JP6743648B2 - Internal combustion engine and method of controlling internal combustion engine - Google Patents

Internal combustion engine and method of controlling internal combustion engine Download PDF

Info

Publication number
JP6743648B2
JP6743648B2 JP2016209891A JP2016209891A JP6743648B2 JP 6743648 B2 JP6743648 B2 JP 6743648B2 JP 2016209891 A JP2016209891 A JP 2016209891A JP 2016209891 A JP2016209891 A JP 2016209891A JP 6743648 B2 JP6743648 B2 JP 6743648B2
Authority
JP
Japan
Prior art keywords
water
cooling water
low
side cooling
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016209891A
Other languages
Japanese (ja)
Other versions
JP2018071391A (en
Inventor
伸匡 大橋
伸匡 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016209891A priority Critical patent/JP6743648B2/en
Publication of JP2018071391A publication Critical patent/JP2018071391A/en
Application granted granted Critical
Publication of JP6743648B2 publication Critical patent/JP6743648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、内燃機関及び内燃機関の制御方法に関する。 The present invention relates to an internal combustion engine and a control method for the internal combustion engine.

エンジン冷却水が流通する高温側冷却水路にメインラジエータと高温側冷却水用のポンプを備えるとともに、水冷インタークーラを冷却した後の冷却水が流通する低温側冷却水路にサブラジエータと低温側冷却水用のポンプとを備えて構成される内燃機関の冷却装置が提案されている(例えば、特許文献1参照)。 The main radiator and the pump for the high temperature side cooling water are provided in the high temperature side cooling water passage through which the engine cooling water flows, and the sub radiator and the low temperature side cooling water are provided in the low temperature side cooling water passage through which the cooling water after cooling the water cooling intercooler flows. There has been proposed a cooling device for an internal combustion engine, which is configured to include a pump for use in the engine (for example, refer to Patent Document 1).

特開2012−189063号公報JP2012-189063A

ところで、車両の燃費性能及び排ガス性能の良化の観点から、排気通路から吸気通路に還流される排気ガス(EGRガス)の低温化が検討されている。しかしながら、従来のように、EGRガスを冷却するEGRクーラの冷却媒体として、内燃機関の冷却により比較的高温となるエンジン冷却水を使用していたのでは、EGRガスの更なる低温化を達成するのは困難であった。 By the way, from the viewpoint of improving the fuel efficiency performance and the exhaust gas performance of the vehicle, the temperature reduction of the exhaust gas (EGR gas) recirculated from the exhaust passage to the intake passage has been studied. However, as in the conventional case, if the engine cooling water, which has a relatively high temperature due to the cooling of the internal combustion engine, is used as the cooling medium of the EGR cooler that cools the EGR gas, further lowering of the EGR gas is achieved. It was difficult.

また、EGRガスを低温化するにつれて、EGRガスに含まれる水蒸気量が飽和水蒸気量を超えて、余剰の水蒸気が液化して凝縮水が生成される懸念が強まる。この凝縮水(水ミスト)が吸気ガスに混入して気筒(シリンダ)内に多量に流入すると、シリンダ内面の潤滑油膜を洗い落としたり、ピストン等の各部品の腐食や各部品へのカーボンの堆積等の不具合に至ったりする可能性がある。また、EGR配管やEGRバルブ等の各種配管及びバルブ等の腐食や劣化に至る可能性もある。 Further, as the temperature of the EGR gas decreases, the amount of water vapor contained in the EGR gas exceeds the amount of saturated water vapor, and there is a greater concern that excess water vapor is liquefied and condensed water is generated. If this condensed water (water mist) mixes with the intake gas and flows into the cylinder (cylinder) in large quantities, the lubricating oil film on the inner surface of the cylinder is washed off, the parts such as the piston are corroded, and carbon is deposited on the parts. There is a possibility that it will lead to the malfunction of. Further, there is a possibility that various pipes such as EGR pipes and EGR valves and valves may be corroded or deteriorated.

本発明の目的は、EGRガスに含まれる水蒸気の液化による凝縮水の生成を回避しつつ、EGRガスの更なる低温化を達成して、車両の燃費性能及び排ガス性能を良化させることができる内燃機関及び内燃機関の制御方法を提供することにある。 An object of the present invention is to avoid generation of condensed water due to liquefaction of water vapor contained in EGR gas, achieve a further lower temperature of EGR gas, and improve vehicle fuel economy performance and exhaust gas performance. An object of the present invention is to provide an internal combustion engine and a method of controlling the internal combustion engine.

上記の目的を達成するための本発明の内燃機関は、内燃機関の冷却を行う高温側冷却水が流通する高温側冷却水用流路に高水温用ラジエータと高水温用送水装置を備えるとともに、前記内燃機関の吸気通路を通過する吸気ガスの冷却を行う低温側冷却水が流通する低温側冷却水用流路に低水温用ラジエータと低水温用送水装置とEGRクーラを備えて構成される内燃機関において、前記EGRクーラより上流側の前記低温側冷却水用流路に、前記高温側冷却水用流路より分岐した分岐流路を接続して、前記低温側冷却水用流路を通過する低温側冷却水と前記分岐流路を通過する高温側冷却水が混合された混合冷却水を前記EGRクーラに流通させるとともに、前記低水温用送水装置を電動送水装置として構成して、さらに、前記EGRクーラより下流側のEGR通路にEGRガス温度検出装置を備え、前記内燃機関の排気通路または排気マニホールドに排気酸素過剰率検出装置を備えて、前記内燃機関を制御する制御装置が、前記EGRガス温度検出装置の検出値及び前記排気酸素過剰率検出装置の検出値に基づいて、EGRガスに含まれる水蒸気が液化して凝縮水が生成されるか否かを判定する凝縮水生成判定を行うとともに、該凝縮水生成判定で凝縮水が生成されると判定するときには、前記低水温用送水装置の回転数を前記内燃機関の運転状態に応じて予め設定される基本回転数より低下させる制御である回転数調整制御を行うように構成される。 The internal combustion engine of the present invention for achieving the above-mentioned object is provided with a high water temperature radiator and a high water temperature water supply device in a high temperature side cooling water passage through which high temperature side cooling water for cooling the internal combustion engine flows, An internal combustion engine including a low water temperature radiator, a low water temperature water supply device, and an EGR cooler in a low temperature side cooling water passage through which low temperature side cooling water that cools intake gas passing through an intake passage of the internal combustion engine flows. In the engine, a branch channel branched from the high temperature side cooling water channel is connected to the low temperature side cooling water channel upstream of the EGR cooler to pass through the low temperature side cooling water channel. While circulating the mixed cooling water in which the low temperature side cooling water and the high temperature side cooling water passing through the branch passage are mixed into the EGR cooler, the low water temperature water supply device is configured as an electric water supply device, and further, An EGR gas temperature detecting device is provided in an EGR passage downstream of the EGR cooler, and an exhaust gas oxygen excess ratio detecting device is provided in an exhaust passage or an exhaust manifold of the internal combustion engine, and a control device for controlling the internal combustion engine is the EGR gas. Based on the detection value of the temperature detection device and the detection value of the exhaust oxygen excess ratio detection device, while performing the condensed water generation determination to determine whether the water vapor contained in the EGR gas is liquefied to generate condensed water When the condensed water generation determination determines that condensed water is generated, the control is performed to reduce the rotation speed of the low water temperature water supply device below a basic rotation speed that is preset according to the operating state of the internal combustion engine. It is configured to perform rotational speed adjustment control.

