JP6740424B1 - Preparation method of high-purity lithium salt by mixing in a predetermined ratio and its application - Google Patents

Preparation method of high-purity lithium salt by mixing in a predetermined ratio and its application Download PDF

Info

Publication number
JP6740424B1
JP6740424B1 JP2019091092A JP2019091092A JP6740424B1 JP 6740424 B1 JP6740424 B1 JP 6740424B1 JP 2019091092 A JP2019091092 A JP 2019091092A JP 2019091092 A JP2019091092 A JP 2019091092A JP 6740424 B1 JP6740424 B1 JP 6740424B1
Authority
JP
Japan
Prior art keywords
lithium
lithium salt
mixed
oxalate
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019091092A
Other languages
Japanese (ja)
Other versions
JP2020147558A (en
Inventor
杜建委
楊氷
鐘子坊
周▲トゥン▼
曹青青
呉杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanshan Advanced Materials Quzhou Co ltd
Original Assignee
Shanshan Advanced Materials Quzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanshan Advanced Materials Quzhou Co ltd filed Critical Shanshan Advanced Materials Quzhou Co ltd
Application granted granted Critical
Publication of JP6740424B1 publication Critical patent/JP6740424B1/en
Publication of JP2020147558A publication Critical patent/JP2020147558A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/06Boron halogen compounds
    • C01B35/063Tetrafluoboric acid; Salts thereof
    • C01B35/066Alkali metal tetrafluoborates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/06Oxalic acid
    • C07C55/07Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • B01D2323/345UV-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】高純度リチウム塩の製造方法及び前記リチウム塩を含有するリチウムイオン電池の提供。【解決手段】工業用シュウ酸リチウムを精製するステップと、シュウ酸リチウムと三フッ化ホウ素・エチルエーテルを反応させて、リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムの混合反応液を得て、次に精製補助ろ過膜で精製する合成反応のステップと、反応液を濃縮、結晶化するステップと、混合リチウム塩に対して精製及び乾燥を行うステップとを含む。本発明の高純度リチウム塩は、リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムをモル比1:1の所定比率で含む混合リチウム塩であり、リチウムイオン電池用非水電解液に適用できる。【選択図】図1PROBLEM TO BE SOLVED: To provide a method for producing a high purity lithium salt and a lithium ion battery containing the lithium salt. SOLUTION: A step of purifying industrial lithium oxalate and a step of reacting lithium oxalate with boron trifluoride/ethyl ether to obtain a mixed reaction solution of lithium difluoro(oxalato)borate and lithium tetrafluoroborate are obtained. Then, a step of a synthetic reaction of purifying with a purification auxiliary filtration membrane, a step of concentrating and crystallizing the reaction solution, and a step of purifying and drying the mixed lithium salt are included. The high-purity lithium salt of the present invention is a mixed lithium salt containing lithium difluoro(oxalato)borate and lithium tetrafluoroborate at a predetermined molar ratio of 1:1 and can be applied to a non-aqueous electrolytic solution for a lithium ion battery. [Selection diagram] Figure 1

Description

本発明は、リチウムイオン電池製造技術の分野に関し、具体的には、所定比率混合による高純度リチウム塩の調製方法及びその応用に関する。 TECHNICAL FIELD The present invention relates to the field of lithium-ion battery manufacturing technology, and more specifically, to a method for preparing a high-purity lithium salt by mixing in a predetermined ratio and its application.

リチウム電池電解液は、電池においてイオンを輸送する担体である。通常、リチウム塩と有機溶媒からなる。電解液は、リチウム電池の正極と負極の間でイオンを伝導する役割を果たし、リチウムイオン電池に高電圧、高比エネルギーなどの利点を付与する。電解液は、通常、高純度有機溶媒、電解質リチウム塩、必要な添加剤などの原料を用いて、一定の条件で、所定比率で調製するものである。従来、最も一般的な電解質リチウム塩は六フッ化リン酸リチウム(LiPF)であり、電解液の製造過程に、六フッ化リン酸リチウムが電解液のコストの50%−60%を占め、主にリチウムイオンパワーバッテリー、リチウムイオンエネルギー貯蔵電池に用いられ、サイクル効率、熱安定性に優れて、伝導率が高いという利点を有する。 The lithium battery electrolyte is a carrier that transports ions in the battery. It usually consists of a lithium salt and an organic solvent. The electrolytic solution plays a role of conducting ions between the positive electrode and the negative electrode of the lithium battery, and imparts advantages such as high voltage and high specific energy to the lithium ion battery. The electrolytic solution is usually prepared by using a raw material such as a high-purity organic solvent, an electrolyte lithium salt, and necessary additives under a certain condition at a predetermined ratio. Conventionally, the most common electrolyte lithium salt is lithium hexafluorophosphate (LiPF 6 ), and lithium hexafluorophosphate occupies 50%-60% of the cost of the electrolyte in the process of manufacturing the electrolyte. It is mainly used in lithium-ion power batteries and lithium-ion energy storage batteries, and has the advantages of excellent cycle efficiency, thermal stability, and high conductivity.

一方、電解質リチウム塩としての六フッ化リン酸リチウムは、耐高温性、耐加水分解性が悪いという欠点があり、発生するフッ化水素が電極材料、SEI膜などの電池部材を破壊して、リチウム電池容量の低下や使用寿命の短縮の原因となる。様々なリチウム塩に備える異なる物理化学的性質を活用して、異なる種類のリチウム塩を配合することによって、各リチウム塩の優位性を組み合わせて、リチウム電池の特性を効果的に向上させることができる。 On the other hand, lithium hexafluorophosphate as an electrolyte lithium salt has the drawback of being poor in high temperature resistance and hydrolysis resistance, and hydrogen fluoride generated destroys battery materials such as electrode materials and SEI films, This may cause a reduction in the lithium battery capacity and a shortened service life. By taking advantage of the different physicochemical properties of various lithium salts, and combining different types of lithium salts, the advantages of each lithium salt can be combined to effectively improve the characteristics of lithium batteries. ..

六フッ化リン酸リチウムに比べて、テトラフルオロホウ酸リチウム(LiBF)はより広い動作温度範囲、より強い耐加水分解性を有する一方、イオン移動度が低く、単独での成膜能力が悪いという欠点がある。リチウムジフルオロ(オキサラト)ボレート(LiODFB)は新規リチウム塩であり、優れた成膜性能を有し、熱安定性、高低温性能、電気化学的安定性などのいずれも優れている。 Compared with lithium hexafluorophosphate, lithium tetrafluoroborate (LiBF 4 ) has a wider operating temperature range and stronger hydrolysis resistance, but has low ion mobility and poor film-forming ability by itself. There is a drawback that. Lithium difluoro(oxalato)borate (LiODFB) is a novel lithium salt, has excellent film forming performance, and has excellent thermal stability, high-low temperature performance, electrochemical stability, and the like.

CN107698611Aにおいて、電解質リチウム塩リチウムであるジフルオロ(オキサラト)ボレートの合成方法が開示されており、シラン化合物とシュウ酸を反応させて、シランシュウ酸の縮合物を得るステップ1)と、テトラフルオロホウ酸リチウムとシランシュウ酸の縮合物を溶媒において反応させて、粗製品を得るステップ2)と、粗製品を再結晶させて、リチウムジフルオロ(オキサラト)ボレートを得るステップ3)とを含む。 CN107698611A discloses a method for synthesizing difluoro(oxalato)borate, which is an electrolyte lithium salt lithium. Step 1) of reacting a silane compound with oxalic acid to obtain a condensate of silane oxalic acid, and lithium tetrafluoroborate. And a silane oxalic acid condensate are reacted in a solvent to obtain a crude product 2), and the crude product is recrystallized to obtain lithium difluoro(oxalato)borate 3).

CN101648963Aにおいて、性能に優れたリチウムジフルオロ(オキサラト)ボレート及びテトラフルオロホウ酸リチウムを同時に製造する合成プロセスが開示されており、フッ素含有化合物、ホウ素含有化合物、リチウム含有化合物及びシュウ酸根を含む化合物を、0〜100℃、0.1〜1MPaの反応圧力で、反応媒体において反応させ、リチウム元素、フッ素元素、ホウ素元素及びシュウ酸根イオンのモル比を2〜3:5〜6:2:1とし、リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムを含有する反応液を生成するステップ(1)と、反応液におけるリチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムを予備分離し、次にリチウムジフルオロ(オキサラト)ボレート又はテトラフルオロホウ酸リチウムを抽出できる有機溶媒を用いて、さらに抽出分離を行うステップ(2)と、それぞれ再結晶させて、真空乾燥させて、電池用のリチウムジフルオロ(オキサラト)ボレート及びテトラフルオロホウ酸リチウムを得るステップ(3)とを含む。 In CN101684893A, a synthetic process for simultaneously producing lithium difluoro(oxalato)borate and lithium tetrafluoroborate having excellent performance is disclosed. The reaction is carried out in a reaction medium at a reaction pressure of 0 to 100° C. and 0.1 to 1 MPa, and the molar ratio of lithium element, fluorine element, boron element and oxalate root ion is set to 2 to 3:5 to 6:2:1. Step (1) of producing a reaction liquid containing lithium difluoro(oxalato)borate and lithium tetrafluoroborate, preliminarily separating lithium difluoro(oxalato)borate and lithium tetrafluoroborate in the reaction liquid, and then lithium difluoroborate Lithium difluoro(oxalato)borate for a battery, which is subjected to extraction and separation using an organic solvent capable of extracting (oxalato)borate or lithium tetrafluoroborate, and recrystallization and vacuum drying. And a step (3) of obtaining lithium tetrafluoroborate.

従来のプロセスでは、テトラフルオロホウ酸リチウムはリチウムジフルオロ(オキサラト)ボレートと類似した構造を有し、且つ両方の溶液は高粘度を有するため、両方を分離することが実施しにくく、装置や技術への要求が高く、生産される両方の混合塩の純度が低く、これら原因によって混合塩電解液のコストが高まる。このため、従来技術には改良する余裕がある。 In the conventional process, lithium tetrafluoroborate has a structure similar to that of lithium difluoro(oxalato)borate, and both solutions have high viscosities, making it difficult to separate the two, making it difficult for equipment and technology. Is high and the purity of both mixed salts produced is low, which increases the cost of the mixed salt electrolyte. For this reason, the prior art has room for improvement.

