it is an end portion in the circumferential direction.

図4に、プロセスチューブ1の軸方向から導入口側第2仕切り板21A、21Bを見た平面図を示す。第2仕切り板21Aと21Bとは同一の形状である。導入口側第2仕切り板21A、21Bは、石英製で、外径がプロセスチューブ1の内径と等しい円板状の外形形状であり、円周の一部を直線状に切断してD型形状とした第2D型切断部を有し、第2D型切断部を周方向の端部の第2位置である上部にしてプロセスチューブ内に設置することで、プロセスチューブ1の内周上部との間に第2開口22を形成する。図4では、プロセスチューブ1を破線で示している。なお、第2位置を上部に設ける構成について説明したが、第2位置は上部に限らない。プロセスチューブの周方向の端部の第1位置とは異なる位置であって、プロセスチューブの軸方向から見て第2開口22が第1開口12と重ならない位置に設けられていれば良い。第1開口12と第2開口22とは、周方向で90°以上ずれていることがより望ましい。第1開口12と第2開口22とは、周方向で180°ずれていることが最も望ましい。 FIG. 4 shows a plan view of the inlet side second partition plates 21A and 21B viewed from the axial direction of the process tube 1. The second partition plates 21A and 21B have the same shape. The inlet-side second partition plates 21A and 21B are made of quartz and have a disk-shaped outer shape whose outer diameter is equal to the inner diameter of the process tube 1. A part of the circumference is cut linearly to form a D-shape. And a second D-type cutting portion, and by installing the second D-type cutting portion in the process tube as an upper portion which is the second position of the end portion in the circumferential direction, between the inner peripheral upper portion of the process tube 1 and The second opening 22 is formed in. In FIG. 4, the process tube 1 is shown by a broken line. Although the configuration in which the second position is provided on the upper part has been described, the second position is not limited to the upper part. It suffices that the second opening 22 is provided at a position different from the first position of the end portion in the circumferential direction of the process tube and does not overlap the first opening 12 when viewed from the axial direction of the process tube. More preferably, the first opening 12 and the second opening 22 are displaced by 90° or more in the circumferential direction. Most preferably, the first opening 12 and the second opening 22 are offset by 180° in the circumferential direction.

図5に、プロセスチューブ1の軸方向から中央開口仕切り板31を見た平面図を示す。中央開口仕切り板31は、石英製で、外径がプロセスチューブ1の内径と等しい円板状であり、円板の中央部に1個の中央開口32が開けられている。 FIG. 5 shows a plan view of the central opening partition plate 31 seen from the axial direction of the process tube 1. The central opening partition plate 31 is made of quartz and has a disk shape with an outer diameter equal to the inner diameter of the process tube 1, and one central opening 32 is formed in the central portion of the disk.

図6に、プロセスチューブ1の軸方向からウェハ側仕切り板41を見た平面図を示す。ウェハ側仕切り板41は、石英製で、外径がプロセスチューブ1の内径と等しい円板状であり、円板の全面に均等に配置され、原料ガスをプロセスチューブ1の軸方向に垂直な断面の全体に分散する複数の分散開口42が開けられている。ウェハ側仕切り板41は、平行に等間隔で複数枚設置された仕切り板のうち、半導体ウェハ5に最も近い位置に配置される。 FIG. 6 shows a plan view of the wafer side partition plate 41 viewed from the axial direction of the process tube 1. The wafer-side partition plate 41 is made of quartz and has a disk shape with an outer diameter equal to the inner diameter of the process tube 1. The wafer-side partition plate 41 is evenly arranged on the entire surface of the disk and has a cross section of the source gas perpendicular to the axial direction of the process tube 1. There are a plurality of dispersion openings 42 distributed throughout The wafer-side partition plate 41 is arranged at the position closest to the semiconductor wafer 5 among the partition plates installed in parallel at a plurality of intervals.

図7に、半導体ウェハ5を設置した位置でのプロセスチューブ1の軸方向と垂直方向の断面図を示す。半導体ウェハ5は、プロセスチューブ1の軸方向と垂直方向に平行に複数枚並べて設置される。半導体ウェハ5を囲んで均熱領域7が形成される。プロセスチューブ1は、例えば内径が250mm円筒状である。半導体ウェハ5は、例えば1辺が156mmの正方形状で、厚さ0.2mmの平板状である。半導体ウェハ5は、3.5mmの間隔で、41枚が平行に配置される。 FIG. 7 shows a cross-sectional view of the process tube 1 at a position where the semiconductor wafer 5 is installed, in a direction perpendicular to the axial direction. A plurality of semiconductor wafers 5 are arranged side by side in parallel with the axial direction of the process tube 1 and in the direction perpendicular thereto. A soaking region 7 is formed so as to surround the semiconductor wafer 5. The process tube 1 has a cylindrical shape with an inner diameter of 250 mm, for example. The semiconductor wafer 5 has, for example, a square shape with one side of 156 mm and a flat plate shape with a thickness of 0.2 mm. Forty-one semiconductor wafers 5 are arranged in parallel at an interval of 3.5 mm.