また、上記の目的を達成するための本発明の内燃機関の制御方法は、内燃機関の冷却を行う高温側冷却水が流通する高温側冷却水用流路に高水温用ラジエータと高水温用送水装置を備えるとともに、前記内燃機関の吸気通路を通過する吸気ガスの冷却を行う低温側冷却水が流通する低温側冷却水用流路に低水温用ラジエータと電動式の低水温用送水装置とEGRクーラを備えて、さらに、該EGRクーラより上流側の前記低温側冷却水用流路に、前記高温側冷却水用流路より分岐した分岐流路を接続して、前記低温側冷却水用流路を通過する低温側冷却水と前記分岐流路を通過する高温側冷却水が混合された混合冷却水を前記EGRクーラに流通させるように構成される内燃機関の制御方法において、前記EGRクーラより下流側のEGR通路を通過するEGRガスの温度と、前記内燃機関の排気通路または排気マニホールドを通過する排気ガスの酸素過剰率に基づいて、EGRガスに含まれる水蒸気が液化して凝縮水が生成されるか否かを判定する凝縮水生成判定を行うとともに、該凝縮水生成判定で凝縮水が生成されると判定するときには、前記低水温用送水装置の回転数を前記内燃機関の運転状態に応じて予め設定される基本回転数より低下させる制御である回転数調整制御を行うことを特徴とする方法である。 Further, the method for controlling an internal combustion engine of the present invention to achieve the above object, a high water temperature radiator and a high water temperature water supply in the high temperature side cooling water flow path through which the high temperature side cooling water for cooling the internal combustion engine flows. And a low water temperature radiator, an electric low water temperature water supply device, and an EGR in a low temperature side cooling water passage through which low temperature side cooling water that cools intake gas passing through an intake passage of the internal combustion engine is provided. A cooler is further provided, and a branch channel branched from the high temperature side cooling water channel is connected to the low temperature side cooling water channel upstream of the EGR cooler to provide the low temperature side cooling water flow. A method for controlling an internal combustion engine configured to flow mixed cooling water, which is a mixture of low temperature side cooling water passing through a passage and high temperature side cooling water passing through the branch passage, to the EGR cooler. Based on the temperature of the EGR gas passing through the EGR passage on the downstream side and the oxygen excess rate of the exhaust gas passing through the exhaust passage or the exhaust manifold of the internal combustion engine, the water vapor contained in the EGR gas is liquefied to generate condensed water. While performing the condensed water generation determination to determine whether or not, when it is determined that the condensed water is generated in the condensed water generation determination, the rotation speed of the low water temperature water supply device to the operating state of the internal combustion engine Accordingly, the method is characterized by performing rotation speed adjustment control, which is control for reducing the rotation speed below a preset basic rotation speed.

本発明の内燃機関及び内燃機関の制御方法によれば、エンジン冷却水(高温側冷却水)と吸気ガス冷却用の低温側冷却水を混合して、エンジン冷却水より低温の混合冷却水を冷却媒体としてEGRクーラに流通させるので、エンジン冷却水を冷却媒体とする従来技術と比較して、EGRガスを更に低温化することができる。その結果、気筒内に流入される吸気とEGRガスの混合気を低体積化して車両の燃費性能を良化させることができるとともに、混合気を低温化して排ガス性能を良化させることができる。 According to the internal combustion engine and the method for controlling the internal combustion engine of the present invention, the engine cooling water (high temperature side cooling water) and the low temperature side cooling water for cooling the intake gas are mixed to cool the mixed cooling water lower than the engine cooling water. Since it is circulated to the EGR cooler as a medium, the EGR gas can be further cooled as compared with the conventional technique in which engine cooling water is used as the cooling medium. As a result, it is possible to reduce the volume of the air-fuel mixture of intake air and EGR gas flowing into the cylinder to improve the fuel efficiency performance of the vehicle, and to lower the temperature of the air-fuel mixture to improve the exhaust gas performance.

また、EGRクーラの冷却媒体として低温側冷却水を用いることなく、低温側冷却水より高温の混合冷却水を用いるので、EGRガスに含まれる水蒸気の凝縮化による凝縮水(腐食水)の生成を抑制することができる。その結果、凝縮水による各種配管及びバルブ等の腐食や劣化を抑制することができる。 Moreover, since the mixed cooling water having a temperature higher than that of the low temperature side cooling water is used as the cooling medium of the EGR cooler, the condensed water (corrosion water) is generated by the condensation of the water vapor contained in the EGR gas. Can be suppressed. As a result, it is possible to suppress corrosion and deterioration of various pipes and valves due to condensed water.

さらに、凝縮水が生成される懸念があるときに、低水温用送水装置の回転数を低下させて、高温側冷却水と低温側冷却水の合計水量に対する低温側冷却水の量の割合を低下させて、混合冷却水を昇温させるので、混合冷却水を冷却媒体とするEGRクーラ通過後のEGRガスを昇温させることができ、凝縮水の生成をより抑制することができる。 Further, when there is a concern that condensed water will be generated, the number of rotations of the low water temperature water supply device is reduced to reduce the ratio of the low-temperature side cooling water amount to the total amount of the high-temperature side cooling water and the low-temperature side cooling water. By doing so, the temperature of the mixed cooling water is raised, so that it is possible to raise the temperature of the EGR gas that has passed through the EGR cooler using the mixed cooling water as a cooling medium, and it is possible to further suppress the generation of condensed water.

また、本発明者は、EGRガス温度と排気酸素過剰率の両方の値が低いときに凝縮水が生成される可能性があることを知見した。本発明によれば、凝縮水が生成されるか否かをEGRガス温度と排気酸素過剰率に基づいて行うこととしたので、凝縮水の生成判定の精度を向上させることができる。 The present inventor has also found that condensed water may be generated when both the EGR gas temperature and the exhaust oxygen excess rate are low. According to the present invention, whether or not condensed water is generated is determined based on the EGR gas temperature and the exhaust gas oxygen excess ratio, so that the accuracy of determination of generation of condensed water can be improved.

本発明の内燃機関の第1実施形態の構成を模式的に示す図である。It is a figure which shows typically the structure of 1st Embodiment of the internal combustion engine of this invention. EGRガス温度と排気酸素過剰率とEGRガスに含まれる水蒸気の割合の関係を示す図である。It is a figure which shows the relationship of the ratio of the water vapor contained in EGR gas, exhaust gas oxygen excess rate, and EGR gas. エンジンの低負荷領域を示す図である。It is a figure which shows the low load area|region of an engine. 本発明の内燃機関の第2実施形態の構成を模式的に示す図である。It is a figure which shows typically the structure of 2nd Embodiment of the internal combustion engine of this invention. 本発明の内燃機関の制御方法を制御フローの形で示す図である。It is a figure which shows the control method of the internal combustion engine of this invention in the form of a control flow.

以下、本発明に係る第1実施形態の内燃機関について、図面を参照しながら説明する。図1に示すように、本発明の内燃機関では、エンジン本体(内燃機関本体)1に吸気マニホールド1aを介して吸気通路2が接続されるとともに、排気マニホールド1bを介して排気通路3が接続されている。また、排気マニホールド1bと吸気マニホールド1aの間にEGR通路4が接続されている。なお、図1では、空気(新気)Aや排気ガスGaやEGRガスGe等の気体が通過する通路を点線で、高温側冷却水HWが通過する流路を太線で、混合冷却水MWが通過する流路を極太線で、低温側冷却水LWが通過する流路を細線で示している。 Hereinafter, an internal combustion engine of a first embodiment according to the present invention will be described with reference to the drawings. As shown in FIG. 1, in an internal combustion engine of the present invention, an intake passage 2 is connected to an engine body (internal combustion engine body) 1 via an intake manifold 1a, and an exhaust passage 3 is connected via an exhaust manifold 1b. ing. Further, the EGR passage 4 is connected between the exhaust manifold 1b and the intake manifold 1a. In FIG. 1, a dotted line indicates a passage through which a gas such as air (fresh air) A, exhaust gas Ga or EGR gas Ge passes, a thick line indicates a passage through which the high temperature side cooling water HW passes, and a mixed cooling water MW indicates The flow path through which the low temperature side cooling water LW passes is indicated by a thick line, and the flow path through which the low temperature side cooling water LW passes is indicated by a thin line.

吸気通路2は、空気(新気)Aをエンジン本体1の気筒(シリンダ)内に供給するための通路で、上流側より順に、低圧段過給システム5Sの低圧段過給器(低圧段ターボチャージャ)5のコンプレッサ5b、低圧段用インタークーラ7a、高圧段過給システム6Sの高圧段過給器(高圧段ターボチャージャ)6のコンプレッサ6b、高圧段用インタークーラ7bが配設されている。 The intake passage 2 is a passage for supplying air (fresh air) A into the cylinder of the engine body 1, and the low pressure supercharger (low pressure turbo) of the low pressure supercharging system 5S is sequentially arranged from the upstream side. A compressor 5b of the charger 5), a low pressure intercooler 7a, a compressor 6b of the high pressure supercharger (high pressure turbocharger) 6 of the high pressure supercharging system 6S, and a high pressure intercooler 7b are provided.

