JP6741524B2 - Hot water supply system - Google Patents

Hot water supply system Download PDF

Info

Publication number
JP6741524B2
JP6741524B2 JP2016166220A JP2016166220A JP6741524B2 JP 6741524 B2 JP6741524 B2 JP 6741524B2 JP 2016166220 A JP2016166220 A JP 2016166220A JP 2016166220 A JP2016166220 A JP 2016166220A JP 6741524 B2 JP6741524 B2 JP 6741524B2
Authority
JP
Japan
Prior art keywords
temperature
hot water
boiling
tank
next day
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016166220A
Other languages
Japanese (ja)
Other versions
JP2018031574A (en
Inventor
今井 誠士
誠士 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2016166220A priority Critical patent/JP6741524B2/en
Publication of JP2018031574A publication Critical patent/JP2018031574A/en
Application granted granted Critical
Publication of JP6741524B2 publication Critical patent/JP6741524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本明細書に開示する技術は、給湯システムに関する。 The technique disclosed in this specification relates to a hot water supply system.

特許文献1に開示されている給湯システムは、外気から吸熱して水を沸き上げるヒートポンプと、ヒートポンプによって沸き上げられた温水を貯湯するタンクと、タンク内の温水を温水利用箇所に供給する供給路と、温水利用箇所における給湯設定温度を設定可能な設定手段と、制御手段を備えている。制御手段は、タンク内の水をヒートポンプによって沸き上げ温度に沸き上げる沸き上げ運転を実行可能である。ヒートポンプによって沸き上げられた温水はタンクに貯湯される。その後、タンク内の温水の温度は自然放熱によって時間の経過とともに低下してゆく。 The hot water supply system disclosed in Patent Document 1 includes a heat pump that absorbs heat from the outside air to boil water, a tank that stores hot water boiled by the heat pump, and a supply path that supplies hot water in the tank to hot water utilization points. And a setting means capable of setting the hot water supply set temperature at the hot water use location, and a control means. The control means can execute the boiling operation in which the water in the tank is heated to the boiling temperature by the heat pump. The hot water boiled by the heat pump is stored in the tank. After that, the temperature of the hot water in the tank decreases with time due to natural heat dissipation.

特開2015−038397号公報JP, 2005-038397, A

給湯システムでは、沸き上げ運転を実行する際に、低温で沸き上げ運転を実行すると、高温で沸き上げ運転を実行するよりも、ヒートポンプにおけるCOP(Coefficient Of Performance)を高くすることができる。よって、可能な限り低温で沸き上げ運転を実行することが好ましい。 In the hot water supply system, when the boiling operation is executed at a low temperature, the COP (Coefficient Of Performance) of the heat pump can be made higher than when the boiling operation is executed at a high temperature. Therefore, it is preferable to execute the boiling operation at the lowest possible temperature.

その一方で、沸き上げ温度が低過ぎると、タンクに貯湯される温水の温度が低くなり、タンク内の温水を温水利用箇所に供給する際に、給湯設定温度の温水を温水利用箇所に供給できなくなることがある。特に、自然放熱によって時間の経過とともにタンク内の温水の温度が低下したときに、給湯設定温度の温水を温水利用箇所に供給できなくなることがある。そこで本明細書では、沸き上げ運転を実行する際のCOPを高くしつつ、給湯設定温度より低温の温水が温水利用箇所に供給されることを抑制できる技術を提供する。 On the other hand, if the boiling temperature is too low, the temperature of the hot water stored in the tank will decrease, and when supplying the hot water in the tank to the hot water use point, the hot water at the hot water set temperature can be supplied to the hot water use point. It may disappear. In particular, when the temperature of the hot water in the tank decreases over time due to natural heat dissipation, hot water at the hot water supply set temperature may not be supplied to the hot water use location. Therefore, the present specification provides a technique capable of suppressing the supply of hot water having a temperature lower than the hot water supply set temperature to hot water utilization points while increasing the COP when executing the boiling operation.

本明細書に開示する給湯システムは、外気から吸熱して水を沸き上げるヒートポンプと、ヒートポンプによって沸き上げられた温水を貯湯するタンクと、タンクに貯湯されている温水の温度を測定する温度センサと、タンク内の温水を温水利用箇所に供給する供給路と、温水利用箇所における給湯設定温度を設定可能な設定手段と、制御手段を備えている。制御手段は、所定の第1沸き上げ時刻にタンク内の水をヒートポンプによって第1沸き上げ温度に沸き上げる第1沸き上げ運転を実行可能である。また、制御手段は、第1沸き上げ運転を実行した後にタンク内の温水の貯湯量が所定の貯湯量より少なくなったときのタンク内の温水の温度である第1貯湯温度を温度センサで測定し、第1貯湯温度が給湯設定温度より高い第1基準温度より高い場合は、翌日の第1沸き上げ温度を下げて、第1貯湯温度が給湯設定温度より高く第1基準温度より低い第2基準温度より低い場合は、翌日の第1沸き上げ温度を上げて、翌日の第1沸き上げ運転を実行する。 The hot water supply system disclosed in the present specification is a heat pump that absorbs heat from the outside air to boil water, a tank that stores hot water boiled by the heat pump, and a temperature sensor that measures the temperature of hot water stored in the tank. A supply path for supplying the hot water in the tank to the hot water use location, a setting means capable of setting a hot water supply set temperature at the hot water use location, and a control means. The control means can execute a first boiling operation in which the water in the tank is boiled to a first boiling temperature by a heat pump at a predetermined first boiling time. Further, the control means measures, with the temperature sensor, the first hot water storage temperature which is the temperature of the hot water in the tank when the hot water storage amount in the tank becomes less than the predetermined hot water storage amount after executing the first boiling operation. However, if the first hot water storage temperature is higher than the first reference temperature higher than the hot water supply set temperature, the first boiling temperature on the next day is lowered to make the second hot water storage temperature higher than the hot water supply set temperature and lower than the first reference temperature. When the temperature is lower than the reference temperature, the first boiling temperature of the next day is raised and the first boiling operation of the next day is executed.

このような構成によれば、制御手段が第1沸き上げ運転を実行すると、ヒートポンプがタンク内の水を第1沸き上げ温度に沸き上げる。ヒートポンプによって沸き上げられた温水はタンクに貯湯される。第1沸き上げ温度の温水がタンクに貯湯される。その後、タンク内の温水が温水利用箇所に供給されると、タンク内の温水の貯湯量が減少してゆく。また、時間の経過とともに、自然放熱によってタンク内の温水の温度が低下してゆく。制御手段は、タンク内の温水の貯湯量が所定の貯湯量より少なくなったときにタンク内の温水の温度(すなわち、第1貯湯温度)を測定する。制御手段は、測定した第1貯湯温度が第1基準温度より高い場合は、翌日の第1沸き上げ温度を下げる。また、制御手段は、測定した第1貯湯温度が第2基準温度より低い場合は、翌日の第1沸き上げ温度を上げる。そして制御手段は、翌日の所定の第1沸き上げ時刻に、上記で下げた第1沸き上げ温度または上げた第1沸き上げ温度で第1沸き上げ運転を実行する。 According to such a configuration, when the control means executes the first boiling operation, the heat pump boil the water in the tank to the first boiling temperature. The hot water boiled by the heat pump is stored in the tank. Hot water having the first boiling temperature is stored in the tank. After that, when the hot water in the tank is supplied to the hot water use location, the amount of hot water stored in the tank decreases. Also, with the passage of time, the temperature of the hot water in the tank decreases due to natural heat dissipation. The control means measures the temperature of the hot water in the tank (that is, the first hot water storage temperature) when the amount of hot water stored in the tank becomes smaller than the predetermined amount of hot water storage. When the measured first hot water storage temperature is higher than the first reference temperature, the control means lowers the first boiling temperature of the next day. Further, when the measured first hot water storage temperature is lower than the second reference temperature, the control means raises the first boiling temperature of the next day. Then, the control means executes the first boiling operation at the predetermined first boiling time on the next day at the first boiling temperature lowered or the first boiling temperature raised.

上記の構成によれば、第1沸き上げ運転で沸き上げた温水を使い切る直前にタンク内に残留している温水の温度(第1貯湯温度)が第1基準温度より高い場合は、翌日の第1沸き上げ温度を下げる。これによって、翌日において、第1沸き上げ運転で沸き上げた温水を使い切る直前にタンク内に残留している温水の温度を給湯設定温度以上に維持しながら、第1沸き上げ温度を低くすることができる。このように、第1貯湯温度が高い場合は、翌日の第1貯湯温度を下げるために翌日の第1沸き上げ温度を下げるので、第1沸き上げ運転を実行する際の第1沸き上げ温度を下げることによってCOPを高くすることができる。 According to the above configuration, when the temperature of the hot water remaining in the tank (first hot water storage temperature) is higher than the first reference temperature immediately before the hot water boiled in the first boiling operation is used up, the 1 Lower the boiling temperature. As a result, on the next day, it is possible to lower the first boiling temperature while maintaining the temperature of the hot water remaining in the tank just above the hot water supply set temperature immediately before the hot water boiled in the first boiling operation is used up. it can. In this way, when the first hot water storage temperature is high, the first boiling temperature of the next day is lowered in order to lower the first hot water storage temperature of the next day. Therefore, the first boiling temperature when executing the first boiling operation is The COP can be increased by lowering it.

また、第1沸き上げ運転で沸き上げた温水を使い切る直前にタンク内に残留している温水の温度(第1貯湯温度)が第2基準温度より低い場合は、翌日の第1沸き上げ温度を上げる。これによって、翌日において、第1沸き上げ運転で沸き上げた温水を使い切る直前にタンク内に残留している温水の温度が給湯設定温度を下回ってしまうことを確実に防止することができる。このように、第1貯湯温度が低い場合は翌日の第1貯湯温度を上げることができるので、タンク内の温水を温水利用箇所に供給する際に、給湯設定温度より低温の温水が温水利用箇所に供給されることを抑制できる。 When the temperature of the hot water remaining in the tank (first hot water storage temperature) is lower than the second reference temperature immediately before the hot water boiled in the first boiling operation is used up, the first boiling temperature of the next day is set to increase. As a result, on the next day, it is possible to reliably prevent the temperature of the hot water remaining in the tank from falling below the hot water supply set temperature immediately before the hot water boiled in the first boiling operation is used up. In this way, when the first hot water storage temperature is low, the first hot water storage temperature of the next day can be raised. Therefore, when supplying the hot water in the tank to the hot water use point, hot water at a temperature lower than the hot water supply set temperature is the hot water use point. Can be suppressed.

上記の給湯システムにおいて、第1貯湯温度が給湯設定温度より高い第1基準温度より高い場合は、第1貯湯温度と第1基準温度の差分の絶対値を第1沸き上げ温度から減算した温度を翌日の第1沸き上げ温度とし、第1貯湯温度が給湯設定温度より高く第1基準温度より低い第2基準温度より低い場合は、第1貯湯温度と第2基準温度の差分の絶対値を第1沸き上げ温度に加算した温度を翌日の第1沸き上げ温度として、翌日の第1沸き上げ運転を実行してもよい。 In the above hot water supply system, when the first hot water storage temperature is higher than the first reference temperature which is higher than the hot water supply set temperature, the temperature obtained by subtracting the absolute value of the difference between the first hot water storage temperature and the first reference temperature from the first boiling temperature is used. If the first boiling temperature is set to the next day and the first hot water storage temperature is lower than the second reference temperature that is higher than the hot water supply set temperature and lower than the first reference temperature, the absolute value of the difference between the first hot water storage temperature and the second reference temperature is The temperature added to the one boiling temperature may be set as the first boiling temperature of the next day, and the first boiling operation of the next day may be executed.

このような構成によれば、翌日の第1沸き上げ温度を下げる際に、第1貯湯温度と第1基準温度の差分の絶対値を第1沸き上げ温度から減算した温度を翌日の第1沸き上げ温度とすることによって、翌日の第1沸き上げ温度が低くなりすぎることを抑制できる。その結果、翌日の第1沸き上げ運転で沸き上げた温水を使い切る直前にタンク内に残留している温水の温度(翌日の第1貯湯温度)が低くなりすぎることを抑制できる。一方、翌日の第1沸き上げ温度を上げる際に、第1貯湯温度と第2基準温度の差分の絶対値を第1沸き上げ温度に加算した温度を翌日の第1沸き上げ温度とすることによって、翌日の第1沸き上げ温度が高くなりすぎることを抑制できる。その結果、翌日の第1貯湯温度が高くなりすぎることを抑制できる。これによって、翌日の第1貯湯温度を給湯設定温度に近い温度に精度良く近付けることができる。 With such a configuration, when lowering the first boiling temperature of the next day, the temperature obtained by subtracting the absolute value of the difference between the first hot water storage temperature and the first reference temperature from the first boiling temperature is the first boiling temperature of the next day. By setting the temperature to be raised, it is possible to prevent the first boiling temperature on the next day from becoming too low. As a result, it is possible to prevent the temperature of the hot water remaining in the tank (the first hot water storage temperature of the next day) from becoming too low immediately before the hot water boiled in the first boiling operation of the next day is used up. On the other hand, when raising the first boiling temperature of the next day, the temperature obtained by adding the absolute value of the difference between the first hot water storage temperature and the second reference temperature to the first boiling temperature is set as the first boiling temperature of the next day. It is possible to prevent the first boiling temperature on the next day from becoming too high. As a result, it is possible to prevent the first hot water storage temperature of the next day from becoming too high. As a result, the first hot water storage temperature of the next day can be accurately brought close to the hot water supply set temperature.

本明細書に開示する別の給湯システムは、外気から吸熱して水を沸き上げるヒートポンプと、ヒートポンプによって沸き上げられた温水を貯湯するタンクと、タンクに貯湯されている温水の温度を測定する温度センサと、タンク内の温水を温水利用箇所に供給する供給路と、温水利用箇所における給湯設定温度を設定可能な設定手段と、制御手段を備えている。制御手段は、1日の最後の沸き上げ時刻である第2沸き上げ時刻にタンク内の水をヒートポンプによって第2沸き上げ温度に沸き上げる第2沸き上げ運転を実行可能である。また、制御手段は、第2沸き上げ運転を実行した後に1日の最後にタンク内の温水が温水利用箇所に供給されたときのタンク内の温水の温度である第2貯湯温度を温度センサで測定し、第2貯湯温度が給湯設定温度より高い第3基準温度より高い場合は、翌日の第2沸き上げ温度を下げて、第2貯湯温度が給湯設定温度より高く第3基準温度より低い第4基準温度より低い場合は、翌日の第2沸き上げ温度を上げて、翌日の第2沸き上げ運転を実行する。 Another hot water supply system disclosed in this specification is a heat pump that absorbs heat from the outside air to boil water, a tank that stores hot water boiled by the heat pump, and a temperature that measures the temperature of hot water stored in the tank. It is provided with a sensor, a supply path for supplying hot water in the tank to the hot water use point, a setting means capable of setting a hot water supply set temperature at the hot water use point, and a control means. The control means can execute the second boiling operation in which the water in the tank is boiled to the second boiling temperature by the heat pump at the second boiling time which is the last boiling time of the day. In addition, the control means uses the temperature sensor to detect the second hot water storage temperature, which is the temperature of the hot water in the tank when the hot water in the tank is supplied to the hot water use location at the end of the day after executing the second boiling operation. If the second hot water storage temperature is higher than the third reference temperature higher than the hot water supply set temperature, the second boiling temperature is decreased on the next day, and the second hot water storage temperature is higher than the hot water supply set temperature and lower than the third reference temperature. If the temperature is lower than the four reference temperature, the second boiling temperature of the next day is raised and the second boiling operation of the next day is executed.

このような構成によれば、制御手段が第2沸き上げ運転を実行すると、ヒートポンプがタンク内の水を第2沸き上げ温度に沸き上げる。ヒートポンプによって沸き上げられた温水はタンクに貯湯される。第2沸き上げ温度の温水がタンクに貯湯される。その後、タンク内の温水が温水利用箇所に供給されると、タンク内の温水の貯湯量が減少してゆく。また、時間の経過とともに、自然放熱によってタンク内の温水の温度が低下してゆく。制御手段は、1日の最後にタンク内の温水が温水利用箇所に供給されたときのタンク内の温水の温度(すなわち、第2貯湯温度)を測定する。制御手段は、測定した第2貯湯温度が第3基準温度より高い場合は、翌日の第2沸き上げ温度を下げる。また、制御手段は、測定した第2貯湯温度が第4基準温度より低い場合は、翌日の第2沸き上げ温度を上げる。そして制御手段は、翌日の最後の沸き上げ時刻である第2沸き上げ時刻に、上記で下げた第2沸き上げ温度または上げた第2沸き上げ温度で第2沸き上げ運転を実行する。 According to this structure, when the control means executes the second boiling operation, the heat pump boil the water in the tank to the second boiling temperature. The hot water boiled by the heat pump is stored in the tank. Hot water having the second boiling temperature is stored in the tank. After that, when the hot water in the tank is supplied to the hot water use location, the amount of hot water stored in the tank decreases. Also, with the passage of time, the temperature of the hot water in the tank decreases due to natural heat dissipation. The control means measures the temperature of the hot water in the tank (that is, the second hot water storage temperature) when the hot water in the tank is supplied to the hot water utilization point at the end of the day. When the measured second hot water storage temperature is higher than the third reference temperature, the control means lowers the second boiling temperature on the next day. Further, when the measured second hot water storage temperature is lower than the fourth reference temperature, the control means raises the second boiling temperature of the next day. Then, the control means performs the second boiling operation at the second boiling time which is the last boiling time on the next day at the second boiling temperature lowered or the second boiling temperature raised above.

上記の構成によれば、第2沸き上げ運転で沸き上げた後、1日の最後にタンク内に残留している温水の温度(第2貯湯温度)が第3基準温度より高い場合は、翌日の第2沸き上げ温度を下げる。これによって、翌日において、1日の最後にタンク内に残留している温水の温度を給湯設定温度以上に維持しながら、第2沸き上げ温度を低くすることができる。このように、第2貯湯温度が高い場合は、翌日の第2貯湯温度を下げるために翌日の第2沸き上げ温度を下げるので、第2沸き上げ運転を実行する際の第2沸き上げ温度を下げることによってCOPを高くすることができる。 According to the above configuration, when the temperature of the hot water remaining in the tank (second hot water storage temperature) is higher than the third reference temperature at the end of the day after boiling in the second boiling operation, the next day Lower the second boiling temperature of. As a result, on the next day, the second boiling temperature can be lowered while maintaining the temperature of the hot water remaining in the tank at the end of the day at or above the hot water supply set temperature. As described above, when the second hot water storage temperature is high, the second boiling temperature of the next day is lowered in order to lower the second hot water temperature of the next day. Therefore, the second boiling temperature when executing the second boiling operation is set to The COP can be increased by lowering it.

また、第2沸き上げ運転で沸き上げた後、1日の最後にタンク内に残留している温水の温度(第2貯湯温度)が第4基準温度より低い場合は、翌日の第2沸き上げ温度を上げる。これによって、翌日において、1日の最後にタンク内に残留している温水の温度が給湯設定温度を下回ってしまうことを確実に防止することができる。このように、第2貯湯温度が低い場合は翌日の第2貯湯温度を上げることができるので、タンク内の温水を温水利用箇所に供給する際に、給湯設定温度より低温の温水が温水利用箇所に供給されることを抑制できる。 Also, after boiling in the second boiling operation, if the temperature of the hot water remaining in the tank (second hot water storage temperature) at the end of the day is lower than the fourth reference temperature, the second boiling of the next day Raise the temperature. As a result, on the next day, it is possible to reliably prevent the temperature of the hot water remaining in the tank from falling below the hot water supply set temperature at the end of the day. In this way, when the second hot water storage temperature is low, the second hot water storage temperature of the next day can be raised. Therefore, when the hot water in the tank is supplied to the hot water use point, the hot water having a temperature lower than the hot water supply set temperature is the hot water use point. Can be suppressed.

上記の給湯システムにおいて、第2貯湯温度が給湯設定温度より高い第3基準温度より高い場合は、第2貯湯温度と第3基準温度の差分の絶対値を第2沸き上げ温度から減算した温度を翌日の第2沸き上げ温度とし、第2貯湯温度が給湯設定温度より高く第3基準温度より低い第4基準温度より低い場合は、第2貯湯温度と第4基準温度の差分の絶対値を第2沸き上げ温度に加算した温度を翌日の第2沸き上げ温度として、翌日の第2沸き上げ運転を実行してもよい。 In the above hot water supply system, when the second hot water storage temperature is higher than the third reference temperature which is higher than the hot water supply set temperature, the temperature obtained by subtracting the absolute value of the difference between the second hot water storage temperature and the third reference temperature from the second boiling temperature is used. If the second boiling temperature is set to the next day and the second hot water storage temperature is lower than the fourth reference temperature that is higher than the hot water supply set temperature and lower than the third reference temperature, the absolute value of the difference between the second hot water storage temperature and the fourth reference temperature is The temperature added to the second boiling temperature may be set as the second boiling temperature of the next day, and the second boiling operation of the next day may be executed.

このような構成によれば、翌日の第2沸き上げ温度を下げる際に、第2貯湯温度と第3基準温度の差分の絶対値を第2沸き上げ温度から減算した温度を翌日の第2沸き上げ温度とすることによって、翌日の第2沸き上げ温度が低くなりすぎることを抑制できる。その結果、翌日の1日の最後にタンク内に残留している温水の温度(翌日の第2貯湯温度)が低くなりすぎることを抑制できる。一方、翌日の第2沸き上げ温度を上げる際に、第2貯湯温度と第4基準温度の差分の絶対値を第2沸き上げ温度に加算した温度を翌日の第2沸き上げ温度とすることによって、翌日の第2沸き上げ温度が高くなりすぎることを抑制できる。その結果、翌日の第2貯湯温度が高くなりすぎることを抑制できる。これによって、翌日の第2貯湯温度を給湯設定温度に近い温度に精度良く近付けることができる。 With such a configuration, when lowering the second boiling temperature of the next day, the temperature obtained by subtracting the absolute value of the difference between the second hot water storage temperature and the third reference temperature from the second boiling temperature is the second boiling temperature of the next day. By setting the temperature to be raised, it is possible to prevent the second boiling temperature on the next day from becoming too low. As a result, it is possible to prevent the temperature of the hot water remaining in the tank (the second hot water storage temperature of the next day) from becoming too low at the end of the next day. On the other hand, when raising the second boiling temperature of the next day, the temperature obtained by adding the absolute value of the difference between the second hot water storage temperature and the fourth reference temperature to the second boiling temperature is set as the second boiling temperature of the next day. The second boiling temperature of the next day can be suppressed from becoming too high. As a result, it is possible to prevent the second hot water storage temperature of the next day from becoming too high. As a result, the second hot water storage temperature of the next day can be accurately brought close to the hot water supply set temperature.