本発明の目的は、工業用シュウ酸リチウムを原料として、精製、合成、濃縮などの過程を行い、製品としてリチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムをモル比1:1の所定比率で混合したリチウム塩を得て、リチウムイオン電池の製造に利用でき、従来技術における再結晶の繁雑な過程及び結晶化後の固液分離(ろ過)操作を省略し、且つ製品の収率及び純度向上、プロセスフローの簡素化、生産コスト低下などが可能である、所定比率混合による高純度リチウム塩の調製方法及びその応用を提供することである。 The object of the present invention is to carry out processes such as purification, synthesis, and concentration using industrial lithium oxalate as a raw material, and to produce lithium difluoro(oxalato)borate and lithium tetrafluoroborate in a predetermined molar ratio of 1:1. The mixed lithium salt can be obtained and used for the production of lithium ion batteries, the complicated process of recrystallization and the solid-liquid separation (filtration) operation after crystallization in the prior art can be omitted, and the product yield and purity can be improved. It is to provide a method for preparing a high-purity lithium salt by mixing a predetermined ratio, which can simplify the process flow, reduce the production cost, and the like, and its application.

上記目的を達成させるために、本発明は下記技術案を採用する。
所定比率混合による高純度リチウム塩の調製方法であって、
工業用シュウ酸リチウムに純水を加えて、撹拌してシュウ酸リチウム懸濁液を調製し、次に、金属キレート剤水溶液をシュウ酸リチウム懸濁液に加えて、30min撹拌し、吸引ろ過してシュウ酸リチウム固体を得て、次に、超純水でシュウ酸リチウム固体を3〜5回洗浄して吸引ろ過して、最後に、エタノールで洗浄してろ過し、乾燥させて、固体白色粉末として精製シュウ酸リチウムを得る、シュウ酸リチウムを精製するステップ(1)と、
撹拌しながら、シュウ酸リチウムを有機溶媒に加えて、シュウ酸リチウム懸濁液を調製し、調製したシュウ酸リチウム懸濁液が透明になるまで、三フッ化ホウ素・ジエチルエーテルを調製したシュウ酸リチウム懸濁液に滴下して、さらに反応が終了するまで撹拌し、リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムの混合反応液を得て、次に、精製補助ろ過膜で精製する、合成反応ステップ(2)と、
精製後のリチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムの混合反応液を真空濃縮させた後に結晶化させて、混合リチウム塩の結晶化粗製品を得る、反応液の濃縮及び結晶化のステップ(3)と、
リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムの貧溶媒を用いて、結晶化させた粗製品を洗浄した後、上層又は下層の褐色溶液を除去して、さらに貧溶媒を添加し、このように3−4回洗浄して、上層又は下層の溶液を澄明にし、固体を真空乾燥させて、所定比率混合による高純度リチウム塩(リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムのモル比1:1)を得て、洗浄過程において、結晶化固体が粘稠状からフラフわした結晶になり、色が淡褐色から白色になる、混合リチウム塩の精製及び乾燥のステップ(4)とを含む。
In order to achieve the above object, the present invention adopts the following technical solutions.
A method for preparing a high-purity lithium salt by mixing a predetermined ratio,
Pure water is added to industrial lithium oxalate and stirred to prepare a lithium oxalate suspension, and then an aqueous metal chelating agent solution is added to the lithium oxalate suspension, stirred for 30 min, and suction filtered. To obtain a lithium oxalate solid, then wash the lithium oxalate solid with ultrapure water 3 to 5 times and suction filter, and finally, wash with ethanol, filter and dry to obtain a solid white solid. Obtaining purified lithium oxalate as a powder, purifying lithium oxalate (1),
While stirring, lithium oxalate was added to the organic solvent to prepare a lithium oxalate suspension, and boron trifluoride/diethyl ether was prepared until the prepared lithium oxalate suspension became transparent. Add dropwise to a lithium suspension and stir until the reaction is complete to obtain a mixed reaction solution of lithium difluoro(oxalato)borate and lithium tetrafluoroborate, and then purify with a purification auxiliary filtration membrane. Reaction step (2),
A step of concentrating and crystallization of the reaction solution, in which a mixed reaction solution of lithium difluoro(oxalato)borate and lithium tetrafluoroborate after purification is concentrated in vacuum and then crystallized to obtain a crystallized crude product of a mixed lithium salt. (3),
After washing the crystallized crude product with a poor solvent of lithium difluoro(oxalato)borate and lithium tetrafluoroborate, the brown solution in the upper layer or the lower layer is removed, and the poor solvent is further added. The solution of the upper layer or the lower layer is clarified by washing 3 to 4 times, and the solid is dried in a vacuum to obtain a high-purity lithium salt (a molar ratio of lithium difluoro(oxalato)borate and lithium tetrafluoroborate of 1 by mixing in a predetermined ratio). 1), and in the washing process, the crystallized solid becomes a viscous to fluffy crystal, the color changes from light brown to white, and the mixed lithium salt is purified and dried (4) ..

以上の態様によれば、前記シュウ酸リチウムを精製するとき、金属キレート剤がエチレンジアミン四酢酸(EDTA)であり、乾燥温度が120℃である。 According to the above aspect, when purifying the lithium oxalate, the metal chelating agent is ethylenediaminetetraacetic acid (EDTA) and the drying temperature is 120°C.

以上の態様によれば、前記合成反応において、溶媒が炭酸ジメチル、炭酸ジエチル、炭酸メチルエチル、アセトニトリル、テトラヒドロフラン、トルエン、酢酸エチル、エチレングリコールジメチルエーテル、エチルエーテル、ジメチルホルムアミド又はアセトンであり、反応温度が70−90℃であり、反応時間が10−24hである。 According to the above aspect, in the synthesis reaction, the solvent is dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, acetonitrile, tetrahydrofuran, toluene, ethyl acetate, ethylene glycol dimethyl ether, ethyl ether, dimethylformamide or acetone, the reaction temperature is It is 70-90°C, and the reaction time is 10-24h.

以上の態様によれば、前記精製補助ろ過膜の製造過程として、エタノール、ポリエチレングリコールジアクリレート、1,1'−(メチレンビス−4,1−フェニレン)ビス[2−ヒドロキシ−2−メチル−1−アセトン]、トリフルオロメタンスルホン酸ランタン、2−(3−ニトロ−2−ピリジン)ジメチルマロネート、ベンゾフラン−2−トリフルオロホウ酸カリウムを100:100−150:4−10:0.1−0.3:0.1−0.4:0.2−0.5の質量比で反応器に投入して、60−80℃で保温して窒素ガスを導入して、60−150min撹拌し、混合物をガラス板に注いで、次に混合物の上方に石英ガラス板をカバーし、混合物の厚みを100−300μmに制御して、紫外線で30−120s照射し、アセトンで6−24h洗浄して、静置して乾燥させ、精製補助ろ過膜を得る。 According to the above embodiment, ethanol, polyethylene glycol diacrylate, 1,1′-(methylenebis-4,1-phenylene)bis[2-hydroxy-2-methyl-1- Acetone], lanthanum trifluoromethanesulfonate, 2-(3-nitro-2-pyridine)dimethylmalonate, potassium benzofuran-2-trifluoroborate 100:100-150:4-10:0.1-0. The mixture was charged into the reactor at a mass ratio of 3:0.1-0.4:0.2-0.5, kept at 60-80° C., nitrogen gas was introduced, and the mixture was stirred for 60-150 min, and the mixture was added. To a glass plate, then cover the quartz glass plate above the mixture, control the thickness of the mixture to 100-300 μm, irradiate with ultraviolet rays for 30-120 s, wash with acetone for 6-24 h, and leave it still. Place and dry to obtain a purification auxiliary filtration membrane.

以上の態様によれば、前記反応液を濃縮させるときに、真空度g−0.01MPaGであり、温度が60−90℃であり、結晶化させるときに、温度が−20℃である。 According to the above aspect, the degree of vacuum is g-0.01 MPaG and the temperature is 60 to 90° C. when the reaction liquid is concentrated, and the temperature is -20° C. when the reaction liquid is crystallized.

以上の態様によれば、前記混合リチウム塩を精製するときに、貧溶媒が低沸点ハロゲン化アルカン、非極性−弱極性の有機溶媒、又は両方の混合有機溶媒であり、真空乾燥させるときに、真空度が−0.01MPaGであり、温度が80−100℃である。 According to the above aspect, when purifying the mixed lithium salt, the poor solvent is a low-boiling halogenated alkane, a nonpolar-weakly polar organic solvent, or a mixed organic solvent of both, when vacuum drying, The degree of vacuum is −0.01 MPaG and the temperature is 80 to 100° C.

以上の態様によれば、前記低沸点ハロゲン化アルカンが、四塩化炭素、トリクロロメタン、ジクロロメタン、ジクロロエタン又はクロロプロパンであり、前記非極性−弱極性の有機溶媒がシクロヘキサン、n−ヘキサン、ベンゼン、ペンタン又は石油エーテルである。 According to the above aspect, the low-boiling halogenated alkane is carbon tetrachloride, trichloromethane, dichloromethane, dichloroethane or chloropropane, and the nonpolar-weakly polar organic solvent is cyclohexane, n-hexane, benzene, pentane or Petroleum ether.

リチウムイオン電池用非水電解液であって、所定比率混合による高純度リチウム塩0.5質量%−20質量%を含有する。 A non-aqueous electrolyte solution for a lithium ion battery, which contains 0.5% by mass to 20% by mass of a high-purity lithium salt mixed in a predetermined ratio.

リチウムイオン電池であって、所定比率混合による高純度リチウム塩0.5質量%−20質量%を含有するリチウムイオン電池用非水電解液を、乾燥させたニッケル:コバルト:マンガンのモル比が6:2:2の4.2V NCM/グラファイトパウチ電池に注入して、従来のリチウムイオン製造技術(45℃で放置して、高温治具を用いた化成及び二次封口などの工程後)によって製造されてなる。 A lithium-ion battery, wherein a non-aqueous electrolyte for a lithium-ion battery containing 0.5% by mass to 20% by mass of a high-purity lithium salt obtained by mixing in a predetermined ratio is dried, and the molar ratio of nickel:cobalt:manganese is 6%. : Injected into a 2:2 4.2V NCM/graphite pouch battery and manufactured by conventional lithium-ion manufacturing technology (after being left at 45°C, chemical conversion using a high-temperature jig and secondary sealing, etc.) It will be done.