排気通路3は、エンジン本体1の各気筒(図1では6気筒)より排気マニホールド1bに排出された排気ガスGの内、吸気通路2に還流されるEGRガスGeを除く排気ガスGaを大気へと放出するための通路で、上流側より順に、高圧段過給器6のタービン6a、低圧段過給器5のタービン5a、排気ガス浄化処理装置(図示しない)、マフラー(図示しない)、テールパイプ(図示しない)が配置されている。 In the exhaust passage 3, the exhaust gas Ga discharged from each cylinder (six cylinders in FIG. 1) of the engine body 1 to the exhaust manifold 1b, excluding the EGR gas Ge recirculated to the intake passage 2, is discharged to the atmosphere. And a turbine 6a of the high pressure supercharger 6, a turbine 5a of the low pressure supercharger 5, an exhaust gas purification treatment device (not shown), a muffler (not shown), and a tail in order from the upstream side. A pipe (not shown) is arranged.

EGR通路4は、排気マニホールド1bに排出された排気ガスGの一部をEGRガスGeとして吸気通路2に還流するための通路で、上流側より順に、EGRクーラ8、EGRバルブ(図示しない)が配置されている。 The EGR passage 4 is a passage for returning a part of the exhaust gas G discharged to the exhaust manifold 1b to the intake passage 2 as EGR gas Ge, and an EGR cooler 8 and an EGR valve (not shown) are arranged in order from the upstream side. It is arranged.

大気中から導入される新気Aは、必要に応じて、EGR通路4から吸気通路2に流入するEGRガスGeを伴って、吸気マニホールド1aと吸気弁(図示しない)を経由して各気筒に送られる。また、各気筒で発生した排気ガスGは、排気弁(図示しない)を経由して排気マニホールド1bに排出され、その一部はEGR通路4にEGRガスGeとして流れ、残りの排気ガスGa(=G−Ge)は、タービン6a、5aを経由して、排気ガス浄化処理装置に流入して浄化された後、マフラー、テールパイプを経由して大気中へ放出される。 The fresh air A introduced from the atmosphere is introduced into each cylinder via the intake manifold 1a and the intake valve (not shown), together with the EGR gas Ge flowing from the EGR passage 4 into the intake passage 2 as necessary. Sent. Further, the exhaust gas G generated in each cylinder is discharged to the exhaust manifold 1b via an exhaust valve (not shown), a part of the exhaust gas G flows as EGR gas Ge in the EGR passage 4, and the remaining exhaust gas Ga (= G-Ge) flows into the exhaust gas purification processing apparatus via the turbines 6a and 5a, is purified, and is then released into the atmosphere via the muffler and the tail pipe.

高温側冷却水用流路は、エンジン本体1の冷却を行う高温側冷却水(エンジン冷却水)HWが流通する流路で、上流側より順に、エンジン本体1、サーモスタット(図示しない)、高水温用ラジエータ11、高水温用ウォーターポンプ(高水温用送水装置)12が備わる。高水温用ラジエータ11は、エンジン本体1を通過後の高温側冷却水HWを車両の内部に流入する空気により冷却する装置である。高水温用ウォーターポンプ12は、高温側冷却水用流路を循環させるためのエネルギーを高温側冷却水HWに供給する装置である。この高水温用ウォーターポンプ12の駆動源は、エンジン本体1の動力でもよいし、車両の内部にバッテリ(図示しない)を備えて、このバッテリの電力でもよい。サーモスタットは、エンジン本体1を通過後の高温側冷却水HWの温度に応じて、高温側冷却水HWを高水温用ラジエータ11で冷却するか否かを設定することで、高温側冷却水HWの温度を調整する開閉弁装置である。より詳細には、サーモスタットを通過する高温側冷却水HWの温度が予め設定された設定温度未満のときには、サーモスタットは閉弁状態となって、エンジン本体1を通過後の高温側冷却水HWが高水温用ラジエータ11を経由することなくバイパス通路(図示しない)を経由して再びエンジン本体1に流入するようにして、エンジン本体1の暖機を促進する。一方、高温側冷却水HWの温度が設定温度以上のときには、サーモスタットは開弁状態となって、エンジン本体1を通過後の高温側冷却水HWが高水温用ラジエータ11を経由して再びエンジン本体1に流入するようにして、高温側冷却水HWの温度を一定の範囲内に維持しながら、エンジン本体1を冷却する。なお、サーモスタットの開弁度は、通常、サーモスタットの温度と設定温度の差(=サーモスタットの温度−設定温度)が大きくなるにつれて、大きくなるように設定する。 The high temperature side cooling water passage is a passage through which the high temperature side cooling water (engine cooling water) HW for cooling the engine body 1 flows, and the engine body 1, a thermostat (not shown), and a high water temperature are arranged in order from the upstream side. A radiator 11 and a high water temperature water pump (high water temperature water supply device) 12 are provided. The high water temperature radiator 11 is a device that cools the high temperature side cooling water HW that has passed through the engine body 1 by the air flowing into the inside of the vehicle. The high water temperature water pump 12 is a device that supplies energy for circulating the high temperature side cooling water flow path to the high temperature side cooling water HW. The drive source of the high water temperature water pump 12 may be the power of the engine body 1 or a battery (not shown) may be provided inside the vehicle to supply electric power from the battery. The thermostat sets whether or not to cool the high temperature side cooling water HW by the high water temperature radiator 11 according to the temperature of the high temperature side cooling water HW after passing through the engine body 1, so that the high temperature side cooling water HW An on-off valve device that adjusts the temperature. More specifically, when the temperature of the high temperature side cooling water HW passing through the thermostat is lower than a preset set temperature, the thermostat is closed and the high temperature side cooling water HW after passing through the engine body 1 becomes high. The warm-up of the engine body 1 is promoted by allowing the water to flow into the engine body 1 again via the bypass passage (not shown) without passing through the water temperature radiator 11. On the other hand, when the temperature of the high temperature side cooling water HW is equal to or higher than the set temperature, the thermostat is opened, and the high temperature side cooling water HW that has passed through the engine body 1 passes through the high water temperature radiator 11 again to reopen the engine body. 1, the engine body 1 is cooled while maintaining the temperature of the high temperature side cooling water HW within a certain range. The degree of valve opening of the thermostat is usually set to increase as the difference between the temperature of the thermostat and the set temperature (=temperature of the thermostat-set temperature) increases.

低温側冷却水用流路は、低圧段用インタークーラ7a及び高圧段用インタークーラ7bにて吸気ガスを冷却する冷却媒体である低温側冷却水LWが流通する流路で、上流側より順に、低水温用ラジエータ21、低水温用ウォーターポンプ(低水温用送水装置)22、インタークーラ7(低圧段用インタークーラ7a及び高圧段用インタークーラ7b)が備わる。低圧段用インタークーラ7a及び高圧段用インタークーラ7bは、低水温用ウォーターポンプ22より下流側の低温側冷却水用流路に並列に配置される。低水温用ラジエータ21は、インタークーラ7を通過後の低温側冷却水LWを車両の内部に流入する空気により冷却する装置である。低水温用ウォーターポンプ22は、低温側冷却水用流路を循環させるためのエネルギーを低温側冷却水LWに供給する装置である。この低水温用ウォーターポンプ22は、電動式の送水装置で、例えば、車両の内部にバッテリ(図示しない)を備えて、このバッテリの電力により駆動する。なお、上記した各装置7、8、11、12、21、22に対する冷却水の流入出口にはホースが接続され、このホースに例えば鋼製の配管を接続して、冷却水回路を構成している。 The low temperature side cooling water flow path is a flow path through which the low temperature side cooling water LW, which is a cooling medium that cools the intake gas in the low pressure stage intercooler 7a and the high pressure stage intercooler 7b, flows in order from the upstream side. A low-water temperature radiator 21, a low-water temperature water pump (low-water temperature water supply device) 22, and an intercooler 7 (low-pressure stage intercooler 7a and high-pressure stage intercooler 7b) are provided. The low-pressure stage intercooler 7a and the high-pressure stage intercooler 7b are arranged in parallel in the low-temperature side cooling water passage downstream of the low-water temperature water pump 22. The low water temperature radiator 21 is a device that cools the low temperature side cooling water LW that has passed through the intercooler 7 by the air flowing into the vehicle interior. The low water temperature water pump 22 is a device that supplies energy for circulating the low temperature side cooling water passage to the low temperature side cooling water LW. The low water temperature water pump 22 is an electric water supply device, and is provided with, for example, a battery (not shown) inside the vehicle and is driven by the electric power of the battery. A hose is connected to the inflow/outflow port of the cooling water for each of the above-mentioned devices 7, 8, 11, 12, 21, 22 and a pipe made of steel, for example, is connected to the hose to form a cooling water circuit. There is.