次に、図1の原料ガスの流れ方について説明する。原料ガスはガス導入口2からプロセスチューブ1内に導入される。導入された原料ガスは、ガス導入端部9側に配置された導入口側第1仕切り板11Aに衝突し、導入口側第1仕切り板11Aの下部に形成された第1開口12Aを通って、導入口側第1仕切り板11Aと導入口側第2仕切り板21Aとの間に形成された空間に上向きに流れる。 Next, the flow of the raw material gas in FIG. 1 will be described. The raw material gas is introduced into the process tube 1 through the gas introduction port 2. The introduced raw material gas collides with the inlet side first partition plate 11A arranged on the gas inlet end 9 side and passes through the first opening 12A formed in the lower part of the inlet side first partition plate 11A. , Flows upward in the space formed between the inlet-side first partition plate 11A and the inlet-side second partition plate 21A.

次に原料ガスは、導入口側第2仕切り板21Aの上部に形成された第2開口22Aを通って、導入口側第2仕切り板21Aと導入口側第1仕切り板11Bとの間に形成された空間に下向きに流れる。 Next, the raw material gas passes through the second opening 22A formed in the upper part of the inlet side second partition plate 21A and is formed between the inlet side second partition plate 21A and the inlet side first partition plate 11B. Flows downward into the designated space.

次に原料ガスは、導入口側第1仕切り板11Bの下部に形成された第1開口12Bを通って、導入口側第1仕切り板11Bと導入口側第2仕切り板21Bとの間に形成された空間に上向きに流れる。なお、図1では導入口側第1仕切り板11と導入口側第2仕切り板21とを1組として、プロセスチューブ1の軸方向に2組並べた構成で説明したが、本発明はこれに限られるものではない。図2のように1組であってもよい。あるいは、3組以上であっても良い。 Next, the raw material gas passes through the first opening 12B formed in the lower part of the inlet side first partition plate 11B and is formed between the inlet side first partition plate 11B and the inlet side second partition plate 21B. Flows upward into the designated space. In FIG. 1, the introduction side first partition plate 11 and the introduction side second partition plate 21 are described as one set, and two sets are arranged side by side in the axial direction of the process tube 1, but the present invention is not limited to this. It is not limited. One set may be used as shown in FIG. Alternatively, there may be three or more sets.

次に原料ガスは、導入口側第2仕切り板21Bの上部に形成された第2開口22Bを通って、導入口側第2仕切り板21Bと中央開口仕切り板31との間に形成された空間に下向きに流れる。 Next, the raw material gas passes through the second opening 22B formed in the upper portion of the inlet-side second partition plate 21B, and the space formed between the inlet-side second partition plate 21B and the central opening partition plate 31. Flows downwards.

次に原料ガスは、中央開口仕切り板31の中央部に設けられた中央開口32を通って、中央開口仕切り板31とウェハ側仕切り板41との間に形成された空間に流れる。 Next, the source gas flows through the central opening 32 provided in the central portion of the central opening partition plate 31 into the space formed between the central opening partition plate 31 and the wafer side partition plate 41.

次に原料ガスは、ウェハ側仕切り板41の全面に均等に設けられた複数の分散開口42を通って、プロセスチューブ1の軸方向に垂直な断面の全体に分散されて均熱領域7に流れる。 Next, the raw material gas is distributed to the entire cross section perpendicular to the axial direction of the process tube 1 through a plurality of dispersion openings 42 provided evenly over the entire surface of the wafer side partition plate 41, and flows into the soaking region 7. ..

本発明の実施の形態1は、不純物拡散源を含む原料ガスを流しながら熱処理を行う事により、熱拡散処理を行う拡散炉に用いられる。熱処理炉内で拡散処理を行う熱拡散処理の例として、シリコン(Si)の半導体ウェハにn型不純物のリン(P)を拡散させる場合は、オキシ塩化リン(POCl)を気化させて窒素ガスや酸素ガスと混合して原料ガスとする。反応式は次の通りである。
2POCl+(3/2)O → P+3Cl(1)
+(5/2)Si → 2P+(5/2)SiO(2)
The first embodiment of the present invention is used in a diffusion furnace that performs thermal diffusion processing by performing heat treatment while flowing a source gas containing an impurity diffusion source. As an example of a thermal diffusion process in which a diffusion process is performed in a heat treatment furnace, when diffusing n-type impurity phosphorus (P) into a semiconductor wafer of silicon (Si), phosphorus oxychloride (POCl 3 ) is vaporized to nitrogen gas. And mixed with oxygen gas to obtain the raw material gas. The reaction formula is as follows.
2POCl 3 +(3/2)O 2 →P 2 O 5 +3Cl 2 (1)
P 2 O 5 +(5/2)Si→2P+(5/2)SiO 2 (2)

上記式(1)、(2)の化学反応は800℃〜1000℃の炉中で行われる。 The chemical reactions of the above formulas (1) and (2) are performed in a furnace at 800°C to 1000°C.