本発明では、工業用シュウ酸リチウムを原料とし、工業的生産コストを削減させるために、シュウ酸リチウムを精製する必要がある。工業用シュウ酸リチウムにおける金属イオンが過量であり、Na、Kなどの可溶性金属イオンはエタノールで洗浄でき、ほかの可溶性金属イオンは後続の洗浄過程において除去できる一方、Ca2+などの不溶性金属イオンは、たとえばEDTAのようなキレート試薬で洗浄して除去する。 In the present invention, industrial lithium oxalate is used as a raw material, and it is necessary to purify lithium oxalate in order to reduce the industrial production cost. The amount of metal ions in industrial lithium oxalate is excessive, soluble metal ions such as Na + and K + can be washed with ethanol, and other soluble metal ions can be removed in the subsequent washing process, while insoluble metal such as Ca 2+. Ions are removed by washing with a chelating reagent such as EDTA.

本発明の有益な効果は以下のとおりである。
1)本発明では、リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムの分離及び精製の工程を減少させるため、生産プロセスを大幅に簡素化させて、コストを削減させる。
2)本発明は、混合リチウム塩の精製方法を提供し、混合リチウム塩の純度及び収率を向上させ、調製された混合リチウム塩をそのままリチウムイオン電池に適用することを可能にするとともに、低コストである。
3)本発明では、1:1の所定比率でリチウム塩を混合することによって、リチウムイオン電池の常温及び高温のサイクル特性を効果的に改善でき、六フッ化リン酸リチウムの代替品として有望であり、さらに、LiODFB又はLiBFを単独で添加することで、各種比率の混合リチウム塩を製造して、各種電解液の処方に適用でき、コストを削減させる。
4)本発明では、工業用シュウ酸リチウムを精製して、混合リチウム塩を調製することにより、電気性能を満たす上に、生産コストをさらに削減させる。
The beneficial effects of the present invention are as follows.
1) In the present invention, since the steps of separating and purifying lithium difluoro(oxalato)borate and lithium tetrafluoroborate are reduced, the production process is greatly simplified and the cost is reduced.
2) The present invention provides a method for purifying a mixed lithium salt, improving the purity and yield of the mixed lithium salt, allowing the prepared mixed lithium salt to be directly applied to a lithium ion battery, The cost.
3) In the present invention, by mixing a lithium salt in a predetermined ratio of 1:1 it is possible to effectively improve the room temperature and high temperature cycle characteristics of a lithium ion battery, and it is promising as a substitute for lithium hexafluorophosphate. Yes, further, by adding LiODFB or LiBF 4 alone, mixed lithium salts with various ratios can be produced and applied to the formulation of various electrolytic solutions, and the cost can be reduced.
4) In the present invention, industrial lithium oxalate is purified to prepare a mixed lithium salt, thereby satisfying electric performance and further reducing production cost.

本発明の実施例1において調製された混合リチウム塩の11B NMRスペクトルである。3 is an 11 B NMR spectrum of the mixed lithium salt prepared in Example 1 of the present invention. 本発明の実施例1において調製された混合リチウム塩の19F NMRスペクトルである。It is a 19 F NMR spectrum of the mixed lithium salt prepared in Example 1 of the present invention. 本発明の実施例1において調製された混合リチウム塩の13C NMRスペクトルである。3 is a 13 C NMR spectrum of the mixed lithium salt prepared in Example 1 of the present invention. 本発明の実施例1において調製された混合リチウム塩を含有する電解液の常温(25℃)サイクル(100サイクル)特性図である。It is a room temperature (25 degreeC) cycle (100 cycles) characteristic figure of the electrolyte solution containing the mixed lithium salt prepared in Example 1 of this invention. 本発明の実施例1において調製された混合リチウム塩を含有する電解液の高温(45℃)でのサイクル(100サイクル)特性図である。It is a cycle (100 cycles) characteristic diagram of the electrolytic solution containing the mixed lithium salt prepared in Example 1 of the present invention at a high temperature (45°C). 本発明の実施例1において製造された精製補助ろ過膜のIRスペクトルである。3 is an IR spectrum of the purification auxiliary filtration membrane produced in Example 1 of the present invention.

以下、図面及び実施例を参照しながら本発明の技術案を説明する。 Hereinafter, a technical solution of the present invention will be described with reference to the drawings and embodiments.

実施例1
図1−図6に示されるように、
本発明は、所定比率混合による高純度リチウム塩の調製方法を提供し、
工業用シュウ酸リチウム150gに適量の超純水を加えて、撹拌してシュウ酸リチウム懸濁液を調製し、エチレンジアミン四酢酸(EDTA)0.4gを秤量して、少量の超純水に溶解し、EDTA水溶液をシュウ酸リチウム懸濁液に加えて、30min撹拌した後、吸引ろ過してシュウ酸リチウム固体を得て、さらにシュウ酸リチウム固体を3回超純水で洗浄して吸引ろ過し、最後に、エタノールで洗浄してろ過し、120℃のオーブンに入れて乾燥させ、固体白色粉末として精製シュウ酸リチウム(96wt%)を得る、シュウ酸リチウムを精製するステップ(1)と、
三つ口反応フラスコに炭酸ジメチル(DMC)500mLを加えて、激しく撹拌しながらシュウ酸リチウム102gを加え、温度を85℃に上げて1h撹拌し、シュウ酸リチウム懸濁液を調製し、三フッ化ホウ素・ジエチルエーテル284gを秤量して、撹拌しながら、2hかけてシュウ酸リチウム懸濁液に徐々に滴下し、滴下が終了した後、懸濁液が澄明になると、さらに撹拌して22h反応させ、リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムの混合反応液を得て、次に、精製補助ろ過膜で精製する、合成反応のステップ(2)と、
精製後のリチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムの混合反応液を、真空度−0.01MPaG、温度80℃の条件で、真空濃縮させ、次に、反応フラスコを−20℃の条件で放置して結晶化させ、混合リチウム塩の結晶化粗製品を得る、反応液の濃縮及び結晶化のステップ(3)と、
結晶化後の反応フラスコを取り出して、粘稠な固液系を得て、反応フラスコに四塩化炭素200mLを加えて、十分に撹拌した後、下層の褐色四塩化炭素相溶液を除去し、4回繰り返して洗浄し、下層の四塩化炭素相溶液を澄明な溶液にし、この際、上層の結晶化固体が褐色から真白色固体になり、吸引ろ過して四塩化炭素を除去して、−0.01MPaG真空度、100℃の条件で24h乾燥させ、所定比率混合による高純度リチウム塩(リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムのモル比1:1)を得る、混合リチウム塩の精製及び乾燥のステップ(4)とを含む。
Example 1
As shown in FIGS. 1-6,
The present invention provides a method for preparing a high-purity lithium salt by mixing in a predetermined ratio,
An appropriate amount of ultrapure water was added to 150 g of industrial lithium oxalate and stirred to prepare a lithium oxalate suspension, 0.4 g of ethylenediaminetetraacetic acid (EDTA) was weighed and dissolved in a small amount of ultrapure water. Then, the EDTA aqueous solution is added to the lithium oxalate suspension, stirred for 30 minutes, suction filtered to obtain a lithium oxalate solid, and the lithium oxalate solid is washed three times with ultrapure water and suction filtered. Finally, washing with ethanol, filtering, placing in an oven at 120° C. and drying to obtain purified lithium oxalate (96 wt %) as a solid white powder, a step (1) for purifying lithium oxalate,
Added dimethyl carbonate (DMC) 500 mL three-necked reaction flask, with vigorous stirring lithium oxalate 102g added while, 1h stirring the temperature was raised to 85 ° C., to prepare a lithium oxalate suspension trifluoride Weigh 284 g of boron iodide /diethyl ether and slowly add it to the lithium oxalate suspension over 2 h while stirring. After the addition is complete, when the suspension becomes clear, stir for another 22 h and react. Then, a mixed reaction solution of lithium difluoro(oxalato)borate and lithium tetrafluoroborate is obtained, and then purified by a purification auxiliary filtration membrane, and a synthetic reaction step (2),
The mixed reaction liquid of lithium difluoro(oxalato)borate and lithium tetrafluoroborate after purification was vacuum concentrated under the conditions of a vacuum degree of -0.01 MPaG and a temperature of 80°C, and then the reaction flask was kept at -20°C. A step (3) of concentrating the reaction solution and crystallization, which is allowed to crystallize under the conditions to obtain a crude crystallization product of a mixed lithium salt;
The reaction flask after crystallization was taken out to obtain a viscous solid-liquid system, 200 mL of carbon tetrachloride was added to the reaction flask, and after sufficiently stirring, the lower layer brown carbon tetrachloride phase solution was removed, and The carbon tetrachloride phase solution of the lower layer was made a clear solution by washing repeatedly, and the crystallized solid of the upper layer was changed from brown to white solid by suction filtration to remove carbon tetrachloride. A mixed lithium salt, which is dried at a pressure of 0.01 MPaG and a temperature of 100° C. for 24 hours to obtain a high-purity lithium salt (molar ratio of lithium difluoro(oxalato)borate and lithium tetrafluoroborate 1:1) by mixing in a predetermined ratio. Purification and drying step (4).

得られた固体製品について19F NMR、11B NMR、13C NMR分析(それぞれ図1−図3参照)を行ったところ、生産物はリチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムのモル比が1:1の混合リチウム塩(NMRの積分面積で算出)であり、収率85.6%、純度99.1%(核磁気共鳴によるキャラクタリゼーション)、水分120ppm、酸度200ppm、不溶物102ppm、濁度1.5であることを確認した。 The obtained solid product was analyzed by 19 F NMR, 11 B NMR, and 13 C NMR (see FIGS. 1 to 3, respectively), and the product was a molar ratio of lithium difluoro(oxalato)borate and lithium tetrafluoroborate. Is a 1:1 mixed lithium salt (calculated by integrated area of NMR), yield 85.6%, purity 99.1% (characterization by nuclear magnetic resonance), water content 120 ppm, acidity 200 ppm, insoluble matter 102 ppm, It was confirmed that the turbidity was 1.5.