EGRクーラ8より下流側のEGR通路4にEGRガス温度センサ(EGRガス温度検出装置)31を、排気通路3または排気マニホールド1b(図1では排気マニホールド1b)に排気ラムダセンサ(排気酸素過剰率検出装置)32を、タービン5aより下流側の排気通路3に排気温度センサ33を備える。 An EGR gas temperature sensor (EGR gas temperature detection device) 31 is provided in the EGR passage 4 on the downstream side of the EGR cooler 8, and an exhaust lambda sensor (exhaust oxygen excess ratio detection) is provided in the exhaust passage 3 or the exhaust manifold 1b (exhaust manifold 1b in FIG. 1). The exhaust gas temperature sensor 33 is provided in the exhaust passage 3 on the downstream side of the turbine 5a.

また、本発明の内燃機関には、制御装置40が備わる。制御装置40は、サーモスタットによる温度の検出値に応じて、高水温用ウォーターポンプ12を制御したり、エンジン回転数や気筒内への燃料噴射量等のエンジン運転状態を表すパラメータの検出値または推定値や上記のセンサ31、32、33の検出値に応じて、低水温用ウォーターポンプ22を制御したりする装置である。 Further, the internal combustion engine of the present invention is provided with the control device 40. The control device 40 controls the high water temperature water pump 12 according to the detected value of the temperature by the thermostat, or detects or estimates a parameter indicating an engine operating state such as the engine speed or the fuel injection amount into the cylinder. It is a device that controls the low water temperature water pump 22 according to the value or the detection values of the sensors 31, 32, and 33.

本発明の内燃機関では、EGRクーラ8を低温側冷却水用流路が通過するように構成して、EGRクーラ8より上流側の低温側冷却水用流路に、高温側冷却水用流路より分岐した分岐流路30を接続して、低温側冷却水用流路を通過する低温側冷却水LWと分岐流路30を通過する高温側冷却水HWが混合された混合冷却水MWをEGRクーラ8に流通させる。そして、制御装置40が、EGRガス温度センサ31の検出値及び排気ラムダセンサ32の検出値に基づいて、EGRガスGeに含まれる水蒸気が液化して凝縮水が生成されるか否かを判定する凝縮水生成判定を行うとともに、この凝縮水生成判定で凝縮水が生成されると判定するときには、低水温用ウォーターポンプ22の回転数Nlpをエンジンの運転状態に応じて予め設定される基本回転数Nlpcより低下させる制御である回転数調整制御を行うように構成する。 In the internal combustion engine of the present invention, the EGR cooler 8 is configured so that the low temperature side cooling water flow passage passes, and the high temperature side cooling water flow passage is provided in the low temperature side cooling water flow passage upstream of the EGR cooler 8. The branch flow passage 30 that is further branched is connected, and the mixed cooling water MW in which the low temperature side cooling water LW passing through the low temperature side cooling water flow passage and the high temperature side cooling water HW passing through the branch flow passage 30 are mixed is EGR. Distribute to cooler 8. Then, the control device 40 determines whether or not the water vapor contained in the EGR gas Ge is liquefied to generate condensed water, based on the detection values of the EGR gas temperature sensor 31 and the exhaust lambda sensor 32. When the condensed water generation determination is performed and the condensed water generation determination determines that condensed water is generated, the rotation speed Nlp of the low water temperature water pump 22 is set to a basic rotation speed that is preset according to the operating state of the engine. It is configured to perform a rotation speed adjustment control that is a control for lowering it below Nlpc.

なお、EGRクーラ8を通過後の混合冷却水MWは、高温側冷却水用流路と低温側冷却水用流路の各々を通過する冷却水量を維持するために、低水温用ラジエータ21と、高水温用ラジエータ11と高水温用ウォーターポンプ12の間の高温側冷却水用流路の両方に還流する。また、高温側冷却水HWの温度は約80℃〜100℃、混合冷却水MWの温度は約50℃〜70℃、低温側冷却水LWの温度は約30℃〜40℃である。 The mixed cooling water MW after passing through the EGR cooler 8 has a low water temperature radiator 21 in order to maintain the amount of cooling water passing through each of the high temperature side cooling water flow path and the low temperature side cooling water flow path, It is returned to both the high temperature side cooling water flow path between the high water temperature radiator 11 and the high water temperature water pump 12. Further, the temperature of the high temperature side cooling water HW is about 80°C to 100°C, the temperature of the mixed cooling water MW is about 50°C to 70°C, and the temperature of the low temperature side cooling water LW is about 30°C to 40°C.

EGRガスGeの温度が低いほど、EGRガスGeに含むことができる水蒸気量の最大値(飽和水蒸気量)は低くなる。また、図2に示すように、排気酸素過剰率λが小さいほど、EGRガスGeに含まれる水蒸気量は大きくなる。したがって、EGRガスGeに含まれる水蒸気が液化して凝縮水が生成される領域(凝縮水生成領域、斜線部)は、EGRガスGeの温度の低さと、排気酸素過剰率λの大きさ(図2ではλ1<λ2)に応じて設定される。凝縮水生成判定は、EGRガス温度と排気酸素過剰率を基にしたマップ上に図2の凝縮水生成領域に対応する領域を設定し、EGRガス温度センサ31の検出値と排気ラムダセンサ32の検出値の組み合わせがこのマップ上の領域に含まれるときに凝縮水が生成されると判定し、含まれないときに凝縮水が生成されないと判定するように行う。 The lower the temperature of the EGR gas Ge, the lower the maximum value of the amount of water vapor that can be contained in the EGR gas Ge (the amount of saturated water vapor). Further, as shown in FIG. 2, the smaller the exhaust oxygen excess ratio λ, the larger the amount of water vapor contained in the EGR gas Ge. Therefore, the region where the water vapor contained in the EGR gas Ge is liquefied to generate condensed water (condensed water generation region, shaded portion) has a low temperature of the EGR gas Ge, and the magnitude of the exhaust oxygen excess ratio λ (see FIG. 2 is set according to λ1<λ2). In the condensed water generation determination, a region corresponding to the condensed water generation region of FIG. 2 is set on a map based on the EGR gas temperature and the exhaust oxygen excess ratio, and the detected value of the EGR gas temperature sensor 31 and the exhaust lambda sensor 32 are set. It is determined that the condensed water is generated when the combination of the detected values is included in the region on the map, and is determined that the condensed water is not generated when the combination of the detected values is not included.

また、図1に示すように、インタークーラ7とEGRクーラ8の間の低温側冷却水用流路に、低温側冷却水用流路と分岐流路30の接続点CPを配置して、インタークーラ7の下流側で混合冷却水MWを生成するように構成すると、インタークーラ7の上流側の低温側冷却水より下流側の低温側冷却水の方が水温が高いので、インタークーラ7の上流側で混合冷却水MWを生成する場合よりも、EGRクーラ8に流入する混合冷却水MWの温度範囲をより高温とすることができる。その結果、凝縮水の生成をより確実に抑制することができる。 In addition, as shown in FIG. 1, the connection point CP between the low temperature side cooling water flow path and the branch flow path 30 is arranged in the low temperature side cooling water flow path between the intercooler 7 and the EGR cooler 8 and If it is configured to generate the mixed cooling water MW on the downstream side of the cooler 7, since the low temperature side cooling water on the downstream side has a higher water temperature than the low temperature side cooling water on the upstream side of the intercooler 7, the upstream side of the intercooler 7 The temperature range of the mixed cooling water MW flowing into the EGR cooler 8 can be made higher than in the case where the mixed cooling water MW is generated on the side. As a result, the generation of condensed water can be suppressed more reliably.