本明細書に開示する更に別の給湯システムは、外気から吸熱して水を沸き上げるヒートポンプと、ヒートポンプによって沸き上げられた温水を貯湯するタンクと、タンクに貯湯されている温水の温度を測定する温度センサと、タンク内の温水を温水利用箇所に供給する供給路と、温水利用箇所における給湯設定温度を設定可能な設定手段と、制御手段を備えている。制御手段は、所定の第1沸き上げ時刻にタンク内の水をヒートポンプによって第1沸き上げ温度に沸き上げる第1沸き上げ運転と、1日の最後の沸き上げ時刻である第2沸き上げ時刻にタンク内の水をヒートポンプによって第2沸き上げ温度に沸き上げる第2沸き上げ運転と、第1沸き上げ運転と第2沸き上げ運転の間にタンク内の水をヒートポンプによって第3沸き上げ温度に沸き上げる第3沸き上げ運転と、を実行可能である。また、制御手段は、第1沸き上げ運転を実行した後にタンク内の温水の貯湯量が所定の貯湯量より少なくなったときのタンク内の温水の温度である第1貯湯温度を温度センサで測定し、第1貯湯温度が給湯設定温度より高い第1基準温度より高い場合は、翌日の第1沸き上げ温度を下げて、第1貯湯温度が給湯設定温度より高く第1基準温度より低い第2基準温度より低い場合は、翌日の第1沸き上げ温度を上げて、翌日の第1沸き上げ運転を実行する。また、制御手段は、第2沸き上げ運転を実行した後に1日の最後にタンク内の温水が温水利用箇所に供給されたときのタンク内の温水の温度である第2貯湯温度を温度センサで測定し、第2貯湯温度が給湯設定温度より高い第3基準温度より高い場合は、翌日の第2沸き上げ温度を下げて、第2貯湯温度が給湯設定温度より高く第3基準温度より低い第4基準温度より低い場合は、翌日の第2沸き上げ温度を上げて、翌日の第2沸き上げ運転を実行する。また、制御手段は、翌日の第1沸き上げ運転と翌日の第2沸き上げ運転の間に、翌日の第1沸き上げ温度と翌日の第2沸き上げ温度の間の温度を翌日の第3沸き上げ温度として、翌日の第3沸き上げ運転を実行する。 Yet another hot water supply system disclosed in the present specification measures the temperature of a heat pump that absorbs heat from the outside air to boil water, a tank that stores hot water boiled by the heat pump, and the temperature of hot water stored in the tank. A temperature sensor, a supply path for supplying hot water in the tank to the hot water use point, a setting means capable of setting a hot water supply set temperature at the hot water use point, and a control means are provided. The control means performs a first boiling operation of boiling water in the tank to a first boiling temperature by a heat pump at a predetermined first boiling time and a second boiling time which is the last boiling time of the day. The water in the tank is boiled to the third boiling temperature by the heat pump during the second boiling operation in which the water in the tank is boiled to the second boiling temperature by the heat pump and the first boiling operation and the second boiling operation. It is possible to perform the third boiling operation of raising. Further, the control means measures, with the temperature sensor, the first hot water storage temperature which is the temperature of the hot water in the tank when the hot water storage amount in the tank becomes less than the predetermined hot water storage amount after executing the first boiling operation. However, if the first hot water storage temperature is higher than the first reference temperature higher than the hot water supply set temperature, the first boiling temperature on the next day is lowered to make the second hot water storage temperature higher than the hot water supply set temperature and lower than the first reference temperature. When the temperature is lower than the reference temperature, the first boiling temperature of the next day is raised and the first boiling operation of the next day is executed. In addition, the control means uses the temperature sensor to detect the second hot water storage temperature, which is the temperature of the hot water in the tank when the hot water in the tank is supplied to the hot water use location at the end of the day after executing the second boiling operation. If the second hot water storage temperature is higher than the third reference temperature higher than the hot water supply set temperature, the second boiling temperature is decreased on the next day, and the second hot water storage temperature is higher than the hot water supply set temperature and lower than the third reference temperature. If the temperature is lower than the four reference temperature, the second boiling temperature of the next day is raised and the second boiling operation of the next day is executed. Further, the control means sets a temperature between the first boiling temperature of the next day and the second boiling temperature of the next day between the first boiling operation of the next day and the second boiling operation of the next day to the third boiling temperature of the next day. As the raising temperature, the third boiling operation on the next day is executed.

このような構成によれば、翌日の第1沸き上げ運転に関して、可能な限り第1沸き上げ温度を下げて沸き上げ運転を実行する際のCOPを高くしつつ、給湯設定温度より低温の温水が温水利用箇所に供給されることを抑制できるとともに、翌日の第2沸き上げ運転に関して、可能な限り第2沸き上げ温度を下げて沸き上げ運転を実行する際のCOPを高くしつつ、給湯設定温度より低温の温水が温水利用箇所に供給されることを抑制できる。 According to such a configuration, with respect to the first boiling operation on the next day, while the COP when performing the boiling operation by lowering the first boiling temperature as much as possible, the hot water having a temperature lower than the hot water supply set temperature is It is possible to suppress the supply to the hot water utilization place, and regarding the second boiling operation of the next day, lower the second boiling temperature as much as possible and increase the COP when executing the boiling operation while setting the hot water supply set temperature. It is possible to prevent the lower temperature hot water from being supplied to the hot water use location.

また、上記の構成によれば、第1沸き上げ運転と第2沸き上げ運転の間に行われる第3沸き上げ運転における第3沸き上げ温度を、第1沸き上げ温度と第2沸き上げ温度の間の温度としている。仮に、第3沸き上げ温度を第1沸き上げ温度および第2沸き上げ温度より極端に低くしてしまうと、第3沸き上げ運転の際にタンク内に残留している温水の温度が第3沸き上げ温度より高く、タンク内の温度成層が逆転してしまうおそれがある。逆に、第3沸き上げ温度を第1沸き上げ温度および第2沸き上げ温度より極端に高くしてしまうと、第2沸き上げ運転の際にタンク内に残留している温水の温度が第2沸き上げ温度より高く、タンク内の温度成層が逆転してしまうおそれがある。上記のように、第3沸き上げ温度を第1沸き上げ温度と第2沸き上げ温度の間の温度とすることで、第3沸き上げ運転や第2沸き上げ運転の際にタンク内の温度成層が逆転してしまうことを防止することができる。 Further, according to the above configuration, the third boiling temperature in the third boiling operation performed between the first boiling operation and the second boiling operation is set to the first boiling temperature and the second boiling temperature. The temperature is between. If the third boiling temperature is made extremely lower than the first boiling temperature and the second boiling temperature, the temperature of the hot water remaining in the tank during the third boiling operation will be the third boiling temperature. There is a possibility that the temperature stratification in the tank may be reversed because the temperature is higher than the temperature rise. On the contrary, if the third boiling temperature is made extremely higher than the first boiling temperature and the second boiling temperature, the temperature of the hot water remaining in the tank during the second boiling operation becomes the second temperature. Since the temperature is higher than the boiling temperature, the temperature stratification in the tank may be reversed. As described above, by setting the third boiling temperature to a temperature between the first boiling temperature and the second boiling temperature, the temperature stratification in the tank during the third boiling operation and the second boiling operation. Can be prevented from reversing.

以上より、本明細書に開示する給湯システムによれば、沸き上げ運転を実行する際のCOPを高くしつつ、給湯設定温度より低温の温水が温水利用箇所に供給されることを抑制できる。 As described above, according to the hot water supply system disclosed in the present specification, it is possible to suppress the supply of hot water having a temperature lower than the hot water supply set temperature to the hot water use location while increasing the COP when executing the boiling operation.

上記の給湯システムにおいて、第1貯湯温度が給湯設定温度より高い第1基準温度より高い場合は、第1貯湯温度と第1基準温度の差分の絶対値を第1沸き上げ温度から減算した温度を翌日の第1沸き上げ温度とし、第1貯湯温度が給湯設定温度より高く第1基準温度より低い第2基準温度より低い場合は、第1貯湯温度と第2基準温度の差分の絶対値を第1沸き上げ温度に加算した温度を翌日の第1沸き上げ温度として、翌日の第1沸き上げ運転を実行してもよい。また、第2貯湯温度が給湯設定温度より高い第3基準温度より高い場合は、第2貯湯温度と第3基準温度の差分の絶対値を第2沸き上げ温度から減算した温度を翌日の第2沸き上げ温度とし、第2貯湯温度が給湯設定温度より高く第3基準温度より低い第4基準温度より低い場合は、第2貯湯温度と第4基準温度の差分の絶対値を第2沸き上げ温度に加算した温度を翌日の第2沸き上げ温度として、翌日の第2沸き上げ運転を実行してもよい。 In the above hot water supply system, when the first hot water storage temperature is higher than the first reference temperature which is higher than the hot water supply set temperature, the temperature obtained by subtracting the absolute value of the difference between the first hot water storage temperature and the first reference temperature from the first boiling temperature is used. If the first boiling temperature is set to the next day and the first hot water storage temperature is lower than the second reference temperature that is higher than the hot water supply set temperature and lower than the first reference temperature, the absolute value of the difference between the first hot water storage temperature and the second reference temperature is The temperature added to the one boiling temperature may be set as the first boiling temperature of the next day, and the first boiling operation of the next day may be executed. If the second hot water storage temperature is higher than the third reference temperature which is higher than the hot water supply set temperature, the temperature obtained by subtracting the absolute value of the difference between the second hot water storage temperature and the third reference temperature from the second boiling temperature is the second temperature of the next day. If the second hot water temperature is lower than the fourth reference temperature that is higher than the hot water supply set temperature and lower than the third reference temperature, the absolute value of the difference between the second hot water temperature and the fourth reference temperature is the second boiling temperature. The second boiling temperature of the next day may be set as the temperature of the second boiling temperature of the next day.

このような構成によれば、翌日の第1沸き上げ運転に関して、翌日の第1沸き上げ運転で沸き上げた温水を使い切る直前にタンク内に残留している温水の温度(翌日の第1貯湯温度)を給湯設定温度に近い温度に精度良く近付けることができる。また、翌日の第2沸き上げ運転に関して、1日の最後にタンク内に残留している温水の温度(翌日の第2貯湯温度)を給湯設定温度に近い温度に精度良く近付けることができる。 According to such a configuration, regarding the first boiling operation of the next day, the temperature of the hot water remaining in the tank immediately before the hot water boiled in the first boiling operation of the next day is used up (the first hot water storage temperature of the next day ) Can be accurately approached to a temperature close to the hot water supply set temperature. Further, regarding the second boiling operation on the next day, the temperature of the hot water remaining in the tank at the end of the day (the second hot water storage temperature on the next day) can be accurately brought close to the hot water supply set temperature.

実施例に係る給湯システム2の構成を模式的に示す図。The figure which shows typically the structure of the hot water supply system 2 which concerns on an Example. 第1沸き上げ運転に関する時刻とタンク10内の温水の貯湯量との関係を示すグラフ。The graph which shows the relationship between the time regarding the 1st boiling operation, and the amount of hot water stored in the tank 10. 第1沸き上げ運転に関する制御処理を示すフローチャート(1)。The flowchart (1) which shows the control processing regarding the 1st boiling operation. 第1沸き上げ運転に関する時刻とタンク10内の温水の温度との関係を示すグラフ。The graph which shows the relationship between the time regarding the 1st boiling operation and the temperature of the hot water in the tank 10. 第1沸き上げ運転に関する制御処理を示すフローチャート(2−1)。The flowchart (2-1) which shows the control processing regarding the 1st boiling operation. 第1沸き上げ運転に関する制御処理を示すフローチャート(2−2)。The flowchart (2-2) which shows the control processing regarding the 1st boiling operation. 第2沸き上げ運転に関する時刻とタンク10内の温水の貯湯量との関係を示すグラフ。The graph which shows the relationship between the time regarding the 2nd boiling operation, and the amount of hot water stored in the tank 10. 第2沸き上げ運転に関する制御処理を示すフローチャート(1)。The flowchart (1) which shows the control processing regarding the 2nd boiling operation. 第2沸き上げ運転に関する時刻とタンク10内の温水の温度との関係を示すグラフ。The graph which shows the relationship between the time regarding the 2nd boiling operation, and the temperature of the hot water in the tank 10. 第2沸き上げ運転に関する制御処理を示すフローチャート(2−1)。The flowchart (2-1) which shows the control processing regarding the 2nd boiling operation. 第2沸き上げ運転に関する制御処理を示すフローチャート(2−2)。The flowchart (2-2) which shows the control processing regarding the 2nd boiling operation. 第3沸き上げ運転に関する時刻とタンク10内の温水の貯湯量との関係を示すグラフ。The graph which shows the relationship between the time regarding the 3rd boiling operation, and the amount of hot water stored in the tank 10. 第3沸き上げ運転に関する制御処理を示すフローチャート(1)。The flowchart (1) which shows the control processing regarding the 3rd boiling operation. 第3沸き上げ運転に関する制御処理を示すフローチャート(2)。The flowchart (2) which shows the control processing regarding the 3rd boiling operation. タンク内の温水の貯湯量を算出する方法を示すフローチャート。The flowchart which shows the method of calculating the amount of hot water stored in the tank.

以下に説明する実施例の主要な特徴を列記しておく。なお、以下に記載する技術要素は、それぞれ独立した技術要素であって、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。 The main features of the embodiments described below are listed. It should be noted that the technical elements described below are technical elements that are independent of each other and exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. Absent.

(特徴1)給湯システムは、タンクから温水利用箇所に供給される温水を燃料の燃焼によって加熱する補助加熱器を更に備えていてもよい。 (Characteristic 1) The hot water supply system may further include an auxiliary heater that heats the hot water supplied from the tank to the hot water use location by burning the fuel.

温水の加熱源がヒートポンプのみの場合には、タンク内の温水の温度が給湯設定温度より低くなってしまうと給湯設定温度での給湯が不可能になってしまう。このため、温水の加熱源がヒートポンプのみである給湯システムにおいては、第1基準温度および第2基準温度、および/または、第3基準温度および第4基準温度を高めに設定しておいて、沸き上げ運転における沸き上げ温度をある程度高い温度に保っておく必要がある。これとは異なり、上記の給湯システムのように、温水の加熱源としてヒートポンプのほかに補助加熱器を備えている場合には、仮にタンク内の温水の温度が給湯設定温度より低くなってしまった場合でも、補助加熱器を用いて温水を加熱することで、給湯設定温度での給湯が可能である。従って、上記の給湯システムによれば、第1基準温度および第2基準温度、および/または、第3基準温度および第4基準温度をより低い温度に設定して、沸き上げ運転における沸き上げ温度をより低い温度にすることができる。そのため、沸き上げ運転におけるCOPをより高めることができる。 When the heating source of the hot water is only the heat pump, if the temperature of the hot water in the tank becomes lower than the hot water supply set temperature, hot water supply at the hot water supply set temperature becomes impossible. For this reason, in the hot water supply system in which the heating source of the hot water is only the heat pump, the first reference temperature and the second reference temperature, and/or the third reference temperature and the fourth reference temperature are set to be higher and It is necessary to keep the boiling temperature in the raising operation at a relatively high temperature. In contrast to this, when the auxiliary heating device other than the heat pump is provided as the heating source for the hot water as in the hot water supply system described above, the temperature of the hot water in the tank is temporarily lower than the hot water set temperature. Even in this case, hot water can be supplied at the hot water supply set temperature by heating the hot water using the auxiliary heater. Therefore, according to the above hot water supply system, the first reference temperature and the second reference temperature, and/or the third reference temperature and the fourth reference temperature are set to lower temperatures, and the boiling temperature in the boiling operation is set. Lower temperatures can be used. Therefore, COP in the boiling operation can be further increased.

(実施例)
図1は、本実施例に係る給湯システム2の構成を示している。図1に示すように、本実施例に係る給湯システム2は、タンク10と、タンク水循環路20と、給水路30と、供給路40と、ヒートポンプ50と、バーナ加熱装置60と、コントローラ100と、を備える。
(Example)
FIG. 1 shows the configuration of a hot water supply system 2 according to this embodiment. As shown in FIG. 1, the hot water supply system 2 according to the present embodiment includes a tank 10, a tank water circulation path 20, a water supply path 30, a supply path 40, a heat pump 50, a burner heating device 60, and a controller 100. , Is provided.

ヒートポンプ50は、外気から吸熱して、タンク水循環路20内の水を加熱する熱源である。ヒートポンプ50は、タンク10内の水を沸き上げる装置である。ヒートポンプ50は、図示しないが、熱媒体(例えばR32等)を循環させる熱媒体循環路と、外気と熱媒体との間で熱交換を行う蒸発器と、熱媒体を圧縮して高温高圧にする圧縮器と、タンク水循環路20内の水と高温高圧の熱媒体との間で熱交換を行う凝縮器と、熱交換を終えた後の熱媒体を減圧させて低温低圧にする膨張弁と、を備えている。 The heat pump 50 is a heat source that absorbs heat from the outside air and heats the water in the tank water circulation path 20. The heat pump 50 is a device for boiling the water in the tank 10. The heat pump 50, which is not shown, is a heat medium circulation path that circulates a heat medium (for example, R32), an evaporator that performs heat exchange between outside air and the heat medium, and compresses the heat medium to a high temperature and high pressure. A compressor, a condenser that performs heat exchange between the water in the tank water circulation path 20 and the high-temperature and high-pressure heat medium, and an expansion valve that decompresses the heat medium after the heat exchange to reduce the temperature to a low pressure. Equipped with.

タンク10は、ヒートポンプ50によって沸き上げられた温水を貯える。タンク10は、密閉型であり、断熱材によって外側が覆われている。タンク10内には満水まで水が貯留されている。本実施例では、タンク10の容量は100Lである。タンク10には、サーミスタ12、14、16、18がタンク10の高さ方向に所定間隔で取り付けられている。各サーミスタ12、14、16、18は、その取付位置の水の温度を測定する。例えば、各サーミスタ12、14、16、18は、それぞれ、タンク10の上部から6L、12L、30L、50Lの位置の水の温度を測定する。また、タンク10には、サーミスタ11(温度センサの一例)が取り付けられている。サーミスタ11は、タンク10の上部に取り付けられており、タンク10の上部に貯留されている水の温度を測定する。サーミスタ11は、タンク10から出湯される直前の水の温度を測定する。 The tank 10 stores the hot water boiled by the heat pump 50. The tank 10 is of a hermetically sealed type, and its outside is covered with a heat insulating material. Water is stored in the tank 10 until it is full. In this embodiment, the capacity of the tank 10 is 100L. The thermistors 12, 14, 16, and 18 are attached to the tank 10 at predetermined intervals in the height direction of the tank 10. Each thermistor 12, 14, 16, 18 measures the temperature of the water at its mounting position. For example, each of the thermistors 12, 14, 16 and 18 measures the temperature of water at the positions of 6L, 12L, 30L and 50L from the top of the tank 10, respectively. A thermistor 11 (an example of a temperature sensor) is attached to the tank 10. The thermistor 11 is attached to the upper part of the tank 10 and measures the temperature of water stored in the upper part of the tank 10. The thermistor 11 measures the temperature of water immediately before it is discharged from the tank 10.

タンク水循環路20は、上流端がタンク10の下部に接続されており、下流端がタンク10の上部に接続されている。タンク水循環路20には、循環ポンプ22が介装されている。循環ポンプ22は、タンク水循環路20内の水を上流側から下流側へ送り出す。また、タンク水循環路20は、ヒートポンプ50の凝縮器(図示省略)を通過している。そのため、ヒートポンプ50を作動させると、タンク水循環路20内の水がヒートポンプ50の凝縮器で加熱される。従って、循環ポンプ22とヒートポンプ50とを作動させると、タンク10の下部の水がヒートポンプ50で加熱され、加熱された水がタンク10の上部に戻される。即ち、タンク水循環路20は、タンク10に蓄熱するための水路である。また、タンク水循環路20のヒートポンプ50の上流側には、サーミスタ24が介装されている。サーミスタ24は、タンク10の下部から導出され、ヒートポンプ50を通過する前の水の温度を測定する。 The tank water circulation path 20 has an upstream end connected to a lower portion of the tank 10 and a downstream end connected to an upper portion of the tank 10. A circulation pump 22 is interposed in the tank water circulation passage 20. The circulation pump 22 sends the water in the tank water circulation passage 20 from the upstream side to the downstream side. Further, the tank water circulation path 20 passes through a condenser (not shown) of the heat pump 50. Therefore, when the heat pump 50 is operated, the water in the tank water circulation passage 20 is heated by the condenser of the heat pump 50. Therefore, when the circulation pump 22 and the heat pump 50 are operated, the water in the lower portion of the tank 10 is heated by the heat pump 50, and the heated water is returned to the upper portion of the tank 10. That is, the tank water circulation path 20 is a water path for storing heat in the tank 10. Further, a thermistor 24 is provided on the upstream side of the heat pump 50 in the tank water circulation path 20. The thermistor 24 is led out from the lower portion of the tank 10 and measures the temperature of water before passing through the heat pump 50.

給水路30は、上流端が水道水供給源31に接続されている。給水路30は、タンク10に水道水を供給する。給水路30には、サーミスタ32が介装されている。サーミスタ32は、水道水の給水温度を測定する。給水路30の下流側は、第1導入路30aと第2導入路30bに分岐している。第1導入路30aの下流端は、タンク10の下部に接続されている。第2導入路30bの下流端は、後述の供給路40の途中に接続されている。第2導入路30bの下流端と供給路40との接続部分には、混合弁42が設けられている。混合弁42は、供給路40内を流れる温水に、第2導入路30b内の水を混合させる量を調整する。 The water supply passage 30 has an upstream end connected to a tap water supply source 31. The water supply channel 30 supplies tap water to the tank 10. A thermistor 32 is provided in the water supply passage 30. The thermistor 32 measures the supply temperature of tap water. The downstream side of the water supply passage 30 branches into a first introduction passage 30a and a second introduction passage 30b. The downstream end of the first introduction path 30a is connected to the lower portion of the tank 10. The downstream end of the second introduction path 30b is connected in the middle of a supply path 40 described later. A mixing valve 42 is provided at a connection portion between the downstream end of the second introduction passage 30b and the supply passage 40. The mixing valve 42 adjusts the amount by which the hot water flowing in the supply passage 40 is mixed with the water in the second introduction passage 30b.

供給路40は、上流端がタンク10の上部に接続されている。上述したように、供給路40の途中には、給水路30の第2導入路30bが接続されており、接続部分には混合弁42が設けられている。混合弁42より上流側の供給路40には、サーミスタ43が介装されている。サーミスタ43は、タンク10から供給路40に供給される温水の温度を測定する。第2導入路30bとの接続部より下流側の供給路40には、バーナ加熱装置60(補助加熱器の一例)が介装されている。また、バーナ加熱装置60より下流側の供給路40には、サーミスタ44が介装されている。サーミスタ44は、温水利用箇所に供給される温水の温度を測定する。バーナ加熱装置60は、サーミスタ44が測定する温水の温度が、給湯設定温度と一致するように、供給路40内の水を加熱する。バーナ加熱装置60は、燃料(例えば、ガス)の燃焼によって水を加熱する。供給路40の下流端は、温水利用箇所(例えば台所、浴槽等)に接続されている。 The upstream end of the supply path 40 is connected to the upper portion of the tank 10. As described above, the second introduction passage 30b of the water supply passage 30 is connected in the middle of the supply passage 40, and the mixing valve 42 is provided at the connection portion. A thermistor 43 is provided in the supply path 40 upstream of the mixing valve 42. The thermistor 43 measures the temperature of the hot water supplied from the tank 10 to the supply passage 40. A burner heating device 60 (an example of an auxiliary heater) is provided in the supply passage 40 on the downstream side of the connection portion with the second introduction passage 30b. Further, a thermistor 44 is provided in the supply path 40 on the downstream side of the burner heating device 60. The thermistor 44 measures the temperature of the hot water supplied to the hot water use location. The burner heating device 60 heats the water in the supply passage 40 so that the temperature of the hot water measured by the thermistor 44 matches the hot water supply set temperature. The burner heating device 60 heats water by burning fuel (for example, gas). The downstream end of the supply path 40 is connected to a hot water utilization point (for example, kitchen, bathtub, etc.).