複数の半導体ウェハ5をプロセスチューブ1内に配置して同時に熱拡散処理を行う場合、複数の半導体ウェハ5に対して同一の条件で処理を行う事により、拡散の均一性を向上させることができる。熱拡散処理に影響を与える条件として、処理温度と原料ガスの供給量があげられる。複数の半導体ウェハ5に対して処理温度を均一化することにより、熱処理の均一性が向上する。 When a plurality of semiconductor wafers 5 are arranged in the process tube 1 and heat diffusion processing is performed at the same time, the uniformity of diffusion can be improved by performing the treatment on the plurality of semiconductor wafers 5 under the same conditions. .. Conditions that affect the thermal diffusion process include the processing temperature and the amount of raw material gas supplied. By uniformizing the processing temperature for the plurality of semiconductor wafers 5, the uniformity of the heat treatment is improved.

また、複数の半導体ウェハ5に対して原料ガスの供給量を均一化することにより、熱拡散処理の均一性が向上する。原料ガスの供給量については、原料ガスを供給する際のプロセスチューブ1の軸方向に垂直な断面での流速分布を均一化することにより、原料ガスの供給量の均一性が向上する。 Further, by uniformizing the supply amount of the raw material gas to the plurality of semiconductor wafers 5, the uniformity of the thermal diffusion process is improved. Regarding the supply amount of the source gas, the uniformity of the supply amount of the source gas is improved by making the flow velocity distribution uniform in the cross section perpendicular to the axial direction of the process tube 1 when the source gas is supplied.

本発明の実施の形態1では、導入口側第1仕切り板11の第1開口12と導入口側第2仕切り板21の第2開口22とがプロセスチューブ1の軸方向から見て重ならない位置に設けられている。原料ガスは、導入口側第1仕切り板11と導入口側第2仕切り板21との間で第1開口21から第2開口22まで、プロセスチューブ1の軸方向と垂直方向に流れる。このように開口部を設けて、原料ガスをプロセスチューブ1の軸方向と垂直方向に流すことにより、ヒーター6によって加熱される空間を流れる時間が長くなるので、仕切り板なしの場合に比べて原料ガスの温度が高くなり、均熱領域7の温度低下を抑制することができる。 In the first embodiment of the present invention, the position where the first opening 12 of the inlet-side first partition plate 11 and the second opening 22 of the inlet-side second partition plate 21 do not overlap when viewed in the axial direction of the process tube 1. It is provided in. The raw material gas flows between the first inlet-side partition plate 11 and the second inlet-side partition plate 21 from the first opening 21 to the second opening 22 in a direction perpendicular to the axial direction of the process tube 1. Since the raw material gas is caused to flow in the direction perpendicular to the axial direction of the process tube 1 by providing the opening portion in this way, the time for flowing through the space heated by the heater 6 becomes longer, so that the raw material gas is compared to the case without the partition plate. The temperature of the gas becomes high, and the temperature drop in the soaking region 7 can be suppressed.

なお、第1開口12と第2開口22とを周方向で180°ずれた位置に配置することにより、原料ガスが、導入口側第1仕切り板11と導入口側第2仕切り板21との間で第1開口12から第2開口22まで流れる距離を最も長くすることができる。 In addition, by arranging the first opening 12 and the second opening 22 at positions shifted by 180° in the circumferential direction, the raw material gas is separated from the introduction port side first partition plate 11 and the introduction port side second partition plate 21. The distance flowing from the first opening 12 to the second opening 22 can be made the longest.

また、本発明の実施の形態1では、原料ガスは、導入口側第1仕切り板11と導入口側第2仕切り板21とが隣り合って設置されるので、第1位置と第2位置を、周方向で90°以上ずらすことにより、ヒーター6によって加熱される空間を流れる時間をより長くすることができる。第1位置と第2位置を、周方向で180°ずらすことにより、ヒーター6によって加熱される空間を流れる時間を最も長くすることができる。 Further, in the first embodiment of the present invention, the source gas is installed at the first position and the second position because the inlet side first partition plate 11 and the inlet side second partition plate 21 are installed adjacent to each other. By shifting by 90° or more in the circumferential direction, it is possible to further lengthen the time of flowing through the space heated by the heater 6. By shifting the first position and the second position by 180° in the circumferential direction, it is possible to maximize the time for flowing through the space heated by the heater 6.