また、エンジンが低負荷であるとき(図3に示す低負荷領域にあるとき)に、EGRガスGeの温度が凝縮水生成の懸念がある低温になりやすい。したがって、制御装置40が、エンジンが低負荷であるときにのみ、上記の低水温用ウォーターポンプ22の回転数調整制御を行うように構成すると、エンジンが中負荷または高負荷にあるときは、低水温用ウォーターポンプ22の回転数Nlpを基本回転数Nlpcに設定するだけですむので、制御を簡素化することができる。 Further, when the engine has a low load (in the low load region shown in FIG. 3), the temperature of the EGR gas Ge tends to be a low temperature at which condensed water may be generated. Therefore, when the control device 40 is configured to perform the rotational speed adjustment control of the low water temperature water pump 22 only when the engine has a low load, when the engine has a medium load or a high load, Since it is only necessary to set the rotation speed Nlp of the water temperature water pump 22 to the basic rotation speed Nlpc, the control can be simplified.

また、制御装置40は、エンジンが運転状態にあるときに、凝縮水生成判定を予め設定した制御時間毎に行う。そして、凝縮水生成判定で凝縮水が生成されると判定したときに、その後の凝縮水生成判定で凝縮水が生成されないと判定するまでは、低水温用ウォーターポンプ22の回転数Nlpを基本回転数Nlpcより低い回転数に低下させる。 Further, the control device 40 performs the condensed water generation determination for each preset control time when the engine is in the operating state. When the condensed water generation determination determines that the condensed water is generated, the rotation speed Nlp of the low water temperature water pump 22 is set to the basic rotation until the condensed water generation determination thereafter determines that the condensed water is not generated. The rotation speed is reduced to a value lower than the number Nlpc.

この回転数の低下については、例えば、以下の2通りの方法がある。1つ目の方法は、最初に凝縮水が生成されると判定したときに、低水温用ウォーターポンプ22の回転数Nlpを基本回転数Nlpcより低い回転数Nlp1まで低下させ、その後の凝縮水生成判定で凝縮水が生成されないと判定するまでは、この回転数Nlp1に維持する方法である。回転数Nlp1は予め実験等により最適値に設定される。この方法は、回転数Nlp1に維持するだけですむので、制御を簡素化することができる。 Regarding the reduction of the rotation speed, for example, there are the following two methods. In the first method, when it is first determined that condensed water is generated, the rotation speed Nlp of the low water temperature water pump 22 is reduced to a rotation speed Nlp1 lower than the basic rotation speed Nlpc, and then the condensed water is generated. This is the method of maintaining the rotational speed Nlp1 until it is determined that condensed water is not generated. The rotation speed Nlp1 is set to an optimum value in advance by experiments or the like. In this method, since it is only necessary to maintain the rotation speed Nlp1, control can be simplified.

2つ目の方法は、最初に凝縮水が生成されると判定したときに、低水温用ウォーターポンプ22の回転数Nlpを基本回転数Nlpcより低い回転数Nlp1まで低下させ、その後の凝縮水生成判定で凝縮水が生成されないと判定するまでは、凝縮水生成判定で凝縮水が生成されると判定する度に低水温用ウォーターポンプ22の回転数を前回の判定時の回転数より低下させる方法である。この方法は、EGRクーラ8に流入する混合冷却水MWに含まれる低温側冷却水LWの割合を徐々に低下させて、混合冷却水MWを昇温させることで、EGRガスGeを昇温するので、EGRガスGeに含まれる水蒸気の液化による凝縮水の生成をより確実に抑制することができる。 In the second method, when it is first determined that condensed water is generated, the rotation speed Nlp of the low water temperature water pump 22 is reduced to a rotation speed Nlp1 lower than the basic rotation speed Nlpc, and then the condensed water is generated. A method of lowering the rotation speed of the low water temperature water pump 22 below the rotation speed at the time of the previous determination each time the determination is made that condensed water is generated, until the determination is made that condensed water is not generated. Is. In this method, since the ratio of the low temperature side cooling water LW contained in the mixed cooling water MW flowing into the EGR cooler 8 is gradually decreased to raise the temperature of the mixed cooling water MW, the EGR gas Ge is heated. The generation of condensed water due to the liquefaction of water vapor contained in the EGR gas Ge can be more reliably suppressed.

なお、この判定間の回転数の低下量については、一定量でもよいし、判定回数に応じた変動量でもよい。判定間の回転数の低下量を一定量にした場合は、制御を簡素化することができる。判定間の回転数の低下量を判定回数に応じた変動量にした場合は、EGRクーラ8の冷却能力を緻密に調整してEGRガスGeの温度を最適化するので、エンジンの運転状態への影響を最小限にしつつ、EGRガスGeに含まれる水蒸気の液化による凝縮水の生成を抑制することができる。 The amount of decrease in the rotation speed between the determinations may be a fixed amount or a variation amount according to the number of determinations. If the amount of decrease in the rotation speed between the determinations is set to a constant amount, the control can be simplified. When the amount of decrease in the number of revolutions between the determinations is set to a variation amount according to the number of determinations, the cooling capacity of the EGR cooler 8 is finely adjusted to optimize the temperature of the EGR gas Ge. It is possible to suppress the generation of condensed water due to the liquefaction of the water vapor contained in the EGR gas Ge while minimizing the influence.

そして、制御装置40は、その後の凝縮水生成判定で凝縮水が生成されないと判定するときに、低水温用ウォーターポンプ22の回転数Nlpを基本回転数Nlpcに戻す制御を行い、EGRガスGeに流入する混合冷却水MWの温度をエンジンの運転状態に応じた最適値に設定することで、EGRガスGeの温度を最適化する。 Then, when it is determined that the condensed water is not generated in the subsequent condensed water generation determination, the control device 40 performs the control of returning the rotation speed Nlp of the low water temperature water pump 22 to the basic rotation speed Nlpc, and changes the EGR gas Ge to the EGR gas Ge. The temperature of the EGR gas Ge is optimized by setting the temperature of the inflowing mixed cooling water MW to the optimum value according to the operating state of the engine.

なお、低水温用ウォーターポンプ22の回転数調整制御をエンジンの低負荷時に限定して行うときでも、上記の凝縮水生成判定で凝縮水が生成されると判定されている間は、エンジンが低負荷から中負荷または高負荷に移行しても、凝縮水生成判定で凝縮水が生成されないと判定するまでは、凝縮水生成判定を継続して行うことがより好ましい。 Even when the rotational speed adjustment control of the low water temperature water pump 22 is performed only when the engine is under a low load, the engine is low while the condensed water generation determination is determined to generate the condensed water. Even if the load shifts to a medium load or a high load, it is more preferable to continuously perform the condensed water generation determination until the condensed water generation determination determines that the condensed water is not generated.

次に、本発明に係る第2実施形態の内燃機関について説明する。図4に示すように、第2実施形態の内燃機関は、図1に示す第1実施形態の内燃機関とは、第2EGRクーラ9がEGRクーラ8より上流側のEGR通路4に配設されている点、第2EGRクーラ9にEGRガスGeの冷却媒体として高温側冷却水HWが使用されている点で異なり、その他の点では同じ構成である。 Next, an internal combustion engine of the second embodiment according to the present invention will be described. As shown in FIG. 4, the internal combustion engine of the second embodiment differs from the internal combustion engine of the first embodiment shown in FIG. 1 in that the second EGR cooler 9 is arranged in the EGR passage 4 upstream of the EGR cooler 8. 2 and the high temperature side cooling water HW is used as a cooling medium for the EGR gas Ge in the second EGR cooler 9, and the other points have the same configuration.

第2実施形態の内燃機関のように、高温側冷却水HWを冷却媒体とする第2EGRクーラ9をEGRクーラ8より上流側に配設することで、第2EGRクーラ9により低温化したEGRガスGeをEGRクーラ8に流入させるので、EGRクーラ8に必要な冷却能力を低下させることができる。その結果、低水温用ウォーターポンプ22の回転数調整制御で、EGRガスGeに含まれる水蒸気の液化による凝縮水の生成を確実に抑制することができる。 Like the internal combustion engine of the second embodiment, by disposing the second EGR cooler 9 using the high temperature side cooling water HW as the cooling medium on the upstream side of the EGR cooler 8, the EGR gas Ge that has been cooled by the second EGR cooler 9 is provided. Since this flows into the EGR cooler 8, the cooling capacity required for the EGR cooler 8 can be reduced. As a result, the rotational speed adjustment control of the low water temperature water pump 22 can reliably suppress the generation of condensed water due to the liquefaction of the water vapor contained in the EGR gas Ge.