コントローラ100(制御手段の一例)は、各構成要素と電気的に接続されており、各構成要素の動作を制御する。コントローラ100には、使用者が様々な指示を入力可能な操作部と、様々な情報を表示可能な表示部とを有するリモコン104(設定手段の一例)が接続されている。リモコン104では、温水利用箇所における給湯設定温度を設定することができる。また、コントローラ100は、メモリ102(記憶手段の一例)を備えている。メモリ102は、様々な情報を記憶することができる。 The controller 100 (an example of a control unit) is electrically connected to each component and controls the operation of each component. The controller 100 is connected to a remote controller 104 (an example of a setting unit) having an operation unit that allows a user to input various instructions and a display unit that can display various information. The remote controller 104 can set the hot water supply set temperature at the hot water use location. In addition, the controller 100 includes a memory 102 (an example of a storage unit). The memory 102 can store various kinds of information.

次いで、本実施例の給湯システム2の動作について説明する。給湯システム2は、沸き上げ運転及び給湯運転を実行することができる。以下、各運転について説明する。 Next, the operation of the hot water supply system 2 of this embodiment will be described. The hot water supply system 2 can execute a boiling operation and a hot water supply operation. Hereinafter, each operation will be described.

(沸き上げ運転)
沸き上げ運転は、ヒートポンプ50により、タンク10内の水を加熱する運転である。コントローラ100によって沸き上げ運転の実行が指示されると、ヒートポンプ50が動作を開始するとともに、循環ポンプ22が回転する。
(Boiling operation)
The boiling operation is an operation in which the heat pump 50 heats the water in the tank 10. When execution of the boiling operation is instructed by the controller 100, the heat pump 50 starts operating and the circulation pump 22 rotates.

ヒートポンプ50が動作することにより、熱媒体循環路内を熱媒体が循環する。また、循環ポンプ22が回転すると、タンク水循環路20内をタンク10内の水が循環する。即ち、タンク10の下部に存在する水がタンク水循環路20内に導入され、導入された水が凝縮器を通過する際に、熱媒体循環路内の熱媒体の熱によって加熱され、加熱された水がタンク10の上部に戻される。これにより、タンク10に高温の水が貯められる。タンク10の上部には、低温の水の層の上に高温の水の層が積層された温度成層が形成される。 By operating the heat pump 50, the heat medium circulates in the heat medium circulation path. When the circulation pump 22 rotates, the water in the tank 10 circulates in the tank water circulation passage 20. That is, the water existing in the lower part of the tank 10 is introduced into the tank water circulation passage 20, and when the introduced water passes through the condenser, it is heated by the heat of the heat medium in the heat medium circulation passage and heated. Water is returned to the top of tank 10. As a result, high temperature water is stored in the tank 10. At the upper part of the tank 10, a temperature stratification in which a high temperature water layer is laminated on a low temperature water layer is formed.

(給湯運転)
給湯運転は、タンク10内の水を温水利用箇所に供給する運転である。給湯運転は、上記の沸き上げ運転中にも実行することができる。温水利用箇所の給湯栓が開かれると、水道水供給源31からの水圧によって、給水路30(第1導入路30a)からタンク10の下部に水道水が流入する。同時に、タンク10上部の温水が、供給路40を介して温水利用箇所に供給される。
(Hot water operation)
The hot water supply operation is an operation in which the water in the tank 10 is supplied to hot water utilization points. The hot water supply operation can be executed even during the above boiling operation. When the hot water tap at the hot water utilization point is opened, tap water flows from the tap water supply source 31 (first introduction path 30a) into the lower portion of the tank 10 due to the water pressure from the tap water supply source 31. At the same time, the hot water in the upper part of the tank 10 is supplied to the hot water utilization point via the supply path 40.

コントローラ100は、タンク10から供給路40に供給される水の温度(即ち、サーミスタ43の測定温度)が、給湯設定温度より高い場合には、混合弁42を開いて第2導入路30bから供給路40に水道水を導入する。この場合、タンク10から供給された水と第2導入路30bから供給された水道水とが、供給路40内で混合される。コントローラ100は、温水利用箇所に供給される温水の温度が、給湯設定温度と一致するように、混合弁42の開度を調整する。一方、コントローラ100は、タンク10から供給路40に供給される温水の温度が、給湯設定温度より低い場合には、バーナ加熱装置60を作動させる。この場合、供給路40を通過する温水がバーナ加熱装置60によって加熱される。コントローラ100は、温水利用箇所に供給される温水の温度が、給湯設定温度と一致するように、バーナ加熱装置60の出力を制御する。 When the temperature of the water supplied from the tank 10 to the supply passage 40 (that is, the temperature measured by the thermistor 43) is higher than the hot water supply set temperature, the controller 100 opens the mixing valve 42 and supplies it from the second introduction passage 30b. Tap water is introduced into the passage 40. In this case, the water supplied from the tank 10 and the tap water supplied from the second introduction path 30b are mixed in the supply path 40. The controller 100 adjusts the opening degree of the mixing valve 42 so that the temperature of the hot water supplied to the hot water use location matches the hot water supply set temperature. On the other hand, the controller 100 operates the burner heating device 60 when the temperature of the hot water supplied from the tank 10 to the supply path 40 is lower than the hot water supply set temperature. In this case, the hot water passing through the supply passage 40 is heated by the burner heating device 60. The controller 100 controls the output of the burner heating device 60 so that the temperature of the hot water supplied to the hot water utilization point matches the hot water supply set temperature.

(第1沸き上げ運転)
次に、給湯システム2における制御処理について説明する。まず、第1沸き上げ運転に関する制御処理について説明する。これについて説明するために、まず、利用者がリモコン104を操作することによって、温水利用箇所における給湯設定温度Taが40℃に設定されているとする。また、図2に示すように、ある日(例えば、8月1日)のある時刻(例えば、18:00)に、タンク10に温水が貯湯されているとする。ヒートポンプ50によって沸き上げられた温水がタンク10に貯湯されている。18:00におけるタンク10内の温水の貯湯量は、30L(リットル)以下であるとする。
(First boiling operation)
Next, a control process in the hot water supply system 2 will be described. First, the control process regarding the first boiling operation will be described. To explain this, first, it is assumed that the user operates the remote controller 104 to set the hot water supply set temperature Ta at the hot water use location to 40° C. Further, as shown in FIG. 2, it is assumed that hot water is stored in the tank 10 at a certain time (for example, 18:00) on a certain day (for example, August 1). The hot water boiled by the heat pump 50 is stored in the tank 10. It is assumed that the amount of hot water stored in the tank 10 at 18:00 is 30 L (liter) or less.

この状況において、図3に示すように、S9では、コントローラ100が、現在時刻が第1沸き上げ時刻であるか否かを判断する。第1沸き上げ時刻は、過去の沸き上げ時刻に基づく学習処理によって設定されており、例えば18:00である。コントローラ100は、現在時刻が第1沸き上げ時刻である場合は、S9でYesと判断してS10に進む。一方、現在時刻が第1沸き上げ時刻でない場合は、S9でコントローラ100がNoと判断して待機する。 In this situation, as shown in FIG. 3, in S9, the controller 100 determines whether or not the current time is the first boiling time. The first boiling time is set by a learning process based on the past boiling times, and is 18:00, for example. When the current time is the first boiling time, the controller 100 determines Yes in S9 and proceeds to S10. On the other hand, if the current time is not the first boiling time, the controller 100 determines No in S9 and stands by.

続くS10では、コントローラ100が、タンク10内の水をヒートポンプ50によって沸き上げる沸き上げ運転が実行中であるか否かを判断する。沸き上げ運転が実行中である場合は、S10でコントローラ100がYesと判断して、S11をスキップしてS12に進む。一方、沸き上げ運転が実行中でない場合は、S10でコントローラ100がNoと判断してS11に進む。 In subsequent S10, the controller 100 determines whether or not the boiling operation for boiling the water in the tank 10 by the heat pump 50 is being executed. If the boiling operation is being executed, the controller 100 determines Yes in S10, skips S11, and proceeds to S12. On the other hand, when the boiling operation is not being executed, the controller 100 determines No in S10 and proceeds to S11.

続くS11では、コントローラ100が、タンク10内の温水の貯湯量が30L以下であるか否かを判断する。タンク10内の温水の貯湯量が30L以下である場合は、S11でコントローラ100がYesと判断してS12に進む。一方、タンク10内の温水の貯湯量が30L以下でない(30Lより多い)場合は、S11でコントローラ100がNoと判断して待機する。タンク10内の温水の貯湯量が30L以下であるか否かの判断は、タンク10の30Lの位置に取り付けられているサーミスタ16の測定温度に基づいて行うことができる。サーミスタ16の測定温度が所定の温度以下である場合は、タンク10内の温水の貯湯量が30L以下であると判断することができる。判断の基準となる所定の温度は、例えば給湯設定温度Ta−(マイナス)5℃である。 In subsequent S11, the controller 100 determines whether or not the amount of hot water stored in the tank 10 is 30 L or less. When the amount of hot water stored in the tank 10 is 30 L or less, the controller 100 determines Yes in S11 and proceeds to S12. On the other hand, when the amount of hot water stored in the tank 10 is not 30 L or less (more than 30 L), the controller 100 determines No in S11 and stands by. Whether or not the amount of hot water stored in the tank 10 is 30 L or less can be determined based on the measured temperature of the thermistor 16 attached to the 30 L position of the tank 10. When the measured temperature of the thermistor 16 is equal to or lower than the predetermined temperature, it can be determined that the amount of hot water stored in the tank 10 is equal to or lower than 30 L. The predetermined temperature serving as a criterion for determination is, for example, hot water supply set temperature Ta−(minus) 5° C.

続くS12では、コントローラ100が、第1沸き上げ運転を許可する。コントローラ100が第1沸き上げ運転を許可すると、第1沸き上げ運転が開始される。上記のように現在時刻が第1沸き上げ時刻(18:00)になり、タンク10内の温水の貯湯量が所定の貯湯量(30L)以下である場合は、第1沸き上げ運転が開始される。また、既に沸き上げ運転が実行中である場合は、その沸き上げ運転が第1沸き上げ運転に切り換わる。第1沸き上げ運転が開始されると、タンク10内の水がヒートポンプ50によって沸き上げられる。ヒートポンプ50によって沸き上げられた温水は、タンク10に貯湯される。そのため、図2に示すように、第1沸き上げ時刻(18:00)の後にタンク10内の温水の貯湯量が増加してゆく。 In subsequent S12, the controller 100 permits the first boiling operation. When the controller 100 permits the first boiling operation, the first boiling operation is started. As described above, when the current time is the first boiling time (18:00) and the amount of hot water stored in the tank 10 is equal to or less than the predetermined amount (30 L) of hot water, the first boiling operation is started. It Further, when the boiling operation is already being executed, the boiling operation is switched to the first boiling operation. When the first boiling operation is started, the water in the tank 10 is boiled by the heat pump 50. The hot water boiled by the heat pump 50 is stored in the tank 10. Therefore, as shown in FIG. 2, the amount of hot water stored in the tank 10 increases after the first boiling time (18:00).

コントローラ100は、第1沸き上げ運転を実行する際に、タンク10内の温水が第1沸き上げ温度Tw1になるように第1沸き上げ運転を実行する。第1沸き上げ温度Tw1は、初期設定されており、例えば、45℃である。あるいは、第1沸き上げ温度Tw1は、過去の沸き上げ温度に基づく学習処理によって設定されていてもよい。ヒートポンプ50は、タンク10内の水を第1沸き上げ温度Tw1に沸き上げる。第1沸き上げ温度Tw1の温水がタンク10に貯湯される。 When executing the first boiling operation, the controller 100 executes the first boiling operation so that the warm water in the tank 10 reaches the first boiling temperature Tw1. The first boiling temperature Tw1 is initially set and is, for example, 45°C. Alternatively, the first boiling temperature Tw1 may be set by a learning process based on past boiling temperatures. The heat pump 50 heats the water in the tank 10 to the first boiling temperature Tw1. Hot water having the first boiling temperature Tw1 is stored in the tank 10.

続くS13では、コントローラ100が、タンク10内の温水の貯湯量が100L以上であるか否かを判断する。タンク10内の温水の貯湯量が100L以上である場合は、S13でコントローラ100がYesと判断してS14に進む。一方、タンク10内の温水の貯湯量が100L以上でない(100Lより少ない)場合は、S13でコントローラ100がNoと判断して待機する。タンク10内の温水の貯湯量が100L以上であるか否かの判断は、ヒートポンプ50の上流側に介装されているサーミスタ24の測定温度に基づいて行うことができる。サーミスタ24の測定温度が所定の温度以上である場合は、タンク10内の温水の貯湯量が100L以上であると判断することができる。判断の基準となる所定の温度は、例えば第1沸き上げ温度−(マイナス)5℃である。 In subsequent S13, the controller 100 determines whether or not the amount of hot water stored in the tank 10 is 100 L or more. When the amount of hot water stored in the tank 10 is 100 L or more, the controller 100 determines Yes in S13 and proceeds to S14. On the other hand, when the amount of hot water stored in the tank 10 is not 100 L or more (less than 100 L), the controller 100 determines No in S13 and stands by. The determination as to whether or not the amount of hot water stored in the tank 10 is 100 L or more can be made based on the temperature measured by the thermistor 24 provided on the upstream side of the heat pump 50. When the temperature measured by the thermistor 24 is equal to or higher than a predetermined temperature, it can be determined that the amount of hot water stored in the tank 10 is 100 L or more. The predetermined temperature serving as a criterion for judgment is, for example, the first boiling temperature-(minus) 5°C.

続くS14では、コントローラ100が、第1沸き上げ運転を終了する。例えば、図2に示すように、タンク10内の温水の貯湯量が19:00に100L以上になり、それに基づいてコントローラ100が第1沸き上げ運転を終了する。 In subsequent S14, the controller 100 ends the first boiling operation. For example, as shown in FIG. 2, the hot water storage amount in the tank 10 becomes 100 L or more at 19:00, and the controller 100 ends the first boiling operation based on that.

第1沸き上げ運転が終了した後に、給湯運転が実行されると、タンク10内の温水がタンク10から温水利用箇所に供給され、タンク10内の温水の貯湯量が減少してゆく。例えば、浴槽(温水利用箇所の一例)に湯張りをすることによって、タンク10内の温水の貯湯量が減少してゆく。そして、タンク10内の温水の貯湯量が20:00に12L以下になったとする。 When the hot water supply operation is executed after the completion of the first boiling operation, the hot water in the tank 10 is supplied from the tank 10 to the hot water utilization point, and the amount of hot water stored in the tank 10 decreases. For example, by filling the bathtub (an example of a hot water use location) with hot water, the amount of hot water stored in the tank 10 decreases. Then, it is assumed that the amount of hot water stored in the tank 10 becomes 12 L or less at 20:00.

図3に示すように、続くS15では、コントローラ100が、タンク10内の温水の貯湯量が12L以下であるか否かを判断する。タンク10内の温水の貯湯量が12L以下である場合は、S15でコントローラ100がYesと判断してS16に進む。一方、タンク10内の温水の貯湯量が12L以下でない(12Lより多い)場合は、S15でコントローラ100がNoと判断して待機する。タンク10内の温水の貯湯量が12L以下であるか否かの判断は、タンク10の12Lの位置に取り付けられているサーミスタ14の測定温度に基づいて行うことができる。サーミスタ14の測定温度が所定の温度以下である場合は、タンク10内の温水の貯湯量が12L以下であると判断することができる。判断の基準となる所定の温度は、例えば給湯設定温度Ta−(マイナス)5℃である。 As shown in FIG. 3, in subsequent S15, the controller 100 determines whether or not the amount of hot water stored in the tank 10 is 12 L or less. When the amount of hot water stored in the tank 10 is 12 L or less, the controller 100 determines Yes in S15 and proceeds to S16. On the other hand, when the amount of hot water stored in the tank 10 is not 12 L or less (more than 12 L), the controller 100 determines No in S15 and stands by. Whether or not the amount of hot water stored in the tank 10 is 12 L or less can be determined based on the measured temperature of the thermistor 14 attached to the 12 L position of the tank 10. When the measured temperature of the thermistor 14 is equal to or lower than the predetermined temperature, it can be determined that the amount of hot water stored in the tank 10 is equal to or lower than 12 L. The predetermined temperature serving as a criterion for determination is, for example, hot water supply set temperature Ta−(minus) 5° C.

続くS16では、コントローラ100が、タンク10内の温水の温度である第1貯湯温度Tb1を測定する。第1貯湯温度Tb1は、タンク10の上部に取り付けられているサーミスタ11によって測定される。サーミスタ11の測定温度がコントローラ100に送信され、コントローラ100がそれを受信する。なお、タンク10内の温水の貯湯量が6L以下になると、タンク10が湯切れ状態であるとコントローラ100が判断する。したがって、コントローラ100は、タンク10内の温水の貯湯量が12L以下でありかつ6Lより多いときに第1貯湯温度Tb1を測定する。このときのタンク10の温水の貯湯量は、1日のうちで最小の貯湯量であるとみなせる。第1貯湯温度Tb1は、タンク10が湯切れ状態になる直前の温水の温度である。すなわち、第1貯湯温度Tb1は、第1沸き上げ運転で沸き上げた温水を使い切る直前にタンク10内に残留している温水の温度である。 In subsequent S16, the controller 100 measures the first hot water storage temperature Tb1 which is the temperature of the hot water in the tank 10. The first hot water storage temperature Tb1 is measured by the thermistor 11 attached to the upper portion of the tank 10. The measured temperature of the thermistor 11 is transmitted to the controller 100, and the controller 100 receives it. When the amount of hot water stored in the tank 10 becomes 6 L or less, the controller 100 determines that the tank 10 is out of hot water. Therefore, controller 100 measures first hot water storage temperature Tb1 when the amount of hot water stored in tank 10 is 12 L or less and more than 6 L. The amount of hot water stored in the tank 10 at this time can be regarded as the minimum amount of hot water stored in one day. The first hot water storage temperature Tb1 is the temperature of the hot water immediately before the tank 10 is out of hot water. That is, the first hot water storage temperature Tb1 is the temperature of the hot water remaining in the tank 10 immediately before the hot water boiled in the first boiling operation is used up.

図4に示すように、タンク10内の温水の温度は、第1沸き上げ運転が終了した直後の19:00では、第1沸き上げ温度Tw1(例えば45℃)である。その後、時間の経過とともに、自然放熱によってタンク10内の温水の温度が低下してゆく。そのため、タンク10内の温水の貯湯量が20:00に12L以下になるときには、タンク10内の温水の温度が、第1沸き上げ温度Tw1より低い温度になっている。すなわち、サーミスタ11によって測定される第1貯湯温度Tb1は、第1沸き上げ温度Tw1より低い温度である。第1貯湯温度Tb1は、タンク10内の温水の温度の低下具合によって変動する。第1貯湯温度Tb1は、例えば43℃、40℃等である。 As shown in FIG. 4, the temperature of the hot water in the tank 10 is the first boiling temperature Tw1 (for example, 45° C.) at 19:00 immediately after the completion of the first boiling operation. After that, as time passes, the temperature of the hot water in the tank 10 decreases due to natural heat dissipation. Therefore, when the amount of hot water stored in the tank 10 becomes 12 L or less at 20:00, the temperature of the hot water in the tank 10 is lower than the first boiling temperature Tw1. That is, the first hot water storage temperature Tb1 measured by the thermistor 11 is lower than the first boiling temperature Tw1. The first hot water storage temperature Tb1 varies depending on how the temperature of the hot water in the tank 10 decreases. The first hot water storage temperature Tb1 is, for example, 43° C. or 40° C.

図3に示すように、続くS17では、コントローラ100が、測定した第1貯湯温度Tb1をメモリ102に記憶する。その後、コントローラ100は、その日(8月1日)の第1沸き上げ運転に係る処理を終了する。その日(8月1日)の第1貯湯温度Tb1は、翌日(8月2日)の第1沸き上げ運転における第1沸き上げ温度Tw1を算出するために用いられる。 As shown in FIG. 3, in subsequent S17, controller 100 stores measured first hot water storage temperature Tb1 in memory 102. After that, the controller 100 ends the process related to the first boiling operation on that day (August 1st). The first hot water storage temperature Tb1 on that day (August 1) is used to calculate the first boiling temperature Tw1 in the first boiling operation on the next day (August 2).

次に、翌日(8月2日)の動作について説明する。翌日(8月2日)においても、まず前日(8月1日)と同様に、温水利用箇所における給湯設定温度Taが40℃に設定されているとする。また、ある時刻(18:00)におけるタンク10内の温水の貯湯量が、30L(リットル)以下であるとする。なお、本明細書では、翌日を8月2日とし、前日を8月1日として説明する。この場合の翌日(8月2日)は、前日(8月1日)に対する次の日のことである。 Next, the operation on the next day (August 2) will be described. Also on the next day (August 2), first, similarly to the previous day (August 1), it is assumed that the hot water supply set temperature Ta at the hot water use location is set to 40°C. Further, it is assumed that the hot water storage amount in the tank 10 at a certain time (18:00) is 30 L (liter) or less. In addition, in this specification, the following day will be described as August 2, and the previous day will be described as August 1. The next day (August 2) in this case is the next day to the previous day (August 1).

この状況において、図5Aに示すように、S19では、コントローラ100が、現在時刻が第1沸き上げ時刻であるか否かを判断する。第1沸き上げ時刻は、過去の沸き上げ時刻に基づく学習処理によって設定されており、例えば18:00である。コントローラ100は、現在時刻が第1沸き上げ時刻である場合は、S19でYesと判断してS20に進む。一方、現在時刻が第1沸き上げ時刻でない場合は、S19でコントローラ100がNoと判断して待機する。 In this situation, as shown in FIG. 5A, in S19, the controller 100 determines whether or not the current time is the first boiling time. The first boiling time is set by a learning process based on the past boiling times, and is 18:00, for example. When the current time is the first boiling time, the controller 100 determines Yes in S19 and proceeds to S20. On the other hand, if the current time is not the first boiling time, the controller 100 determines No in S19 and waits.

続くS20では、コントローラ100が、タンク10内の水をヒートポンプ50によって沸き上げる沸き上げ運転が実行中であるか否かを判断する。沸き上げ運転が実行中である場合は、S20でコントローラ100がYesと判断して、S21をスキップしてS22に進む。一方、沸き上げ運転が実行中でない場合は、S20でコントローラ100がNoと判断してS21に進む。 In subsequent S20, the controller 100 determines whether or not the boiling operation of boiling the water in the tank 10 by the heat pump 50 is being executed. If the boiling operation is being executed, the controller 100 determines Yes in S20, skips S21, and proceeds to S22. On the other hand, when the boiling operation is not being executed, the controller 100 determines No in S20 and proceeds to S21.