さらに、前記精製補助ろ過膜の製造過程として、エタノール、ポリエチレングリコールジアクリレート、1,1'−(メチレンビス−4,1−フェニレン)ビス[2−ヒドロキシ−2−メチル−1−アセトン]、トリフルオロメタンスルホン酸ランタン、2−(3−ニトロ−2−ピリジン)ジメチルマロネート、ベンゾフラン−2−トリフルオロホウ酸カリウムを、100:100:7:0.1:0.1:0.2の質量比で、反応器に投入して、70℃で保温して窒素ガスを導入して、100min撹拌し、混合物をガラス板に注いで、次に混合物の上方に石英ガラス板をカバーし、混合物の厚みを100μmに制御して、紫外線で75s照射して、アセトンで15h洗浄し、静置して乾燥させ、前記精製補助ろ過膜を得た。 Further, as a process for producing the purification auxiliary filtration membrane, ethanol, polyethylene glycol diacrylate, 1,1′-(methylenebis-4,1-phenylene)bis[2-hydroxy-2-methyl-1-acetone], trifluoromethane A mass ratio of lanthanum sulfonate, 2-(3-nitro-2-pyridine)dimethylmalonate, and potassium benzofuran-2-trifluoroborate to 100:100:7:0.1:0.1:0.2. Then, the mixture was put into a reactor, kept at 70° C., introduced nitrogen gas, stirred for 100 min, poured the mixture into a glass plate, and then covered the quartz glass plate above the mixture to give a thickness of the mixture. Was controlled to 100 μm, irradiated with ultraviolet rays for 75 s, washed with acetone for 15 h, allowed to stand and dried to obtain the above-mentioned purified auxiliary filtration membrane.

本実施例の製品について関連キャラクタリゼーションを行い、結果を図1−図6に示した。図1は本実施例において調製された混合リチウム塩の11B NMRスペクトルであり、図2は本実施例において調製された混合リチウム塩の19F NMRスペクトルであり、図3は本実施例において調製された混合リチウム塩の13C NMRスペクトルであり、図4は本実施例において調製された混合リチウム塩を含有する電解液の常温(25℃)サイクル(100サイクル)特性図であり、図5は本実施例において調製された混合リチウム塩を含有する電解液の高温(45℃)でのサイクル(100サイクル)特性図であり、図6は実施例1において製造された精製補助ろ過膜のIRスペクトルである。結果から、以下の結論が得られた。
(1)LiODFB及びLiBFには1つだけのホウ素原子があるため、いずれの11B NMRスペクトルにも単一ピークを示す一方、11B NMRスペクトルにおいて2つの単一ピークの面積比が1:1であることから、LiODFB及びLiBFのモル比が1:1であると判断でき、同様に、LiODFBにおいて、フッ素原子の化学的環境が同じであるため、19F NMRスペクトルにおいて現れた化学シフトが同じであり、LiBFにおいてもフッ素原子の化学的環境が同じであるため、同一の化学シフトにピークが発生し、19F NMRスペクトルにおける2つの位置での化学シフトの比値から、LiODFBとLiBFのモル比が1:1であることが確認できる。これは、該反応により生成したLiODFBとLiBFのモル比が1:1であり、精製過程に使用される貧溶媒がLiODFBとLiBFの両方に対して不溶であるため、精製後に混合塩におけるLiODFBとLiBFの比率を変更しないからである。
(2)13C NMRスペクトルにおいて、LiODFBにおける炭素原子のピークであるピークだけがあり、LiBFに炭素原子が含まれていないため、13C NMRスペクトルにピークが発生しない。
(3)図4から明らかなように、混合塩はリチウムイオン電池の常温(25℃)サイクル特性を効果的に向上でき、且つ1.5%及び3%の添加量では、効果が最も高い。
(4)図5から明らかなように、混合塩はリチウムイオン電池の高温(45℃)でのサイクル特性を効果的に向上でき、且つ1.5%及び0.5%の添加量では、効果が最も高い。一方、60℃で9日間保存した結果、混合塩を添加することでガスの発生を効果的に抑制でき、且つ1.5%の添加量では容量保持率を79.8%から86.67%に向上させ、対応した容量回復率を82.04%から88.88%に向上させることができる。
このような混合リチウム塩は、コスト及び効果のいずれにおいても大きな優位性を有し、六フッ化リン酸リチウムの代わりに電解液の主塩として有望できる。
(5)図6には、精製補助ろ過膜の化学組成が示されており、907と1030がスルホン酸基の特徴的なピークであり、1260がC−S結合の特徴的なピークであり、このことから、トリフルオロメタンスルホン酸ランタンが反応に関与して吸収膜に取り込まれることが明らかになる。1500−1650がニトロ基の特徴的なピークであり、1576、1468、1434がピリジン環の特徴的な吸収ピークであり、994がピリジン環の変角振動吸収ピークであり、1700がO=C−0強吸収ピークであり、このことから、2−(3−ニトロ−2−ピリジン)ジメチルマロネートが反応に関与して吸収膜に取り込まれることが明らかになり、1600がベンゼン環骨格の特徴的なピークであり、900がベンゼン環のC−H変角振動ピークであり、1000がC−F結合の特徴的なピークであり、このことから、ベンゾフラン−2−トリフルオロホウ酸カリウムが反応に関与して吸収膜に取り込まれることが明らかになる。
The product of this example was subjected to related characterization and the results are shown in FIGS. FIG. 1 is an 11 B NMR spectrum of the mixed lithium salt prepared in this example, FIG. 2 is a 19 F NMR spectrum of the mixed lithium salt prepared in this example, and FIG. 3 is a preparation of this example. FIG. 4 is a 13 C NMR spectrum of the prepared mixed lithium salt, FIG. 4 is a room temperature (25° C.) cycle (100 cycles) characteristic diagram of the electrolyte solution containing the mixed lithium salt prepared in this example, and FIG. FIG. 6 is a characteristic diagram of a cycle (100 cycles) at high temperature (45° C.) of an electrolytic solution containing a mixed lithium salt prepared in this example, and FIG. 6 is an IR spectrum of the purified auxiliary filtration membrane produced in Example 1. Is. From the results, the following conclusions were obtained.
(1) Since there is only one boron atom in LiODFB and LiBF 4 , each 11 B NMR spectrum shows a single peak, while in the 11 B NMR spectrum, the area ratio of two single peaks is 1: Since it is 1, it can be judged that the molar ratio of LiODFB and LiBF 4 is 1:1. Similarly, in LiODFB, since the chemical environment of the fluorine atom is the same, the chemical shift appearing in the 19 F NMR spectrum is Are the same, and since the chemical environment of the fluorine atom is the same also in LiBF 4 , peaks occur at the same chemical shift, and the ratio of the chemical shifts at the two positions in the 19 F NMR spectrum indicates that LiODFB is It can be confirmed that the molar ratio of LiBF 4 is 1:1. This is because the molar ratio of LiODFB and LiBF 4 produced by the reaction is 1:1 and the poor solvent used in the purification process is insoluble in both LiODFB and LiBF 4 , and therefore, in the mixed salt after purification, This is because the ratio of LiODFB and LiBF 4 is not changed.
(2) In the 13 C NMR spectrum, there is only a peak that is a peak of carbon atoms in LiODFB, and since LiBF 4 does not contain carbon atoms, no peak occurs in the 13 C NMR spectrum.
(3) As is clear from FIG. 4, the mixed salt can effectively improve the room temperature (25° C.) cycle characteristics of the lithium ion battery, and is most effective at the added amounts of 1.5% and 3%.
(4) As is clear from FIG. 5, the mixed salt can effectively improve the cycle characteristics of the lithium ion battery at high temperature (45° C.), and is effective at the added amounts of 1.5% and 0.5%. Is the highest. On the other hand, as a result of storing at 60° C. for 9 days, the gas generation can be effectively suppressed by adding the mixed salt, and the capacity retention rate is 79.8% to 86.67% at the addition amount of 1.5%. The corresponding capacity recovery rate can be improved from 82.04% to 88.88%.
Such a mixed lithium salt has great advantages in terms of both cost and effect, and can be promising as a main salt of an electrolytic solution instead of lithium hexafluorophosphate.
(5) FIG. 6 shows the chemical composition of the purification auxiliary filtration membrane. 907 and 1030 are characteristic peaks of sulfonic acid group, 1260 is a characteristic peak of C—S bond, From this, it becomes clear that lanthanum trifluoromethanesulfonate participates in the reaction and is taken into the absorption film. 1500-1650 is a characteristic peak of a nitro group, 1576, 1468 and 1434 are characteristic absorption peaks of a pyridine ring, 994 is a bending vibration absorption peak of a pyridine ring, and 1700 is O=C- This is a strong absorption peak at 0, and from this, it is clear that 2-(3-nitro-2-pyridine)dimethylmalonate participates in the reaction and is incorporated into the absorption film, and 1600 is a characteristic of the benzene ring skeleton. Is a peak, 900 is a C-H bending vibration peak of the benzene ring, and 1000 is a characteristic peak of a C-F bond. From this, potassium benzofuran-2-trifluoroborate is involved in the reaction. It becomes clear that they are involved and are taken up by the absorption film.

本実施例において調製された混合リチウム塩を用いたリチウムイオン電池非水電解液の調製
グローブボックスにおいて、炭酸ビニル(EC)、炭酸メチルエチル(EMC)及び炭酸ジエチル(DEC)を30:45:25の質量比率で混合し、次に六フッ化リン酸リチウムを加えて溶解し、六フッ化リン酸リチウムの濃度が1Mの電解液を調製した。その後、0.5質量%、1.0質量%、1.5質量%及び3質量%の実施例において調製された混合リチウム塩のサンプルを電解液に加えた。
Preparation of Lithium Ion Battery Non-Aqueous Electrolyte Using Mixed Lithium Salt Prepared in this Example In a glove box, vinyl carbonate (EC), methyl ethyl carbonate (EMC) and diethyl carbonate (DEC) were added at 30:45:25. And mixed with lithium hexafluorophosphate and then dissolved to prepare an electrolytic solution having a lithium hexafluorophosphate concentration of 1M. Then, 0.5 wt%, 1.0 wt%, 1.5 wt% and 3 wt% of the mixed lithium salt samples prepared in the examples were added to the electrolyte.

調製したリチウムイオン電池用非水電解液を、十分に乾燥させた4.2VのNCM(ニッケル:コバルト:マンガン=6:2:2)/グラファイトパウチ電池に注入して、45℃で放置し、高温治具を用いた化成及び二次封口などの工程後、電池性能をテストした。 The prepared non-aqueous electrolyte for a lithium-ion battery was poured into a sufficiently dried 4.2 V NCM (nickel:cobalt:manganese=6:2:2)/graphite pouch battery and left at 45° C., After the steps such as chemical conversion using a high temperature jig and secondary sealing, the battery performance was tested.