次に、本発明の内燃機関の構成を基にした、内燃機関の制御方法について、図5に示す制御フローを例にして説明する。図5に示す制御フローは、エンジンが運転状態にあるときに予め設定した制御時間が経過する度に実行されるフローである。 Next, a method of controlling the internal combustion engine based on the configuration of the internal combustion engine of the present invention will be described by taking the control flow shown in FIG. 5 as an example. The control flow shown in FIG. 5 is a flow executed every time a preset control time elapses when the engine is in the operating state.

図5の制御フローがスタートすると、ステップS10にて、エンジンが低負荷であるか否かを判定する。エンジンが低負荷であると判定する場合(YES)には、ステップS20に進む。エンジンが低負荷でなく、中負荷または高負荷であると判定する場合(NO)には、リターンに進んで、本制御フローを終了する。 When the control flow of FIG. 5 starts, it is determined in step S10 whether the engine has a low load. If it is determined that the engine has a low load (YES), the process proceeds to step S20. When it is determined that the engine is not under a low load but is under a medium load or a high load (NO), the process proceeds to return and the control flow is ended.

ステップS10からステップS20に進んだ場合、ステップS20にて、EGRガスGeに含まれる水蒸気の液化により凝縮水が生成されるか否かを判定する。凝縮水が生成されると判定する場合(YES)には、ステップS30に進む。凝縮水が生成されないと判定する場合(NO)には、ステップS10に戻り、再度ステップS10の判定を行う。 When the process proceeds from step S10 to step S20, it is determined in step S20 whether or not condensed water is generated by the liquefaction of the water vapor contained in the EGR gas Ge. If it is determined that condensed water is generated (YES), the process proceeds to step S30. When it is determined that the condensed water is not generated (NO), the process returns to step S10 and the determination of step S10 is performed again.

なお、凝縮水の生成判定については、上述のようにEGRガス温度と排気酸素過剰率を基にしたマップを用いて行ってもよいし、あるいは、EGRガス温度及び排気酸素過剰率と各々の設定閾値との比較結果を用いて行ってもよい。この比較結果を用いた方法とは、より詳細には、EGRガス温度が予め設定した設定温度閾値より低く、かつ、排気酸素過剰率が予め設定した設定濃度閾値より低いときにのみ凝縮水が生成されると判定し、EGRガス温度が設定温度閾値以上で、または、排気酸素過剰率が設定濃度閾値以上であるときには凝縮水が生成されないと判定する方法である。 Note that the generation of condensed water may be determined by using a map based on the EGR gas temperature and the exhaust oxygen excess rate as described above, or alternatively, the EGR gas temperature and the exhaust oxygen excess rate may be set respectively. You may perform using the comparison result with a threshold value. More specifically, the method using the comparison result means that condensed water is generated only when the EGR gas temperature is lower than a preset temperature threshold value set in advance and the exhaust oxygen excess ratio is lower than a preset concentration concentration threshold value set in advance. If the EGR gas temperature is equal to or higher than the set temperature threshold value or if the exhaust oxygen excess rate is equal to or higher than the set concentration threshold value, it is determined that condensed water is not generated.

ステップS20からステップS30に進んだ場合、ステップS30にて、低水温用ウォーターポンプ22の回転数Nlpを基本回転数Nlpcより低い回転数Nlp1まで低下させる制御を行う。回転数Nlp1は予め実験等により最適値に設定される。ステップS30の制御を実施後、ステップS40に進む。 When the process proceeds from step S20 to step S30, control is performed in step S30 to reduce the rotation speed Nlp of the low water temperature water pump 22 to a rotation speed Nlp1 lower than the basic rotation speed Nlpc. The rotation speed Nlp1 is set to an optimum value in advance by experiments or the like. After performing the control of step S30, the process proceeds to step S40.

ステップS40にて、EGRガスGeに含まれる水蒸気の液化により凝縮水が生成されるか否かの2回目以降の判定を行う。凝縮水が生成されると判定する場合(YES)には、ステップS50に進んで、ステップS50にて、低水温用ウォーターポンプ22の回転数Nlpを基本回転数Nlp1に維持するか、または前回の回転数より低い回転数に低下させる制御を行う。ステップS50の制御を実施後、ステップS40に戻り、再度、ステップS40の判定を行う。 In step S40, it is determined whether or not condensed water is generated by the liquefaction of the water vapor contained in the EGR gas Ge from the second time onward. If it is determined that condensed water is generated (YES), the process proceeds to step S50, and in step S50, the rotation speed Nlp of the low water temperature water pump 22 is maintained at the basic rotation speed Nlp1, or Control is performed to reduce the rotation speed to a speed lower than the rotation speed. After performing the control of step S50, the process returns to step S40, and the determination of step S40 is performed again.

一方、ステップS40にて、凝縮水が生成されないと判定する場合(NO)には、ステップS60に進み、ステップS60にて、低水温用ウォーターポンプ22の回転数Nlpを基本回転数Nlpcに戻す制御を行う。ステップS60の制御を実施後、リターンに進んで、本制御フローを終了する。 On the other hand, if it is determined in step S40 that condensed water is not generated (NO), the process proceeds to step S60, and in step S60, the control for returning the rotation speed Nlp of the low water temperature water pump 22 to the basic rotation speed Nlpc. I do. After performing the control of step S60, the process proceeds to return and the present control flow ends.

以上より、本発明の内燃機関の制御方法は、内燃機関の冷却を行う高温側冷却水HWが流通する高温側冷却水用流路に高水温用ラジエータ11と高水温用送水装置12を備えるとともに、内燃機関の吸気通路2を通過する吸気ガスの冷却を行う低温側冷却水LWが流通する低温側冷却水用流路に低水温用ラジエータ21と電動式の低水温用送水装置22とEGRクーラ8を備えて、さらに、このEGRクーラ8より上流側の低温側冷却水用流路に、高温側冷却水用流路より分岐した分岐流路30を接続して、低温側冷却水用流路を通過する低温側冷却水LWと分岐流路30を通過する高温側冷却水HWが混合された混合冷却水MWをEGRクーラ8に流通させるように構成される内燃機関の制御方法において、EGRクーラ8より下流側のEGR通路4を通過するEGRガスGeの温度と、内燃機関の排気通路3または排気マニホールド1bを通過する排気ガスGの酸素過剰率に基づいて、EGRガスGeに含まれる水蒸気が液化して凝縮水が生成されるか否かを判定する凝縮水生成判定を行うとともに、この凝縮水生成判定で凝縮水が生成されると判定するときには、低水温用送水装置22の回転数Nlpを内燃機関の運転状態に応じて予め設定される基本回転数Nlpcより低下させる制御である回転数調整制御を行うことを特徴とする方法となる。 As described above, the control method of the internal combustion engine of the present invention includes the high water temperature radiator 11 and the high water temperature water supply device 12 in the high temperature side cooling water flow path through which the high temperature side cooling water HW for cooling the internal combustion engine flows. , A low-water temperature radiator 21, an electric low-water temperature water supply device 22, and an EGR cooler in a low-temperature side cooling water flow path through which low-temperature side cooling water LW that cools intake gas passing through an intake passage 2 of an internal combustion engine flows. 8, and a branch flow passage 30 branched from the high temperature side cooling water flow passage is connected to the low temperature side cooling water flow passage upstream of the EGR cooler 8 to provide a low temperature side cooling water flow passage. In the control method for the internal combustion engine, the mixed cooling water MW in which the low temperature side cooling water LW passing through the high temperature side cooling water HW passing through the branch flow passage 30 is mixed is circulated in the EGR cooler 8. Based on the temperature of the EGR gas Ge passing through the EGR passage 4 downstream of 8 and the oxygen excess ratio of the exhaust gas G passing through the exhaust passage 3 of the internal combustion engine or the exhaust manifold 1b. When the condensed water generation determination is performed to determine whether or not condensed water is generated by liquefaction, and when it is determined that condensed water is generated in this condensed water generation determination, the rotation speed Nlp of the low water temperature water supply device 22. The method is characterized by performing rotational speed adjustment control, which is control for lowering the basic rotational speed Nlpc from a preset basic rotational speed Nlpc according to the operating state of the internal combustion engine.