続くS21では、コントローラ100が、タンク10内の温水の貯湯量が30L以下であるか否かを判断する。タンク10内の温水の貯湯量が30L以下である場合は、S21でコントローラ100がYesと判断してS22に進む。一方、タンク10内の温水の貯湯量が30L以下でない(30Lより多い)場合は、S21でコントローラ100がNoと判断して待機する。タンク10内の温水の貯湯量が30L以下であるか否かの判断は、タンク10の30Lの位置に取り付けられているサーミスタ16の測定温度に基づいて行うことができる。サーミスタ16の測定温度が所定の温度以下である場合は、タンク10内の温水の貯湯量が30L以下であると判断することができる。判断の基準となる所定の温度は、例えば給湯設定温度Ta−(マイナス)5℃である。 In subsequent S21, the controller 100 determines whether or not the amount of hot water stored in the tank 10 is 30 L or less. When the amount of hot water stored in the tank 10 is 30 L or less, the controller 100 determines Yes in S21 and proceeds to S22. On the other hand, when the amount of hot water stored in the tank 10 is not 30 L or less (more than 30 L), the controller 100 determines No in S21 and stands by. Whether or not the amount of hot water stored in the tank 10 is 30 L or less can be determined based on the measured temperature of the thermistor 16 attached to the 30 L position of the tank 10. When the measured temperature of the thermistor 16 is equal to or lower than the predetermined temperature, it can be determined that the amount of hot water stored in the tank 10 is equal to or lower than 30 L. The predetermined temperature serving as a criterion for determination is, for example, hot water supply set temperature Ta−(minus) 5° C.

続くS22では、コントローラ100が、前日(8月1日)の第1沸き上げ運転を実行した後の第1貯湯温度Tb1を取得する。前日の第1貯湯温度Tb1は、メモリ102に記憶されている。 In subsequent S22, the controller 100 acquires the first hot water storage temperature Tb1 after executing the first boiling operation on the previous day (August 1). The first hot water storage temperature Tb1 of the previous day is stored in the memory 102.

続くS23では、コントローラ100が、前日(8月1日)の第1沸き上げ運転を実行したときの第1沸き上げ温度Tw1を取得する。前日の第1沸き上げ温度Tw1は、メモリ102に記憶されている。 In subsequent S23, the controller 100 acquires the first boiling temperature Tw1 when the first boiling operation on the previous day (August 1) was executed. The first boiling temperature Tw1 of the previous day is stored in the memory 102.

図5Bに示すように、続くS24では、コントローラ100が、前日の第1貯湯温度Tb1が給湯設定温度Ta+ΔT1より高いか否かを判断する。ΔT1は、予め設定されている温度であり、例えば2℃である。前日の第1貯湯温度Tb1が給湯設定温度Ta+ΔT1より高い場合は、S24でコントローラ100がYesと判断してS25に進む。例えば、前日の第1貯湯温度Tb1が43℃である場合は、第1貯湯温度Tb1(43℃)>給湯設定温度Ta(40℃)+ΔT1(2℃)であり、コントローラ100はS24でYesと判断する。給湯設定温度Ta+ΔT1は、第1基準温度の一例である。第1基準温度は、給湯設定温度TaよりΔT1だけ高い温度である。 As shown in FIG. 5B, in subsequent S24, controller 100 determines whether or not first hot water storage temperature Tb1 of the previous day is higher than hot water supply set temperature Ta+ΔT1. ΔT1 is a preset temperature, for example, 2°C. If the first hot water storage temperature Tb1 of the previous day is higher than the hot water supply set temperature Ta+ΔT1, the controller 100 determines Yes in S24 and proceeds to S25. For example, if the first hot water storage temperature Tb1 of the previous day is 43° C., the first hot water storage temperature Tb1 (43° C.)>hot water supply set temperature Ta (40° C.)+ΔT1 (2° C.), and the controller 100 returns Yes in S24. to decide. Hot water supply set temperature Ta+ΔT1 is an example of the first reference temperature. The first reference temperature is a temperature that is higher than the hot water supply set temperature Ta by ΔT1.

続くS25では、コントローラ100が、翌日(8月2日)の第1沸き上げ温度Tw1を算出する。具体的には、翌日の第1沸き上げ温度Tw1=前日の第1沸き上げ温度Tw1-|前日の第1貯湯温度Tb1-(給湯設定温度Ta+ΔT1)|である。すなわち、前日の第1貯湯温度Tb1と第1基準温度(給湯設定温度Ta+ΔT1)の差分の絶対値を前日の第1沸き上げ温度Tw1から減算した温度を、翌日の第1沸き上げ温度Tw1とする。したがって、翌日の第1沸き上げ温度Tw1は、前日の第1沸き上げ温度Tw1より低い温度になる。 In subsequent S25, the controller 100 calculates the first boiling temperature Tw1 of the next day (August 2). Specifically, the first boiling temperature Tw1 of the next day=the first boiling temperature Tw1 of the previous day−|the first hot water storage temperature Tb1−(hot water supply set temperature Ta+ΔT1)| of the previous day. That is, a temperature obtained by subtracting the absolute value of the difference between the first hot water storage temperature Tb1 of the previous day and the first reference temperature (hot water supply set temperature Ta+ΔT1) from the first boiling temperature Tw1 of the previous day is set as the first boiling temperature Tw1 of the next day. .. Therefore, the first boiling temperature Tw1 of the next day is lower than the first boiling temperature Tw1 of the previous day.

一方、S24でNoと判断した後のS26では、コントローラ100が、前日の第1貯湯温度Tb1が給湯設定温度Ta+ΔT2より低いか否かを判断する。ΔT2は、予め設定されている温度であり、例えば1℃である。ΔT2は、ΔT1より低い温度である(小さい値である)。前日の第1貯湯温度Tb1が給湯設定温度Ta+ΔT2より低い場合は、S26でコントローラ100がYesと判断してS27に進む。例えば、前日の第1貯湯温度Tb1が40℃である場合は、第1貯湯温度Tb1(40℃)<給湯設定温度Ta(40℃)+ΔT2(1℃)であり、コントローラ100はS26でYesと判断する。給湯設定温度Ta+ΔT2は、第2基準温度の一例である。第2基準温度は、給湯設定温度TaよりΔT2だけ高い温度である。また、第2基準温度は、第1基準温度より低い温度である。 On the other hand, in S26 after determining No in S24, controller 100 determines whether or not first hot water storage temperature Tb1 of the previous day is lower than hot water supply set temperature Ta+ΔT2. ΔT2 is a preset temperature, for example, 1°C. ΔT2 is a temperature lower than ΔT1 (small value). If the first hot water storage temperature Tb1 of the previous day is lower than the hot water supply set temperature Ta+ΔT2, the controller 100 determines Yes in S26 and proceeds to S27. For example, when the first hot water storage temperature Tb1 of the previous day is 40° C., the first hot water storage temperature Tb1 (40° C.)<hot water supply set temperature Ta (40° C.)+ΔT2 (1° C.), and the controller 100 returns Yes in S26. to decide. Hot water supply set temperature Ta+ΔT2 is an example of the second reference temperature. The second reference temperature is a temperature higher than hot water supply set temperature Ta by ΔT2. The second reference temperature is lower than the first reference temperature.

続くS27では、コントローラ100が、翌日(8月2日)の第1沸き上げ温度Tw1を算出する。具体的には、翌日の第1沸き上げ温度Tw1=前日の第1沸き上げ温度Tw1+|前日の第1貯湯温度Tb1-(給湯設定温度Ta+ΔT2)|である。すなわち、前日の第1貯湯温度Tb1と第2基準温度(給湯設定温度Ta+ΔT2)の差分の絶対値を前日の第1沸き上げ温度Tw1に加算した温度を、翌日の第1沸き上げ温度Tw1とする。したがって、翌日の第1沸き上げ温度Tw1は、前日の第1沸き上げ温度Tw1より高い温度になる。 In subsequent S27, the controller 100 calculates the first boiling temperature Tw1 of the next day (August 2). Specifically, the first boiling temperature Tw1 of the next day=the first boiling temperature Tw1 of the previous day+|the first hot water storage temperature Tb1-(the hot water supply set temperature Ta+ΔT2)| of the previous day. That is, the temperature obtained by adding the absolute value of the difference between the first hot water storage temperature Tb1 of the previous day and the second reference temperature (hot water supply set temperature Ta+ΔT2) to the first boiling temperature Tw1 of the previous day is set as the first boiling temperature Tw1 of the next day. .. Therefore, the first boiling temperature Tw1 of the next day is higher than the first boiling temperature Tw1 of the previous day.

一方、S26でNoと判断した後のS28では、コントローラ100が、翌日(8月2日)の第1沸き上げ温度Tw1を、前日(8月1日)の第1沸き上げ温度Tw1と同じ温度とする。したがって、第1沸き上げ温度Tw1は変化しない。 On the other hand, in S28 after determining No in S26, the controller 100 sets the first boiling temperature Tw1 of the next day (August 2) to the same temperature as the first boiling temperature Tw1 of the previous day (August 1). And Therefore, the first boiling temperature Tw1 does not change.

S29では、コントローラ100が、第1沸き上げ運転を許可する。コントローラ100が第1沸き上げ運転を許可すると、第1沸き上げ運転が開始される。上記のように現在時刻が第1沸き上げ時刻(18:00)になり、タンク10内の温水の貯湯量が所定の貯湯量(30L)以下である場合は、第1沸き上げ運転が開始される。また、既に沸き上げ運転が実行中である場合は、その沸き上げ運転が第1沸き上げ運転に切り換わる。 In S29, the controller 100 permits the first boiling operation. When the controller 100 permits the first boiling operation, the first boiling operation is started. As described above, when the current time is the first boiling time (18:00) and the amount of hot water stored in the tank 10 is equal to or less than the predetermined amount (30 L) of hot water, the first boiling operation is started. It Further, when the boiling operation is already being executed, the boiling operation is switched to the first boiling operation.

コントローラ100は、翌日(8月2日)の第1沸き上げ運転を実行する際に、上述のように算出した翌日の第1沸き上げ温度Tw1に基づいて第1沸き上げ運転を実行する。コントローラ100は、タンク10内の温水が算出した翌日の第1沸き上げ温度Tw1になるように第1沸き上げ運転を実行する。ヒートポンプ50は、タンク10内の水を翌日の第1沸き上げ温度Tw1に沸き上げる。ヒートポンプ50によって沸き上げられた温水は、タンク10に貯湯される。翌日の第1沸き上げ温度Tw1の温水がタンク10に貯湯され、タンク10内の温水の貯湯量が増加してゆく。 When executing the first boiling operation on the next day (August 2), the controller 100 executes the first boiling operation based on the first boiling temperature Tw1 of the next day calculated as described above. The controller 100 executes the first boiling operation so that the warm water in the tank 10 reaches the calculated first boiling temperature Tw1 of the next day. The heat pump 50 heats the water in the tank 10 to the first boiling temperature Tw1 of the next day. The hot water boiled by the heat pump 50 is stored in the tank 10. The hot water having the first boiling temperature Tw1 of the next day is stored in the tank 10, and the amount of hot water stored in the tank 10 increases.

その後、S30では、コントローラ100が、タンク10内の温水の貯湯量が100L以上であるか否かを判断する。タンク10内の温水の貯湯量が100L以上である場合は、S30でコントローラ100がYesと判断してS31に進む。一方、タンク10内の温水の貯湯量が100L以上でない(100Lより少ない)場合は、S30でコントローラ100がNoと判断して待機する。タンク10内の温水の貯湯量が100L以上であるか否かの判断は、ヒートポンプ50の上流側に介装されているサーミスタ24の測定温度に基づいて行うことができる。サーミスタ24の測定温度が所定の温度以上である場合は、タンク10内の温水の貯湯量が100L以上であると判断することができる。判断の基準となる所定の温度は、例えば翌日の第1沸き上げ温度−(マイナス)5℃である。 Then, in S30, the controller 100 determines whether or not the amount of hot water stored in the tank 10 is 100 L or more. When the amount of hot water stored in the tank 10 is 100 L or more, the controller 100 determines Yes in S30 and proceeds to S31. On the other hand, when the amount of hot water stored in the tank 10 is not 100 L or more (less than 100 L), the controller 100 determines No in S30 and stands by. The determination as to whether or not the amount of hot water stored in the tank 10 is 100 L or more can be made based on the temperature measured by the thermistor 24 provided on the upstream side of the heat pump 50. When the temperature measured by the thermistor 24 is equal to or higher than a predetermined temperature, it can be determined that the amount of hot water stored in the tank 10 is 100 L or more. The predetermined temperature serving as a criterion for the determination is, for example, the first boiling temperature of the next day-(minus) 5°C.

続くS31では、コントローラ100が、第1沸き上げ運転を終了する。以上のようにして、翌日の第1沸き上げ運転が実行される。 In subsequent S31, the controller 100 ends the first boiling operation. As described above, the first boiling operation on the next day is executed.

以上、第1沸き上げ運転に関して説明した。上記の説明から明らかなように、給湯システム2は、外気から吸熱して水を沸き上げるヒートポンプ50と、ヒートポンプ50によって沸き上げられた温水を貯湯するタンク10と、タンク10に貯湯されている温水の温度を測定するサーミスタ11と、タンク10内の温水を温水利用箇所に供給する供給路40と、温水利用箇所における給湯設定温度Taを設定可能なリモコン104と、コントローラ100を備えている。コントローラ100は、所定の第1沸き上げ時刻にタンク10内の水をヒートポンプ50によって第1沸き上げ温度Tw1に沸き上げる第1沸き上げ運転を実行可能である。また、コントローラ100は、第1沸き上げ運転を実行した後にタンク10内の温水の貯湯量が所定の貯湯量より少なくなったときのタンク10内の温水の温度である第1貯湯温度Tb1をサーミスタ11で測定する。その後コントローラ100は、測定した第1貯湯温度Tb1が給湯設定温度Taより高い第1基準温度(Ta+ΔT1)より高い場合は、翌日の第1沸き上げ温度Tw1を下げる。具体的には、コントローラ100が、第1貯湯温度Tb1と第1基準温度(Ta+ΔT1)の差分の絶対値を第1沸き上げ温度Tw1から減算した温度を翌日の第1沸き上げ温度Tw1とする。また、コントローラ100は、測定した第1貯湯温度Tb1が給湯設定温度Taより高く第1基準温度より低い第2基準温度(Ta+ΔT2)より低い場合は、翌日の第1沸き上げ温度Tw1を上げる。具体的には、コントローラ100が、第1貯湯温度Tb1と第2基準温度(Ta+ΔT2)の差分の絶対値を第1沸き上げ温度Tw1に加算した温度を翌日の第1沸き上げ温度Tw1とする。そしてコントローラ100は、算出した翌日の第1沸き上げ温度Tw1で翌日の第1沸き上げ運転を実行する。すなわち、コントローラ100は、翌日の第1沸き上げ温度Tw1を下げて、または、上げて、翌日の第1沸き上げ運転を実行する。 The first boiling operation has been described above. As is clear from the above description, the hot water supply system 2 includes the heat pump 50 that absorbs heat from the outside air to boil water, the tank 10 that stores the hot water boiled by the heat pump 50, and the hot water stored in the tank 10. The controller 100 is provided with a thermistor 11 for measuring the temperature, a supply path 40 for supplying the hot water in the tank 10 to the hot water use point, a remote controller 104 capable of setting the hot water supply set temperature Ta at the hot water use point. The controller 100 can execute a first boiling operation in which the water in the tank 10 is boiled to the first boiling temperature Tw1 by the heat pump 50 at a predetermined first boiling time. Further, the controller 100 sets the first hot water storage temperature Tb1 which is the temperature of the hot water in the tank 10 when the hot water storage amount in the tank 10 becomes less than a predetermined hot water storage amount after the first boiling operation is performed, to the thermistor. Measure at 11. After that, if the measured first hot water storage temperature Tb1 is higher than the first reference temperature (Ta+ΔT1) higher than the hot water supply set temperature Ta, the controller 100 lowers the first boiling temperature Tw1 of the next day. Specifically, the controller 100 sets the temperature obtained by subtracting the absolute value of the difference between the first hot water storage temperature Tb1 and the first reference temperature (Ta+ΔT1) from the first boiling temperature Tw1 as the first boiling temperature Tw1 of the next day. If the measured first hot water storage temperature Tb1 is lower than the second reference temperature (Ta+ΔT2) that is higher than the hot water supply set temperature Ta and lower than the first reference temperature, the controller 100 raises the first boiling temperature Tw1 of the next day. Specifically, the controller 100 sets the temperature obtained by adding the absolute value of the difference between the first hot water storage temperature Tb1 and the second reference temperature (Ta+ΔT2) to the first boiling temperature Tw1 as the first boiling temperature Tw1 of the next day. Then, the controller 100 executes the first boiling operation of the next day at the calculated first boiling temperature Tw1 of the next day. That is, the controller 100 lowers or raises the first boiling temperature Tw1 of the next day and executes the first boiling operation of the next day.

このような構成によれば、第1沸き上げ運転で沸き上げた温水を使い切る直前にタンク10内に残留している温水の温度(第1貯湯温度Tb1)が第1基準温度(Ta+ΔT1)より高い場合は、翌日の第1沸き上げ温度Tw1を下げる。これによって、翌日において、第1沸き上げ運転で沸き上げた温水を使い切る直前にタンク10内に残留している温水の温度を給湯設定温度Ta以上に維持しながら、第1沸き上げ温度Tw1を低くすることができる。このように、第1貯湯温度Tb1が高い場合は、翌日の第1貯湯温度Tb1を下げるために翌日の第1沸き上げ温度Tw1を下げるので、第1沸き上げ運転を実行する際の第1沸き上げ温度Tw1を下げることによってCOPを高くすることができる。給湯システム2では、可能な限り低温で沸き上げ運転を実行することによってCOPを高くすることができるからである。 According to such a configuration, the temperature of the hot water remaining in the tank 10 (first hot water storage temperature Tb1) is higher than the first reference temperature (Ta+ΔT1) immediately before the hot water boiled in the first boiling operation is used up. In the case, the first boiling temperature Tw1 of the next day is lowered. As a result, on the next day, the first boiling temperature Tw1 is lowered while maintaining the temperature of the hot water remaining in the tank 10 at or above the hot water supply set temperature Ta immediately before the hot water boiled in the first boiling operation is used up. can do. In this way, when the first hot water storage temperature Tb1 is high, the first boiling temperature Tw1 of the next day is lowered in order to lower the first hot water storage temperature Tb1 of the next day, so the first boiling when executing the first boiling operation is performed. COP can be raised by lowering the raising temperature Tw1. This is because the hot water supply system 2 can increase the COP by executing the boiling operation at the lowest possible temperature.

また、第1沸き上げ運転で沸き上げた温水を使い切る直前にタンク10内に残留している温水の温度(第1貯湯温度Tb1)が第2基準温度(Ta+ΔT2)より低い場合は、翌日の第1沸き上げ温度Tw1を上げる。これによって、翌日において、第1沸き上げ運転で沸き上げた温水を使い切る直前にタンク10内に残留している温水の温度が給湯設定温度Taを下回ってしまうことを確実に防止することができる。このように、第1貯湯温度Tb1が低い場合は翌日の第1貯湯温度Tb1を上げることができるので、タンク10内の温水を温水利用箇所に供給する際に、給湯設定温度Taより低温の温水が温水利用箇所に供給されることを抑制できる。 If the temperature of the hot water remaining in the tank 10 (first hot water storage temperature Tb1) is lower than the second reference temperature (Ta+ΔT2) immediately before the hot water boiled in the first boiling operation is used up, the Increase the boiling temperature Tw1. This makes it possible to reliably prevent the temperature of the hot water remaining in the tank 10 from falling below the hot water supply set temperature Ta immediately before the hot water boiled in the first boiling operation is used up on the next day. As described above, when the first hot water storage temperature Tb1 is low, the first hot water storage temperature Tb1 of the next day can be increased. Therefore, when the hot water in the tank 10 is supplied to the hot water use location, the hot water having a temperature lower than the hot water supply set temperature Ta is supplied. Can be suppressed from being supplied to the hot water use location.

また、上記の構成では、翌日の第1沸き上げ温度Tw1を下げる際に、第1貯湯温度Tb1と第1基準温度(Ta+ΔT1)の差分の絶対値を第1沸き上げ温度Tw1から減算した温度を翌日の第1沸き上げ温度Tw1としている。これによって、翌日の第1沸き上げ温度Tw1が低くなりすぎることを抑制できる。その結果、翌日の第1沸き上げ運転で沸き上げた温水を使い切る直前にタンク10内に残留している温水の温度(翌日の第1貯湯温度Tb1)が低くなりすぎることを抑制できる。一方、上記の構成では、翌日の第1沸き上げ温度Tw1を上げる際に、第1貯湯温度Tb1と第2基準温度(Ta+ΔT2)の差分の絶対値を第1沸き上げ温度Tw1に加算した温度を翌日の第1沸き上げ温度Tw1としている。これによって、翌日の第1沸き上げ温度Tw1が高くなりすぎることを抑制できる。その結果、翌日の第1貯湯温度Tb1が高くなりすぎることを抑制できる。翌日の第1貯湯温度Tb1が低くなりすぎることと高くなりすぎることを抑制できるので、翌日の第1貯湯温度Tb1を給湯設定温度Taに近い温度に精度良く近付けることができる。 Further, in the above configuration, when lowering the first boiling temperature Tw1 of the next day, the temperature obtained by subtracting the absolute value of the difference between the first hot water storage temperature Tb1 and the first reference temperature (Ta+ΔT1) from the first boiling temperature Tw1 is used. The first boiling temperature Tw1 of the next day is set. This can prevent the first boiling temperature Tw1 of the next day from becoming too low. As a result, it is possible to prevent the temperature of the hot water remaining in the tank 10 (the first hot water storage temperature Tb1 of the next day) from becoming too low immediately before the hot water boiled in the first boiling operation of the next day is used up. On the other hand, in the above configuration, when raising the first boiling temperature Tw1 of the next day, the temperature obtained by adding the absolute value of the difference between the first hot water storage temperature Tb1 and the second reference temperature (Ta+ΔT2) to the first boiling temperature Tw1. The first boiling temperature Tw1 of the next day is set. This can prevent the first boiling temperature Tw1 of the next day from becoming too high. As a result, it is possible to prevent the first hot water storage temperature Tb1 of the next day from becoming too high. Since it is possible to prevent the first hot water storage temperature Tb1 of the next day from becoming too low and too high, the first hot water storage temperature Tb1 of the next day can be accurately brought close to the temperature close to the hot water supply set temperature Ta.

また、上記の給湯システム2は、タンク10から温水利用箇所に供給される温水を燃料(例えば、ガス)の燃焼によって加熱するバーナ加熱装置60を更に備えている。 The hot water supply system 2 further includes a burner heating device 60 that heats the hot water supplied from the tank 10 to the hot water use location by burning fuel (for example, gas).

温水の加熱源がヒートポンプ50のみの場合には、タンク10内の温水の温度が給湯設定温度Taより低くなってしまうと給湯設定温度Taでの給湯が不可能になってしまう。このため、温水の加熱源がヒートポンプ50のみである給湯システムにおいては、第1基準温度および第2基準温度を高めに設定しておいて、沸き上げ運転における沸き上げ温度をある程度高い温度に保っておく必要がある。これとは異なり、上記の給湯システム2のように、温水の加熱源としてヒートポンプ50のほかにバーナ加熱装置60を備えている場合には、仮にタンク10内の温水の温度が給湯設定温度Taより低くなってしまった場合でも、バーナ加熱装置60を用いて温水を加熱することで、給湯設定温度Taでの給湯が可能である。従って、上記の給湯システム2によれば、第1基準温度および第2基準温度をより低い温度に設定して、沸き上げ運転における沸き上げ温度をより低い温度にすることができる。そのため、沸き上げ運転におけるCOPをより高めることができる。 When the heating source of the hot water is only the heat pump 50, if the temperature of the hot water in the tank 10 becomes lower than the hot water supply set temperature Ta, hot water supply at the hot water supply set temperature Ta becomes impossible. For this reason, in the hot water supply system in which the heating source of the hot water is only the heat pump 50, the first reference temperature and the second reference temperature are set to be high and the boiling temperature in the boiling operation is maintained at a somewhat high temperature. You need to leave it. In contrast to this, when the burner heating device 60 is provided as the heating source of the hot water in addition to the heat pump 50 as in the hot water supply system 2 described above, the temperature of the hot water in the tank 10 is temporarily lower than the hot water supply set temperature Ta. Even if the temperature becomes low, hot water can be supplied at the hot water supply set temperature Ta by heating the hot water using the burner heating device 60. Therefore, according to the hot water supply system 2 described above, the first reference temperature and the second reference temperature can be set to lower temperatures, and the boiling temperature in the boiling operation can be set to a lower temperature. Therefore, COP in the boiling operation can be further increased.