また、本発明では、半導体ウェハ5はプロセスチューブ1の軸方向に平行に設置されており、導入ガスが半導体ウェハ間を通過しやすいため、半導体ウェハ面内の均一性が向上するという効果がある。また、プロセスチューブ1の軸方向に複数個並べられた小ボート間での均一性が向上するという効果がある。 Further, in the present invention, the semiconductor wafer 5 is installed parallel to the axial direction of the process tube 1, and the introduced gas easily passes between the semiconductor wafers, so that there is an effect that the uniformity in the plane of the semiconductor wafer is improved. .. Further, there is an effect that the uniformity is improved between the small boats arranged in the axial direction of the process tube 1.

また、本発明の実施の形態1では、均熱領域7に最も近い側に設けられたウェハ側仕切り板41において、複数の分散開口42がウェハ側仕切り板41の全面に均等に設けられているので、原料ガスを、複数の分散開口42に均等に分散し、プロセスチューブ1の軸方向に垂直な断面の全体に分散して均熱領域7に流すという効果がある。これにより、プロセスチューブ1の軸方向に垂直な断面での原料ガスの流速分布を、断面全体で均一化することができるので、プロセスチューブ1の軸方向に垂直な方向に平行に複数配置された半導体ウェハ5において、半導体ウェハ間の均一性を向上させることができる。 Further, in the first embodiment of the present invention, in the wafer side partition plate 41 provided on the side closest to the soaking area 7, a plurality of dispersion openings 42 are evenly provided on the entire surface of the wafer side partition plate 41. Therefore, there is an effect that the raw material gas is evenly distributed in the plurality of dispersion openings 42, is distributed over the entire cross section of the process tube 1 perpendicular to the axial direction, and is flowed to the soaking region 7. This makes it possible to make the flow velocity distribution of the raw material gas in the cross section perpendicular to the axial direction of the process tube 1 uniform over the entire cross section, so that a plurality of the process tubes 1 are arranged in parallel to the direction perpendicular to the axial direction. In the semiconductor wafer 5, the uniformity between semiconductor wafers can be improved.

また、本発明の実施の形態1では、ウェハ側仕切り板41に隣り合う上流側に中央開口仕切り板31が設けられているので、ウェハ側仕切り板41の複数の分散開口42に対して均等に原料ガスを分散する効果がある。 Further, in the first embodiment of the present invention, since the central opening partition plate 31 is provided on the upstream side adjacent to the wafer side partition plate 41, the wafer side partition plate 41 is evenly distributed to the plurality of dispersion openings 42. It has the effect of dispersing the raw material gas.

本発明によれば、半導体ウェハ内の中心部への原料ガスの供給を促すことにより、半導体ウェハの面内での熱処理の均一性を向上するとともに、プロセスチューブ1の軸方向に複数配置された半導体ウェハ間での温度の均一性を向上することで、半導体ウェハ間での熱処理の均一性を向上するができる。 According to the present invention, by promoting the supply of the source gas to the central portion of the semiconductor wafer, the uniformity of the heat treatment in the plane of the semiconductor wafer is improved, and a plurality of process tubes 1 are arranged in the axial direction. By improving the temperature uniformity between semiconductor wafers, the uniformity of heat treatment between semiconductor wafers can be improved.

実施の形態2.
実施の形態2は、実施の形態1と比較して、ウェハ側仕切り板の形状が異なる。それ以外の構成は実施の形態1と同様である。図8に、実施の形態2に用いるウェハ側仕切り板51をプロセスチューブ1の軸方向から見た平面図を示す。ウェハ側仕切り板51は、平行に等間隔で複数枚設置された仕切り板のうち、半導体ウェハ5に最も近い位置に配置される。
Embodiment 2.
The second embodiment is different from the first embodiment in the shape of the wafer side partition plate. The other configuration is the same as that of the first embodiment. FIG. 8 shows a plan view of the wafer side partition plate 51 used in the second embodiment as seen from the axial direction of the process tube 1. The wafer-side partition plate 51 is arranged at a position closest to the semiconductor wafer 5 among the partition plates that are installed in parallel at a plurality of intervals.