以上より、本発明の内燃機関及び内燃機関の制御方法によれば、エンジン冷却水(高温側冷却水)HWと吸気ガス冷却用の低温側冷却水LWを混合して、エンジン冷却水HWより低温の混合冷却水MWを冷却媒体としてEGRクーラ8に流通させるので、エンジン冷却水HWを冷却媒体とする従来技術と比較して、EGRガスGeを更に低温化することができる。その結果、気筒内に流入される吸気とEGRガスの混合気を低体積化して車両の燃費性能を良化させることができるとともに、混合気を低温化して排ガス性能を良化させることができる。 As described above, according to the internal combustion engine and the method of controlling the internal combustion engine of the present invention, the engine cooling water (high temperature side cooling water) HW and the low temperature side cooling water LW for cooling the intake gas are mixed to be lower than the engine cooling water HW. Since the mixed cooling water MW of 1 is circulated to the EGR cooler 8 as a cooling medium, the EGR gas Ge can be further cooled as compared with the conventional technique in which the engine cooling water HW is used as the cooling medium. As a result, it is possible to reduce the volume of the air-fuel mixture of intake air and EGR gas flowing into the cylinder to improve the fuel efficiency performance of the vehicle, and to lower the temperature of the air-fuel mixture to improve the exhaust gas performance.

また、EGRクーラ8の冷却媒体として低温側冷却水LWを用いることなく、低温側冷却水LWより高温の混合冷却水MWを用いるので、EGRガスGeに含まれる水蒸気の凝縮化による凝縮水(腐食水)の生成を抑制することができる。その結果、凝縮水による各種配管及びバルブ等の腐食や劣化を抑制することができる。 Further, since the mixed cooling water MW having a higher temperature than the low temperature side cooling water LW is used as the cooling medium of the EGR cooler 8 without using the low temperature side cooling water LW, the condensed water (corrosion caused by the condensation of the water vapor contained in the EGR gas Ge (corrosion) is used. Water) can be suppressed. As a result, it is possible to suppress corrosion and deterioration of various pipes and valves due to condensed water.

さらに、凝縮水が生成される懸念があるときに、低水温用送水装置22の回転数を低下させて、高温側冷却水HWと低温側冷却水LWの合計水量に対する低温側冷却水LWの量の割合を低下させて、混合冷却水MWを昇温させるので、混合冷却水MWを冷却媒体とするEGRクーラ8通過後のEGRガスGeを昇温させることができ、凝縮水の生成をより抑制することができる。 Further, when there is a concern that condensed water will be generated, the rotation speed of the low water temperature water supply device 22 is reduced to reduce the amount of the low temperature side cooling water LW relative to the total amount of the high temperature side cooling water HW and the low temperature side cooling water LW. Is decreased to raise the temperature of the mixed cooling water MW, the EGR gas Ge after passing through the EGR cooler 8 using the mixed cooling water MW as a cooling medium can be raised, and the generation of condensed water is further suppressed. can do.

また、凝縮水が生成されるか否かをEGRガス温度と排気酸素過剰率に基づいて行うこととしたので、凝縮水の生成判定の精度を向上させることができる。 Further, since it is determined whether or not the condensed water is generated based on the EGR gas temperature and the exhaust gas oxygen excess rate, the accuracy of the condensed water generation determination can be improved.

1 エンジン本体
1a 吸気マニホールド
1b 排気マニホールド
2 吸気通路
3 排気通路
4 EGR通路
7 インタークーラ
7a 低圧段用インタークーラ
7b 高圧段用インタークーラ
8 EGRクーラ
9 第2EGRクーラ
11 高水温用ラジエータ
12 高水温用ウォーターポンプ(高水温用送水装置)
21 低水温用ラジエータ
22 低水温用ウォーターポンプ(低水温用送水装置)
30 分岐流路
31 EGRガス温度センサ(EGRガス温度検出装置)
32 排気ラムダセンサ(排気酸素過剰率検出装置)
40 制御装置
Nlp 低水温用ウォーターポンプの回転数
Nlpc 低水温用ウォーターポンプの基本回転数
CP 接続点
HW 高温側冷却水(エンジン冷却水)
MW 混合冷却水
LW 低温側冷却水
1 Engine Body 1a Intake Manifold 1b Exhaust Manifold 2 Intake Passage 3 Exhaust Passage 4 EGR Passage 7 Intercooler 7a Low Pressure Intercooler 7b High Pressure Intercooler 8 EGR Cooler 9 Second EGR Cooler 11 High Water Temperature Radiator 12 High Water Temperature Water Pump (water supply device for high water temperature)
21 Low water temperature radiator 22 Low water temperature water pump (low water temperature water supply device)
30 branch flow path 31 EGR gas temperature sensor (EGR gas temperature detection device)
32 Exhaust gas lambda sensor (exhaust oxygen excess rate detection device)
40 Controller Nlp Number of revolutions of low water temperature water pump Nlpc Basic number of revolutions of low water temperature water pump CP Connection point HW High temperature side cooling water (engine cooling water)
MW Mixed cooling water LW Low temperature side cooling water

Claims (6)

内燃機関の冷却を行う高温側冷却水が流通する高温側冷却水用流路に高水温用ラジエータと高水温用送水装置を備えるとともに、前記内燃機関の吸気通路を通過する吸気ガスの冷却を行う低温側冷却水が流通する低温側冷却水用流路に低水温用ラジエータと低水温用送水装置とEGRクーラを備えて構成される内燃機関において、
前記EGRクーラより上流側の前記低温側冷却水用流路に、前記高温側冷却水用流路より分岐した分岐流路を接続して、前記低温側冷却水用流路を通過する低温側冷却水と前記分岐流路を通過する高温側冷却水が混合された混合冷却水を前記EGRクーラに流通させるとともに、前記低水温用送水装置を電動送水装置として構成して、
さらに、前記EGRクーラより下流側のEGR通路にEGRガス温度検出装置を備え、前記内燃機関の排気通路または排気マニホールドに排気酸素過剰率検出装置を備えて、
前記内燃機関を制御する制御装置が、
前記EGRガス温度検出装置の検出値及び前記排気酸素過剰率検出装置の検出値に基づいて、EGRガスに含まれる水蒸気が液化して凝縮水が生成されるか否かを判定する凝縮水生成判定を行うとともに、該凝縮水生成判定で凝縮水が生成されると判定するときには、前記低水温用送水装置の回転数を前記内燃機関の運転状態に応じて予め設定される基本回転数より低下させる制御である回転数調整制御を行うように構成される内燃機関。
A high water temperature radiator and a high water temperature water supply device are provided in the high temperature side cooling water flow path through which the high temperature side cooling water for cooling the internal combustion engine is provided, and the intake gas passing through the intake passage of the internal combustion engine is cooled. In an internal combustion engine configured to include a low water temperature radiator, a low water temperature water supply device, and an EGR cooler in a low temperature side cooling water passage through which the low temperature side cooling water flows,
A low temperature side cooling passage that passes through the low temperature side cooling water passage by connecting a branch passage branching from the high temperature side cooling water passage to the low temperature side cooling water passage upstream of the EGR cooler. The mixed cooling water in which the water and the high temperature side cooling water passing through the branch passage are mixed is circulated in the EGR cooler, and the low water temperature water supply device is configured as an electric water supply device.
Further, an EGR gas temperature detecting device is provided in an EGR passage downstream of the EGR cooler, and an exhaust oxygen excess ratio detecting device is provided in an exhaust passage or an exhaust manifold of the internal combustion engine,
A control device for controlling the internal combustion engine,
Condensed water generation determination that determines whether or not water vapor contained in EGR gas is liquefied to generate condensed water based on the detected value of the EGR gas temperature detecting device and the detected value of the exhaust gas oxygen excess ratio detecting device In addition, when determining that condensed water is generated in the condensed water generation determination, the rotation speed of the low water temperature water supply device is made lower than a basic rotation speed that is preset according to the operating state of the internal combustion engine. An internal combustion engine configured to perform a rotational speed adjustment control, which is a control.
吸気ガスの冷却を低温側冷却水にて行うインタークーラを前記吸気通路及び前記低温側冷却水用流路に備えて、前記インタークーラと前記EGRクーラの間の前記低温側冷却水用流路に、前記低温側冷却水用流路と前記分岐流路の接続点を配置して構成される請求項1に記載の内燃機関。 An intercooler that cools the intake gas with low-temperature side cooling water is provided in the intake passage and the low-temperature side cooling water flow path, and is provided in the low-temperature side cooling water flow path between the intercooler and the EGR cooler. The internal combustion engine according to claim 1, wherein a connection point between the low temperature side cooling water channel and the branch channel is arranged. 前記制御装置が、
前記内燃機関が低負荷であるときにのみ、前記回転数調整制御を行うように構成される請求項1または2に記載の内燃機関。
The control device is
The internal combustion engine according to claim 1, wherein the rotational speed adjustment control is performed only when the internal combustion engine has a low load.
前記制御装置が、
前記凝縮水生成判定を予め設定した制御時間毎に行うとともに、
前記凝縮水生成判定で凝縮水が生成されると判定したときには、その後の前記凝縮水生成判定で凝縮水が生成されないと判定するまでは、前記凝縮水生成判定で凝縮水が生成されると判定する度に前記低水温用送水装置の回転数を低下させるとともに、その後の前記凝縮水生成判定で凝縮水が生成されないと判定するときに、前記低水温用送水装置の回転数を前記基本回転数に戻す制御を行うように構成される請求項1〜3のいずれか一項に記載の内燃機関。
The control device is
While performing the condensed water generation determination every preset control time,
When it is determined that condensed water is generated in the condensed water generation determination, it is determined that condensed water is generated in the condensed water generation determination until it is determined that condensed water is not generated in the subsequent condensed water generation determination. Each time the rotation speed of the low water temperature water supply device is reduced, and when it is determined that condensed water is not generated in the subsequent condensed water generation determination, the rotation speed of the low water temperature water supply device is the basic rotation speed. The internal combustion engine according to any one of claims 1 to 3, wherein the internal combustion engine is configured to perform control for returning to the above.
前記EGRクーラより上流側の前記EGR通路に、前記EGRクーラとは別のEGRクーラで、かつ、高温側冷却水を冷却媒体とする第2EGRクーラを備えて構成される請求項1〜4のいずれか一項に記載の内燃機関。 The EGR cooler different from the EGR cooler and provided with a second EGR cooler using a high temperature side cooling water as a cooling medium in the EGR passage upstream of the EGR cooler. The internal combustion engine according to claim 1. 内燃機関の冷却を行う高温側冷却水が流通する高温側冷却水用流路に高水温用ラジエータと高水温用送水装置を備えるとともに、前記内燃機関の吸気通路を通過する吸気ガスの冷却を行う低温側冷却水が流通する低温側冷却水用流路に低水温用ラジエータと電動式の低水温用送水装置とEGRクーラを備えて、さらに、該EGRクーラより上流側の前記低温側冷却水用流路に、前記高温側冷却水用流路より分岐した分岐流路を接続して、前記低温側冷却水用流路を通過する低温側冷却水と前記分岐流路を通過する高温側冷却水が混合された混合冷却水を前記EGRクーラに流通させるように構成される内燃機関の制御方法において、
前記EGRクーラより下流側のEGR通路を通過するEGRガスの温度と、前記内燃機関の排気通路または排気マニホールドを通過する排気ガスの酸素過剰率に基づいて、EGRガスに含まれる水蒸気が液化して凝縮水が生成されるか否かを判定する凝縮水生成判定を行うとともに、
該凝縮水生成判定で凝縮水が生成されると判定するときには、前記低水温用送水装置の回転数を前記内燃機関の運転状態に応じて予め設定される基本回転数より低下させる制御である回転数調整制御を行うことを特徴とする内燃機関の制御方法。
A high water temperature radiator and a high water temperature water supply device are provided in the high temperature side cooling water flow path through which the high temperature side cooling water for cooling the internal combustion engine is provided, and the intake gas passing through the intake passage of the internal combustion engine is cooled. The low temperature side cooling water flow path through which the low temperature side cooling water flows has a low water temperature radiator, an electric low water temperature water supply device and an EGR cooler, and further, for the low temperature side cooling water upstream of the EGR cooler. A branch flow path branched from the high temperature side cooling water flow path is connected to the flow path, and a low temperature side cooling water passing through the low temperature side cooling water flow path and a high temperature side cooling water passing through the branch flow path. In a method of controlling an internal combustion engine configured to cause the mixed cooling water in which is mixed to flow through the EGR cooler,
Based on the temperature of the EGR gas passing through the EGR passage downstream of the EGR cooler and the oxygen excess rate of the exhaust gas passing through the exhaust passage or the exhaust manifold of the internal combustion engine, the water vapor contained in the EGR gas is liquefied. In addition to performing condensed water generation determination to determine whether condensed water is generated,
When it is determined in the condensed water generation determination that condensed water is generated, a rotation that is a control for lowering the rotation speed of the low water temperature water supply device below a basic rotation speed that is preset according to the operating state of the internal combustion engine. A method for controlling an internal combustion engine, characterized in that a number adjustment control is performed.
JP2016209891A 2016-10-26 2016-10-26 Internal combustion engine and method of controlling internal combustion engine Active JP6743648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016209891A JP6743648B2 (en) 2016-10-26 2016-10-26 Internal combustion engine and method of controlling internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016209891A JP6743648B2 (en) 2016-10-26 2016-10-26 Internal combustion engine and method of controlling internal combustion engine

Publications (2)

Publication Number Publication Date
JP2018071391A JP2018071391A (en) 2018-05-10
JP6743648B2 true JP6743648B2 (en) 2020-08-19

Family

ID=62114907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016209891A Active JP6743648B2 (en) 2016-10-26 2016-10-26 Internal combustion engine and method of controlling internal combustion engine

Country Status (1)

Country Link
JP (1) JP6743648B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123409A1 (en) * 2009-04-22 2010-10-28 Volvo Lastvagnar Ab Method and arrangement for recirculation of exhaust gases of a combustion engine
JP2012189063A (en) * 2011-03-14 2012-10-04 Toyota Motor Corp Cooling apparatus for internal combustion engine
JP2012197749A (en) * 2011-03-22 2012-10-18 Toyota Motor Corp Centrifugal compressor
JP5962534B2 (en) * 2013-02-15 2016-08-03 トヨタ自動車株式会社 Intercooler temperature controller
JP6364895B2 (en) * 2014-04-02 2018-08-01 株式会社デンソー EGR system for internal combustion engine
JP6339701B2 (en) * 2015-02-06 2018-06-06 本田技研工業株式会社 Cooling control device for internal combustion engine

Also Published As

Publication number Publication date
JP2018071391A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
US10473063B2 (en) EGR system for internal-combustion engine
KR101846886B1 (en) Engine system and method thereof
JP2011236892A (en) Large-scale two-cycle diesel engine including exhaust emission control system
JP5775509B2 (en) Control device for internal combustion engine
JP2016006310A (en) Internal combustion engine control system
US20160131017A1 (en) Cooling control system for internal combustion engine
KR20180053102A (en) Engine system for removing condensed water
JP5971232B2 (en) Engine system control device
JP2014148957A (en) Egr gas cooling device
JP2018087577A (en) EGR system of internal combustion engine
JP4329558B2 (en) Supercharging system for internal combustion engines
JP2015086815A (en) Engine cooling device
JP6357902B2 (en) Engine exhaust gas recirculation method and exhaust gas recirculation device
WO2018142510A1 (en) Intake control method and intake control device for internal combustion engine
JP2015200207A (en) Two-stage turbocharger system, internal combustion engine, and method for controlling two-stage turbocharger system
JP6743648B2 (en) Internal combustion engine and method of controlling internal combustion engine
JP2009068398A (en) Internal combustion engine
JP5964260B2 (en) Engine exhaust gas energy recovery system
JP2016044573A (en) Control device for internal combustion engine
JP6375680B2 (en) HYBRID SYSTEM, HYBRID SYSTEM VEHICLE, AND EGR METHOD FOR HYBRID SYSTEM
JP2016109081A (en) Temperature control device for intercooler
EP2647821B1 (en) Exhaust gas recirculation for large internal combustion engines
US11506098B1 (en) Systems and methods for turbocharger
JP2014148940A (en) Control device of internal combustion engine with supercharger
JP2018178842A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R150 Certificate of patent or registration of utility model

Ref document number: 6743648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150