(第2沸き上げ運転)
次に、第2沸き上げ運転に関する制御処理について説明する。これについて説明するために、まず、利用者がリモコン104を操作することによって、温水利用箇所における給湯設定温度Taが40℃に設定されているとする。また、図6に示すように、ある日(例えば、8月1日)のある時刻(例えば、22:00)に、タンク10に温水が貯湯されているとする。ヒートポンプ50によって沸き上げられた温水がタンク10に貯湯されている。22:00におけるタンク10内の温水の貯湯量は、30L(リットル)以下であるとする。
(Second boiling operation)
Next, the control process regarding the second boiling operation will be described. To explain this, first, it is assumed that the user operates the remote controller 104 to set the hot water supply set temperature Ta at the hot water use location to 40° C. Further, as shown in FIG. 6, it is assumed that hot water is stored in the tank 10 at a certain time (for example, 22:00) on a certain day (for example, August 1st). The hot water boiled by the heat pump 50 is stored in the tank 10. It is assumed that the amount of hot water stored in the tank 10 at 22:00 is 30 L (liter) or less.

この状況において、図7に示すように、S39では、コントローラ100が、現在時刻が第2沸き上げ時刻であるか否かを判断する。第2沸き上げ時刻は、過去の沸き上げ時刻に基づく学習処理によって設定されており、例えば22:00である。第2沸き上げ時刻(22:00)は、上記の第1沸き上げ運転における第1沸き上げ時刻(18:00)より後の時刻である。第2沸き上げ時刻は、1日の最後の沸き上げ時刻である。コントローラ100は、現在時刻が第2沸き上げ時刻である場合は、S39でYesと判断してS40に進む。一方、現在時刻が第2沸き上げ時刻でない場合は、S39でコントローラ100がNoと判断して待機する。 In this situation, as shown in FIG. 7, in S39, the controller 100 determines whether or not the current time is the second boiling time. The second boiling time is set by a learning process based on the past boiling time, and is 22:00, for example. The second boiling time (22:00) is a time after the first boiling time (18:00) in the first boiling operation described above. The second boiling time is the last boiling time of the day. When the current time is the second boiling time, the controller 100 determines Yes in S39 and proceeds to S40. On the other hand, if the current time is not the second boiling time, the controller 100 determines No in S39 and stands by.

続くS40では、コントローラ100が、タンク10内の水をヒートポンプ50によって沸き上げる沸き上げ運転が実行中であるか否かを判断する。沸き上げ運転が実行中である場合は、S40でコントローラ100がYesと判断して、S41をスキップしてS42に進む。一方、沸き上げ運転が実行中でない場合は、S40でコントローラ100がNoと判断してS41に進む。 In subsequent S40, the controller 100 determines whether or not the boiling operation of boiling the water in the tank 10 by the heat pump 50 is being executed. When the boiling operation is being executed, the controller 100 determines Yes in S40, skips S41, and proceeds to S42. On the other hand, when the boiling operation is not being executed, the controller 100 determines No in S40 and proceeds to S41.

続くS41では、コントローラ100が、タンク10内の温水の貯湯量が30L以下であるか否かを判断する。タンク10内の温水の貯湯量が30L以下である場合は、S41でコントローラ100がYesと判断してS42に進む。一方、タンク10内の温水の貯湯量が30L以下でない(30Lより多い)場合は、S41でコントローラ100がNoと判断して待機する。タンク10内の温水の貯湯量が30L以下であるか否かの判断は、タンク10の30Lの位置に取り付けられているサーミスタ16の測定温度に基づいて行うことができる。サーミスタ16の測定温度が所定の温度以下である場合は、タンク10内の温水の貯湯量が30L以下であると判断することができる。判断の基準となる所定の温度は、例えば給湯設定温度Ta−(マイナス)5℃である。 In subsequent S41, the controller 100 determines whether or not the amount of hot water stored in the tank 10 is 30 L or less. When the amount of hot water stored in the tank 10 is 30 L or less, the controller 100 determines Yes in S41 and proceeds to S42. On the other hand, when the amount of hot water stored in the tank 10 is not 30 L or less (more than 30 L), the controller 100 determines No in S41 and stands by. Whether or not the amount of hot water stored in the tank 10 is 30 L or less can be determined based on the measured temperature of the thermistor 16 attached to the 30 L position of the tank 10. When the measured temperature of the thermistor 16 is equal to or lower than the predetermined temperature, it can be determined that the amount of hot water stored in the tank 10 is equal to or lower than 30 L. The predetermined temperature serving as a criterion for determination is, for example, hot water supply set temperature Ta−(minus) 5° C.

続くS42では、コントローラ100が、第2沸き上げ運転を許可する。コントローラ100が第2沸き上げ運転を許可すると、第2沸き上げ運転が開始される。上記のように現在時刻が第2沸き上げ時刻(22:00)になり、タンク10内の温水の貯湯量が所定の貯湯量(30L)以下である場合は、第2沸き上げ運転が開始される。また、既に沸き上げ運転が実行中である場合は、その沸き上げ運転が第2沸き上げ運転に切り換わる。第2沸き上げ運転が開始されると、タンク10内の水がヒートポンプ50によって沸き上げられる。ヒートポンプ50によって沸き上げられた温水は、タンク10に貯湯される。そのため、図6に示すように、第2沸き上げ時刻(22:00)の後にタンク10内の温水の貯湯量が増加してゆく。第2沸き上げ運転は、上記の第1沸き上げ運転より後に実行される。第2沸き上げ運転は、1日の最後の沸き上げ運転である。 In subsequent S42, the controller 100 permits the second boiling operation. When the controller 100 permits the second boiling operation, the second boiling operation is started. As described above, when the current time is the second boiling time (22:00) and the amount of hot water stored in the tank 10 is equal to or less than the predetermined amount (30 L) of hot water, the second boiling operation is started. It In addition, when the boiling operation is already being executed, the boiling operation is switched to the second boiling operation. When the second boiling operation is started, the water in the tank 10 is boiled by the heat pump 50. The hot water boiled by the heat pump 50 is stored in the tank 10. Therefore, as shown in FIG. 6, the amount of hot water stored in the tank 10 increases after the second boiling time (22:00). The second boiling operation is performed after the above-described first boiling operation. The second boiling operation is the last boiling operation of the day.

コントローラ100は、第2沸き上げ運転を実行する際に、タンク10内の温水が第2沸き上げ温度Tw2になるように第2沸き上げ運転を実行する。第2沸き上げ温度Tw2は、初期設定されており、例えば、45℃である。あるいは、第2沸き上げ温度Tw2は、過去の沸き上げ温度に基づく学習処理によって設定されていてもよい。ヒートポンプ50は、タンク10内の水を第2沸き上げ温度Tw2に沸き上げる。第2沸き上げ温度Tw2の温水がタンク10に貯湯される。 When executing the second boiling operation, the controller 100 executes the second boiling operation so that the hot water in the tank 10 reaches the second boiling temperature Tw2. The second boiling temperature Tw2 is initially set and is, for example, 45°C. Alternatively, the second boiling temperature Tw2 may be set by a learning process based on the past boiling temperature. The heat pump 50 heats the water in the tank 10 to the second boiling temperature Tw2. Hot water having the second boiling temperature Tw2 is stored in the tank 10.

続くS43では、コントローラ100が、タンク10内の温水の貯湯量が100L以上であるか否かを判断する。タンク10内の温水の貯湯量が100L以上である場合は、S43でコントローラ100がYesと判断してS44に進む。一方、タンク10内の温水の貯湯量が100L以上でない(100Lより少ない)場合は、S43でコントローラ100がNoと判断して待機する。タンク10内の温水の貯湯量が100L以上であるか否かの判断は、ヒートポンプ50の上流側に介装されているサーミスタ24の測定温度に基づいて行うことができる。サーミスタ24の測定温度が所定の温度以上である場合は、タンク10内の温水の貯湯量が100L以上であると判断することができる。判断の基準となる所定の温度は、例えば第2沸き上げ温度−(マイナス)5℃である。 In subsequent S43, the controller 100 determines whether or not the amount of hot water stored in the tank 10 is 100 L or more. When the amount of hot water stored in the tank 10 is 100 L or more, the controller 100 determines Yes in S43 and proceeds to S44. On the other hand, when the amount of hot water stored in the tank 10 is not 100 L or more (less than 100 L), the controller 100 determines No in S43 and stands by. The determination as to whether or not the amount of hot water stored in the tank 10 is 100 L or more can be made based on the temperature measured by the thermistor 24 provided on the upstream side of the heat pump 50. When the temperature measured by the thermistor 24 is equal to or higher than a predetermined temperature, it can be determined that the amount of hot water stored in the tank 10 is 100 L or more. The predetermined temperature serving as a criterion for determination is, for example, the second boiling temperature −(minus) 5° C.

続くS44では、コントローラ100が、第2沸き上げ運転を終了する。例えば、図6に示すように、タンク10内の温水の貯湯量が23:00に100L以上になり、それに基づいてコントローラ100が第2沸き上げ運転を終了する。 In subsequent S44, the controller 100 ends the second boiling operation. For example, as shown in FIG. 6, the hot water storage amount in the tank 10 becomes 100 L or more at 23:00, and the controller 100 ends the second boiling operation based on that.

第2沸き上げ運転が終了した後に、給湯運転が実行されると、タンク10内の温水がタンク10から温水利用箇所に供給され、タンク10内の温水の貯湯量が減少してゆく。例えば、歯磨きや洗面で温水が利用されることによって、タンク10内の温水の貯湯量が減少してゆく。 When the hot water supply operation is executed after the second boiling operation is completed, the hot water in the tank 10 is supplied from the tank 10 to the hot water use location, and the amount of hot water stored in the tank 10 decreases. For example, the amount of hot water stored in the tank 10 decreases as hot water is used for brushing teeth and washing the face.

図7に示すように、続くS45では、コントローラ100が、1日の最後の給湯運転が実行されたか否かを判断する。1日の最後の給湯運転が実行された場合は、S45でコントローラ100がYesと判断してS46に進む。一方、1日の最後の給湯運転が実行されていない場合は、S45でコントローラ100がNoと判断して待機する。1日の最後の給湯運転が実行されたか否かは、例えば、その日(8月1日)の給湯運転が実行された時刻をメモリ102に記憶しておくことによって、その日(8月1日)が終了した後に事後的に判断することができる。1日の最後の給湯運転が実行されると、タンク10内の温水の貯湯量が減少しなくなる。例えば、その日(8月1日)の23:50に1日の最後の給湯運転が実行されたとすると、図6に示すように、23:50以降におけるタンク10内の温水の貯湯量が一定になる。 As shown in FIG. 7, in subsequent S45, controller 100 determines whether or not the last hot water supply operation of the day has been executed. When the last hot water supply operation of the day is executed, the controller 100 determines Yes in S45 and proceeds to S46. On the other hand, if the last hot water supply operation of the day is not executed, the controller 100 determines No in S45 and stands by. Whether or not the last hot water supply operation of the day has been executed is determined by, for example, storing the time when the hot water supply operation of that day (August 1st) is executed in the memory 102 to determine whether that day (August 1st) Can be judged ex post facto after. When the last hot water supply operation of the day is executed, the amount of hot water stored in the tank 10 does not decrease. For example, if the last hot water supply operation of the day is executed at 23:50 on that day (August 1), as shown in FIG. 6, the hot water storage amount in the tank 10 after 23:50 becomes constant. Become.

続くS46では、コントローラ100が、タンク10内の温水の温度である第2貯湯温度Tb2を測定する。第2貯湯温度Tb2は、タンク10の上部に取り付けられているサーミスタ11によって測定される。サーミスタ11の測定温度がコントローラ100に送信され、コントローラ100がそれを受信する。第2貯湯温度Tb2は、1日の最後の給湯運転が実行されたときのタンク10内の温水の温度である。すなわち、第2貯湯温度Tb2は、1日の最後にタンク内の温水が温水利用箇所に供給されたときのタンク10内の温水の温度である。第2貯湯温度Tb2は、第2沸き上げ運転で沸き上げた後、1日の最後にタンク10内に残留している温水の温度である。 In subsequent S46, the controller 100 measures the second hot water storage temperature Tb2 which is the temperature of the hot water in the tank 10. The second hot water storage temperature Tb2 is measured by the thermistor 11 attached to the upper portion of the tank 10. The measured temperature of the thermistor 11 is transmitted to the controller 100, and the controller 100 receives it. Second hot water storage temperature Tb2 is the temperature of the hot water in tank 10 when the last hot water supply operation of the day is executed. That is, the second hot water storage temperature Tb2 is the temperature of the hot water in the tank 10 when the hot water in the tank was supplied to the hot water utilization point at the end of the day. The second hot water storage temperature Tb2 is the temperature of the hot water remaining in the tank 10 at the end of the day after boiling in the second boiling operation.

図8に示すように、タンク10内の温水の温度は、第2沸き上げ運転が終了した直後の23:00では、第2沸き上げ温度Tw2(例えば45℃)である。その後、時間の経過とともに、自然放熱によってタンク10内の温水の温度が低下してゆく。そのため、1日の最後の給湯運転が23:50に実行されたときには、タンク10内の温水の温度が、第2沸き上げ温度Tw2より低い温度になっている。すなわち、サーミスタ11によって測定される第2貯湯温度Tb2は、第2沸き上げ温度Tw2より低い温度である。第2貯湯温度Tb2は、タンク10内の温水の温度の低下具合によって変動する。第2貯湯温度Tb2は、例えば43℃、40℃等である。 As shown in FIG. 8, the temperature of the hot water in the tank 10 is the second boiling temperature Tw2 (for example, 45° C.) at 23:00 immediately after the completion of the second boiling operation. After that, as time passes, the temperature of the hot water in the tank 10 decreases due to natural heat dissipation. Therefore, when the last hot water supply operation of the day is performed at 23:50, the temperature of the hot water in the tank 10 is lower than the second boiling temperature Tw2. That is, the second hot water storage temperature Tb2 measured by the thermistor 11 is lower than the second boiling temperature Tw2. The second hot water storage temperature Tb2 varies depending on how the temperature of the hot water in the tank 10 decreases. The second hot water storage temperature Tb2 is, for example, 43° C. or 40° C.

図7に示すように、続くS47では、コントローラ100が、測定した第2貯湯温度Tb2をメモリ102に記憶する。その後、コントローラ100は、その日(8月1日)の第2沸き上げ運転に係る処理を終了する。その日(8月1日)の第2貯湯温度Tb2は、翌日(8月2日)の第2沸き上げ運転における第2沸き上げ温度Tw2を算出するために用いられる。 As shown in FIG. 7, in subsequent S47, controller 100 stores measured second hot water storage temperature Tb2 in memory 102. After that, the controller 100 ends the process relating to the second boiling operation on that day (August 1). The second hot water storage temperature Tb2 on that day (August 1) is used to calculate the second boiling temperature Tw2 in the second boiling operation on the next day (August 2).

次に、翌日(8月2日)の動作について説明する。翌日(8月2日)においても、まず前日(8月1日)と同様に、温水利用箇所における給湯設定温度Taが40℃に設定されているとする。また、ある時刻(22:00)におけるタンク10内の温水の貯湯量が、30L(リットル)以下であるとする。 Next, the operation on the next day (August 2) will be described. Also on the next day (August 2), first, similarly to the previous day (August 1), it is assumed that the hot water supply set temperature Ta at the hot water use location is set to 40°C. Further, it is assumed that the hot water storage amount in the tank 10 at a certain time (22:00) is 30 L (liter) or less.

この状況において、図9Aに示すように、S49では、コントローラ100が、現在時刻が第2沸き上げ時刻であるか否かを判断する。第2沸き上げ時刻は、過去の沸き上げ時刻に基づく学習処理によって設定されており、例えば22:00である。コントローラ100は、現在時刻が第2沸き上げ時刻である場合は、S49でYesと判断してS50に進む。一方、現在時刻が第2沸き上げ時刻でない場合は、S49でコントローラ100がNoと判断して待機する。 In this situation, as shown in FIG. 9A, in S49, the controller 100 determines whether or not the current time is the second boiling time. The second boiling time is set by a learning process based on the past boiling time, and is 22:00, for example. When the current time is the second boiling time, the controller 100 determines Yes in S49 and proceeds to S50. On the other hand, if the current time is not the second boiling time, the controller 100 determines No in S49 and waits.

続くS50では、コントローラ100が、タンク10内の水をヒートポンプ50によって沸き上げる沸き上げ運転が実行中であるか否かを判断する。沸き上げ運転が実行中である場合は、S50でコントローラ100がYesと判断して、S51をスキップしてS52に進む。一方、沸き上げ運転が実行中でない場合は、S50でコントローラ100がNoと判断してS51に進む。 In subsequent S50, the controller 100 determines whether or not the boiling operation of boiling the water in the tank 10 by the heat pump 50 is being executed. If the boiling operation is being executed, the controller 100 determines Yes in S50, skips S51, and proceeds to S52. On the other hand, when the boiling operation is not being executed, the controller 100 determines No in S50 and proceeds to S51.

続くS51では、コントローラ100が、タンク10内の温水の貯湯量が30L以下であるか否かを判断する。タンク10内の温水の貯湯量が30L以下である場合は、S51でコントローラ100がYesと判断してS52に進む。一方、タンク10内の温水の貯湯量が30L以下でない(30Lより多い)場合は、S51でコントローラ100がNoと判断して待機する。タンク10内の温水の貯湯量が30L以下であるか否かの判断は、タンク10の30Lの位置に取り付けられているサーミスタ16の測定温度に基づいて行うことができる。サーミスタ16の測定温度が所定の温度以下である場合は、タンク10内の温水の貯湯量が30L以下であると判断することができる。判断の基準となる所定の温度は、例えば給湯設定温度Ta−(マイナス)5℃である。 In subsequent S51, the controller 100 determines whether or not the amount of hot water stored in the tank 10 is 30 L or less. When the amount of hot water stored in the tank 10 is 30 L or less, the controller 100 determines Yes in S51 and proceeds to S52. On the other hand, when the amount of hot water stored in the tank 10 is not 30 L or less (more than 30 L), the controller 100 determines No in S51 and stands by. Whether or not the amount of hot water stored in the tank 10 is 30 L or less can be determined based on the measured temperature of the thermistor 16 attached to the 30 L position of the tank 10. When the measured temperature of the thermistor 16 is equal to or lower than the predetermined temperature, it can be determined that the amount of hot water stored in the tank 10 is equal to or lower than 30 L. The predetermined temperature serving as a criterion for determination is, for example, hot water supply set temperature Ta−(minus) 5° C.

続くS52では、コントローラ100が、前日(8月1日)の第2沸き上げ運転を実行した後の第2貯湯温度Tb2を取得する。前日の第2貯湯温度Tb2は、メモリ102に記憶されている。 In subsequent S52, controller 100 acquires second hot water storage temperature Tb2 after executing the second boiling operation on the previous day (August 1). The second hot water storage temperature Tb2 of the previous day is stored in the memory 102.

続くS53では、コントローラ100が、前日(8月1日)の第2沸き上げ運転を実行したときの第2沸き上げ温度Tw2を取得する。前日の第2沸き上げ温度Tw2は、メモリ102に記憶されている。 In subsequent S53, the controller 100 acquires the second boiling temperature Tw2 when the second boiling operation on the previous day (August 1) was executed. The second boiling temperature Tw2 of the previous day is stored in the memory 102.

図9Bに示すように、続くS54では、コントローラ100が、前日の第2貯湯温度Tb2が給湯設定温度Ta+ΔT3より高いか否かを判断する。ΔT3は、予め設定されている温度であり、例えば2℃である。前日の第2貯湯温度Tb2が給湯設定温度Ta+ΔT3より高い場合は、S54でコントローラ100がYesと判断してS55に進む。例えば、前日の第2貯湯温度Tb2が43℃である場合は、第2貯湯温度Tb2(43℃)>給湯設定温度Ta(40℃)+ΔT3(2℃)であり、コントローラ100はS54でYesと判断する。給湯設定温度Ta+ΔT3は、第3基準温度の一例である。第3基準温度は、給湯設定温度TaよりΔT3だけ高い温度である。 As shown in FIG. 9B, in subsequent S54, controller 100 determines whether or not second hot water storage temperature Tb2 of the previous day is higher than hot water supply set temperature Ta+ΔT3. ΔT3 is a preset temperature, for example, 2°C. If the second hot water storage temperature Tb2 of the previous day is higher than the hot water supply set temperature Ta+ΔT3, the controller 100 determines Yes in S54 and proceeds to S55. For example, when the second hot water storage temperature Tb2 of the previous day is 43° C., the second hot water storage temperature Tb2 (43° C.)>hot water supply set temperature Ta (40° C.)+ΔT3 (2° C.), and the controller 100 returns Yes in S54. to decide. Hot water supply set temperature Ta+ΔT3 is an example of a third reference temperature. The third reference temperature is a temperature higher than the hot water supply set temperature Ta by ΔT3.

続くS55では、コントローラ100が、翌日(8月2日)の第2沸き上げ温度Tw2を算出する。具体的には、翌日の第2沸き上げ温度Tw2=前日の第2沸き上げ温度Tw2-|前日の第2貯湯温度Tb2-(給湯設定温度Ta+ΔT3)|である。すなわち、前日の第2貯湯温度Tb2と第2基準温度(給湯設定温度Ta+ΔT3)の差分の絶対値を前日の第2沸き上げ温度Tw2から減算した温度を、翌日の第2沸き上げ温度Tw2とする。したがって、翌日の第2沸き上げ温度Tw2は、前日の第2沸き上げ温度Tw2より低い温度になる。 In subsequent S55, the controller 100 calculates the second boiling temperature Tw2 of the next day (August 2). Specifically, the second boiling temperature Tw2 of the next day=the second boiling temperature Tw2 of the previous day−|the second hot water storage temperature Tb2−(the hot water supply set temperature Ta+ΔT3)| of the previous day. That is, the temperature obtained by subtracting the absolute value of the difference between the second hot water storage temperature Tb2 of the previous day and the second reference temperature (hot water supply set temperature Ta+ΔT3) from the second boiling temperature Tw2 of the previous day is set as the second boiling temperature Tw2 of the next day. .. Therefore, the second boiling temperature Tw2 of the next day is lower than the second boiling temperature Tw2 of the previous day.