ウェハ側仕切り板51は、石英製で、外径がプロセスチューブ1の内径と等しい円板状であり、均熱領域7に対応する領域に、スリット状の分散開口52が設けられる。分散開口52は、開口の形状が例えば鉛直方向が半導体ウェハ5の一辺と同じ156mm、水平方向が10mmの長方形で、開口と開口との間の開口間保持部が10mmで、8個の開口が水平方向に並んで配置される。8個の開口と開口間保持部7個を水平方向に並べることで、鉛直方向156mm、水平方向150mmの均熱領域7に対応する領域に開口を設ける。この場合、均熱領域7での分散開口52の開口率は約50%となる。また、プロセスチューブ1の軸方向と垂直方向の断面に対する分散開口52の開口率は約25%となる。 The wafer-side partition plate 51 is made of quartz and has a disk shape with an outer diameter equal to the inner diameter of the process tube 1, and slit-shaped dispersion openings 52 are provided in a region corresponding to the soaking region 7. The dispersion opening 52 has a rectangular shape having, for example, a vertical direction of 156 mm, which is the same as one side of the semiconductor wafer 5, and a horizontal direction of 10 mm. The inter-opening holding portion between the openings is 10 mm, and eight openings are provided. They are arranged side by side in the horizontal direction. By arranging the eight openings and the seven inter-opening holding portions in the horizontal direction, the openings are provided in a region corresponding to the soaking region 7 of 156 mm in the vertical direction and 150 mm in the horizontal direction. In this case, the aperture ratio of the dispersion openings 52 in the soaking region 7 is about 50%. Further, the opening ratio of the dispersion openings 52 with respect to the cross section of the process tube 1 in the direction perpendicular to the axial direction is about 25%.

なお、導入口側第1仕切り板11の第1開口12、導入口側第2仕切り板21の第2開口22、中央開口仕切り板31の中央開口32について、プロセスチューブ1の軸方向と垂直方向の断面に対する開口率は、分散開口52の開口率と同程度とすることが望ましい。 The first opening 12 of the inlet-side first partition plate 11, the second opening 22 of the inlet-side second partition plate 21, and the central opening 32 of the central opening partition plate 31 are perpendicular to the axial direction of the process tube 1. It is desirable that the aperture ratio with respect to the cross section of the above is approximately the same as the aperture ratio of the dispersion aperture 52.

実施の形態2では、均熱領域7に対応する領域のみに開口部が設けられているので、原料ガスが主に均熱領域7に流れるため、原料ガスを半導体ウェハ5に効率的に供給するという効果がある。 In the second embodiment, since the opening is provided only in the region corresponding to the soaking region 7, the source gas mainly flows into the soaking region 7, so that the source gas is efficiently supplied to the semiconductor wafer 5. There is an effect.

また、開口と開口間保持部とを同程度の長さとすることで、ウェハ側仕切り板51の強度を保つという効果がある。また、開口と開口間保持部とを同程度の長さとすることで、50%の開口率を得るという効果がある。すなわち、開口と開口間保持部とを同程度の長さとすることにより、強度を確保しつつ高い開口率を得ることができる。開口率を大きくすることにより、プロセスチューブ1の軸方向と垂直方向の断面において、面内の原料ガスの流速分布を均等化することができる。 Further, by making the openings and the inter-opening holding portions to have the same length, there is an effect that the strength of the wafer side partition plate 51 is maintained. Further, by making the openings and the inter-opening holding portions have the same length, it is possible to obtain an opening ratio of 50%. That is, by making the openings and the opening-to-opening holding portions have the same length, it is possible to obtain a high opening ratio while ensuring strength. By increasing the aperture ratio, it is possible to equalize the in-plane flow rate distribution of the source gas in the cross section of the process tube 1 in the direction perpendicular to the axial direction.

実施の形態3.
実施の形態3は、実施の形態1と比較して、ウェハ側仕切り板の形状が異なる。それ以外の構成は実施の形態1と同様である。図9に、実施の形態3に用いるウェハ側仕切り板61をプロセスチューブ1の軸方向から見た平面図を示す。ウェハ側仕切り板61は、平行に等間隔で複数枚設置された仕切り板のうち、半導体ウェハ5に最も近い位置に配置される。
Embodiment 3.
The third embodiment is different from the first embodiment in the shape of the wafer side partition plate. The other configuration is the same as that of the first embodiment. FIG. 9 shows a plan view of the wafer side partition plate 61 used in the third embodiment as seen from the axial direction of the process tube 1. The wafer-side partition plate 61 is arranged at a position closest to the semiconductor wafer 5 among the partition plates that are installed in parallel at a plurality of intervals.