1)常温サイクル特性
常温(25℃)の条件で、上記リチウムイオン電池を1C定電流定電圧で4.2Vになるまで充電した後、1C定電流の条件で3.0Vになるまで放電した。100サイクル充放電後、100サイクル目の容量保持率を算出した。
1) Normal temperature cycle characteristics Under normal temperature (25° C.) conditions, the lithium ion battery was charged to 4.2 V at 1 C constant current and constant voltage, and then discharged to 3.0 V at 1 C constant current. After 100 cycles of charge and discharge, the capacity retention rate at the 100th cycle was calculated.

2)高温サイクル特性
高温(45℃)の条件で、上記リチウムイオン電池を1C定電流定電圧で4.2Vになるまで充電した後、1C定電流の条件で3.0Vになるまで放電した。100サイクル充放電後、100サイクル目後の容量保持率を算出した。
2) High-temperature cycle characteristics Under the conditions of high temperature (45°C), the lithium ion battery was charged to 4.2V at 1C constant current and constant voltage, and then discharged to 3.0V at 1C constant current. After 100 cycles of charge/discharge, the capacity retention rate after 100 cycles was calculated.

実施例2
本発明は、所定比率混合による高純度リチウム塩の調製方法を提供し、
実施例1と同様である、シュウ酸リチウムを精製するステップ(1)と、
三つ口反応フラスコに酢酸エチル(EA)500mLを加えて、激しく撹拌しながらシュウ酸リチウム102gを加え、温度を85℃に上げて1h撹拌し、シュウ酸リチウム懸濁液を調製し、三フッ化ホウ素・ジエチルエーテル284gを秤量して、撹拌しながら、2hかけてシュウ酸リチウム懸濁液に徐々に滴下し、滴下が終了した後、懸濁液が澄明になると、さらに撹拌して22h反応させ、リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムの混合反応液を得て、次に、精製補助ろ過膜で精製する、合成反応のステップ(2)と、
精製後のリチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムの混合反応液を、真空度−0.01MPaG、温度60℃の条件で、真空濃縮させ、次に、反応フラスコを−20℃の条件で放置して結晶化させ、混合リチウム塩の結晶化粗製品を得る、反応液の濃縮及び結晶化のステップ(3)と、
結晶化後の反応フラスコを取り出して、粘稠な固液系を得て、反応フラスコにジクロロメタン200mLを加えて、十分に撹拌した後、上層の褐色ジクロロメタン相溶液を除去し、4回繰り返して洗浄し、上層のジクロロメタン相溶液を澄明な溶液にし、この際、下層の結晶化固体が褐色から真白色固体になり、吸引ろ過してジクロロメタンを除去して、−0.01MPaG真空度、100℃の条件で24h乾燥させ、所定比率混合による高純度リチウム塩(リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムのモル比1:1)を得る、混合リチウム塩の精製及び乾燥のステップ(4)とを含む。
Example 2
The present invention provides a method for preparing a high-purity lithium salt by mixing in a predetermined ratio,
A step (1) for purifying lithium oxalate, which is the same as in Example 1,
The addition of ethyl acetate (EA) 500 mL three-necked reaction flask, with vigorous stirring lithium oxalate 102g added while, 1h stirring the temperature was raised to 85 ° C., to prepare a lithium oxalate suspension trifluoride Weigh 284 g of boron iodide /diethyl ether and slowly add it to the lithium oxalate suspension over 2 h while stirring. After the addition is complete, when the suspension becomes clear, stir for another 22 h and react. Then, a mixed reaction solution of lithium difluoro(oxalato)borate and lithium tetrafluoroborate is obtained, and then purified by a purification auxiliary filtration membrane, and a synthetic reaction step (2),
The purified reaction mixture of lithium difluoro(oxalato)borate and lithium tetrafluoroborate was concentrated under vacuum at a vacuum degree of -0.01 MPaG and a temperature of 60°C, and then the reaction flask was kept at -20°C. A step (3) of concentrating the reaction solution and crystallization, which is allowed to crystallize under the conditions to obtain a crude crystallization product of a mixed lithium salt;
After taking out the reaction flask after crystallization, a viscous solid-liquid system was obtained, 200 mL of dichloromethane was added to the reaction flask, and after sufficiently stirring, the brown dichloromethane phase solution of the upper layer was removed, and washed 4 times repeatedly. Then, the dichloromethane layer solution of the upper layer is made into a clear solution, at this time, the crystallized solid of the lower layer changes from brown to a white solid, and suction filtration is performed to remove dichloromethane, and the vacuum degree is -0.01 MPaG , 100°C. Step (4) of purification and drying of the mixed lithium salt to obtain a high-purity lithium salt (molar ratio of lithium difluoro(oxalato)borate and lithium tetrafluoroborate 1:1) by mixing in a predetermined ratio for 24 hours. Including and

さらに、前記精製補助ろ過膜の製造過程として、エタノール、ポリエチレングリコールジアクリレート、1,1'−(メチレンビス−4,1−フェニレン)ビス[2−ヒドロキシ−2−メチル−1−アセトン]、トリフルオロメタンスルホン酸ランタン、2−(3−ニトロ−2−ピリジン)ジメチルマロネート、ベンゾフラン−2−トリフルオロホウ酸カリウムを、100:125:7:0.2:0.25:0.35の質量比で、反応器に投入して、80℃で保温して窒素ガスを導入して、120min撹拌し、混合物をガラス板に注いで、次に混合物の上方に石英ガラス板をカバーし、混合物の厚みを200μmに制御して、紫外線で120s照射して、アセトンで20h洗浄し、静置して乾燥させ、前記精製補助ろ過膜を得た。 Further, as a process for producing the purification auxiliary filtration membrane, ethanol, polyethylene glycol diacrylate, 1,1′-(methylenebis-4,1-phenylene)bis[2-hydroxy-2-methyl-1-acetone], trifluoromethane The lanthanum sulfonate, 2-(3-nitro-2-pyridine)dimethylmalonate, and potassium benzofuran-2-trifluoroborate were added in a mass ratio of 100:125:7:0.2:0.25:0.35. Then, the mixture was charged into the reactor, kept at 80° C., introduced nitrogen gas, stirred for 120 min, poured the mixture into a glass plate, and then covered the quartz glass plate above the mixture to give a thickness of the mixture. Was controlled to 200 μm, irradiated with ultraviolet rays for 120 s, washed with acetone for 20 h, allowed to stand and dried to obtain the purification auxiliary filtration membrane.

得られた固体について19F NMR、11B NMR、13C NMR分析を行ったところ、生産物はリチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムのモル比が1:1の混合リチウム塩(NMRの積分面積で算出)であり、収率87.6%、純度99.9%(核磁気共鳴によるキャラクタリゼーション)、水分112ppm、酸度148ppm、不溶物95ppm、濁度1.5であることを確認した。 The obtained solid was subjected to 19 F NMR, 11 B NMR, and 13 C NMR analysis. It was confirmed that the yield was 87.6%, the purity was 99.9% (characterization by nuclear magnetic resonance), the water content was 112 ppm, the acidity was 148 ppm, the insoluble matter was 95 ppm, and the turbidity was 1.5. did.

実施例3
本発明は、所定比率混合による高純度リチウム塩の調製方法を提供し、
実施例1と同様である、シュウ酸リチウムを精製するステップ(1)と、
三つ口反応フラスコにアセトニトリル500mLを加えて、激しく撹拌しながらシュウ酸リチウム102gを加え、温度を85℃に上げて1h撹拌し、シュウ酸リチウム懸濁液を調製し、三フッ化ホウ素・ジエチルエーテル284gを秤量して、撹拌しながら、2hかけてシュウ酸リチウム懸濁液に徐々に滴下し、滴下が終了した後、懸濁液が澄明になると、さらに撹拌して22h反応させ、リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムの混合反応液を得て、次に、精製補助ろ過膜で精製する、合成反応のステップ(2)と、
精製後のリチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムの混合反応液を、真空度−0.01MPaG、温度70℃の条件で、真空濃縮させ、次に、反応フラスコを−20℃の条件で放置して結晶化させ、混合リチウム塩の結晶化粗製品を得る、反応液の濃縮及び結晶化のステップ(3)と、
結晶化後の反応フラスコを取り出して、粘稠な固液系を得て、反応フラスコにシクロヘキサン200mLを加えて、十分に撹拌した後、上層の褐色シクロヘキサン相溶液を除去し、4回繰り返して洗浄し、上層の褐色シクロヘキサン相溶液を澄明な溶液にし、この際、下層の結晶化固体が褐色から真白色固体になり、吸引ろ過してシクロヘキサンを除去して、−0.01MPaG真空度、100℃の条件で24h乾燥させ、所定比率混合による高純度リチウム塩(リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムのモル比1:1)を得る、混合リチウム塩の精製及び乾燥のステップ(4)とを含む。
Example 3
The present invention provides a method for preparing a high-purity lithium salt by mixing in a predetermined ratio,
A step (1) for purifying lithium oxalate, which is the same as in Example 1,
Add 500 mL of acetonitrile to a three-neck reaction flask, add 102 g of lithium oxalate with vigorous stirring, raise the temperature to 85° C., and stir for 1 h to prepare a lithium oxalate suspension, and then add boron trifluoride/diethyl 284 g of ether was weighed and gradually added to the lithium oxalate suspension over 2 h while stirring, and when the suspension became clear after stirring, the mixture was further stirred for 22 h to react with lithium difluoro. A step (2) of the synthetic reaction, in which a mixed reaction solution of (oxalato)borate and lithium tetrafluoroborate is obtained and then purified with a purification auxiliary filtration membrane;
The mixed reaction liquid of lithium difluoro(oxalato)borate and lithium tetrafluoroborate after purification was vacuum concentrated under the conditions of a vacuum degree of -0.01 MPaG and a temperature of 70°C, and then the reaction flask was kept at -20°C. A step (3) of concentrating the reaction solution and crystallization, which is allowed to crystallize under the conditions to obtain a crude crystallization product of a mixed lithium salt;
The reaction flask after crystallization was taken out to obtain a viscous solid-liquid system, 200 mL of cyclohexane was added to the reaction flask, and after sufficiently stirring, the brown cyclohexane phase solution of the upper layer was removed and washed 4 times repeatedly. Then, the upper layer brown cyclohexane phase solution was made into a clear solution, at this time, the lower layer crystallized solid changed from brown to pure white solid, and cyclohexane was removed by suction filtration to obtain a -0.01 MPaG vacuum degree, 100. The mixture is dried at a temperature of 24° C. for 24 hours to obtain a high-purity lithium salt (molar ratio of lithium difluoro(oxalato)borate and lithium tetrafluoroborate 1:1) by mixing in a predetermined ratio. ) And.