一方、S54でNoと判断した後のS56では、コントローラ100が、前日の第2貯湯温度Tb2が給湯設定温度Ta+ΔT4より低いか否かを判断する。ΔT4は、予め設定されている温度であり、例えば1℃である。ΔT4は、ΔT3より低い温度である(小さい値である)。前日の第2貯湯温度Tb2が給湯設定温度Ta+ΔT4より低い場合は、S56でコントローラ100がYesと判断してS57に進む。例えば、前日の第2貯湯温度Tb2が40℃である場合は、第2貯湯温度Tb2(40℃)<給湯設定温度Ta(40℃)+ΔT4(1℃)であり、コントローラ100はS56でYesと判断する。給湯設定温度Ta+ΔT4は、第4基準温度の一例である。第4基準温度は、給湯設定温度TaよりΔT4だけ高い温度である。また、第4基準温度は、第3基準温度より低い温度である。 On the other hand, in S56 after determining No in S54, controller 100 determines whether or not second hot water storage temperature Tb2 of the previous day is lower than hot water supply set temperature Ta+ΔT4. ΔT4 is a preset temperature, for example, 1°C. ΔT4 is a temperature lower than ΔT3 (small value). When the second hot water storage temperature Tb2 of the previous day is lower than the hot water supply set temperature Ta+ΔT4, the controller 100 determines Yes in S56 and proceeds to S57. For example, when the second hot water storage temperature Tb2 of the previous day is 40° C., the second hot water storage temperature Tb2 (40° C.)<hot water supply set temperature Ta (40° C.)+ΔT4 (1° C.), and the controller 100 returns Yes in S56. to decide. Hot water supply set temperature Ta+ΔT4 is an example of a fourth reference temperature. The fourth reference temperature is a temperature higher than hot water supply set temperature Ta by ΔT4. The fourth reference temperature is lower than the third reference temperature.

続くS57では、コントローラ100が、翌日(8月2日)の第2沸き上げ温度Tw2を算出する。具体的には、翌日の第2沸き上げ温度Tw2=前日の第2沸き上げ温度Tw2+|前日の第2貯湯温度Tb2-(給湯設定温度Ta+ΔT4)|である。すなわち、前日の第2貯湯温度Tb2と第4基準温度(給湯設定温度Ta+ΔT4)の差分の絶対値を前日の第2沸き上げ温度Tw2に加算した温度を、翌日の第2沸き上げ温度Tw2とする。したがって、翌日の第2沸き上げ温度Tw2は、前日の第2沸き上げ温度Tw2より高い温度になる。 In subsequent S57, the controller 100 calculates the second boiling temperature Tw2 of the next day (August 2). Specifically, the second boiling temperature Tw2 of the next day=the second boiling temperature Tw2 of the previous day+|the second hot water storage temperature Tb2-(the hot water supply set temperature Ta+ΔT4)| of the previous day. That is, the temperature obtained by adding the absolute value of the difference between the second hot water storage temperature Tb2 of the previous day and the fourth reference temperature (hot water supply set temperature Ta+ΔT4) to the second boiling temperature Tw2 of the previous day is set as the second boiling temperature Tw2 of the next day. .. Therefore, the second boiling temperature Tw2 of the next day is higher than the second boiling temperature Tw2 of the previous day.

一方、S56でNoと判断した後のS58では、コントローラ100が、翌日(8月2日)の第2沸き上げ温度Tw2を、前日(8月1日)の第2沸き上げ温度Tw2と同じ温度とする。したがって、第2沸き上げ温度Tw2は変化しない。 On the other hand, in S58 after determining No in S56, the controller 100 sets the second boiling temperature Tw2 of the next day (August 2) to the same temperature as the second boiling temperature Tw2 of the previous day (August 1). And Therefore, the second boiling temperature Tw2 does not change.

続くS59では、コントローラ100が、第2沸き上げ運転を許可する。コントローラ100が第2沸き上げ運転を許可すると、第2沸き上げ運転が開始される。上記のように現在時刻が第2沸き上げ時刻(22:00)になり、タンク10内の温水の貯湯量が所定の貯湯量(30L)以下である場合は、第2沸き上げ運転が開始される。また、既に沸き上げ運転が実行中である場合は、その沸き上げ運転が第2沸き上げ運転に切り換わる。 In subsequent S59, the controller 100 permits the second boiling operation. When the controller 100 permits the second boiling operation, the second boiling operation is started. As described above, when the current time is the second boiling time (22:00) and the amount of hot water stored in the tank 10 is equal to or less than the predetermined amount (30 L) of hot water, the second boiling operation is started. It In addition, when the boiling operation is already being executed, the boiling operation is switched to the second boiling operation.

コントローラ100は、翌日(8月2日)の第2沸き上げ運転を実行する際に、上述のように算出した翌日の第2沸き上げ温度Tw2に基づいて第2沸き上げ運転を実行する。コントローラ100は、タンク10内の温水が算出した翌日の第2沸き上げ温度Tw2になるように第2沸き上げ運転を実行する。ヒートポンプ50は、タンク10内の水を翌日の第2沸き上げ温度Tw2に沸き上げる。ヒートポンプ50によって沸き上げられた温水は、タンク10に貯湯される。翌日の第2沸き上げ温度Tw2の温水がタンク10に貯湯され、タンク10内の温水の貯湯量が増加してゆく。 When executing the second boiling operation on the next day (August 2), the controller 100 executes the second boiling operation based on the second boiling temperature Tw2 of the next day calculated as described above. The controller 100 executes the second boiling operation so that the hot water in the tank 10 reaches the calculated second boiling temperature Tw2 of the next day. The heat pump 50 heats the water in the tank 10 to the second boiling temperature Tw2 of the next day. The hot water boiled by the heat pump 50 is stored in the tank 10. The hot water having the second boiling temperature Tw2 of the next day is stored in the tank 10, and the amount of hot water stored in the tank 10 increases.

その後、S60では、コントローラ100が、タンク10内の温水の貯湯量が100L以上であるか否かを判断する。タンク10内の温水の貯湯量が100L以上である場合は、S60でコントローラ100がYesと判断してS61に進む。一方、タンク10内の温水の貯湯量が100L以上でない(100Lより少ない)場合は、S60でコントローラ100がNoと判断して待機する。タンク10内の温水の貯湯量が100L以上であるか否かの判断は、ヒートポンプ50の上流側に介装されているサーミスタ24の測定温度に基づいて行うことができる。サーミスタ24の測定温度が所定の温度以上である場合は、タンク10内の温水の貯湯量が100L以上であると判断することができる。判断の基準となる所定の温度は、例えば翌日の第2沸き上げ温度−(マイナス)5℃である。 Then, in S60, the controller 100 determines whether or not the amount of hot water stored in the tank 10 is 100 L or more. When the amount of hot water stored in the tank 10 is 100 L or more, the controller 100 determines Yes in S60 and proceeds to S61. On the other hand, when the amount of hot water stored in the tank 10 is not 100 L or more (less than 100 L), the controller 100 determines No in S60 and stands by. The determination as to whether or not the amount of hot water stored in the tank 10 is 100 L or more can be made based on the temperature measured by the thermistor 24 provided on the upstream side of the heat pump 50. When the temperature measured by the thermistor 24 is equal to or higher than a predetermined temperature, it can be determined that the amount of hot water stored in the tank 10 is 100 L or more. The predetermined temperature serving as a criterion for determination is, for example, the second boiling temperature of the next day−(minus) 5° C.

続くS61では、コントローラ100が、第2沸き上げ運転を終了する。以上のようにして、翌日の第2沸き上げ運転が実行される。 In subsequent S61, the controller 100 ends the second boiling operation. As described above, the second boiling operation on the next day is executed.

以上、第2沸き上げ運転に関して説明した。上記の説明から明らかなように、給湯システム2は、外気から吸熱して水を沸き上げるヒートポンプ50と、ヒートポンプ50によって沸き上げられた温水を貯湯するタンク10と、タンク10に貯湯されている温水の温度を測定するサーミスタ11と、タンク10内の温水を温水利用箇所に供給する供給路40と、温水利用箇所における給湯設定温度Taを設定可能なリモコン104と、コントローラ100を備えている。コントローラ100は、1日の最後の沸き上げ時刻である第2沸き上げ時刻にタンク10内の水をヒートポンプ50によって第2沸き上げ温度Tw2に沸き上げる第2沸き上げ運転を実行可能である。また、コントローラ100は、第2沸き上げ運転を実行した後に1日の最後の給湯運転が実行されたときのタンク10内の温水の温度をサーミスタ11で測定する。すなわち、コントローラ100は、第2沸き上げ運転を実行した後に1日の最後にタンク10内の温水が温水利用箇所に供給されたときのタンク10内の温水の温度である第2貯湯温度Tb2をサーミスタ11で測定する。その後コントローラ100は、測定した第2貯湯温度Tb2が給湯設定温度Taより高い第3基準温度(Ta+ΔT3)より高い場合は、翌日の第2沸き上げ温度Tw2を下げる。具体的には、コントローラ100が、第2貯湯温度Tb2と第3基準温度(Ta+ΔT3)の差分の絶対値を第2沸き上げ温度Tw2から減算した温度を翌日の第2沸き上げ温度Tw2とする。また、コントローラ100は、測定した第2貯湯温度Tb2が給湯設定温度Taより高く第3基準温度より低い第4基準温度(Ta+ΔT4)より低い場合は、翌日の第2沸き上げ温度Tw2を上げる。具体的には、コントローラ100が、第2貯湯温度Tb2と第4基準温度(Ta+ΔT4)の差分の絶対値を第2沸き上げ温度Tw2に加算した温度を翌日の第2沸き上げ温度Tw2とする。そしてコントローラ100は、算出した翌日の第2沸き上げ温度Tw2で翌日の第2沸き上げ運転を実行する。すなわち、コントローラ100は、翌日の第2沸き上げ温度Tw2を下げて、または、上げて、翌日の第2沸き上げ運転を実行する。 The second boiling operation has been described above. As is clear from the above description, the hot water supply system 2 includes the heat pump 50 that absorbs heat from the outside air to boil water, the tank 10 that stores the hot water boiled by the heat pump 50, and the hot water stored in the tank 10. The controller 100 is provided with a thermistor 11 for measuring the temperature, a supply path 40 for supplying the hot water in the tank 10 to the hot water use point, a remote controller 104 capable of setting the hot water supply set temperature Ta at the hot water use point. The controller 100 can execute the second boiling operation in which the water in the tank 10 is boiled to the second boiling temperature Tw2 by the heat pump 50 at the second boiling time which is the last boiling time of the day. Further, the controller 100 measures the temperature of the hot water in the tank 10 with the thermistor 11 when the final hot water supply operation of the day is executed after the second boiling operation is executed. That is, the controller 100 sets the second hot water storage temperature Tb2, which is the temperature of the hot water in the tank 10 when the hot water in the tank 10 is supplied to the hot water use location at the end of the day after executing the second boiling operation. It is measured by the thermistor 11. After that, when the measured second hot water storage temperature Tb2 is higher than the third reference temperature (Ta+ΔT3) higher than the hot water supply set temperature Ta, the controller 100 lowers the second boiling temperature Tw2 of the next day. Specifically, the controller 100 sets the temperature obtained by subtracting the absolute value of the difference between the second hot water storage temperature Tb2 and the third reference temperature (Ta+ΔT3) from the second boiling temperature Tw2 as the second boiling temperature Tw2 of the next day. When the measured second hot water storage temperature Tb2 is lower than the fourth reference temperature (Ta+ΔT4) which is higher than the hot water supply set temperature Ta and lower than the third reference temperature, controller 100 raises second boiling temperature Tw2 of the next day. Specifically, the controller 100 sets the temperature obtained by adding the absolute value of the difference between the second hot water storage temperature Tb2 and the fourth reference temperature (Ta+ΔT4) to the second boiling temperature Tw2 as the second boiling temperature Tw2 of the next day. Then, the controller 100 executes the second boiling operation of the next day at the calculated second boiling temperature Tw2 of the next day. That is, the controller 100 lowers or raises the second boiling temperature Tw2 of the next day and executes the second boiling operation of the next day.

このような構成によれば、第2沸き上げ運転で沸き上げた後、1日の最後にタンク10内に残留している温水の温度(第2貯湯温度Tb2)が第3基準温度(Ta+ΔT3)より高い場合は、翌日の第2沸き上げ温度Tw2を下げる。これによって、翌日において、1日の最後にタンク10内に残留している温水の温度を給湯設定温度Ta以上に維持しながら、第2沸き上げ温度Tw2を低くすることができる。このように、第2貯湯温度Tb2が高い場合は、翌日の第2貯湯温度Tb2を下げるために翌日の第2沸き上げ温度Tw2を下げるので、第2沸き上げ運転を実行する際の第2沸き上げ温度Tw2を下げることによってCOPを高くすることができる。 According to such a configuration, after boiling in the second boiling operation, the temperature of the hot water (second hot water storage temperature Tb2) remaining in the tank 10 at the end of the day is the third reference temperature (Ta+ΔT3). If it is higher, the second boiling temperature Tw2 of the next day is lowered. As a result, on the next day, the second boiling temperature Tw2 can be lowered while maintaining the temperature of the hot water remaining in the tank 10 at the end of the day at the hot water supply set temperature Ta or higher. In this way, when the second hot water storage temperature Tb2 is high, the second boiling temperature Tw2 of the next day is lowered in order to lower the second hot water storage temperature Tb2 of the next day, so the second boiling when executing the second boiling operation is performed. COP can be raised by lowering the raising temperature Tw2.

また、第2沸き上げ運転で沸き上げた後、1日の最後にタンク10内に残留している温水の温度(第2貯湯温度Tb2)が第4基準温度(Ta+ΔT4)より低い場合は、翌日の第2沸き上げ温度Tw2を上げる。これによって、翌日において、1日の最後にタンク10内に残留している温水の温度が給湯設定温度Taを下回ってしまうことを確実に防止することができる。このように、第2貯湯温度Tb2が低い場合は翌日の第2貯湯温度Tb2を上げることができるので、タンク10内の温水を温水利用箇所に供給する際に、給湯設定温度Taより低温の温水が温水利用箇所に供給されることを抑制できる。 Further, if the temperature of the hot water remaining in the tank 10 (second hot water storage temperature Tb2) is lower than the fourth reference temperature (Ta+ΔT4) at the end of the day after boiling in the second boiling operation, the next day The second boiling temperature Tw2 of is increased. This can surely prevent the temperature of the hot water remaining in the tank 10 from falling below the hot water supply set temperature Ta at the end of the next day. Thus, when the second hot water storage temperature Tb2 is low, the second hot water storage temperature Tb2 of the next day can be raised. Can be suppressed from being supplied to the hot water use location.

また、上記の構成では、翌日の第2沸き上げ温度Tw2を下げる際に、第2貯湯温度Tb2と第3基準温度(Ta+ΔT3)の差分の絶対値を第2沸き上げ温度Tw2から減算した温度を翌日の第2沸き上げ温度Tw2としている。これによって、翌日の第2沸き上げ温度Tw2が低くなりすぎることを抑制できる。その結果、翌日の1日の最後にタンク10内に残留している温水の温度(翌日の第2貯湯温度Tb2)が低くなりすぎることを抑制できる。一方、上記の構成では、翌日の第2沸き上げ温度Tw2を上げる際に、第2貯湯温度Tb2と第4基準温度(Ta+ΔT4)の差分の絶対値を第2沸き上げ温度Tw2に加算した温度を翌日の第2沸き上げ温度Tw2としている。これによって、翌日の第2沸き上げ温度Tw2が高くなりすぎることを抑制できる。その結果、翌日の第2貯湯温度Tb2が高くなりすぎることを抑制できる。翌日の第2貯湯温度Tb2が低くなりすぎることと高くなりすぎることを抑制できるので、翌日の第2貯湯温度Tb2を給湯設定温度Taに近い温度に精度良く近付けることができる。 Further, in the above configuration, when lowering the second boiling temperature Tw2 of the next day, the temperature obtained by subtracting the absolute value of the difference between the second hot water storage temperature Tb2 and the third reference temperature (Ta+ΔT3) from the second boiling temperature Tw2 is used. The second boiling temperature Tw2 of the next day is set. This can prevent the second boiling temperature Tw2 of the next day from becoming too low. As a result, it is possible to prevent the temperature of the hot water remaining in the tank 10 (the second hot water storage temperature Tb2 of the next day) from becoming too low at the end of the next day. On the other hand, in the above configuration, when raising the second boiling temperature Tw2 of the next day, the temperature obtained by adding the absolute value of the difference between the second hot water storage temperature Tb2 and the fourth reference temperature (Ta+ΔT4) to the second boiling temperature Tw2. The second boiling temperature Tw2 of the next day is set. This can prevent the second boiling temperature Tw2 of the next day from becoming too high. As a result, it is possible to prevent the second hot water storage temperature Tb2 of the next day from becoming too high. Since it is possible to prevent the second hot water storage temperature Tb2 of the next day from becoming too low and too high, the second hot water storage temperature Tb2 of the next day can be accurately brought close to the hot water supply set temperature Ta.

また、上記の給湯システム2は、タンク10から温水利用箇所に供給される温水を燃料(例えば、ガス)の燃焼によって加熱するバーナ加熱装置60を備えている。このような構成によれば、上述した第1沸き上げ運転の場合と同様に、バーナ加熱装置60を用いて温水を加熱することで、給湯設定温度Taでの給湯が可能である。したがって、第3基準温度および第4基準温度をより低い温度に設定して、沸き上げ運転における沸き上げ温度をより低い温度にすることができる。そのため、沸き上げ運転におけるCOPをより高めることができる。 Further, the hot water supply system 2 includes a burner heating device 60 that heats the hot water supplied from the tank 10 to the hot water use location by burning fuel (for example, gas). According to such a configuration, hot water can be supplied at the hot water supply set temperature Ta by heating the hot water using the burner heating device 60, as in the case of the first boiling operation described above. Therefore, the third reference temperature and the fourth reference temperature can be set to lower temperatures, and the boiling temperature in the boiling operation can be set to a lower temperature. Therefore, COP in the boiling operation can be further increased.

(第3沸き上げ運転)
次に、第3沸き上げ運転に関する制御処理について説明する。これについて説明するために、まず、利用者がリモコン104を操作することによって、温水利用箇所における給湯設定温度Taが40℃に設定されているとする。また、図10に示すように、ある日(例えば、8月1日)のある時刻(例えば、20:30)に、タンク10に温水が貯湯されているとする。ヒートポンプ50によって沸き上げられた温水がタンク10に貯湯されている。20:30におけるタンク10内の温水の貯湯量は、30L(リットル)以下であるとする。
(3rd boiling operation)
Next, a control process regarding the third boiling operation will be described. In order to explain this, first, it is assumed that the user operates the remote controller 104 to set the hot water supply set temperature Ta at the hot water use location to 40°C. Further, as shown in FIG. 10, it is assumed that hot water is stored in the tank 10 at a certain time (for example, 20:30) on a certain day (for example, August 1). The hot water boiled by the heat pump 50 is stored in the tank 10. It is assumed that the amount of hot water stored in the tank 10 at 20:30 is 30 L (liter) or less.

この状況において、図11に示すように、S69では、コントローラ100が、現在時刻が第3沸き上げ時刻であるか否かを判断する。第3沸き上げ時刻は、過去の沸き上げ時刻に基づく学習処理によって設定されており、例えば20:30である。第3沸き上げ時刻(20:30)は、上記の第1沸き上げ運転における第1沸き上げ時刻(18:00)と上記の第2沸き上げ運転における第2沸き上げ時刻(22:00)の間の時刻である。コントローラ100は、現在時刻が第3沸き上げ時刻である場合は、S69でYesと判断してS70に進む。一方、現在時刻が第3沸き上げ時刻でない場合は、S69でコントローラ100がNoと判断して待機する。 In this situation, as shown in FIG. 11, in S69, the controller 100 determines whether or not the current time is the third boiling time. The third boiling time is set by a learning process based on the past boiling time, and is, for example, 20:30. The third boiling time (20:30) is the first boiling time (18:00) in the first boiling operation and the second boiling time (22:00) in the second boiling operation. It is the time between. When the current time is the third boiling time, the controller 100 determines Yes in S69 and proceeds to S70. On the other hand, if the current time is not the third boiling time, the controller 100 determines No in S69 and waits.

続くS70では、コントローラ100が、タンク10内の水をヒートポンプ50によって沸き上げる沸き上げ運転が実行中であるか否かを判断する。沸き上げ運転が実行中である場合は、S70でコントローラ100がYesと判断して、S71をスキップしてS72に進む。一方、沸き上げ運転が実行中でない場合は、S70でコントローラ100がNoと判断してS71に進む。 In subsequent S70, the controller 100 determines whether or not the boiling operation for boiling the water in the tank 10 by the heat pump 50 is being executed. When the boiling operation is being executed, the controller 100 determines Yes in S70, skips S71, and proceeds to S72. On the other hand, when the boiling operation is not being executed, the controller 100 determines No in S70 and proceeds to S71.

続くS71では、コントローラ100が、タンク10内の温水の貯湯量が30L以下であるか否かを判断する。タンク10内の温水の貯湯量が30L以下である場合は、S71でコントローラ100がYesと判断してS72に進む。一方、タンク10内の温水の貯湯量が30L以下でない(30Lより多い)場合は、S71でコントローラ100がNoと判断して待機する。タンク10内の温水の貯湯量が30L以下であるか否かの判断は、タンク10の30Lの位置に取り付けられているサーミスタ16の測定温度に基づいて行うことができる。サーミスタ16の測定温度が所定の温度以下である場合は、タンク10内の温水の貯湯量が30L以下であると判断することができる。判断の基準となる所定の温度は、例えば給湯設定温度Ta−(マイナス)5℃である。 In subsequent S71, the controller 100 determines whether or not the amount of hot water stored in the tank 10 is 30 L or less. When the amount of hot water stored in the tank 10 is 30 L or less, the controller 100 determines Yes in S71 and proceeds to S72. On the other hand, when the amount of hot water stored in the tank 10 is not 30 L or less (more than 30 L), the controller 100 determines No in S71 and stands by. Whether or not the amount of hot water stored in the tank 10 is 30 L or less can be determined based on the measured temperature of the thermistor 16 attached to the 30 L position of the tank 10. When the measured temperature of the thermistor 16 is equal to or lower than the predetermined temperature, it can be determined that the amount of hot water stored in the tank 10 is equal to or lower than 30 L. The predetermined temperature serving as a criterion for determination is, for example, hot water supply set temperature Ta−(minus) 5° C.

続くS72では、コントローラ100が、第3沸き上げ運転を許可する。コントローラ100が第3沸き上げ運転を許可すると、第3沸き上げ運転が開始される。上記のように現在時刻が第3沸き上げ時刻(20:30)になり、タンク10内の温水の貯湯量が所定の貯湯量(30L)以下である場合は、第3沸き上げ運転が開始される。また、既に沸き上げ運転が実行中である場合は、その沸き上げ運転が第3沸き上げ運転に切り換わる。第3沸き上げ運転が開始されると、タンク10内の水がヒートポンプ50によって沸き上げられる。ヒートポンプ50によって沸き上げられた温水は、タンク10に貯湯される。そのため、図10に示すように、第3沸き上げ時刻(20:30)の後にタンク10内の温水の貯湯量が増加してゆく。第3沸き上げ運転は、上記の第1沸き上げ運転と上記の第2沸き上げ運転の間に実行される。第3沸き上げ運転は、第1沸き上げ時刻と第2沸き上げ時刻の間に実行される。 In subsequent S72, the controller 100 permits the third boiling operation. When the controller 100 permits the third boiling operation, the third boiling operation is started. As described above, when the current time is the third boiling time (20:30) and the amount of hot water stored in the tank 10 is equal to or less than the predetermined amount (30 L) of hot water, the third boiling operation is started. It When the boiling operation is already being executed, the boiling operation is switched to the third boiling operation. When the third boiling operation is started, the water in the tank 10 is boiled by the heat pump 50. The hot water boiled by the heat pump 50 is stored in the tank 10. Therefore, as shown in FIG. 10, the amount of hot water stored in the tank 10 increases after the third boiling time (20:30). The third boiling operation is executed between the first boiling operation and the second boiling operation. The third boiling operation is executed between the first boiling time and the second boiling time.