ウェハ側仕切り板61は、石英製で、外径がプロセスチューブ1の内径と等しい円板状であり、均熱領域7に対応する領域に、円状の分散開口62が千鳥状に複数配置される。分散開口62は、開口の形状が外径10mmの円形で、10mmの開口間保持部を設けて水平方向に並べて均熱領域7の幅だけ配置される。鉛直方向には、開口間ピッチの半分だけ水平方向にずらして、上下に隣り合う開口の中心が鉛直方向に対して60°の角度を持つような高さで配置される。このとき、上下に隣り合う開口の開口間保持部は、左右に隣り合う開口の開口間保持部と同じ長さになる。これにより、分散開口62は中心位置が正三角形となる配置で配置される。これを鉛直方向に並べて、均熱領域7の高さ分だけ配置する。このようにに並べることで、鉛直方向156mm、水平方向150mmの均熱領域7に対応する領域に開口を設ける。この場合、均熱領域7での分散開口62の開口率は23%となる。また、プロセスチューブ1の軸方向と垂直方向の断面に対する分散開口62の開口率は約12%となる。 The wafer-side partition plate 61 is made of quartz and has a disk shape with an outer diameter equal to the inner diameter of the process tube 1. In the area corresponding to the soaking area 7, a plurality of circular dispersion openings 62 are arranged in a staggered manner. It The dispersion openings 62 have a circular shape with an outer diameter of 10 mm, and are provided with inter-opening holding portions of 10 mm to be arranged in the horizontal direction and arranged by the width of the soaking area 7. In the vertical direction, the centers of the vertically adjacent openings are arranged so as to be horizontally displaced by half the pitch between the openings, and the centers of the openings are arranged at a height of 60° with respect to the vertical direction. At this time, the inter-opening holding portions of the vertically adjacent openings have the same length as the inter-opening holding portions of the left and right adjacent openings. As a result, the dispersion openings 62 are arranged such that the center position thereof is an equilateral triangle. These are arranged in the vertical direction and arranged by the height of the soaking area 7. By arranging in this way, an opening is provided in a region corresponding to the soaking region 7 of 156 mm in the vertical direction and 150 mm in the horizontal direction. In this case, the aperture ratio of the dispersion opening 62 in the soaking area 7 is 23%. Further, the opening ratio of the dispersion openings 62 with respect to the cross section of the process tube 1 in the direction perpendicular to the axial direction is about 12%.

なお、導入口側第1仕切り板11の第1開口12、導入口側第2仕切り板21の第2開口22、中央開口仕切り板31の中央開口32について、プロセスチューブ1の軸方向と垂直方向の断面に対する開口率は、分散開口62の開口率と同程度とすることが望ましい。 The first opening 12 of the inlet-side first partition plate 11, the second opening 22 of the inlet-side second partition plate 21, and the central opening 32 of the central opening partition plate 31 are perpendicular to the axial direction of the process tube 1. It is desirable that the aperture ratio with respect to the cross section of 1 is approximately the same as the aperture ratio of the dispersion aperture 62.

実施の形態3では、均熱領域7に対応する領域のみに開口部が設けられているので、原料ガスが主に均熱領域7に流れるため、原料ガスを半導体ウェハ5に効率的に供給するという効果がある。また、開口と開口間保持部とを同程度の長さとすることで、ウェハ側仕切り板61の強度を保つという効果がある。また、開口部を60°の千鳥配置の円形とすることで、23%の開口率を得るという効果がある。 In the third embodiment, since the opening is provided only in the region corresponding to the soaking region 7, the source gas mainly flows into the soaking region 7, so that the source gas is efficiently supplied to the semiconductor wafer 5. There is an effect. Further, by setting the lengths of the opening and the holding portion between openings to be approximately the same, there is an effect that the strength of the wafer side partition plate 61 is maintained. In addition, by forming the openings in a zigzag arrangement of 60°, an aperture ratio of 23% can be obtained.

実施の形態3では、開口と開口間保持部とを同程度の長さとし、開口間ピッチの半分だけ水平方向にずらしてに並べる事により、ある高さ位置の列の水平方向の開口位置が隣り合う列の開口間保持部となり、ある高さ位置の列の水平方向の開口間保持部が隣り合う列列の開口位置となる。即ち、水平方向の各位置にに開口を設けることができるので、原料ガスを半導体ウェハ5に効率的に供給するという効果がある。 In the third embodiment, the openings and the inter-opening holding portions have the same length, and the rows are horizontally shifted by a half of the inter-opening pitch, so that the rows at the certain height positions are adjacent to each other in the horizontal direction. It becomes the inter-opening holding portion of the matching row, and the horizontal inter-opening holding portion of the row at a certain height position becomes the opening position of the adjacent row. That is, since openings can be provided at respective positions in the horizontal direction, there is an effect that the source gas is efficiently supplied to the semiconductor wafer 5.