さらに、前記精製補助ろ過膜の製造過程として、エタノール、ポリエチレングリコールジアクリレート、1,1'−(メチレンビス−4,1−フェニレン)ビス[2−ヒドロキシ−2−メチル−1−アセトン]、トリフルオロメタンスルホン酸ランタン、2−(3−ニトロ−2−ピリジン)ジメチルマロネート、ベンゾフラン−2−トリフルオロホウ酸カリウムを、100:150:10:0.3:0.4:0.5の質量比で、反応器に投入して、78℃で保温して窒素ガスを導入して、150min撹拌し、混合物をガラス板に注いで、次に混合物の上方に石英ガラス板をカバーし、混合物の厚みを300μmに制御して、紫外線で120s照射して、アセトンで24h洗浄し、静置して乾燥させ、前記精製補助ろ過膜を得た。 Further, as a process for producing the purification auxiliary filtration membrane, ethanol, polyethylene glycol diacrylate, 1,1′-(methylenebis-4,1-phenylene)bis[2-hydroxy-2-methyl-1-acetone], trifluoromethane A mass ratio of lanthanum sulfonate, 2-(3-nitro-2-pyridine)dimethylmalonate, potassium benzofuran-2-trifluoroborate to 100:150:10:0.3:0.4:0.5. Then, the mixture was charged into a reactor, kept warm at 78° C., introduced nitrogen gas, stirred for 150 min, poured the mixture into a glass plate, and then covered the quartz glass plate above the mixture to give a thickness of the mixture. Was controlled to 300 μm, irradiated with ultraviolet rays for 120 s, washed with acetone for 24 h, allowed to stand and dried to obtain the purified auxiliary filtration membrane.

得られた固体について19F NMR、11B NMR、13C NMR分析を行ったところ、生産物はリチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムのモル比が1:1の混合リチウム塩(NMRの積分面積で算出)であり、収率85.4%、純度99.9%(核磁気共鳴によるキャラクタリゼーション)、水分65ppm、酸度127ppm、不溶物78ppm、濁度1.5であることを確認した。 The obtained solid was subjected to 19 F NMR, 11 B NMR, and 13 C NMR analysis. It was confirmed that the yield was 85.4%, the purity was 99.9% (characterization by nuclear magnetic resonance), the water content was 65 ppm, the acidity was 127 ppm, the insoluble matter was 78 ppm, and the turbidity was 1.5. did.

実施例4
本発明は、所定比率混合による高純度リチウム塩の調製方法を提供し、合成反応に有機溶媒としてテトラヒドロフランを用いる以外、実施例3とほぼ同じであった。
Example 4
The present invention provides a method for preparing a high-purity lithium salt by mixing in a predetermined ratio, and is substantially the same as Example 3 except that tetrahydrofuran is used as the organic solvent in the synthetic reaction.

得られた固体について19F NMR、11B NMR、13C NMR分析を行ったところ、生産物はリチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムのモル比が1:1の混合リチウム塩(NMRの積分面積で算出)であり、収率86.2%、純度98.4%(核磁気共鳴によるキャラクタリゼーション)、水分98ppm、酸度239ppm、不溶物184ppm、濁度1.5であることを確認した。 The obtained solid was subjected to 19 F NMR, 11 B NMR, and 13 C NMR analysis. It was confirmed that the yield was 86.2%, the purity was 98.4% (characterization by nuclear magnetic resonance), the water content was 98 ppm, the acidity was 239 ppm, the insoluble matter was 184 ppm, and the turbidity was 1.5. did.

実施例5
本発明は、所定比率混合による高純度リチウム塩の調製方法を提供し、精製補助ろ過膜の製造過程として、エタノール、ポリエチレングリコールジアクリレート、1,1'−(メチレンビス−4,1−フェニレン)ビス[2−ヒドロキシ−2−メチル−1−アセトン]、トリフルオロメタンスルホン酸ランタン、2−(3−ニトロ−2−ピリジン)ジメチルマロネート、ベンゾフラン−2−トリフルオロホウ酸カリウムを、100:150:10:0.4:0.5の質量比で、反応器に投入して、75℃で保温して窒素ガスを導入して、130min撹拌し、混合物をガラス板に注いで、次に混合物の上方に石英ガラス板をカバーし、混合物の厚みを300μmに制御して、紫外線で100s照射して、アセトンで20h洗浄し、静置して乾燥させ、前記精製補助ろ過膜を得る以外、実施例3とほぼ同じであった。
Example 5
The present invention provides a method for preparing a high-purity lithium salt by mixing in a predetermined ratio, wherein ethanol, polyethylene glycol diacrylate, 1,1′-(methylenebis-4,1-phenylene)bis is used as a manufacturing process of a purification auxiliary filtration membrane. [2-hydroxy-2-methyl-1-acetone], lanthanum trifluoromethanesulfonate, 2-(3-nitro-2-pyridine)dimethylmalonate, potassium benzofuran-2-trifluoroborate, 100:150: It was charged into a reactor at a mass ratio of 10:0.4:0.5, kept at 75° C., introduced nitrogen gas, stirred for 130 min, poured the mixture onto a glass plate, and then poured the mixture into a mixture. Except that the quartz glass plate was covered above, the thickness of the mixture was controlled to 300 μm, the mixture was irradiated with ultraviolet rays for 100 s, washed with acetone for 20 h, and allowed to stand to dry to obtain the purification auxiliary filtration membrane. It was almost the same as 3.

得られた固体について19F NMR、11B NMR、13C NMR分析を行ったところ、生産物はリチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムのモル比が1:1の混合リチウム塩(NMRの積分面積で算出)であり、収率86.1%、純度98.7%(核磁気共鳴によるキャラクタリゼーション)、水分81ppm、酸度174ppm、不溶物91ppm、濁度1.5であることを確認した。 The obtained solid was subjected to 19 F NMR, 11 B NMR, and 13 C NMR analysis. It was confirmed that the yield was 86.1%, the purity was 98.7% (characterization by nuclear magnetic resonance), the water content was 81 ppm, the acidity was 174 ppm, the insoluble matter was 91 ppm, and the turbidity was 1.5. did.

実施例6
本発明は、所定比率混合による高純度リチウム塩の調製方法を提供し、精製補助ろ過膜の製造過程として、エタノール、ポリエチレングリコールジアクリレート、1,1'−(メチレンビス−4,1−フェニレン)ビス[2−ヒドロキシ−2−メチル−1−アセトン]、トリフルオロメタンスルホン酸ランタン、2−(3−ニトロ−2−ピリジン)ジメチルマロネート、ベンゾフラン−2−トリフルオロホウ酸カリウムを、100:150:10:0.3:0.5の質量比で、反応器に投入して、78℃で保温して窒素ガスを導入して、150min撹拌し、混合物をガラス板に注いで、次に混合物の上方に石英ガラス板をカバーし、混合物の厚みを300μmに制御して、紫外線で120s照射して、アセトンで20h洗浄し、静置して乾燥させ、前記精製補助ろ過膜を得る以外、実施例3とほぼ同じであった。
Example 6
The present invention provides a method for preparing a high-purity lithium salt by mixing in a predetermined ratio, wherein ethanol, polyethylene glycol diacrylate, 1,1′-(methylenebis-4,1-phenylene)bis is used as a manufacturing process of a purification auxiliary filtration membrane. [2-hydroxy-2-methyl-1-acetone], lanthanum trifluoromethanesulfonate, 2-(3-nitro-2-pyridine)dimethylmalonate, potassium benzofuran-2-trifluoroborate, 100:150: It was charged into a reactor at a mass ratio of 10:0.3:0.5, kept at 78° C. and introduced with nitrogen gas, stirred for 150 min, poured the mixture into a glass plate, and then mixed with the mixture. Except that the quartz glass plate was covered above, the thickness of the mixture was controlled to 300 μm, the mixture was irradiated with ultraviolet rays for 120 s, washed with acetone for 20 h, and allowed to stand to dry to obtain the purification auxiliary filtration membrane. It was almost the same as 3.

得られた固体について19F NMR、11B NMR、13C NMR分析を行ったところ、生産物はリチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムのモル比が1:1の混合リチウム塩(NMRの積分面積で算出)であり、収率85.6%、純度98.9%(核磁気共鳴によるキャラクタリゼーション)、水分77ppm、酸度145ppm、不溶物91ppm、濁度1.5であることを確認した。 The obtained solid was subjected to 19 F NMR, 11 B NMR, and 13 C NMR analysis. It was confirmed that the yield was 85.6%, the purity was 98.9% (characterization by nuclear magnetic resonance), the water content was 77 ppm, the acidity was 145 ppm, the insoluble matter was 91 ppm, and the turbidity was 1.5. did.

実施例7
本発明は、所定比率混合による高純度リチウム塩の調製方法を提供し、精製補助ろ過膜の製造過程として、エタノール、ポリエチレングリコールジアクリレート、1,1'−(メチレンビス−4,1−フェニレン)ビス[2−ヒドロキシ−2−メチル−1−アセトン]、トリフルオロメタンスルホン酸ランタン、2−(3−ニトロ−2−ピリジン)ジメチルマロネート、ベンゾフラン−2−トリフルオロホウ酸カリウムを、100:150:10:0.3:0.4の質量比で、反応器に投入して、75℃で保温して窒素ガスを導入して、150min撹拌し、混合物をガラス板に注いで、次に混合物の上方に石英ガラス板をカバーし、混合物の厚みを300μmに制御して、紫外線で120s照射して、アセトンで24h洗浄し、静置して乾燥させ、前記精製補助ろ過膜を得る以外、実施例3と同じであった。
Example 7
The present invention provides a method for preparing a high-purity lithium salt by mixing in a predetermined ratio, wherein ethanol, polyethylene glycol diacrylate, 1,1′-(methylenebis-4,1-phenylene)bis is used as a manufacturing process of a purification auxiliary filtration membrane. [2-hydroxy-2-methyl-1-acetone], lanthanum trifluoromethanesulfonate, 2-(3-nitro-2-pyridine)dimethylmalonate, potassium benzofuran-2-trifluoroborate, 100:150: It was charged into a reactor at a mass ratio of 10:0.3:0.4, kept at 75° C., introduced nitrogen gas, stirred for 150 min, poured the mixture onto a glass plate, and then poured the mixture into a mixture. Example except that a quartz glass plate was covered above, the thickness of the mixture was controlled to 300 μm, the mixture was irradiated with ultraviolet rays for 120 s, washed with acetone for 24 h, and allowed to stand to dry to obtain the purification auxiliary filtration membrane. It was the same as 3.