コントローラ100は、第3沸き上げ運転を実行する際に、タンク10内の温水が第3沸き上げ温度Tw3になるように第3沸き上げ運転を実行する。第3沸き上げ温度Tw3は、初期設定されており、例えば、45℃である。あるいは、第3沸き上げ温度Tw3は、過去の沸き上げ温度に基づく学習処理によって設定されていてもよい。ヒートポンプ50は、タンク10内の水を第3沸き上げ温度Tw3に沸き上げる。第3沸き上げ温度Tw3の温水がタンク10に貯湯される。 When executing the third boiling operation, the controller 100 executes the third boiling operation so that the hot water in the tank 10 reaches the third boiling temperature Tw3. The third boiling temperature Tw3 is initially set and is, for example, 45°C. Alternatively, the third boiling temperature Tw3 may be set by a learning process based on the past boiling temperature. The heat pump 50 heats the water in the tank 10 to the third boiling temperature Tw3. Hot water having the third boiling temperature Tw3 is stored in the tank 10.

図11に示すように、続くS73では、コントローラ100が、タンク10内の温水の貯湯量が100L以上であるか否かを判断する。タンク10内の温水の貯湯量が100L以上である場合は、S73でコントローラ100がYesと判断してS74に進む。一方、タンク10内の温水の貯湯量が100L以上でない(100Lより少ない)場合は、S73でコントローラ100がNoと判断して待機する。タンク10内の温水の貯湯量が100L以上であるか否かの判断は、ヒートポンプ50の上流側に介装されているサーミスタ24の測定温度に基づいて行うことができる。サーミスタ24の測定温度が所定の温度以上である場合は、タンク10内の温水の貯湯量が100L以上であると判断することができる。判断の基準となる所定の温度は、例えば第3沸き上げ温度−(マイナス)5℃である。 As shown in FIG. 11, in subsequent S73, the controller 100 determines whether or not the amount of hot water stored in the tank 10 is 100 L or more. When the amount of hot water stored in the tank 10 is 100 L or more, the controller 100 determines Yes in S73 and proceeds to S74. On the other hand, when the amount of hot water stored in the tank 10 is not 100 L or more (less than 100 L), the controller 100 determines No in S73 and stands by. The determination as to whether or not the amount of hot water stored in the tank 10 is 100 L or more can be made based on the temperature measured by the thermistor 24 provided on the upstream side of the heat pump 50. When the temperature measured by the thermistor 24 is equal to or higher than a predetermined temperature, it can be determined that the amount of hot water stored in the tank 10 is 100 L or more. The predetermined temperature serving as a criterion for determination is, for example, the third boiling temperature-(minus) 5°C.

続くS74では、コントローラ100が、第3沸き上げ運転を終了する。例えば、図10に示すように、タンク10内の温水の貯湯量が21:30に100L以上になり、それに基づいてコントローラ100が第3沸き上げ運転を終了する。第3沸き上げ運転が終了した後に、給湯運転が実行されると、タンク10内の温水がタンク10から温水利用箇所に供給され、タンク10内の温水の貯湯量が減少してゆく。その後、コントローラ100は、その日(8月1日)の第3沸き上げ運転に係る処理を終了する。 In subsequent S74, the controller 100 ends the third boiling operation. For example, as shown in FIG. 10, the stored amount of hot water in the tank 10 becomes 100 L or more at 21:30, and the controller 100 ends the third boiling operation based on that. When the hot water supply operation is executed after the third boiling operation is completed, the hot water in the tank 10 is supplied from the tank 10 to the hot water utilization point, and the amount of hot water stored in the tank 10 decreases. After that, the controller 100 ends the process related to the third boiling operation on that day (August 1st).

次に、翌日(8月2日)の動作について説明する。翌日(8月2日)においても、まず前日(8月1日)と同様に、温水利用箇所における給湯設定温度Taが40℃に設定されているとする。また、ある時刻(20:30)におけるタンク10内の温水の貯湯量が、30L(リットル)以下であるとする。 Next, the operation on the next day (August 2) will be described. Also on the next day (August 2), first, similarly to the previous day (August 1), it is assumed that the hot water supply set temperature Ta at the hot water use location is set to 40°C. Further, it is assumed that the hot water storage amount in the tank 10 at a certain time (20:30) is 30 L (liter) or less.

この状況において、図12に示すように、S79では、コントローラ100が、現在時刻が第3沸き上げ時刻であるか否かを判断する。第3沸き上げ時刻は、過去の沸き上げ時刻に基づく学習処理によって設定されており、例えば20:30である。コントローラ100は、現在時刻が第3沸き上げ時刻である場合は、S79でYesと判断してS80に進む。一方、現在時刻が第3沸き上げ時刻でない場合は、S79でコントローラ100がNoと判断して待機する。 In this situation, as shown in FIG. 12, in S79, the controller 100 determines whether or not the current time is the third boiling time. The third boiling time is set by a learning process based on the past boiling time, and is, for example, 20:30. When the current time is the third boiling time, the controller 100 determines Yes in S79 and proceeds to S80. On the other hand, if the current time is not the third boiling time, the controller 100 determines No in S79 and stands by.

続くS80では、コントローラ100が、タンク10内の水をヒートポンプ50によって沸き上げる沸き上げ運転が実行中であるか否かを判断する。沸き上げ運転が実行中である場合は、S80でコントローラ100がYesと判断して、S81をスキップしてS82に進む。一方、沸き上げ運転が実行中でない場合は、S80でコントローラ100がNoと判断してS81に進む。 In subsequent S80, the controller 100 determines whether or not the boiling operation for boiling the water in the tank 10 by the heat pump 50 is being executed. When the boiling operation is being executed, the controller 100 determines Yes in S80, skips S81, and proceeds to S82. On the other hand, when the boiling operation is not being executed, the controller 100 determines No in S80 and proceeds to S81.

続くS81では、コントローラ100が、タンク10内の温水の貯湯量が30L以下であるか否かを判断する。タンク10内の温水の貯湯量が30L以下である場合は、S81でコントローラ100がYesと判断してS82に進む。一方、タンク10内の温水の貯湯量が30L以下でない(30Lより多い)場合は、S81でコントローラ100がNoと判断して待機する。タンク10内の温水の貯湯量が30L以下であるか否かの判断は、タンク10の30Lの位置に取り付けられているサーミスタ16の測定温度に基づいて行うことができる。サーミスタ16の測定温度が所定の温度以下である場合は、タンク10内の温水の貯湯量が30L以下であると判断することができる。判断の基準となる所定の温度は、例えば給湯設定温度Ta−(マイナス)5℃である。 In subsequent S81, the controller 100 determines whether or not the amount of hot water stored in the tank 10 is 30 L or less. When the amount of hot water stored in the tank 10 is 30 L or less, the controller 100 determines Yes in S81 and proceeds to S82. On the other hand, when the amount of hot water stored in the tank 10 is not 30 L or less (more than 30 L), the controller 100 determines No in S81 and stands by. Whether or not the amount of hot water stored in the tank 10 is 30 L or less can be determined based on the measured temperature of the thermistor 16 attached to the 30 L position of the tank 10. When the measured temperature of the thermistor 16 is equal to or lower than the predetermined temperature, it can be determined that the amount of hot water stored in the tank 10 is equal to or lower than 30 L. The predetermined temperature serving as a criterion for determination is, for example, hot water supply set temperature Ta−(minus) 5° C.

続くS82では、コントローラ100が、翌日(8月2日)の第1沸き上げ運転における第1沸き上げ温度Tw1と、翌日(8月2日)の第2沸き上げ運転における第2沸き上げ温度Tw2を取得する。上記の第1沸き上げ運転で説明したように、翌日(8月2日)の第1沸き上げ温度Tw1は、前日(8月1日)の第1貯湯温度Tb1に基づいて算出される。また、上記の第2沸き上げ運転で説明したように、翌日(8月2日)の第2沸き上げ温度Tw2は、前日(8月1日)の第2貯湯温度Tb2に基づいて算出される。 In subsequent S82, the controller 100 causes the first boiling temperature Tw1 in the first boiling operation on the next day (August 2) and the second boiling temperature Tw2 in the second boiling operation on the next day (August 2). To get. As described in the first boiling operation, the first boiling temperature Tw1 of the next day (August 2) is calculated based on the first hot water storage temperature Tb1 of the previous day (August 1). Further, as described in the second boiling operation, the second boiling temperature Tw2 of the next day (August 2) is calculated based on the second hot water storage temperature Tb2 of the previous day (August 1). ..

続くS83では、コントローラ100が、翌日(8月2日)の第1沸き上げ温度Tw1が翌日(8月2日)の第2沸き上げ温度Tw2+3℃以上であるか否かを判断する。翌日の第1沸き上げ温度Tw1が翌日の第2沸き上げ温度Tw2+3℃以上である場合は、S83でコントローラ100がYesと判断してS84に進む。一方、翌日の第1沸き上げ温度Tw1が翌日の第2沸き上げ温度Tw2+3℃以上でない(Tw1がTw2+3℃より低い)場合は、S83でコントローラ100がNoと判断してS85に進む。 In subsequent S83, the controller 100 determines whether or not the first boiling temperature Tw1 of the next day (August 2) is equal to or higher than the second boiling temperature Tw2+3°C of the next day (August 2). If the first boiling temperature Tw1 of the next day is equal to or higher than the second boiling temperature Tw2+3° C. of the next day, the controller 100 determines Yes in S83 and proceeds to S84. On the other hand, if the first boiling temperature Tw1 of the next day is not equal to or higher than the second boiling temperature Tw2+3° C. of the next day (Tw1 is lower than Tw2+3° C.), the controller 100 determines No in S83 and proceeds to S85.

S83でYesと判断した後のS84では、コントローラ100が、翌日(8月2日)の第3沸き上げ温度Tw3を算出する。具体的には、翌日の第3沸き上げ温度Tw3=翌日の第1沸き上げ温度Tw1−ΔTxである。すなわち、翌日の第1沸き上げ温度Tw1から所定の温度ΔTxを減算した温度を翌日の第3沸き上げ温度Tw3とする。所定の温度ΔTxは、特に限定されるものではない。また、所定の温度ΔTxは、時間の経過とともに変化してもよい。例えば、ΔTxは、第1貯湯温度Tb1が測定された時刻から20分経過するごとに1℃増加する構成としてもよい。また、ΔTx<翌日の第1沸き上げ温度Tw1−翌日の第2沸き上げ温度Tw2である。 In S84 after determining Yes in S83, the controller 100 calculates the third boiling temperature Tw3 on the next day (August 2). Specifically, the third boiling temperature Tw3 of the next day=the first boiling temperature Tw1-ΔTx of the next day. That is, the temperature obtained by subtracting the predetermined temperature ΔTx from the first boiling temperature Tw1 of the next day is set as the third boiling temperature Tw3 of the next day. The predetermined temperature ΔTx is not particularly limited. Further, the predetermined temperature ΔTx may change over time. For example, ΔTx may be increased by 1° C. every 20 minutes from the time when the first hot water storage temperature Tb1 is measured. Further, ΔTx<the first boiling temperature Tw of the next day 1−the second boiling temperature Tw2 of the next day.

一方、S83でNoと判断した後のS85では、コントローラ100が、翌日(8月2日)の第3沸き上げ温度Tw3を、翌日の第2沸き上げ温度Tw2と同じ温度にする。翌日の第2沸き上げ温度Tw2が翌日の第1沸き上げ温度Tw1より高い温度である場合は、翌日の第3沸き上げ温度Tw3も翌日の第1沸き上げ温度Tw1より高い温度になる。翌日の第2沸き上げ温度Tw2が翌日の第1沸き上げ温度Tw1より低い温度である場合は、翌日の第3沸き上げ温度Tw3も翌日の第1沸き上げ温度Tw1より低い温度になる。 On the other hand, in S85 after determining No in S83, the controller 100 sets the third boiling temperature Tw3 of the next day (August 2) to the same temperature as the second boiling temperature Tw2 of the next day. When the second boiling temperature Tw2 of the next day is higher than the first boiling temperature Tw1 of the next day, the third boiling temperature Tw3 of the next day also becomes higher than the first boiling temperature Tw1 of the next day. When the second boiling temperature Tw2 of the next day is lower than the first boiling temperature Tw1 of the next day, the third boiling temperature Tw3 of the next day also becomes lower than the first boiling temperature Tw1 of the next day.

続くS86では、コントローラ100が、第3沸き上げ運転を許可する。コントローラ100が第3沸き上げ運転を許可すると、第3沸き上げ運転が開始される。上記のように現在時刻が第3沸き上げ時刻(20:30)になり、タンク10内の温水の貯湯量が所定の貯湯量(30L)以下である場合は、第3沸き上げ運転が開始される。また、既に沸き上げ運転が実行中である場合は、その沸き上げ運転が第3沸き上げ運転に切り換わる。 In subsequent S86, the controller 100 permits the third boiling operation. When the controller 100 permits the third boiling operation, the third boiling operation is started. As described above, when the current time is the third boiling time (20:30) and the amount of hot water stored in the tank 10 is equal to or less than the predetermined amount (30 L) of hot water, the third boiling operation is started. It When the boiling operation is already being executed, the boiling operation is switched to the third boiling operation.

その後、S87では、コントローラ100が、タンク10内の温水の貯湯量が100L以上であるか否かを判断する。タンク10内の温水の貯湯量が100L以上である場合は、S87でコントローラ100がYesと判断してS88に進む。一方、タンク10内の温水の貯湯量が100L以上でない(100Lより少ない)場合は、S87でコントローラ100がNoと判断して待機する。タンク10内の温水の貯湯量が100L以上であるか否かの判断は、ヒートポンプ50の上流側に介装されているサーミスタ24の測定温度に基づいて行うことができる。サーミスタ24の測定温度が所定の温度以上である場合は、タンク10内の温水の貯湯量が100L以上であると判断することができる。判断の基準となる所定の温度は、例えば翌日の第3沸き上げ温度−(マイナス)5℃である。 Then, in S87, the controller 100 determines whether or not the amount of hot water stored in the tank 10 is 100 L or more. When the amount of hot water stored in the tank 10 is 100 L or more, the controller 100 determines Yes in S87 and proceeds to S88. On the other hand, when the amount of hot water stored in the tank 10 is not 100 L or more (less than 100 L), the controller 100 determines No in S87 and stands by. The determination as to whether or not the amount of hot water stored in the tank 10 is 100 L or more can be made based on the temperature measured by the thermistor 24 provided on the upstream side of the heat pump 50. When the temperature measured by the thermistor 24 is equal to or higher than a predetermined temperature, it can be determined that the amount of hot water stored in the tank 10 is 100 L or more. The predetermined temperature serving as a criterion for determination is, for example, the third boiling temperature of the next day-(minus) 5°C.

続くS88では、コントローラ100が、第3沸き上げ運転を終了する。以上のようにして、翌日の第3沸き上げ運転が実行される。 In subsequent S88, the controller 100 ends the third boiling operation. As described above, the third boiling operation on the next day is executed.

以上、第3沸き上げ運転に関して説明した。上記の説明から明らかなように、給湯システム2は、外気から吸熱して水を沸き上げるヒートポンプ50と、ヒートポンプ50によって沸き上げられた温水を貯湯するタンク10と、タンク10に貯湯されている温水の温度を測定するサーミスタ11と、タンク10内の温水を温水利用箇所に供給する供給路40と、温水利用箇所における給湯設定温度Taを設定可能なリモコン104と、コントローラ100を備えている。コントローラ100は、所定の第1沸き上げ時刻にタンク10内の水をヒートポンプ50によって第1沸き上げ温度Tw1に沸き上げる第1沸き上げ運転と、1日の最後の沸き上げ時刻である第2沸き上げ時刻にタンク10内の水をヒートポンプ50によって第2沸き上げ温度Tw2に沸き上げる第2沸き上げ運転と、を実行可能である。第1沸き上げ運転と第2沸き上げ運転については、上記で説明した。また、コントローラ100は、第1沸き上げ運転と第2沸き上げ運転の間にタンク10内の水をヒートポンプ50によって第3沸き上げ温度Tw3に沸き上げる第3沸き上げ運転を実行可能である。コントローラ100は、翌日の第3沸き上げ温度Tw3を、翌日の第1沸き上げ温度Tw1−ΔTxの温度にする。または、コントローラ100は、翌日の第3沸き上げ温度Tw3を、翌日の第2沸き上げ温度Tw2と同じ温度にする。すなわち、翌日の第3沸き上げ温度Tw3は、翌日の第1沸き上げ温度Tw1と翌日の第2沸き上げ温度Tw2の間の温度となる。コントローラ100は、翌日の第1沸き上げ運転と翌日の第2沸き上げ運転の間に、翌日の第1沸き上げ温度Tw1と翌日の第2沸き上げ温度Tw2の間の温度を翌日の第3沸き上げ温度Tw3として、翌日の第3沸き上げ運転を実行する。 The third boiling operation has been described above. As is clear from the above description, the hot water supply system 2 includes the heat pump 50 that absorbs heat from the outside air to boil water, the tank 10 that stores the hot water boiled by the heat pump 50, and the hot water stored in the tank 10. The controller 100 is provided with a thermistor 11 for measuring the temperature, a supply path 40 for supplying the hot water in the tank 10 to the hot water use point, a remote controller 104 capable of setting the hot water supply set temperature Ta at the hot water use point. The controller 100 has a first boiling operation in which the water in the tank 10 is boiled to the first boiling temperature Tw1 by the heat pump 50 at a predetermined first boiling time and a second boiling time that is the last boiling time of the day. The second boiling operation in which the water in the tank 10 is heated to the second boiling temperature Tw2 by the heat pump 50 at the raising time can be executed. The first boiling operation and the second boiling operation have been described above. Further, the controller 100 can execute the third boiling operation in which the water in the tank 10 is boiled to the third boiling temperature Tw3 by the heat pump 50 between the first boiling operation and the second boiling operation. The controller 100 sets the third boiling temperature Tw3 of the next day to the temperature of the first boiling temperature Tw1-ΔTx of the next day. Alternatively, the controller 100 sets the third boiling temperature Tw3 of the next day to the same temperature as the second boiling temperature Tw2 of the next day. That is, the third boiling temperature Tw3 of the next day is a temperature between the first boiling temperature Tw1 of the next day and the second boiling temperature Tw2 of the next day. The controller 100 sets the temperature between the first boiling temperature Tw1 of the next day and the second boiling temperature Tw2 of the next day to the third boiling of the next day between the first boiling operation of the next day and the second boiling operation of the next day. As the raising temperature Tw3, the third boiling operation of the next day is executed.

このような構成によれば、翌日の第1沸き上げ運転に関して、可能な限り第1沸き上げ温度Tw1を下げて沸き上げ運転を実行する際のCOPを高くしつつ、給湯設定温度Taより低温の温水が温水利用箇所に供給されることを抑制できるとともに、翌日の第2沸き上げ運転に関して、可能な限り第2沸き上げ温度Tw2を下げて沸き上げ運転を実行する際のCOPを高くしつつ、給湯設定温度Taより低温の温水が温水利用箇所に供給されることを抑制できる。また、翌日の第1沸き上げ運転に関して、翌日の第1貯湯温度Tb1を給湯設定温度Taに近い温度に精度良く近付けることができる。また、翌日の第2沸き上げ運転に関して、翌日の第2貯湯温度Tb2を給湯設定温度Taに近い温度に精度良く近付けることができる。 According to such a configuration, with respect to the first boiling operation on the next day, the first boiling temperature Tw1 is lowered as much as possible to increase the COP when the boiling operation is performed, and the temperature is lower than the hot water supply set temperature Ta. While it is possible to prevent hot water from being supplied to the hot water utilization point, with respect to the second boiling operation of the next day, while lowering the second boiling temperature Tw2 as much as possible and increasing the COP when executing the boiling operation, It is possible to prevent hot water having a temperature lower than the hot water supply set temperature Ta from being supplied to the hot water use location. Further, with respect to the first boiling operation on the next day, the first hot water storage temperature Tb1 on the next day can be accurately brought close to the temperature close to the hot water supply set temperature Ta. Further, regarding the second boiling operation on the next day, the second hot water storage temperature Tb2 on the next day can be accurately brought close to the temperature close to the hot water supply set temperature Ta.

また、上記の構成によれば、第1沸き上げ運転と第2沸き上げ運転の間に行われる第3沸き上げ運転における第3沸き上げ温度Tw3を、第1沸き上げ温度Tw1と第2沸き上げ温度Tw2の間の温度としている。仮に、第3沸き上げ温度Tw3を第1沸き上げ温度Tw1および第2沸き上げ温度Tw2より極端に低くしてしまうと、第3沸き上げ運転の際にタンク10内に残留している温水の温度が第3沸き上げ温度Tw3より高く、タンク10内の温度成層が逆転してしまうおそれがある。逆に、第3沸き上げ温度Tw3を第1沸き上げ温度Tw1および第2沸き上げ温度Tw2より極端に高くしてしまうと、第2沸き上げ運転の際にタンク10内に残留している温水の温度が第2沸き上げ温度Tw2より高く、タンク10内の温度成層が逆転してしまうおそれがある。上記のように、第3沸き上げ温度Tw3を第1沸き上げ温度Tw1と第2沸き上げ温度Tw2の間の温度とすることで、第3沸き上げ運転や第2沸き上げ運転の際にタンク10内の温度成層が逆転してしまうことを防止することができる。 Further, according to the above configuration, the third boiling temperature Tw3 in the third boiling operation performed between the first boiling operation and the second boiling operation is set to the first boiling temperature Tw1 and the second boiling temperature Tw3. The temperature is between the temperatures Tw2. If the third boiling temperature Tw3 is made extremely lower than the first boiling temperature Tw1 and the second boiling temperature Tw2, the temperature of the hot water remaining in the tank 10 during the third boiling operation Is higher than the third boiling temperature Tw3, and the temperature stratification in the tank 10 may be reversed. On the contrary, if the third boiling temperature Tw3 is made extremely higher than the first boiling temperature Tw1 and the second boiling temperature Tw2, the hot water remaining in the tank 10 during the second boiling operation is increased. Since the temperature is higher than the second boiling temperature Tw2, the temperature stratification in the tank 10 may be reversed. As described above, by setting the third boiling temperature Tw3 to a temperature between the first boiling temperature Tw1 and the second boiling temperature Tw2, the tank 10 can be operated during the third boiling operation and the second boiling operation. It is possible to prevent the temperature stratification therein from being reversed.

以上、一実施例について説明したが、具体的な態様は上記実施例に限定されるものではない。 Although one embodiment has been described above, the specific mode is not limited to the above embodiment.

上記の実施例では、翌日(8月2日)の第1沸き上げ温度Tw1を算出するために前日(8月1日)の第1貯湯温度Tb1を用いていたが、この構成に限定されるものではない。他の実施例では、翌日(8月2日)の第1沸き上げ温度Tw1を算出するために、前日(8月1日)までの数日間にわたる第1貯湯温度Tb1の平均値を用いてもよい。 In the above embodiment, the first hot water storage temperature Tb1 of the previous day (August 1st) was used to calculate the first boiling temperature Tw1 of the next day (August 2nd), but the configuration is limited to this. Not a thing. In another example, in order to calculate the first boiling temperature Tw1 of the next day (August 2), the average value of the first hot water storage temperature Tb1 over several days until the previous day (August 1) may be used. Good.