実施の形態4.
本発明の太陽電池セルの製造方法の実施の形態4について説明する。太陽電池セルを製造するには、例えば、ホウ素(B)が添加されたp型シリコンウェハに対して、上記実施の形態1の熱処理方法を用いてリンを拡散し、ウェハ表面にn型層を形成する。これによって、p型シリコンウェハの表面にpn接合が形成され、太陽光によって光起電力を発生させることができる。光起電力によって生じた電流を取り出すため、n型層上に複数の細線電極を、ウェハ裏面全体に裏面電極を形成する。n型層の上には反射防止層などを形成して、光利用効率を高めることができる。太陽電池モジュールを製造するには、複数の太陽電池セルをガラス基板上に配列して電気配線を行い、EVA樹脂などで封止を行えばよい。
Fourth Embodiment
A fourth embodiment of the method for manufacturing a solar cell of the present invention will be described. To manufacture a solar cell, for example, a p-type silicon wafer to which boron (B) is added is diffused with phosphorus using the heat treatment method of the above-described first embodiment, and an n-type layer is formed on the wafer surface. Form. As a result, a pn junction is formed on the surface of the p-type silicon wafer, and photovoltaic power can be generated by sunlight. In order to extract the electric current generated by the photovoltaic power, a plurality of thin wire electrodes are formed on the n-type layer and a back surface electrode is formed on the entire back surface of the wafer. An antireflection layer or the like may be formed on the n-type layer to improve light utilization efficiency. In order to manufacture a solar battery module, a plurality of solar battery cells may be arranged on a glass substrate, electrical wiring may be performed, and sealing may be performed with EVA resin or the like.

本発明によれば、太陽電池セルの製造方法において、均一に熱処理された半導体ウェハを用いることができるので、均一な太陽電池セルを得ることができるという効果がある。 According to the present invention, in the method for manufacturing a solar battery cell, since a semiconductor wafer that has been uniformly heat-treated can be used, there is an effect that a uniform solar battery cell can be obtained.

以上のように、この発明にかかる熱処理方法は、複数の半導体ウェハに対して熱処理を行う熱処理方法に有用である。 As described above, the heat treatment method according to the present invention is useful as a heat treatment method for performing heat treatment on a plurality of semiconductor wafers.

Claims (4)

筒状のプロセスチューブに、前記プロセスチューブの軸と平行に複数の半導体ウェハを設置する半導体ウェハ設置工程と、
前記プロセスチューブの一方の端に設けられたガス導入口から原料ガスを供給しながら前記プロセスチューブを加熱することによって、前記半導体ウェハを熱処理する熱処理工程とを備えた熱処理方法であって、
前記ガス導入口と前記半導体ウェハとの間に、前記プロセスチューブの軸と垂直に配置され、前記プロセスチューブの内周と接する複数の仕切り板を有し、前記仕切り板に設けられた開口を通して前記原料ガスを供給し、
前記複数の仕切り板は、前記ガス導入口側から導入口側第1仕切り板、導入口側第2仕切り板、中央開口仕切り板、ウェハ側仕切り板の順に設置され、
前記ガス導入口側に設置された導入口側第1仕切り板が、周方向の端部の第1位置の切欠きにより前記プロセスチューブの内周との間に形成された第1開口を備え、
前記導入口側第2仕切り板が、周方向の端部の前記第1位置とは異なる第2位置の切欠きにより前記プロセスチューブの内周との間に形成された第2開口を備え、
前記中央開口仕切り板が、中央部に形成された1個の中央開口を備え、
前記ウェハ側仕切り板が、前記原料ガスを分散させる複数の開口である分散開口を備えた
ことを特徴とする半導体ウェハの熱処理方法。
A semiconductor wafer installation step of installing a plurality of semiconductor wafers in a cylindrical process tube in parallel with the axis of the process tube;
A heat treatment method comprising a heat treatment step of heat treating the semiconductor wafer by heating the process tube while supplying a source gas from a gas inlet provided at one end of the process tube,
Between the gas inlet and the semiconductor wafer, it is arranged perpendicular to the axis of the process tube, has a plurality of partition plates in contact with the inner circumference of the process tube, through the opening provided in the partition plate Supply raw material gas ,
The plurality of partition plates are installed in this order from the gas inlet side to the inlet side first partition plate, the inlet side second partition plate, the central opening partition plate, and the wafer side partition plate.
The inlet side first partition plate installed on the gas inlet side includes a first opening formed between the inner periphery of the process tube and a notch at the first position of the end portion in the circumferential direction,
The introduction-side second partition plate includes a second opening formed between the inner periphery of the process tube by a notch at a second position different from the first position at the end in the circumferential direction,
The central opening partition plate is provided with one central opening formed in the central portion,
The heat treatment method for a semiconductor wafer, wherein the wafer-side partition plate is provided with dispersion openings that are a plurality of openings for dispersing the raw material gas .
前記分散開口が、前記半導体ウェハを設置する領域である均熱領域に対応した領域に設けられたことを特徴とする請求項に記載の半導体ウェハの熱処理方法。 2. The heat treatment method for a semiconductor wafer according to claim 1 , wherein the dispersion opening is provided in a region corresponding to a soaking region which is a region in which the semiconductor wafer is installed. 前記原料ガスが不純物拡散源を含み、前記熱処理により拡散処理を行うことを特徴とする請求項1または2に記載の半導体ウェハの熱処理方法。 The raw material gas comprises impurity diffusion source, the heat treatment method of semiconductor wafer of claim 1 or 2, characterized in that the diffusion treatment by the heat treatment. 請求項に記載の熱処理方法により前記複数の半導体ウェハに不純物拡散層を形成し、前記複数の半導体ウェハの内部にpn接合を形成することを特徴とする太陽電池の製造方法。 A method of manufacturing a solar cell, comprising: forming an impurity diffusion layer on the plurality of semiconductor wafers by the heat treatment method according to claim 3 ; and forming a pn junction inside the plurality of semiconductor wafers.
JP2017038884A 2017-03-02 2017-03-02 Semiconductor wafer heat treatment method and solar cell manufacturing method Expired - Fee Related JP6743727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017038884A JP6743727B2 (en) 2017-03-02 2017-03-02 Semiconductor wafer heat treatment method and solar cell manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017038884A JP6743727B2 (en) 2017-03-02 2017-03-02 Semiconductor wafer heat treatment method and solar cell manufacturing method