得られた固体について19F NMR、11B NMR、13C NMR分析を行ったところ、生産物はリチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムのモル比が1:1の混合リチウム塩(NMRの積分面積で算出)であり、収率85.6%、純度98.8%(核磁気共鳴によるキャラクタリゼーション)、水分81ppm、酸度194ppm、不溶物93ppm、濁度1.5であることを確認した。 The obtained solid was subjected to 19 F NMR, 11 B NMR, and 13 C NMR analysis, and as a result, the product was a mixed lithium salt (NMR) in which the molar ratio of lithium difluoro(oxalato)borate and lithium tetrafluoroborate was 1:1. It was confirmed that the yield was 85.6%, the purity was 98.8% (characterization by nuclear magnetic resonance), the water content was 81 ppm, the acidity was 194 ppm, the insoluble matter was 93 ppm, and the turbidity was 1.5. did.

比較実施例1
所定比率混合による高純度リチウム塩の調製方法であって、
三つ口反応フラスコにアセトニトリル500mLを加えて、激しく撹拌しながらシュウ酸リチウム102gを加え、温度を85℃に上げて1h撹拌し、シュウ酸リチウム懸濁液を調製し、三フッ化ホウ素・ジエチルエーテル284gを秤量して、撹拌しながら、2hかけてシュウ酸リチウム懸濁液に徐々に滴下し、滴下が終了した後、懸濁液が澄明になると、さらに撹拌して22h反応させ、リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムの混合反応液を得る、合成反応のステップ(1)と、
リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムの混合反応液を、真空度−0.01MPaG、温度70℃の条件で、真空濃縮させ、次に、反応フラスコを−20℃の条件で放置して結晶化させ、混合リチウム塩の結晶化粗製品を得る、反応液の濃縮及び結晶化のステップ(2)と、
結晶化後の反応フラスコを取り出して、粘稠な固液系を得て、反応フラスコにシクロヘキサン200mLを加えて、十分に撹拌した後、上層の褐色シクロヘキサン相溶液を除去し、4回繰り返して洗浄し、上層の褐色シクロヘキサン相溶液を澄明な溶液にし、この際、下層の結晶化固体が褐色から真白色固体になり、吸引ろ過してシクロヘキサンを除去して、−0.01MPaG真空度、100℃の条件で24h乾燥させ、混合リチウム塩(リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムのモル比1:1)を得る、混合リチウム塩の精製及び乾燥のステップ(3)とを含む。
Comparative Example 1
A method for preparing a high-purity lithium salt by mixing a predetermined ratio,
Add 500 mL of acetonitrile to a three-neck reaction flask, add 102 g of lithium oxalate with vigorous stirring, raise the temperature to 85° C., and stir for 1 h to prepare a lithium oxalate suspension, and then add boron trifluoride/diethyl 284 g of ether was weighed and gradually added to the lithium oxalate suspension over 2 h while stirring, and when the suspension became clear after stirring, the mixture was further stirred for 22 h to react with lithium difluoro. A synthetic reaction step (1) for obtaining a mixed reaction solution of (oxalato)borate and lithium tetrafluoroborate;
A mixed reaction solution of lithium difluoro(oxalato)borate and lithium tetrafluoroborate was concentrated under vacuum at a vacuum degree of -0.01 MPaG and a temperature of 70°C, and then the reaction flask was left at -20°C. And crystallize to obtain a crude crystallized product of a mixed lithium salt, the step (2) of concentrating and crystallization of the reaction solution,
The reaction flask after crystallization was taken out to obtain a viscous solid-liquid system, 200 mL of cyclohexane was added to the reaction flask, and after sufficiently stirring, the brown cyclohexane phase solution of the upper layer was removed and washed 4 times repeatedly. Then, the upper layer brown cyclohexane phase solution was made into a clear solution, at this time, the lower layer crystallized solid changed from brown to pure white solid, and cyclohexane was removed by suction filtration to obtain a -0.01 MPaG vacuum degree, 100. A step (3) of purifying and drying the mixed lithium salt to obtain a mixed lithium salt (molar ratio of lithium difluoro(oxalato)borate and lithium tetrafluoroborate 1:1) by drying at a temperature of 24° C. for 24 hours.

得られた固体について19F NMR、11B NMR、13C NMR分析を行ったところ、生産物はリチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムのモル比が1:1の混合リチウム塩(NMRの積分面積で算出)であり、収率77.4%、純度85.1%(核磁気共鳴によるキャラクタリゼーション)であることを確認した。 The obtained solid was subjected to 19 F NMR, 11 B NMR, and 13 C NMR analysis. It was confirmed that the yield was 77.4% and the purity was 85.1% (characterization by nuclear magnetic resonance).

以上の実施例は本発明の技術案を説明するものに過ぎず、限定的なものではなく、上記実施例にて本発明について詳細に説明したが、当業者であれば、本発明について修正又は同等置換を行えることが理解でき、本発明の精神及び範囲から逸脱することなく行われる修正及び部分的な置換が本発明の特許請求の範囲に属する。 The above examples are merely for explaining the technical solution of the present invention, and are not limitative, and the present invention has been described in detail in the above examples, but those skilled in the art can modify or modify the present invention. It is understood that equivalent substitutions can be made, and that modifications and partial substitutions made without departing from the spirit and scope of the invention are covered by the claims of the invention.

Claims (7)

所定比率混合による高純度リチウム塩の調製方法であって、
工業用シュウ酸リチウムに純水を加えて、撹拌してシュウ酸リチウム懸濁液を調製し、次に、金属キレート剤水溶液をシュウ酸リチウム懸濁液に加えて、30min撹拌し、吸引ろ過してシュウ酸リチウム固体を得て、次に、超純水でシュウ酸リチウム固体を3〜5回洗浄して吸引ろ過して、最後に、エタノールで洗浄してろ過し、乾燥させて、固体白色粉末として精製シュウ酸リチウムを得る、精製シュウ酸リチウムを精製するステップ(1)と、
撹拌しながら、精製シュウ酸リチウムを有機溶媒に加えて、シュウ酸リチウム懸濁液を調製し、調製したシュウ酸リチウム懸濁液が透明になるまで、三フッ化ホウ素・ジエチルエーテルを調製したシュウ酸リチウム懸濁液に滴下して、さらに反応が終了するまで撹拌し、リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムの混合反応液を得て、次に、精製補助ろ過膜で精製する、合成反応ステップ(2)と、
精製後のリチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムの混合反応液を真空濃縮させた後に結晶化させて、混合リチウム塩の結晶化粗製品を得る、反応液の濃縮及び結晶化のステップ(3)と、
リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムの貧溶媒を用いて、結晶化させた粗製品を洗浄した後、上層又は下層の褐色溶液を除去して、さらに貧溶媒を添加し、このように3−4回洗浄して、上層又は下層の溶液を澄明にし、固体を真空乾燥させて、所定比率混合による高純度リチウム塩(リチウムジフルオロ(オキサラト)ボレートとテトラフルオロホウ酸リチウムのモル比1:1)を得る、混合リチウム塩の精製及び乾燥のステップ(4)とを含む、ことを特徴とする調製方法。
A method for preparing a high-purity lithium salt by mixing a predetermined ratio,
Pure water is added to industrial lithium oxalate and stirred to prepare a lithium oxalate suspension, and then an aqueous metal chelating agent solution is added to the lithium oxalate suspension, stirred for 30 min, and suction filtered. To obtain a lithium oxalate solid, then wash the lithium oxalate solid with ultrapure water 3 to 5 times and suction filter, and finally, wash with ethanol, filter and dry to obtain a solid white solid. Obtaining purified lithium oxalate as a powder, purifying the purified lithium oxalate (1),
While stirring, purified lithium oxalate was added to the organic solvent to prepare a lithium oxalate suspension, and boron trifluoride/diethyl ether was prepared until the prepared lithium oxalate suspension became transparent. Dropwise into the lithium acid suspension and stirred until the reaction is complete to obtain a mixed reaction solution of lithium difluoro(oxalato)borate and lithium tetrafluoroborate, and then purify with a purification auxiliary filtration membrane, A synthetic reaction step (2),
A step of concentrating and crystallization of the reaction solution, in which a mixed reaction solution of lithium difluoro(oxalato)borate and lithium tetrafluoroborate after purification is concentrated in vacuum and then crystallized to obtain a crystallized crude product of a mixed lithium salt. (3),
After washing the crystallized crude product with a poor solvent of lithium difluoro(oxalato)borate and lithium tetrafluoroborate, the brown solution in the upper layer or the lower layer is removed, and the poor solvent is further added. The solution of the upper layer or the lower layer is clarified by washing 3 to 4 times, and the solid is dried in a vacuum to obtain a high-purity lithium salt (a molar ratio of lithium difluoro(oxalato)borate and lithium tetrafluoroborate of 1 by mixing in a predetermined ratio). Step (4) of refining and drying the mixed lithium salt to obtain 1)).
前記シュウ酸リチウムを精製するとき、金属キレート剤がエチレンジアミン四酢酸であり、乾燥温度が120℃である、ことを特徴とする請求項1に記載の所定比率混合による高純度リチウム塩の調製方法。 The method for preparing a high-purity lithium salt according to claim 1, wherein the metal chelating agent is ethylenediaminetetraacetic acid and the drying temperature is 120° C. when the lithium oxalate is purified. 前記合成反応において、溶媒が炭酸ジメチル、炭酸ジエチル、炭酸メチルエチル、アセトニトリル、テトラヒドロフラン、トルエン、酢酸エチル、エチレングリコールジメチルエーテル、エチルエーテル、ジメチルホルムアミド又はアセトンであり、反応温度が70−90℃であり、反応時間が10−24hである、ことを特徴とする請求項1に記載の所定比率混合による高純度リチウム塩の調製方法。 In the synthetic reaction, the solvent is dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, acetonitrile, tetrahydrofuran, toluene, ethyl acetate, ethylene glycol dimethyl ether, ethyl ether, dimethylformamide or acetone, the reaction temperature is 70-90 ° C., The method for preparing a high purity lithium salt according to claim 1, wherein the reaction time is 10-24 h. 前記精製補助ろ過膜の製造過程として、エタノール、ポリエチレングリコールジアクリレート、1,1−(メチレンビス−4,1−フェニレン)ビス[2−ヒドロキシ−2−メチル−1−アセトン]、トリフルオロメタンスルホン酸ランタン、2−(3−ニトロ−2−ピリジン)ジメチルマロネート、ベンゾフラン−2−トリフルオロホウ酸カリウムを100:100−150:4−10:0.1−0.3:0.1−0.4:0.2−0.5の質量比で反応器に投入して、60−80℃で保温して窒素ガスを導入して、60−150min撹拌し、混合物をガラス板に注いで、次に混合物の上方に石英ガラス板をカバーし、混合物の厚みを100−300μmに制御して、紫外線で30−120s照射し、アセトンで6−24h洗浄して、静置して乾燥させ、精製補助ろ過膜を得る、ことを特徴とする請求項1に記載の所定比率混合による高純度リチウム塩の調製方法。 As the manufacturing process of the purification auxiliary filtration membrane, ethanol, polyethylene glycol diacrylate, 1,1-(methylenebis-4,1-phenylene)bis[2-hydroxy-2-methyl-1-acetone], lanthanum trifluoromethanesulfonate , 2-(3-nitro-2-pyridine)dimethylmalonate, potassium benzofuran-2-trifluoroborate at 100:100-150:4-10:0.1-0.3:0.1-0. The mixture was put in a reactor at a mass ratio of 4:0.2-0.5, kept at 60-80° C., nitrogen gas was introduced, the mixture was stirred for 60-150 min, and the mixture was poured onto a glass plate. Then, cover the quartz glass plate above the mixture, control the thickness of the mixture to 100-300 μm, irradiate with ultraviolet rays for 30-120 s, wash with acetone for 6-24 h, let stand and dry to aid purification. A method for preparing a high-purity lithium salt by mixing in a predetermined ratio according to claim 1, wherein a filtration membrane is obtained. 前記反応液を濃縮させるときに、真空度が−0.01MPaGであり、温度が60−90℃であり、結晶化させるときに、温度が−20℃である、ことを特徴とする請求項1に記載の所定比率混合による高純度リチウム塩の調製方法。 The vacuum degree is −0.01 MPaG , the temperature is 60 to 90° C. when the reaction liquid is concentrated, and the temperature is −20° C. when the reaction liquid is crystallized. 1. A method for preparing a high-purity lithium salt by mixing a predetermined ratio according to 1. 前記混合リチウム塩を精製するときに、貧溶媒が低沸点ハロゲン化アルカン、非極性−弱極性の有機溶媒、又は両方の混合有機溶媒であり、真空乾燥させるときに、真空度が−0.01MPaGであり、温度が80−100℃であることを特徴とする請求項1に記載の所定比率混合による高純度リチウム塩の調製方法。 When purifying the mixed lithium salt, the poor solvent is a low-boiling halogenated alkane, a nonpolar-weakly polar organic solvent, or a mixed organic solvent of both, and when vacuum-dried, the degree of vacuum is -0.01. It is MPaG and temperature is 80-100 degreeC , The preparation method of the high purity lithium salt by predetermined ratio mixing of Claim 1 characterized by the above-mentioned. 前記低沸点ハロゲン化アルカンが、四塩化炭素、トリクロロメタン、ジクロロメタン、ジクロロエタン又はクロロプロパンであり、前記非極性−弱極性の有機溶媒がシクロヘキサン、n−ヘキサン、ベンゼン、ペンタン又は石油エーテルである、ことを特徴とする請求項1に記載の所定比率混合による高純度リチウム塩の調製方法。

The low boiling halogenated alkane is carbon tetrachloride, trichloromethane, dichloromethane, dichloroethane or chloropropane, and the nonpolar-weakly polar organic solvent is cyclohexane, n-hexane, benzene, pentane or petroleum ether. The method for preparing a high-purity lithium salt by mixing in a predetermined ratio according to claim 1.

JP2019091092A 2019-03-13 2019-05-14 Preparation method of high-purity lithium salt by mixing in a predetermined ratio and its application Active JP6740424B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910187355.9A CN110343125B (en) 2019-03-13 2019-03-13 Method for preparing high-purity proportional mixed lithium salt at low cost and application of mixed lithium salt in lithium ion battery
CN201910187355.9 2019-03-13

Publications (2)

Publication Number Publication Date
JP6740424B1 true JP6740424B1 (en) 2020-08-12
JP2020147558A JP2020147558A (en) 2020-09-17

Family

ID=68174224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019091092A Active JP6740424B1 (en) 2019-03-13 2019-05-14 Preparation method of high-purity lithium salt by mixing in a predetermined ratio and its application

Country Status (3)

Country Link
JP (1) JP6740424B1 (en)
KR (1) KR102212995B1 (en)
CN (1) CN110343125B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276743A (en) * 2020-01-20 2020-06-12 杉杉新材料(衢州)有限公司 High-voltage lithium ion battery non-aqueous electrolyte and lithium ion battery thereof
CN111943969B (en) * 2020-09-03 2023-03-21 山东海科新源材料科技股份有限公司 Preparation method of lithium difluoroborate
CN115093321A (en) * 2022-07-13 2022-09-23 新余赣锋锂业有限公司 Method for preparing lithium oxalate by recycling lithium carbonate waste residue

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010165549A (en) * 2009-01-15 2010-07-29 Sony Corp Secondary battery
US20120231341A1 (en) * 2011-03-09 2012-09-13 Jun-Sik Kim Positive active material, and electrode and lithium battery containing the positive active material
CN103374023A (en) * 2012-04-25 2013-10-30 兰州理工大学 Co-production method for lithium oxalyldifluoroborate and lithium tetrafluoroborate
US10361459B2 (en) * 2013-05-14 2019-07-23 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2015078144A (en) * 2013-10-16 2015-04-23 株式会社豊田自動織機 Method for producing lithium(oxalato)borate
CN103943884A (en) * 2014-04-08 2014-07-23 陈琛 Lithium ion battery electrolyte solution
CN104628754A (en) * 2015-02-01 2015-05-20 湖南省正源储能材料与器件研究所 Preparation method of lithium ion battery electrolyte salt LiODFB (lithium oxalyldifluroborate)
JP2016186933A (en) * 2015-03-27 2016-10-27 Tdk株式会社 Positive electrode active material, positive electrode using the same, and lithium ion secondary battery
US20180254516A1 (en) * 2015-10-02 2018-09-06 Sion Power Corporation Non-aqueous electrolytes for high energy lithium-ion batteries
EP3391453B1 (en) * 2015-12-17 2020-07-08 Basf Se Cyanoalkyl sulfonylfluorides for electrolyte compositions for high energy lithium-ion batteries
CN106674261B (en) * 2016-11-17 2019-07-30 兰州理工大学 The method of purification of LiODFB
CN106632437B (en) * 2016-11-17 2019-04-02 兰州理工大学 The separation method of LiODFB and LiBF4
CN106328999A (en) * 2016-11-29 2017-01-11 河南省法恩莱特新能源科技有限公司 High-rate electrolyte of lithium-ion battery
CN113270643A (en) * 2017-08-28 2021-08-17 朝阳光达化工有限公司 Lithium ion battery electrolyte and lithium ion battery containing same

Also Published As

Publication number Publication date
CN110343125A (en) 2019-10-18
KR20200110594A (en) 2020-09-24
CN110343125B (en) 2020-07-21
JP2020147558A (en) 2020-09-17
KR102212995B1 (en) 2021-02-08

Similar Documents

Publication Publication Date Title
JP6740424B1 (en) Preparation method of high-purity lithium salt by mixing in a predetermined ratio and its application
CN108432026B (en) Electrolyte composition, secondary battery and method for using secondary battery
CN113851711B (en) Battery electrolyte and preparation method of benzenesulfonate compound therein
CN107226463A (en) A kind of combined preparation process of difluorophosphoric acid lithium salts and tetrafluoro boric acid lithium salts
CN112271314B (en) Flow battery positive electrode electrolyte based on tetrathiafulvalene dicarboxylic acid ethyl ester and preparation method thereof
CN110627742B (en) Preparation method and purification method of compound containing at least one cyclic ligand structure
Liu et al. Research progress on preparation and purification of fluorine-containing chemicals in lithium-ion batteries
CN113717205A (en) Preparation method of lithium oxalate borate and derivatives thereof, electrolyte and secondary battery
CN111769324A (en) High-voltage lithium ion battery electrolyte additive and lithium ion battery electrolyte containing additive
CN114075226A (en) Preparation method of oxalato borate, oxalato borate derivative, preparation method of oxalato borate derivative and electrolyte salt
CN112625055A (en) Method for purifying lithium difluorooxalate borate and lithium tetrafluoroborate mixed lithium salt and application thereof
CN110980683A (en) Method for purifying lithium salt containing phosphorus
CN114275757B (en) Preparation method of lithium difluorophosphate
CN115513528A (en) Nonaqueous electrolyte solution and secondary battery
CN111682263B (en) Application of nitrile compound in preparation of electrolyte for high-voltage battery system
CN113725430A (en) Preparation method of lithium tetrafluoro oxalate phosphate and derivative thereof, electrolyte and secondary battery
CN104230970A (en) Preparation method of lithium difluorooxalatoborate electrolyte
CN114075104A (en) Method for producing oxalate phosphate, oxalate phosphate derivative, method for producing oxalate phosphate derivative, and electrolyte salt
CN114649582A (en) Electrolyte containing six-membered cyclic nitrogen-based salt structure and preparation method and application thereof
CN114695960A (en) Novel additive with high and low temperature performance, preparation method and application thereof
CN111138462B (en) Preparation method and application of 2-fluoro-malonic acid lithium difluoroborate
CN117088390B (en) Preparation method of hexafluorophosphate, electrolyte and secondary battery
KR102638391B1 (en) Method for producing dialkanesulfonyl isosorbide compound, electrolyte additive for lithium secondary battery, electrolyte for lithium secondary battery, and lithium secondary battery
CN116675650B (en) Lithium ion battery electrolyte additive, lithium ion battery electrolyte and lithium ion battery
EP4265622A1 (en) Electrolyte containing nitrogen-based salt structure, preparation method therefor and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200722

R150 Certificate of patent or registration of utility model

Ref document number: 6740424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250