また、上記の実施例では、翌日(8月2日)の第2沸き上げ温度Tw2を算出するために前日(8月1日)の第2貯湯温度Tb2を用いていたが、この構成に限定されるものではない。他の実施例では、翌日(8月2日)の第2沸き上げ温度Tw2を算出するために、前日(8月1日)までの数日間にわたる第2貯湯温度Tb2の平均値を用いてもよい。 Further, in the above embodiment, the second hot water storage temperature Tb2 of the previous day (August 1st) was used to calculate the second boiling temperature Tw2 of the next day (August 2nd), but the configuration is limited to this configuration. It is not something that will be done. In another example, in order to calculate the second boiling temperature Tw2 of the next day (August 2), the average value of the second hot water storage temperature Tb2 over several days until the previous day (August 1) may be used. Good.

また、上記の実施例では、第1沸き上げ運転が終了した後に給湯運転が開始される構成であったが、この構成に限定されるものではない。他の実施例では、第1沸き上げ運転が終了する前に給湯運転が開始されてもよい。したがって、タンク10内の温水の貯湯量が100L以上になる前に、タンク10内の温水が温水利用箇所に供給されてもよい。 Further, in the above embodiment, the hot water supply operation is started after the first boiling operation is finished, but the present invention is not limited to this configuration. In another embodiment, the hot water supply operation may be started before the end of the first boiling operation. Therefore, the hot water in the tank 10 may be supplied to the hot water use location before the amount of hot water stored in the tank 10 reaches 100 L or more.

また、上記の実施例では、第1沸き上げ運転と第2沸き上げ運転の間に第3沸き上げ運転が1回実行される構成であったが、この構成に限定されるものではない。他の実施例では、複数回の第3沸き上げ運転が実行されてもよい。 Further, in the above-described embodiment, the third boiling operation is executed once between the first boiling operation and the second boiling operation, but the configuration is not limited to this. In another embodiment, the third boiling operation may be performed multiple times.

また、上記の実施例では、S15でタンク10内の温水の貯湯量が12L以下である場合に、S16で第1貯湯温度Tb1を測定していたが、この構成に限定されるものではない。他の実施例では、S15でタンク10内の温水の貯湯量が30L以下あるいは50L以下である場合に、S16で第1貯湯温度Tb1を測定してもよい。すなわち、第1貯湯温度Tb1を測定する際の基準となる所定の貯湯量は、特に限定されるものではない。 Further, in the above embodiment, the first hot water storage temperature Tb1 is measured in S16 when the hot water storage amount in the tank 10 is 12 L or less in S15, but the present invention is not limited to this configuration. In another embodiment, when the amount of hot water stored in the tank 10 is 30 L or less or 50 L or less in S15, the first hot water storage temperature Tb1 may be measured in S16. That is, the predetermined amount of stored hot water serving as a reference when measuring the first hot water storage temperature Tb1 is not particularly limited.

第1貯湯温度Tb1を測定する際の基準となる所定の貯湯量は、過去の貯湯量に基づいて設定されてもよい。例えば、8月1日の前日の7月31日の貯湯量のうち、湯切れ状態を除く最小貯湯量を所定の貯湯量とすることができる。すなわち、過去のある日においてタンク10内の温水の貯湯量が最も少なくなったときの貯湯量を所定の貯湯量とすることができる。また、過去の数日間にわたって湯切れ状態を除く最小貯湯量を測定して、それらの平均値を所定の貯湯量とすることもできる。また、最小貯湯量付近の貯湯量を所定の貯湯量とすることもできる。第1貯湯温度Tb1を測定する際の基準となる所定の貯湯量をなるべく少ない値にすることによって、タンク10内の温水を使い切る直前の温水の温度を測定することができる。 The predetermined hot water storage amount serving as a reference when measuring the first hot water storage temperature Tb1 may be set based on the past hot water storage amount. For example, among the hot water storage amounts on July 31, the day before August 1, the minimum hot water storage amount excluding the hot water outage condition can be set as the predetermined hot water storage amount. That is, the hot water storage amount when the hot water storage amount in the tank 10 becomes the smallest on a certain day in the past can be set as the predetermined hot water storage amount. It is also possible to measure the minimum amount of hot water storage excluding the hot water outage over the past several days, and set the average value thereof as the predetermined amount of hot water storage. Further, the hot water storage amount near the minimum hot water storage amount can be set as the predetermined hot water storage amount. The temperature of the hot water immediately before the hot water in the tank 10 is used up can be measured by setting the predetermined hot water storage amount, which is the reference when measuring the first hot water storage temperature Tb1, to a value as small as possible.

また、タンク10内の温水の貯湯量を求める方法は、特に限定されるものではない。他の実施例では、タンク10に取り付けられている複数のサーミスタの測定温度に基づいて、タンク10内の温水の貯湯量を求めることができる。具体的には、図13に示すように、まずS91でコントローラ100が、タンク10の6L、12L、30L、50Lの位置に取り付けられているサーミスタ12、14、16、18の測定温度を取得する。 Further, the method for obtaining the amount of hot water stored in the tank 10 is not particularly limited. In another embodiment, the amount of hot water stored in the tank 10 can be calculated based on the measured temperatures of the thermistors attached to the tank 10. Specifically, as shown in FIG. 13, first, in S91, the controller 100 acquires the measured temperatures of the thermistors 12, 14, 16, and 18 attached to the positions of 6L, 12L, 30L, and 50L of the tank 10. ..

続いてS92では、コントローラ100が、各サーミスタ12、14、16、18の測定温度に基づいて、直線近似によって、タンク10内の温水の貯湯量を算出する。例えば、タンク10の6Lの位置に取り付けられているサーミスタ12の測定温度が39℃であり、タンク10の12Lの位置に取り付けられているサーミスタ14の測定温度が42℃である場合は、直線近似によって、タンク10内の40℃以上の温水の貯湯量が8Lであると算出することができる。 Subsequently, in S92, the controller 100 calculates the stored hot water amount in the tank 10 by linear approximation based on the measured temperatures of the thermistors 12, 14, 16, and 18. For example, when the measured temperature of the thermistor 12 attached to the 6L position of the tank 10 is 39°C and the measured temperature of the thermistor 14 attached to the 12L position of the tank 10 is 42°C, a linear approximation is performed. Thus, it is possible to calculate that the amount of hot water stored in the tank 10 at 40° C. or higher is 8 L.

以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Specific examples of the present invention have been described above in detail, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. The technical elements described in the present specification or the drawings exert technical utility alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. Further, the technique illustrated in the present specification or the drawings can simultaneously achieve a plurality of objects, and achieving the one object among them has technical utility.

2 :給湯システム
10 :タンク
11 :サーミスタ
12 :サーミスタ
14 :サーミスタ
16 :サーミスタ
18 :サーミスタ
20 :タンク水循環路
22 :循環ポンプ
24 :サーミスタ
30 :給水路
30a :第1導入路
30b :第2導入路
31 :水道水供給源
32 :サーミスタ
40 :供給路
42 :混合弁
43 :サーミスタ
44 :サーミスタ
50 :ヒートポンプ
60 :バーナ加熱装置
100 :コントローラ
102 :メモリ
104 :リモコン
2: Hot water supply system 10: Tank 11: Thermistor 12: Thermistor 14: Thermistor 16: Thermistor 18: Thermistor 20: Tank water circulation passage 22: Circulation pump 24: Thermistor 30: Water supply passage 30a: First introduction passage 30b: Second introduction passage 31: Tap water supply source 32: Thermistor 40: Supply path 42: Mixing valve 43: Thermistor 44: Thermistor 50: Heat pump 60: Burner heating device 100: Controller 102: Memory 104: Remote control

Claims (7)

外気から吸熱して水を沸き上げるヒートポンプと、
前記ヒートポンプによって沸き上げられた温水を貯湯するタンクと、
前記タンクに貯湯されている温水の温度を測定する温度センサと、
前記タンク内の温水を温水利用箇所に供給する供給路と、
前記温水利用箇所における給湯設定温度を設定可能な設定手段と、
制御手段を備えており、
前記制御手段は、所定の第1沸き上げ時刻に前記タンク内の水を前記ヒートポンプによって第1沸き上げ温度に沸き上げる第1沸き上げ運転を実行可能であり、第1沸き上げ運転を実行した後に前記タンク内の温水の貯湯量が所定の貯湯量より少なくなったときの前記タンク内の温水の温度である第1貯湯温度を前記温度センサで測定し、第1貯湯温度が給湯設定温度より高い第1基準温度より高い場合は、翌日の第1沸き上げ温度を下げて、第1貯湯温度が給湯設定温度より高く第1基準温度より低い第2基準温度より低い場合は、翌日の第1沸き上げ温度を上げて、翌日の第1沸き上げ運転を実行する、給湯システム。
A heat pump that absorbs heat from the outside air to boil water,
A tank for storing hot water boiled by the heat pump,
A temperature sensor for measuring the temperature of hot water stored in the tank,
A supply path for supplying the hot water in the tank to the hot water utilization point,
Setting means capable of setting the hot water supply set temperature at the hot water use point,
Equipped with control means,
The control means can execute a first boiling operation of boiling the water in the tank to a first boiling temperature by the heat pump at a predetermined first boiling time, and after performing the first boiling operation. The first hot water storage temperature, which is the temperature of the hot water in the tank when the hot water storage amount in the tank becomes less than a predetermined hot water storage amount, is measured by the temperature sensor, and the first hot water storage temperature is higher than the hot water supply set temperature. When the temperature is higher than the first reference temperature, the first boiling temperature on the next day is lowered, and when the first hot water storage temperature is higher than the hot water supply set temperature and lower than the first reference temperature, the first boiling temperature on the next day A hot water supply system that raises the raising temperature and executes the first boiling operation on the next day.
第1貯湯温度が給湯設定温度より高い第1基準温度より高い場合は、第1貯湯温度と第1基準温度の差分の絶対値を第1沸き上げ温度から減算した温度を翌日の第1沸き上げ温度とし、第1貯湯温度が給湯設定温度より高く第1基準温度より低い第2基準温度より低い場合は、第1貯湯温度と第2基準温度の差分の絶対値を第1沸き上げ温度に加算した温度を翌日の第1沸き上げ温度として、翌日の第1沸き上げ運転を実行する、請求項1に記載の給湯システム。 When the first hot water storage temperature is higher than the hot water supply set temperature and higher than the first reference temperature, the temperature obtained by subtracting the absolute value of the difference between the first hot water storage temperature and the first reference temperature from the first boiling temperature is the first boiling temperature of the next day. If the first hot water storage temperature is higher than the hot water supply set temperature and lower than the second reference temperature lower than the first reference temperature, the absolute value of the difference between the first hot water storage temperature and the second reference temperature is added to the first boiling temperature. The hot water supply system according to claim 1, wherein the first boiling operation of the next day is executed with the temperature thus set as the first boiling temperature of the next day. 外気から吸熱して水を沸き上げるヒートポンプと、
前記ヒートポンプによって沸き上げられた温水を貯湯するタンクと、
前記タンクに貯湯されている温水の温度を測定する温度センサと、
前記タンク内の温水を温水利用箇所に供給する供給路と、
前記温水利用箇所における給湯設定温度を設定可能な設定手段と、
制御手段を備えており、
前記制御手段は、1日の最後の沸き上げ時刻である第2沸き上げ時刻に前記タンク内の水を前記ヒートポンプによって第2沸き上げ温度に沸き上げる第2沸き上げ運転を実行可能であり、第2沸き上げ運転を実行した後に1日の最後に前記タンク内の温水が前記温水利用箇所に供給されたときの前記タンク内の温水の温度である第2貯湯温度を前記温度センサで測定し、第2貯湯温度が給湯設定温度より高い第3基準温度より高い場合は、翌日の第2沸き上げ温度を下げて、第2貯湯温度が給湯設定温度より高く第3基準温度より低い第4基準温度より低い場合は、翌日の第2沸き上げ温度を上げて、翌日の第2沸き上げ運転を実行する、給湯システム。
A heat pump that absorbs heat from the outside air to boil water,
A tank for storing hot water boiled by the heat pump,
A temperature sensor for measuring the temperature of hot water stored in the tank,
A supply path for supplying the hot water in the tank to the hot water utilization point,
Setting means capable of setting the hot water supply set temperature at the hot water use point,
Equipped with control means,
The control means is capable of executing a second boiling operation in which the water in the tank is boiled to a second boiling temperature by the heat pump at a second boiling time which is the last boiling time of the day. The second hot water temperature, which is the temperature of the hot water in the tank when the hot water in the tank is supplied to the hot water utilization point at the end of the day after performing the two boiling operation, is measured by the temperature sensor, If the second hot water storage temperature is higher than the third reference temperature higher than the hot water supply set temperature, the second boiling temperature on the next day is lowered to make the second hot water storage temperature higher than the hot water supply set temperature and lower than the third reference temperature. If it is lower, the hot water supply system that raises the second boiling temperature of the next day and executes the second boiling operation of the next day.
第2貯湯温度が給湯設定温度より高い第3基準温度より高い場合は、第2貯湯温度と第3基準温度の差分の絶対値を第2沸き上げ温度から減算した温度を翌日の第2沸き上げ温度とし、第2貯湯温度が給湯設定温度より高く第3基準温度より低い第4基準温度より低い場合は、第2貯湯温度と第4基準温度の差分の絶対値を第2沸き上げ温度に加算した温度を翌日の第2沸き上げ温度として、翌日の第2沸き上げ運転を実行する、請求項3に記載の給湯システム。 When the second hot water storage temperature is higher than the hot water supply set temperature and higher than the third reference temperature, the temperature obtained by subtracting the absolute value of the difference between the second hot water storage temperature and the third reference temperature from the second boiling temperature is the second boiling of the next day. When the second hot water storage temperature is higher than the hot water supply set temperature and lower than the fourth reference temperature lower than the third reference temperature, the absolute value of the difference between the second hot water storage temperature and the fourth reference temperature is added to the second boiling temperature. The hot water supply system according to claim 3, wherein the second boiling temperature is set as the second boiling temperature of the next day, and the second boiling operation of the next day is executed. 外気から吸熱して水を沸き上げるヒートポンプと、
前記ヒートポンプによって沸き上げられた温水を貯湯するタンクと、
前記タンクに貯湯されている温水の温度を測定する温度センサと、
前記タンク内の温水を温水利用箇所に供給する供給路と、
前記温水利用箇所における給湯設定温度を設定可能な設定手段と、
制御手段を備えており、
前記制御手段は、所定の第1沸き上げ時刻に前記タンク内の水を前記ヒートポンプによって第1沸き上げ温度に沸き上げる第1沸き上げ運転と、1日の最後の沸き上げ時刻である第2沸き上げ時刻に前記タンク内の水を前記ヒートポンプによって第2沸き上げ温度に沸き上げる第2沸き上げ運転と、第1沸き上げ運転と第2沸き上げ運転の間に前記タンク内の水を前記ヒートポンプによって第3沸き上げ温度に沸き上げる第3沸き上げ運転と、を実行可能であり、
第1沸き上げ運転を実行した後に前記タンク内の温水の貯湯量が所定の貯湯量より少なくなったときの前記タンク内の温水の温度である第1貯湯温度を前記温度センサで測定し、第1貯湯温度が給湯設定温度より高い第1基準温度より高い場合は、翌日の第1沸き上げ温度を下げて、第1貯湯温度が給湯設定温度より高く第1基準温度より低い第2基準温度より低い場合は、翌日の第1沸き上げ温度を上げて、翌日の第1沸き上げ運転を実行し、
第2沸き上げ運転を実行した後に1日の最後に前記タンク内の温水が前記温水利用箇所に供給されたときの前記タンク内の温水の温度である第2貯湯温度を前記温度センサで測定し、第2貯湯温度が給湯設定温度より高い第3基準温度より高い場合は、翌日の第2沸き上げ温度を下げて、第2貯湯温度が給湯設定温度より高く第3基準温度より低い第4基準温度より低い場合は、翌日の第2沸き上げ温度を上げて、翌日の第2沸き上げ運転を実行し、
翌日の第1沸き上げ運転と翌日の第2沸き上げ運転の間に、翌日の第1沸き上げ温度と翌日の第2沸き上げ温度の間の温度を翌日の第3沸き上げ温度として、翌日の第3沸き上げ運転を実行する、給湯システム。
A heat pump that absorbs heat from the outside air to boil water,
A tank for storing hot water boiled by the heat pump,
A temperature sensor for measuring the temperature of hot water stored in the tank,
A supply path for supplying the hot water in the tank to the hot water utilization point,
Setting means capable of setting the hot water supply set temperature at the hot water use point,
Equipped with control means,
The control means comprises a first boiling operation in which the water in the tank is boiled to a first boiling temperature by the heat pump at a predetermined first boiling time, and a second boiling time which is the last boiling time of the day. The water in the tank is heated by the heat pump between the second boiling operation and the second boiling operation in which the water in the tank is heated to the second boiling temperature by the heat pump at the raising time. A third boiling operation of boiling to a third boiling temperature, and
The first hot water storage temperature, which is the temperature of the hot water in the tank when the hot water storage amount in the tank becomes less than a predetermined hot water storage amount after performing the first boiling operation, is measured by the temperature sensor, and 1 If the hot water storage temperature is higher than the first reference temperature which is higher than the hot water supply set temperature, the first boiling temperature on the next day is lowered so that the first hot water storage temperature is higher than the hot water supply set temperature and lower than the second reference temperature which is lower than the first reference temperature. If the temperature is low, raise the first boiling temperature of the next day and execute the first boiling operation of the next day,
The second hot water storage temperature, which is the temperature of the hot water in the tank when the hot water in the tank was supplied to the hot water utilization point at the end of the day after the second boiling operation was measured by the temperature sensor. If the second hot water storage temperature is higher than the third reference temperature which is higher than the hot water supply set temperature, the second boiling temperature on the next day is lowered to make the second hot water storage temperature higher than the hot water supply set temperature and lower than the third reference temperature. If the temperature is lower than the temperature, raise the second boiling temperature of the next day and execute the second boiling operation of the next day,
Between the first boiling operation of the next day and the second boiling operation of the next day, the temperature between the first boiling temperature of the next day and the second boiling temperature of the next day is set as the third boiling temperature of the next day and is set as the third boiling temperature of the next day. A hot water supply system that executes the third boiling operation.
第1貯湯温度が給湯設定温度より高い第1基準温度より高い場合は、第1貯湯温度と第1基準温度の差分の絶対値を第1沸き上げ温度から減算した温度を翌日の第1沸き上げ温度とし、第1貯湯温度が給湯設定温度より高く第1基準温度より低い第2基準温度より低い場合は、第1貯湯温度と第2基準温度の差分の絶対値を第1沸き上げ温度に加算した温度を翌日の第1沸き上げ温度として、翌日の第1沸き上げ運転を実行し、
第2貯湯温度が給湯設定温度より高い第3基準温度より高い場合は、第2貯湯温度と第3基準温度の差分の絶対値を第2沸き上げ温度から減算した温度を翌日の第2沸き上げ温度とし、第2貯湯温度が給湯設定温度より高く第3基準温度より低い第4基準温度より低い場合は、第2貯湯温度と第4基準温度の差分の絶対値を第2沸き上げ温度に加算した温度を翌日の第2沸き上げ温度として、翌日の第2沸き上げ運転を実行する、請求項5に記載の給湯システム。
When the first hot water storage temperature is higher than the hot water supply set temperature and higher than the first reference temperature, the temperature obtained by subtracting the absolute value of the difference between the first hot water storage temperature and the first reference temperature from the first boiling temperature is the first boiling temperature of the next day. If the first hot water storage temperature is higher than the hot water supply set temperature and lower than the second reference temperature lower than the first reference temperature, the absolute value of the difference between the first hot water storage temperature and the second reference temperature is added to the first boiling temperature. As the first boiling temperature of the next day, the first boiling operation of the next day is executed,
When the second hot water storage temperature is higher than the hot water supply set temperature and higher than the third reference temperature, the temperature obtained by subtracting the absolute value of the difference between the second hot water storage temperature and the third reference temperature from the second boiling temperature is the second boiling of the next day. When the second hot water storage temperature is higher than the hot water supply set temperature and lower than the fourth reference temperature lower than the third reference temperature, the absolute value of the difference between the second hot water storage temperature and the fourth reference temperature is added to the second boiling temperature. The hot water supply system according to claim 5, wherein the second boiling temperature of the next day is used as the second boiling temperature of the next day, and the second boiling operation of the next day is executed.
前記タンクから前記温水利用箇所に供給される温水を燃料の燃焼によって加熱する補助加熱器を更に備えている、請求項1から6のいずれか一項に記載の給湯システム。
The hot water supply system according to any one of claims 1 to 6, further comprising an auxiliary heater that heats hot water supplied from the tank to the hot water use location by burning fuel.
JP2016166220A 2016-08-26 2016-08-26 Hot water supply system Active JP6741524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016166220A JP6741524B2 (en) 2016-08-26 2016-08-26 Hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016166220A JP6741524B2 (en) 2016-08-26 2016-08-26 Hot water supply system

Publications (2)

Publication Number Publication Date
JP2018031574A JP2018031574A (en) 2018-03-01
JP6741524B2 true JP6741524B2 (en) 2020-08-19

Family

ID=61304114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016166220A Active JP6741524B2 (en) 2016-08-26 2016-08-26 Hot water supply system

Country Status (1)

Country Link
JP (1) JP6741524B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3812461B2 (en) * 2002-03-01 2006-08-23 松下電器産業株式会社 Hot water storage water heater
JP5343398B2 (en) * 2008-05-22 2013-11-13 パナソニック株式会社 Water heater
JP5147811B2 (en) * 2009-10-22 2013-02-20 リンナイ株式会社 Hot water system
JP2012063101A (en) * 2010-09-17 2012-03-29 Hitachi Appliances Inc Liquid heating supply device
JP5899037B2 (en) * 2012-04-20 2016-04-06 リンナイ株式会社 Hot water system
JP2015038397A (en) * 2013-03-25 2015-02-26 リンナイ株式会社 Hot water supply system

Also Published As

Publication number Publication date
JP2018031574A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP5899037B2 (en) Hot water system
KR101827199B1 (en) Heating and hot water supply system
KR101572439B1 (en) Hot-water supply system
JP6368493B2 (en) Hot water system
JP2020067196A (en) Hot water system
JP5764533B2 (en) Hot water heating system
JP2015055389A (en) Hot water system and control method thereof
JP6741524B2 (en) Hot water supply system
JP6533717B2 (en) Hot water supply system
JP6399113B2 (en) Heat supply system
JP5215039B2 (en) Control method for hot water heater
JP2017223421A (en) Heat medium heating device
JP2012237515A (en) Storage heat pump water heater
JP2019178841A (en) Boiler device
JP5254660B2 (en) Control method for hot water heater
JP6751619B2 (en) Hot water supply system
JP2015038397A (en) Hot water supply system
JP6423651B2 (en) Water heater
JP2009162415A (en) Hot water storage type water heater
JP6141176B2 (en) Heat pump water heater
JP5498130B2 (en) Boiling set temperature determination method of heat pump hot water storage type hot water supply and heating system
JP6019861B2 (en) Water heater
JP2010025494A (en) Heat pump type hot water supply device
JP5986455B2 (en) Hot water storage water heater
JP5298813B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R150 Certificate of patent or registration of utility model

Ref document number: 6741524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250