Publications (2)

Publication Number Publication Date
JP2018147942A JP2018147942A (en) 2018-09-20
JP6743727B2 true JP6743727B2 (en) 2020-08-19

Family

ID=63591476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017038884A Expired - Fee Related JP6743727B2 (en) 2017-03-02 2017-03-02 Semiconductor wafer heat treatment method and solar cell manufacturing method

Country Status (1)

Country Link
JP (1) JP6743727B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146940U (en) * 1983-03-22 1984-10-01 沖電気工業株式会社 Heat treatment furnace jig
JPS60149132U (en) * 1984-03-14 1985-10-03 三洋電機株式会社 Semiconductor heat treatment furnace
JPH01198016A (en) * 1988-02-03 1989-08-09 Nec Yamagata Ltd Horizontal plasma cvd apparatus
US6109915A (en) * 1998-12-08 2000-08-29 United Microelectronics Corp. Drafting apparatus
JP2013182916A (en) * 2012-02-29 2013-09-12 Mitsubishi Electric Corp Thermal diffusion device
JP6320325B2 (en) * 2015-03-05 2018-05-09 三菱電機株式会社 Semiconductor manufacturing apparatus and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP2018147942A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
US8835333B2 (en) Heat treatment method of semiconductor wafers, manufacturing method of solar battery, and heat treatment device
CN102427971B (en) High efficiency epitaxial chemical vapor deposition (cvd) reactor
KR101470396B1 (en) Method of manufacturing epitaxial silicon wafer and epitaxial silicon wafer manufactured by the method
KR101895611B1 (en) Method for processing solar cell substrates
TW200527518A (en) Deposition system and deposition method
CN112941626B (en) Air inlet assembly and air inlet device of process chamber and semiconductor processing equipment
JP2011231005A (en) Polysilicon reducing furnace
US20160298263A1 (en) Process gas preheating systems and methods for double-sided multi-substrate batch processing
JP6743727B2 (en) Semiconductor wafer heat treatment method and solar cell manufacturing method
US20150361555A1 (en) Cvd epitaxial reactor chamber with resistive heating, three channel substrate carrier and gas preheat structure
CN111118609A (en) Tube furnace structure for gas diffusion
US9068263B2 (en) Apparatus for manufacture of solar cells
CN104981428B (en) The method of polysilicon deposition
CN102161489B (en) Apparatus for producing trichlorosilane and method for producing trichlorosilane
CN112960674B (en) Chassis and chassis assembly of polycrystalline silicon reduction furnace and reduction furnace
CN102051602A (en) Thin film deposition method and device
TWI606603B (en) Horizontal diffusion furnace and method for producing solar cell unit
CN220999956U (en) Uniform flow component and diffusion equipment
CN218482215U (en) Wafer bearing device and semiconductor process equipment
CN111128696A (en) Method for producing epitaxial silicon wafer and epitaxial silicon wafer
KR101770281B1 (en) Apparatus of manufacturing solar cell
JP6573216B2 (en) Vapor growth apparatus and epitaxial wafer manufacturing method
KR100244040B1 (en) Semiconductor manufacturing system and substrate processing method
CN207353273U (en) Tubular diffusion furnace
KR100990687B1 (en) Apparatus for manufacturing a Bulk silicon solar cell and Method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R151 Written notification of patent or utility model registration

Ref document number: 6743727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees