JP6737539B2 - Charged particle beam device - Google Patents

Charged particle beam device Download PDF

Info

Publication number
JP6737539B2
JP6737539B2 JP2019031267A JP2019031267A JP6737539B2 JP 6737539 B2 JP6737539 B2 JP 6737539B2 JP 2019031267 A JP2019031267 A JP 2019031267A JP 2019031267 A JP2019031267 A JP 2019031267A JP 6737539 B2 JP6737539 B2 JP 6737539B2
Authority
JP
Japan
Prior art keywords
lens
objective lens
aberration
charged particle
secondary electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019031267A
Other languages
Japanese (ja)
Other versions
JP2019075392A (en
Inventor
英登 土肥
英登 土肥
明 池上
明 池上
秀之 数見
秀之 数見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Priority to JP2019031267A priority Critical patent/JP6737539B2/en
Publication of JP2019075392A publication Critical patent/JP2019075392A/en
Application granted granted Critical
Publication of JP6737539B2 publication Critical patent/JP6737539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、荷電粒子線を試料に照射する荷電粒子線装置に係り、特に、ビームの傾斜照射が可能な荷電粒子線装置に関する。 The present invention relates to a charged particle beam device for irradiating a sample with a charged particle beam, and more particularly to a charged particle beam device capable of obliquely irradiating a beam.

半導体デバイスの製造プロセスにおいて、LSIに荷電粒子線を照射し、試料から発生する二次電子を検出することでパターン形状の寸法計測や欠陥検査を行う荷電粒子線装置が用いられており、特に走査電子顕微鏡(Scanning Electron Microscope:SEM)が多用されている。従来、半導体デバイスの性能向上やコストダウンは微細化による集積度向上によって成し遂げられてきたが、近年限界に近付きつつある。集積度向上を続けるために三次元構造をもつデバイスの製造が進められている。三次元デバイスの歩留まり向上のためには従来の平面情報に加えて高さ方向の情報を取得できる検査、計測装置が必要である。 In the process of manufacturing a semiconductor device, a charged particle beam apparatus is used which measures the dimension of a pattern shape and inspects defects by irradiating an LSI with a charged particle beam and detecting secondary electrons generated from a sample, and particularly scanning. An electron microscope (Scanning Electron Microscope: SEM) is widely used. Conventionally, performance improvement and cost reduction of semiconductor devices have been achieved by improving the degree of integration by miniaturization, but in recent years, they are approaching their limits. In order to continue to improve the degree of integration, devices having a three-dimensional structure are being manufactured. In order to improve the yield of three-dimensional devices, inspection and measurement equipment that can acquire information in the height direction in addition to conventional plane information is required.

そのために、ビームを傾斜(ビームの理想光軸からビームを偏向し、試料に対し、理想光軸から異なる方向からビームを照射する)することが考えられる。特許文献1には、ビームを傾斜して試料に照射する荷電粒子線装置が開示されている。また、ビーム傾斜時の分解能劣化を防ぐために、特許文献1には、荷電粒子線を対物レンズの収束磁界内で互いに逆向きに偏向させる二段の偏向手段を設け、荷電粒子線を対物レンズ軸外で傾斜したときに発生する軸外色収差を補正する方法が開示されている。 Therefore, it is possible to tilt the beam (deflect the beam from the ideal optical axis of the beam and irradiate the sample with the beam from a different direction from the ideal optical axis). Patent Document 1 discloses a charged particle beam device that tilts a beam and irradiates a sample. Further, in order to prevent resolution deterioration when the beam is tilted, in Patent Document 1, two-stage deflecting means for deflecting the charged particle beam in opposite directions in the converging magnetic field of the objective lens are provided, and the charged particle beam is used for the objective lens axis. A method for correcting off-axis chromatic aberration that occurs when tilted outside is disclosed.

特開2000−348658号公報(対応米国特許USP6,452,175)JP-A-2000-348658 (corresponding US Pat. No. 6,452,175)

ビームを傾斜して試料を観察する走査電子顕微鏡において、二次電子のエネルギー弁別や分析、高効率の信号検出を行うために、二次電子を軸外に偏向して、検出器側に導くことが望ましい。一方、二次電子は試料から放出された後、対物レンズによって収束され、その後、発散する。このような挙動を見せる二次電子を、有限の広さを持つ検出器の検出面、或いは電子(二次電子)の衝突によって、二次電子(三次電子)を生じさせる二次電子変換電極に導こうとすると、その発散の程度によっては、高効率検出を行うことができない。また、発明者らの検討によって、ビーム傾斜を行うと、対物レンズに像面湾曲収差が発生するため、これを補正するために、対物レンズを用いた調整が必要であり、この調整によって、二次電子の挙動が変化してしまうことが明らかになった。特許文献1には、一次電子の収差を補正するための手法は開示されているが、二次電子の高効率検出法についての開示がない。また、特許文献1に開示の手法では、対物レンズ内に設けられた二段の偏向器で一次電子を大きく偏向し対物レンズ内で収差を打ち消している。そのため二次電子は一次電子と逆方向に対物レンズ内で更に大きく偏向され、高効率検出は望めない。二次電子の高効率検出のためには、二次電子の軌道を適正に制御することが考えられるが、特許文献1の手法では、偏向器の偏向収差と対物レンズの軸外収差の影響を大きく受ける。そのため傾斜時の一次電子軌道に影響を与えずに二次電子軌道を独立に制御するのは困難である。 In a scanning electron microscope that observes a sample by inclining the beam, deflect secondary electrons off-axis and guide them to the detector side in order to perform energy discrimination and analysis of secondary electrons and highly efficient signal detection. Is desirable. On the other hand, the secondary electrons are emitted from the sample, converged by the objective lens, and then diverged. Secondary electrons that exhibit such behavior are detected on the detection surface of a detector with a finite width, or on secondary electron conversion electrodes that generate secondary electrons (tertiary electrons) by collision of electrons (secondary electrons). When trying to guide, highly efficient detection cannot be performed depending on the degree of divergence. Further, according to the study by the inventors, when the beam is tilted, a field curvature aberration occurs in the objective lens. Therefore, in order to correct this, an adjustment using the objective lens is necessary. It became clear that the behavior of the secondary electron changes. Patent Document 1 discloses a method for correcting aberration of primary electrons, but does not disclose a method for highly efficient detection of secondary electrons. Further, in the method disclosed in Patent Document 1, the primary electron is largely deflected by the two-stage deflector provided in the objective lens to cancel the aberration in the objective lens. Therefore, the secondary electrons are further deflected in the opposite direction to the primary electrons in the objective lens, and highly efficient detection cannot be expected. To detect secondary electrons with high efficiency, it is conceivable to appropriately control the trajectories of the secondary electrons. However, in the method of Patent Document 1, the influence of the deflection aberration of the deflector and the off-axis aberration of the objective lens is affected. Receive big. Therefore, it is difficult to control the secondary electron trajectories independently without affecting the primary electron trajectories during tilting.

以下に、ビーム傾斜時や試料から放出される荷電粒子の偏向時に発生する高次の軸外色収差等の抑制を目的とする荷電粒子線装置を提案する。 Below, a charged particle beam device is proposed for the purpose of suppressing high-order off-axis chromatic aberration and the like that occur when the beam is tilted or when the charged particles emitted from the sample are deflected.

上記目的を達成するための一態様として、荷電粒子源から放出された荷電粒子ビームを集束する対物レンズと、荷電粒子を検出する検出器と、前記対物レンズの理想光軸とは異なる方向からビームを照射するように、前記荷電粒子ビームを偏向、或いは試料から放出された前記荷電粒子を前記検出器に向かって偏向する1以上の偏向器と、前記荷電粒子源と前記対物レンズとの間に配置される収差補正ユニットと、前記収差補正ユニットと前記対物レンズとの間に配置され、前記収差補正ユニットを通過した荷電粒子ビームを集束する光学要素を備えた荷電粒子線装置を提案する。 As one mode for achieving the above object, an objective lens that focuses a charged particle beam emitted from a charged particle source, a detector that detects charged particles, and a beam from a direction different from the ideal optical axis of the objective lens are used. Between the charged particle source and the objective lens, and one or more deflectors for deflecting the charged particle beam or for deflecting the charged particles emitted from the sample towards the detector to irradiate A charged particle beam apparatus including an aberration correction unit arranged and an optical element arranged between the aberration correction unit and the objective lens for focusing the charged particle beam that has passed through the aberration correction unit is proposed.

上記一態様によれば、ビーム傾斜時や試料から放出される荷電粒子の偏向時に発生する高次の軸外色収差等の抑制が可能となる。 According to the above aspect, it is possible to suppress high-order off-axis chromatic aberration that occurs when the beam is tilted or when the charged particles emitted from the sample are deflected.

走査電子顕微鏡の光学系構成を示す図(第一の実施例の概略図)。The figure which shows the optical system structure of a scanning electron microscope (schematic diagram of 1st Example). 第二の実施例の光学系構成の概略図。FIG. 3 is a schematic diagram of an optical system configuration of a second example. 第三の実施例の光学系構成の概略図。The schematic diagram of the optical system composition of a 3rd example. 第四の実施例の光学系構成の概略図。The schematic diagram of the optical system composition of the 4th example. 第五の実施例の光学系構成の概略図。The schematic diagram of the optical system composition of a 5th example. 第六の実施例の二次電子偏向用EXBユニットの構成図。The block diagram of the secondary electron deflection EXB unit of a 6th Example. 第七の実施例の二次電子偏向用ウィーンフィルタユニットの構成図。The block diagram of the Wien filter unit for secondary electron deflection of a 7th Example. 第八の実施例の二次電子偏向用ウィーンフィルタユニットの構成図。The block diagram of the Wien filter unit for secondary electron deflection of an 8th Example. 第九の実施例のビーム傾斜のフローチャート。The flowchart of the beam inclination of a 9th Example. 光学系制御部の構成を表す図。The figure showing the structure of an optical system control part. 第一の実施例の二次電子軌道の集束位置の調整を表す図。The figure showing adjustment of the focusing position of the secondary electron orbit of a 1st example. 第一の実施例のビーム傾斜時の一次電子の中心軌道を表す図。The figure showing the central orbit of a primary electron at the time of beam inclination of a 1st example.

以下に説明する実施例は、ビーム傾斜が可能な荷電粒子線装置に関するものであり、特に、収差の抑制と荷電粒子(二次電子等)の高効率検出を実現する荷電粒子線装置に関するものである。 The embodiments described below relate to a charged particle beam device capable of beam tilting, and particularly to a charged particle beam device that realizes suppression of aberrations and highly efficient detection of charged particles (secondary electrons, etc.). is there.

半導体デバイスのパターン形状や材質は多様化を続けており、それらの検査、計測においては一次電子線照射により試料から発生する二次電子の収量向上や、エネルギー弁別による材料判別など、二次電子に関する解析の要求が高まっている。高精度の弁別、解析を行うために二次電子軌道を制御する機能を持つ装置が要求されている。従って高さ方向に異なる材料を積層した多層膜構造の三次元デバイスの検査、計測、分析が必要とされ、傾斜画像の取得と傾斜時の二次電子分析が両立できる装置の要求が高まると考えられる。 The pattern shapes and materials of semiconductor devices continue to diversify, and in the inspection and measurement of them, the yield of secondary electrons generated from the sample by irradiation with the primary electron beam is improved, and the material discrimination by energy discrimination, etc. The demand for analysis is increasing. A device having a function of controlling secondary electron trajectories is required for highly accurate discrimination and analysis. Therefore, it is necessary to inspect, measure, and analyze a three-dimensional device having a multilayer film structure in which different materials are stacked in the height direction, and it is considered that there will be an increasing demand for a device that can perform both tilt image acquisition and secondary electron analysis during tilt. To be

SEMで高さ方向の情報を得るには試料に対して傾斜したビームを照射し画像を取得すれば良い。SEMでの傾斜画像の取得方法には、機械的傾斜方法と電気的傾斜方法がある。インラインでの計測・検査においては試料ステージやカラムを機械的に傾斜させる方法があるがウェーハとカラム構造物との干渉を防ぐために対物レンズと試料の間の作動距離(ワーキングディスタンス:WD)が長くなり、対物レンズの焦点距離が長くなる。そのため対物レンズの収差を小さくすることができず分解能が劣化する。また傾斜のための機械的動作がスループットや観察位置、傾斜角度の再現性を低下させる。 In order to obtain information in the height direction by SEM, it is sufficient to irradiate the sample with an inclined beam and acquire an image. There are a mechanical tilting method and an electric tilting method as a method of acquiring a tilted image with the SEM. For in-line measurement/inspection, there is a method to mechanically tilt the sample stage and column, but the working distance (working distance: WD) between the objective lens and the sample is long to prevent interference between the wafer and the column structure. Therefore, the focal length of the objective lens becomes long. Therefore, the aberration of the objective lens cannot be reduced and the resolution deteriorates. Further, the mechanical operation for tilting reduces the reproducibility of throughput, observation position, and tilting angle.

一方、電気的な傾斜方法として偏向器により電子ビームを偏向して試料に対して傾斜させるビーム傾斜方式がある。スループットや傾斜角度の再現性および傾斜角度、方向の可変性という点で機械的傾斜方法を大きく凌駕するため電気的なビーム傾斜方式のSEMが望まれている。しかし、この方式ではビームを傾斜すると対物レンズの軸外収差が増大してビーム径が大きくなり分解能が劣化する。 On the other hand, as an electric tilting method, there is a beam tilting method in which an electron beam is deflected by a deflector and tilted with respect to a sample. An electric beam tilting SEM is desired because it greatly surpasses the mechanical tilting method in terms of throughput, tilt angle reproducibility, tilt angle, and direction variability. However, in this method, when the beam is tilted, the off-axis aberration of the objective lens increases, the beam diameter increases, and the resolution deteriorates.

よって、以下に説明する実施例では、偏向器(第1の偏向器)によってビームを傾斜させ、傾斜に伴って発生する分解能低下要因を抑制可能な光学素子を備えたSEMについて説明する。更に、偏向電場と偏向磁場を直交させて発生させる直交電磁場発生器(以後EXB)、もしくはウィーンフィルタ等の偏向器(第2の偏向器)により、偏向される二次電子等の軌道を、ビーム傾斜によらず、検出器側に適正に導く光学素子を備えたSEMについて説明する。より具体的には、二次電子のエネルギー弁別、分析精度の向上のためには分光器への二次電子の入射軌道を揃える必要がある。また信号収量向上のためには可能な限り多くの二次電子を検出器の検出面に導かねばならない。しかしながら二次電子が二次電子偏向器上で広がっていると、その2次収差の影響を受けて軌道がEXB上の位置により大きく変化し高精度の弁別、分析に必要な入射条件を逸脱したり検出面で二次電子が広がり過ぎ、収量が低下したりする可能性がある。そのために二次電子偏向器上で二次電子の集束点を形成することで二次電子に対する幾何収差を最小限に抑えることが望ましい。 Therefore, in the embodiment described below, an SEM including an optical element capable of tilting a beam by a deflector (first deflector) and suppressing a resolution lowering factor generated due to the tilt will be described. Further, a trajectory of secondary electrons or the like deflected by a quadrature electromagnetic field generator (hereinafter, EXB) that generates a deflection electric field and a deflection magnetic field at right angles or a deflector such as a Wien filter (second deflector) An SEM equipped with an optical element that guides properly to the detector side regardless of the inclination will be described. More specifically, in order to discriminate the energy of secondary electrons and improve the analysis accuracy, it is necessary to align the incident trajectories of secondary electrons to the spectroscope. Also, in order to improve the signal yield, as many secondary electrons as possible must be guided to the detection surface of the detector. However, when the secondary electrons are spread on the secondary electron deflector, the trajectory changes greatly depending on the position on the EXB due to the influence of the secondary aberration, which deviates from the incident conditions necessary for highly accurate discrimination and analysis. Alternatively, secondary electrons may spread too much on the detection surface, which may reduce the yield. Therefore, it is desirable to minimize the geometrical aberration for the secondary electrons by forming the focal point of the secondary electrons on the secondary electron deflector.

また、対物レンズの軸外をビームが通過することにより発生する像面湾曲を傾斜角度毎に対物レンズ自身の電流、電圧を弱めることで調整し、補正することが考えられるが、二次電子が対物レンズから受けるレンズ作用が傾斜角と共に弱まり、二次電子の集束位置が上昇する。そのため二次電子偏向器上での二次電子が傾斜角と共に広がり、幾何収差が増大し弁別精度が低下する。また、ビーム傾斜時に二次電子を偏向する際に、一次電子に対しても色分散が発生し、対物レンズ以外の色収差が発生し、傾斜時の分解能を劣化させる。 Further, it is conceivable to adjust and correct the field curvature generated by the beam passing off the axis of the objective lens by weakening the current and voltage of the objective lens itself for each tilt angle, but the secondary electron The lens action received from the objective lens weakens with the tilt angle, and the focus position of the secondary electrons rises. Therefore, secondary electrons on the secondary electron deflector spread with the tilt angle, geometrical aberration increases, and discrimination accuracy decreases. Further, when the secondary electrons are deflected when the beam is tilted, chromatic dispersion also occurs with respect to the primary electrons, causing chromatic aberration other than the objective lens, which deteriorates the resolution during tilting.

上記条件に鑑み、以下の実施例では、主に荷電粒子線を供給するための荷電粒子線源と、前記荷電粒子線源から放出された前記荷電粒子線の集束位置と集束角度を制御するための複数のコンデンサレンズと、前記荷電粒子線を試料上に集束させる対物レンズと、前記荷電粒子線を試料上走査させるための走査手段と、荷電粒子線照射によって試料から発生する二次電子を検出するための検出器を備え、ビームを傾斜して試料に照射し傾斜画像を取得する荷電粒子線装置において、ビームを傾斜するために一次電子を偏向する偏向器(傾斜用偏向器:第1の偏向器)と、前記対物レンズの上方に配置され、試料から発生した二次電子を一次荷電粒子線と分離し、検出器へ導くための二次電子偏向器(第2の偏向器)と、試料と前記二次電子偏向器の間に配置され、二次電子を前記二次電子偏向器の位置に集束させるレンズ(二次電子集束レンズ:荷電粒子集束レンズ)と、前記二次電子偏向器の上方に配置されるビーム傾斜時の収差補正ユニット(収差補正レンズもしくは収差発生用多極子と、収差発生用偏向器及びエネルギーの異なる一次電子線を対物レンズ主面に集束させる高次色収差抑制光学要素)と、前記二次電子偏向器の上方に配置される前記二次電子集束レンズによる収差特性の変化を補償するレンズ(収差特性補償レンズ)を備える荷電粒子線装置について説明する。 In view of the above conditions, in the following embodiments, in order to mainly control the focusing position and the focusing angle of the charged particle beam source for supplying the charged particle beam and the charged particle beam emitted from the charged particle beam source. A plurality of condenser lenses, an objective lens for focusing the charged particle beam on the sample, a scanning means for scanning the charged particle beam on the sample, and detecting secondary electrons generated from the sample by irradiation of the charged particle beam. In a charged particle beam apparatus that includes a detector for tilting a beam to irradiate a sample to acquire a tilted image, a deflector that deflects primary electrons to tilt the beam (tilt deflector: first tilter). A deflector) and a secondary electron deflector (second deflector) which is disposed above the objective lens and separates secondary electrons generated from the sample from the primary charged particle beam and guides them to the detector. A lens (secondary electron focusing lens: charged particle focusing lens) disposed between the sample and the secondary electron deflector to focus secondary electrons at the position of the secondary electron deflector, and the secondary electron deflector. Aberration correction unit (aberration correction lens or multipole for aberration generation, deflector for aberration generation, and high-order chromatic aberration suppression optics for focusing primary electron beams having different energies on the main surface of the objective lens when the beam is tilted Element) and a lens (aberration characteristic compensating lens) for compensating a change in aberration characteristic due to the secondary electron focusing lens arranged above the secondary electron deflector will be described.

上記構成によれば、半導体の形状パターンの検査、計測において高効率な信号検出、高精度の材料判別が可能な三次元観察技術が可能となる。 According to the above configuration, a three-dimensional observation technique capable of highly efficient signal detection and highly accurate material discrimination in the inspection and measurement of the semiconductor shape pattern becomes possible.

以下、図面を用いて、ビーム傾斜用の偏向器を備えた走査電子顕微鏡を説明する。なお、以下の実施例では走査電子顕微鏡を例にとって説明するが、以下の実施例は、イオンビームを照射するイオンビーム照射装置への適用も可能である。 Hereinafter, a scanning electron microscope equipped with a beam tilting deflector will be described with reference to the drawings. In the following embodiments, a scanning electron microscope will be described as an example, but the following embodiments can also be applied to an ion beam irradiation device that irradiates an ion beam.

図1は第一の実施例の光学構成の概略図である。第一の実施例では、ビーム傾斜時の一次電子の収差補正に要する収差の発生に偏向器とレンズを用いる場合について説明する。 FIG. 1 is a schematic diagram of the optical configuration of the first embodiment. In the first embodiment, a case will be described in which a deflector and a lens are used to generate the aberration required for correcting the aberration of primary electrons when the beam is tilted.

まず一次電子が試料に対し垂直に入射し、二次電子の集束位置が制御されていない場合の動作を説明する。陰極01と第一陽極02の間には電子銃制御部100により電圧が印加され、所定の電流密度で一次電子41が放出される。陰極01と第二陽極03の間には電子銃制御部100により加速電圧が印加され一次電子41が加速されて後段へと打ち出される。一次電子41は第一コンデンサレンズ制御部101により制御される第一コンデンサレンズ04で光軸30上の点P1に集束された後、対物絞り05を通過し不要な電子が除去される。点P1の位置と絞りの穴径により、一次電子41のプローブ電流量と開き角が決定される。 First, the operation when the primary electrons are vertically incident on the sample and the focus position of the secondary electrons is not controlled will be described. A voltage is applied between the cathode 01 and the first anode 02 by the electron gun controller 100, and the primary electrons 41 are emitted at a predetermined current density. An accelerating voltage is applied between the cathode 01 and the second anode 03 by the electron gun control unit 100 to accelerate the primary electrons 41 to be ejected to the subsequent stage. The primary electrons 41 are focused on the point P1 on the optical axis 30 by the first condenser lens 04 controlled by the first condenser lens control unit 101, and then pass through the objective diaphragm 05 to remove unnecessary electrons. The probe current amount and the opening angle of the primary electron 41 are determined by the position of the point P1 and the diameter of the aperture.

その後、第二コンデンサレンズ制御部102により制御される第二コンデンサレンズ06により、光軸30上の点P2に一次電子41のクロスオーバが形成される。点P2は収差発生用偏向器08の中心位置と一致するように設定される。更に収差補正用レンズ制御部105で制御される収差補正用レンズ09に一次電子41が入射し対物レンズの物面Zm上の点P3にクロスオーバを形成する。高次軸外収差抑制レンズ11は物面Zmを中心に配置されているため一次電子41は高次軸外色収差抑制レンズ11のレンズ作用を受けない。 After that, the second condenser lens 06 controlled by the second condenser lens controller 102 forms a crossover of the primary electrons 41 at the point P2 on the optical axis 30. The point P2 is set so as to coincide with the center position of the aberration generating deflector 08. Further, the primary electrons 41 are incident on the aberration correction lens 09 controlled by the aberration correction lens controller 105 to form a crossover at a point P3 on the object plane Zm of the objective lens. Since the high-order off-axis aberration suppressing lens 11 is arranged around the object plane Zm, the primary electrons 41 are not affected by the lens action of the high-order off-axis chromatic aberration suppressing lens 11.

また、二次電子偏向用EXB制御部110によって制御される二次電子偏向用EXB22の電磁場強度は一次電子41の中心軌道が直進するように調整される。 Further, the electromagnetic field intensity of the secondary electron deflection EXB 22 controlled by the secondary electron deflection EXB control unit 110 is adjusted so that the central orbit of the primary electron 41 goes straight.

更に対物レンズ制御部113で制御される対物レンズ14に入射する。対物レンズ14は、電子ビームを通過させる開口を持ち、その開口の中心は、電子ビームの理想光軸(ビームが偏向を受けない場合の電子ビームの通過軌道)となる。 Further, the light enters the objective lens 14 controlled by the objective lens control unit 113. The objective lens 14 has an opening through which the electron beam passes, and the center of the opening is the ideal optical axis of the electron beam (passage trajectory of the electron beam when the beam is not deflected).

対物レンズ制御部113で制御されるブースター電極33が配置されており、加速電圧が印加されることで対物レンズ14の収差を低減される。またリターディング電圧制御電源34により制御される減速電圧がステージ制御部115で制御されるステージ15に印加されており、試料16と対物レンズ14の間に減速電場を形成することで対物レンズ14の収差が更に低減される。対物レンズ14に入射した一次電子41は試料16上で光軸30上の点Piに集束し微小スポットを形成する。対物レンズ14のレンズ強度は、試料高さ計測装置120により計測されるワーキングディスタンスによって決定される。試料16に照射された一次電子41の微小スポットは走査偏向器制御部111により制御される走査偏向器13により試料16上を平面的に走査される。 The booster electrode 33 controlled by the objective lens controller 113 is arranged, and the aberration of the objective lens 14 is reduced by applying the acceleration voltage. Further, the deceleration voltage controlled by the retarding voltage control power supply 34 is applied to the stage 15 controlled by the stage control unit 115, and a deceleration electric field is formed between the sample 16 and the objective lens 14 to generate the deceleration electric field. Aberration is further reduced. The primary electrons 41 incident on the objective lens 14 are focused on the sample 16 at a point Pi on the optical axis 30 to form a minute spot. The lens strength of the objective lens 14 is determined by the working distance measured by the sample height measuring device 120. The micro-spot of the primary electrons 41 with which the sample 16 is irradiated is planarly scanned on the sample 16 by the scanning deflector 13 controlled by the scanning deflector controller 111.

このとき試料上を走査する一次電子41により発生する幅広いエネルギーをもった二次電子の内、注目するエネルギーの二次電子42は対物レンズ14による強いレンズ作用を受ける。その結果対物レンズ14の試料側のレンズ場の作用で一度集束する。その後、残りのレンズ場の作用を受ける。このとき二次電子42はワーキングディスタンス、対物レンズ14のレンズ強度、ブースター電極33の加速電場、試料16の減速電場の強度に従ってある所に集束する。その後二次電子42は二次電子偏向用EXB制御部110によって制御される二次電子偏向用EXB22により偏向され、検出器制御部107で制御される検出器17に入射し、信号として検出される。検出信号は光学系制御部116で演算され、画像表示部117にSEM画像として表示される。SEM像の視野を動かす場合は、ステージ制御部114で制御される試料ステージを動かすか、走査偏向器制御部111で制御されるイメージシフト偏向器18を動作させて一次電子41の試料上の到着位置を変更する。制御装置116は、図示しない記憶媒体を備え、当該記憶媒体に記憶された光学条件に基づいて、後述する実施例に記載された制御を実行する。 At this time, among the secondary electrons having a wide range of energy generated by the primary electrons 41 scanning the sample, the secondary electrons 42 having the energy of interest are subjected to a strong lens action by the objective lens 14. As a result, it is once focused by the action of the lens field on the sample side of the objective lens 14. After that, it is affected by the rest of the lens field. At this time, the secondary electrons 42 are focused at a certain position according to the working distance, the lens strength of the objective lens 14, the acceleration electric field of the booster electrode 33, and the deceleration electric field of the sample 16. After that, the secondary electrons 42 are deflected by the secondary electron deflection EXB 22 controlled by the secondary electron deflection EXB control unit 110, enter the detector 17 controlled by the detector control unit 107, and are detected as a signal. .. The detection signal is calculated by the optical system control unit 116 and displayed on the image display unit 117 as an SEM image. When moving the field of view of the SEM image, the sample stage controlled by the stage control unit 114 is moved, or the image shift deflector 18 controlled by the scanning deflector control unit 111 is operated to arrive at the primary electron 41 on the sample. Change the position. The control device 116 includes a storage medium (not shown), and executes the control described in the embodiments described later based on the optical condition stored in the storage medium.

本実施例では、更に二次電子偏向用EXB22の下方に二次電子集束用レンズ21が配置され、二次電子集束用レンズ21とは対物レンズ14の物面Zmを挟んで反対側で且つ傾斜用偏向器08より下方の位置に収差特性補償レンズ20が配置される。 In the present embodiment, a secondary electron focusing lens 21 is arranged below the secondary electron deflecting EXB 22. The secondary electron focusing lens 21 is on the opposite side of the object surface Zm of the objective lens 14 and is inclined. The aberration characteristic compensating lens 20 is disposed below the optical deflector 08.

ビーム傾斜時の一次電子の一次軸外色収差と偏向コマ収差を同時に補正するためには、対物レンズ系と収差発生レンズ09の偏向コマ収差と軸上色収差の収差係数の比が等しい必要があり、その条件は次式(1)である。

Figure 0006737539
In order to simultaneously correct the primary off-axis chromatic aberration of the primary electrons at the time of beam tilt and the deflection coma, it is necessary that the ratios of the deflection comatic aberration and the axial chromatic aberration of the objective lens system and the aberration generating lens 09 are equal. The condition is the following expression (1).
Figure 0006737539

但しC OBJとC OBJは対物レンズ物面Zmで定義される対物レンズ14の磁場、ブースター電極33による加速電場、リターディング電場の合成レンズの球面収差係数と色収差係数である。またC CORとC CORは対物レンズ物面Zmで定義される収差発生用レンズ09の球面収差係数と色収差係数である。本実施例では、二次電子集束用レンズ21と収差特性補償用レンズ20がOFFのときに式(1)が成立する収差発生レンズ09が配置されている。 However C s OBJ and C c OBJ is spherical aberration coefficient and the chromatic aberration coefficient of the objective lens 14 of the magnetic field, accelerating electric field by booster electrodes 33, retarding field of the synthetic lens, as defined by the objective lens paraboloid Zm. Further, C s COR and C c COR are a spherical aberration coefficient and a chromatic aberration coefficient of the aberration generating lens 09 defined by the objective lens object surface Zm. In this embodiment, the aberration generating lens 09 that satisfies the formula (1) when the secondary electron focusing lens 21 and the aberration characteristic compensating lens 20 are OFF is arranged.

次に、傾斜角が0°のときに注目するエネルギーの二次電子42を二次電子偏向用EXB22の中心に集束させる方法を説明する。図11Aは二次電子集束レンズ21と収差特性補償レンズ20がOFFの時のビーム傾斜時の一次電子の中心軌道を表す図である。注目するエネルギーの二次電子42は対物レンズ物面Zmから外れた場所で集束している。 Next, a method of focusing the secondary electrons 42 of the energy of interest when the tilt angle is 0° on the center of the secondary electron deflection EXB 22 will be described. FIG. 11A is a diagram showing the central orbit of the primary electrons when the beam is tilted when the secondary electron converging lens 21 and the aberration characteristic compensating lens 20 are OFF. The secondary electrons 42 of the energy of interest are focused at a position outside the object surface Zm of the objective lens.

次に二次電子集束用レンズ21に電流、電圧を加え動作させる。このとき二次電子集束レンズ21の電圧、電流は対物レンズ14の電流変化に対し協働して動作する。一次電子と二次電子はエネルギーが大きく異なるため、同じレンズによる屈折力が異なる。一次電子を試料上の点Piに集束させつつ、二次電子42を対物レンズ14の物面Zm上の点P3に集束させるように対物レンズ14と二次電子集束用レンズ21の強度を同時に調整する(図11B)。 Next, current and voltage are applied to the secondary electron focusing lens 21 to operate it. At this time, the voltage and current of the secondary electron focusing lens 21 operate in cooperation with the current change of the objective lens 14. Since the primary electron and the secondary electron have greatly different energies, the refractive power of the same lens is different. The intensity of the objective lens 14 and the secondary electron focusing lens 21 is simultaneously adjusted so that the primary electrons are focused on the point Pi on the sample and the secondary electrons 42 are focused on the point P3 on the object plane Zm of the objective lens 14. (FIG. 11B).

二次電子集束用レンズ21が動作したことにより、ビーム傾斜時の対物レンズ系は対物レンズ14、ブースター電極33、リターディング電場に加えて二次電子集束レンズ21の四者による合成レンズとなる。従って二次電子集束用レンズ21の電磁場によって対物レンズ系の球面収差係数と色収差係数が変化する。傾斜角毎に電磁場強度が異なるためこれらの収差係数は傾斜角毎に変化する。 The operation of the secondary electron focusing lens 21 causes the objective lens system when the beam is tilted to be a combined lens of the secondary electron focusing lens 21 in addition to the objective lens 14, the booster electrode 33, and the retarding electric field. Therefore, the spherical aberration coefficient and chromatic aberration coefficient of the objective lens system change due to the electromagnetic field of the secondary electron focusing lens 21. Since the electromagnetic field strength is different for each tilt angle, these aberration coefficients change for each tilt angle.

次に、収差特性補償レンズ20を動作させる。一次電子の集束点P3を保ったまま、次式(2)が成り立つように、二次電子集束レンズ21と対物レンズ14の変化に合わせて、収差特性補償レンズ20と収差発生レンズ09が同時に調整され次式(2)が成立する。

Figure 0006737539
Next, the aberration characteristic compensation lens 20 is operated. The aberration characteristic compensating lens 20 and the aberration generating lens 09 are adjusted at the same time in accordance with changes in the secondary electron focusing lens 21 and the objective lens 14 so that the following equation (2) holds while maintaining the focusing point P3 of the primary electrons. Then, the following equation (2) is established.
Figure 0006737539

二次電子集束レンズ21を含めた対物レンズ物面Zmで定義される対物レンズ系の球面と色収差係数をC´ OBJ、C´ OBJ、収差発生用レンズ09と収差特性補償レンズ20の合成レンズの球面収差係数と色収差係数をそれぞれC´ COR、C´ CORとする。 Secondary electron focusing lens 21 to the objective lens system of spherical and chromatic aberration coefficients C's OBJ defined by the objective lens material surface Zm, including the synthesis of C'c OBJ, for aberration lens 09 and the aberration characteristic compensator lens 20 The spherical aberration coefficient and the chromatic aberration coefficient of the lens are C′ s COR and C′ c COR , respectively.

この動作により、任意のワーキングディスタンス、対物レンズ14のレンズ強度、ブースター電極33の加速電場、試料16の減速電場の強度に対して無傾斜時の二次電子の集束位置を二次電子偏向用EXB22の中心P3に設定できる。 By this operation, the focusing position of the secondary electron when there is no inclination with respect to the arbitrary working distance, the lens strength of the objective lens 14, the acceleration electric field of the booster electrode 33, and the deceleration electric field strength of the sample 16 is set to the EXB 22 for secondary electron deflection. It can be set to the center P3.

次にビーム傾斜時の動作を説明する。図12はビーム傾斜時の一次電子の中心軌道である。一次電子43は収差補正用レンズ09の物点P2を中心とする収差発生用偏向器08により偏向され収差補正用レンズ09の軸外を通過する。その後、対物レンズ14の対称面Zmの中心点P3で光軸と交わり、P3と中心が一致する傾斜用偏向器12で振り戻され、対物レンズ14の軸外を通過して試料16に傾斜しながら照射される。 Next, the operation when the beam is tilted will be described. FIG. 12 shows the central orbit of primary electrons when the beam is tilted. The primary electrons 43 are deflected by the aberration generating deflector 08 centered on the object point P2 of the aberration correcting lens 09 and pass off the axis of the aberration correcting lens 09. Then, it intersects with the optical axis at the center point P3 of the symmetry plane Zm of the objective lens 14, is swung back by the tilting deflector 12 whose center coincides with P3, passes through the axis of the objective lens 14 and tilts to the sample 16. While being irradiated.

このとき、収差発生レンズ09の軸外を通過した一次電子は一次軸外色収差を受け、エネルギーの高い一次電子44とエネルギーの低い一次電子45に分散する。対物レンズ14の物面に配置された高次軸外色収差抑制レンズ11は、収差発生レンズ09で分散した一次電子を対物レンズ14の主面に集束させるようにレンズ強度が設定される。式(2)が成立するので一次軸外色収差、偏向コマ収差の補正と高次軸外色収差の抑制が行われる。傾斜角、傾斜方向を変える際には収差発生用偏向器08と傾斜用偏向器12による一次電子43の偏向角、偏向方向を変更する。 At this time, the primary electrons that have passed the off-axis of the aberration generating lens 09 are subjected to primary off-axis chromatic aberration and are dispersed into primary electrons 44 with high energy and primary electrons 45 with low energy. The high-order off-axis chromatic aberration suppressing lens 11 arranged on the object plane of the objective lens 14 has a lens strength set so as to focus the primary electrons dispersed by the aberration generating lens 09 on the main surface of the objective lens 14. Since the expression (2) is established, the primary off-axis chromatic aberration and the deflection coma aberration are corrected and the high-order off-axis chromatic aberration is suppressed. When changing the inclination angle and the inclination direction, the deflection angle and the deflection direction of the primary electron 43 by the aberration generating deflector 08 and the inclination deflector 12 are changed.

次に、対物レンズ14の軸外を通過することによる像面湾曲を補正するため対物レンズ14の励磁電流を調整する。対物レンズ14のレンズ強度が弱くなるため注目するエネルギーの二次電子42の集束点が対物レンズ14の物面Zmの点P3より上方にずれる。 Next, the exciting current of the objective lens 14 is adjusted in order to correct the curvature of field due to passing off the axis of the objective lens 14. Since the lens strength of the objective lens 14 becomes weaker, the focus point of the secondary electron 42 of the energy of interest shifts upward from the point P3 of the object plane Zm of the objective lens 14.

次に無傾斜時の際の調整と同様に二次電子集束用レンズ21と対物レンズ14を同時に調整し、一次電子を試料上の点Piに集束させつつ、二次電子42を対物レンズ14の物面Zm上の点P3に集束させる。この調整は傾斜角によって異なるので収差係数は傾斜角毎に変化し、その比も変化する。二次電子集束レンズ21を含めた対物レンズ物面Zmで定義される対物レンズ系の球面と色収差係数を傾斜角θの関数としてC´ OBJ(θ)、C´ OBJ(θ)とする。 Next, the secondary electron focusing lens 21 and the objective lens 14 are adjusted at the same time as in the case of no tilt, and the secondary electrons 42 of the objective lens 14 are focused while focusing the primary electrons to the point Pi on the sample. It is focused on a point P3 on the object surface Zm. Since this adjustment differs depending on the tilt angle, the aberration coefficient changes for each tilt angle, and the ratio thereof also changes. Let C′ s OBJ (θ) and C′ c OBJ (θ) be the functions of the spherical surface and the chromatic aberration of the objective lens system defined by the objective lens object surface Zm including the secondary electron focusing lens 21 as a function of the tilt angle θ. ..

次に、収差特性補償レンズ20を動作させる。一次電子の集束点P3を常に保ったまま、次式(3)が成り立つように、二次電子集束レンズ21と対物レンズ14の変化に合わせて、傾斜角毎に収差特性補償レンズ20と収差発生レンズ09が同時に調整される。

Figure 0006737539
Next, the aberration characteristic compensation lens 20 is operated. While the focusing point P3 of the primary electrons is always maintained, the aberration characteristic compensating lens 20 and the aberration are generated for each tilt angle in accordance with the changes of the secondary electron focusing lens 21 and the objective lens 14 so that the following expression (3) is established. The lens 09 is adjusted at the same time.
Figure 0006737539

但し、傾斜角がθのときの対物レンズ物面Zmで定義される収差発生用レンズ09と収差特性補償レンズ20の合成レンズの球面収差係数と色収差係数をそれぞれC´ COR(θ)、C´ COR(θ)とする。 However, the spherical aberration coefficient and the chromatic aberration coefficient of the combined lens of the aberration generating lens 09 and the aberration characteristic compensating lens 20 defined by the objective lens object surface Zm when the tilt angle is θ are C′ s COR (θ) and C, respectively. Let ' c COR (θ).

本実施例によれば、任意のビーム傾斜角、傾斜方向に対して一次電子の一次軸外色収差と偏向コマ収差の同時補正と高次軸外色収差の発生抑制及び二次電子集束点の二次電子偏向EXB22の位置に固定でき二次電子の受ける幾何収差が最小化される。なお、検出器17の検出面の大きさは有限であるため、光軸から離間するに従って拡がる二次電子軌道が検出面から外れないように、二次電子収束レンズ21と対物レンズ14の強度を調整することによって、ビーム傾斜の程度に寄らず、二次荷電粒子の高効率検出を実現することが可能となる。 According to this embodiment, the primary off-axis chromatic aberration and the deflection coma aberration of the primary electrons are simultaneously corrected with respect to an arbitrary beam tilt angle and tilt direction, the occurrence of higher-order off-axis chromatic aberration is suppressed, and the secondary electron focusing point is secondary. The position of the electron deflection EXB22 can be fixed, and the geometrical aberration received by the secondary electrons can be minimized. Since the size of the detection surface of the detector 17 is finite, the strengths of the secondary electron converging lens 21 and the objective lens 14 are set so that the secondary electron trajectories that expand with distance from the optical axis do not deviate from the detection surface. By adjusting, it becomes possible to realize highly efficient detection of secondary charged particles regardless of the degree of beam tilt.

また二次電子EXB22により二次電子を偏向すると一次電子に色分散が発生する。本実施例では、二次電子偏向用EXB22が対物レンズの物面Zmと中心が一致するように配置されるために荷次電子偏向用EXB22により二次電子42が偏向されるときに一次電子に発生する色分散は対物レンズ14により試料上に集束されゼロとなる。また一次電子の傾斜角と二次電子偏向角が共に10°以下の低角度傾斜、偏向では、二次電子EXB22による一次電子の色分散による高次軸外色収差が顕在化しない。更に一次電子が二次電子偏向用EXB22の中心で集束するため二次電子偏向用EXB22のフォーカス作用、非点結像作用、2次収差の一次電子への影響が最小化される。 Further, when the secondary electrons are deflected by the secondary electrons EXB22, chromatic dispersion occurs in the primary electrons. In this embodiment, since the secondary electron deflection EXB22 is arranged so that its center coincides with the object surface Zm of the objective lens, when the secondary electron 42 is deflected by the secondary electron deflection EXB22, it becomes a primary electron. The generated chromatic dispersion is focused on the sample by the objective lens 14 and becomes zero. In addition, when the tilt angle of the primary electrons and the deflection angle of the secondary electrons are both low angle tilt and deflection, the high-order off-axis chromatic aberration due to the chromatic dispersion of the primary electrons by the secondary electrons EXB22 does not become apparent. Further, since the primary electrons are focused at the center of the secondary electron deflection EXB22, the focusing action, the astigmatism imaging action and the secondary aberration of the secondary electron deflection EXB22 on the primary electrons are minimized.

本実施例では、傾斜角を変えても常に、対物レンズ14の物面Zmが二次電子偏向用EXB22の中心と一致するので、10°以下の低角度傾斜、偏向では、二次電子偏向用EXBの動作によるビーム傾斜時の分解能劣化は顕在化しない。 In this embodiment, the object surface Zm of the objective lens 14 always coincides with the center of the secondary electron deflection EXB22 even if the inclination angle is changed. The resolution deterioration at the time of beam tilt due to the operation of EXB does not become apparent.

本実施例によると、ビーム傾斜時の一次電子の収差補正を行いつつ、二次電子が二次電子偏向器22から受ける幾何収差を最小化し、精度の高い二次電子のエネルギー弁別ができるビーム傾斜光学系を提供できる。 According to the present embodiment, while correcting the aberration of the primary electron at the time of beam tilt, the geometric aberration that the secondary electron receives from the secondary electron deflector 22 is minimized, and the beam tilt is capable of highly accurate energy discrimination of the secondary electron. An optical system can be provided.

本実施例では、傾斜角、傾斜方向毎に発生する偏向場が異なる傾斜用偏向器12と二次電子偏向用EXB22が対物レンズ物面Zmに配置されている。そのため二次電子偏向用EXBは一次電子を直進させる条件を保ったまま、傾斜用偏向器12が二次電子に与える偏向作用を打ち消すように偏向場を発生させる。 In this embodiment, the tilting deflector 12 and the secondary electron deflecting EXB 22 that have different tilting fields and different tilting fields are arranged on the object lens surface Zm. Therefore, the secondary electron deflection EXB generates a deflection field so as to cancel the deflection action given to the secondary electrons by the tilting deflector 12 while maintaining the condition that the primary electrons go straight.

また、本実施例では傾斜用偏向器12と二次偏向用EXB22が一つの偏向ユニットであっても良い。 Further, in this embodiment, the tilting deflector 12 and the secondary deflecting EXB 22 may be one deflection unit.

本実施例では、二次電子集束レンズ21が対物レンズ14の上側に、収差特性補償レンズ20が収差発生レンズ09の下側に配置された構成で説明したが、反対側に配置されても良い。 In this embodiment, the secondary electron focusing lens 21 is arranged above the objective lens 14 and the aberration characteristic compensating lens 20 is arranged below the aberration generating lens 09, but it may be arranged on the opposite side. ..

本実施例において弁別を行う二次電子のエネルギー領域の変更により着目する二次電子のエネルギーを変化させたたり、加速電圧、リターディング電圧や、ワーキングディスタンス等を変更したりする場合は、無傾斜時の二次電子42の集束位置の調整を再度実行すればよい。 In the present embodiment, when the energy of the secondary electron of interest is changed by changing the energy region of the secondary electron for discrimination, or when the acceleration voltage, the retarding voltage, the working distance, etc. are changed, there is no inclination. The adjustment of the focusing position of the secondary electron 42 at that time may be performed again.

また、本実施例において検出器17は複数配置しても良く、検出特性を変えた検出器や、エネルギーフィルタ機能を付加した検出器、分光器などを同時に配置しても良い。このとき検出器を切り替える際は、二次偏向用EXBによる二次電子42の偏向方向と角度を各検出器に対して個別に設定すれば良い。 Further, in the present embodiment, a plurality of detectors 17 may be arranged, and a detector having different detection characteristics, a detector having an energy filter function, a spectroscope, etc. may be arranged at the same time. At this time, when the detectors are switched, the deflection direction and angle of the secondary electrons 42 by the secondary deflection EXB may be set individually for each detector.

また、本実施例では二次電子42の集束点を対物レンズ14と二次電子集束レンズ21の強度調整により対物レンズ14の物面Zmに固定したが、対物レンズ14の代わりにブースター電極33の加速電圧もしくは試料16のリターディング電圧を二次電子集束レンズ21と協働して調整しても良い。 Further, in this embodiment, the focusing point of the secondary electron 42 is fixed to the object surface Zm of the objective lens 14 by adjusting the strength of the objective lens 14 and the secondary electron focusing lens 21, but instead of the objective lens 14, the booster electrode 33 is used. The acceleration voltage or the retarding voltage of the sample 16 may be adjusted in cooperation with the secondary electron focusing lens 21.

本実施例における収差特性補償レンズ20と二次電子集束用レンズ21、収差発生用レンズ09及び高次軸外色収差抑制レンズ11は静電レンズ、磁場レンズ、電磁重畳レンズの何れでも良い。また収差発生用偏向器08及び傾斜用偏向器12は静電偏向器、磁場偏向器の何れでも良い。 The aberration characteristic compensating lens 20, the secondary electron focusing lens 21, the aberration generating lens 09, and the high-order off-axis chromatic aberration suppressing lens 11 in the present embodiment may be any of an electrostatic lens, a magnetic field lens, and an electromagnetic superposition lens. Further, the aberration generating deflector 08 and the tilt deflector 12 may be either an electrostatic deflector or a magnetic field deflector.

本実施例では、第一の実施例において設計の制約上、二次電子偏向用EXB22が対物レンズ14の物面Zmに配置できない場合について好適な構成を提供する。図2は本実施例の光学系の構成概要図である。本実施例では二次電子偏向用EXB22が対物レンズ14の物面位置Zmに配置される高次軸外色収差抑制レンズ11と二次電子集束用レンズ21の間に配置される。また二次電子偏向用EXB22と高次軸外色収差抑制用レンズ11の間に新たに分散調整用EXB23が配置される。検出器17は分散調整用EXB23と二次電子偏向用EXB22の間に配置される。 This embodiment provides a preferable configuration in the case where the secondary electron deflecting EXB 22 cannot be arranged on the object plane Zm of the objective lens 14 due to design restrictions in the first embodiment. FIG. 2 is a schematic diagram of the configuration of the optical system of this embodiment. In this embodiment, the secondary electron deflecting EXB 22 is arranged between the high-order off-axis chromatic aberration suppressing lens 11 and the secondary electron focusing lens 21 arranged at the object plane position Zm of the objective lens 14. Further, a dispersion adjustment EXB23 is newly arranged between the secondary electron deflection EXB22 and the higher-order off-axis chromatic aberration suppressing lens 11. The detector 17 is arranged between the dispersion adjusting EXB 23 and the secondary electron deflecting EXB 22.

本実施例では、二次電子偏向用EXB22の中心点Psに二次電子42が集束し、対物レンズ14の物面Zmが固定されるように対物レンズ14と二次電子集束用レンズ21の強度が調整される。収差発生レンズ09と収差特性補償レンズ20は対物レンズ14の物面Zmを固定しつつ式(3)が常に成立するようにレンズ強度が傾斜角毎に調整される。これにより、一次電子のビーム傾斜時の一次軸外色収差、偏向コマ収差の補正と高次軸外色収差の抑制及び二次電子の集束位置を二次電子偏向用EXB22の中心Psに固定する。二次電子42は二次電子偏向用EXB22により検出器17に向かって偏向される。 In this embodiment, the intensity of the objective lens 14 and the secondary electron focusing lens 21 is adjusted so that the secondary electrons 42 are focused on the center point Ps of the secondary electron deflection EXB 22 and the object surface Zm of the objective lens 14 is fixed. Is adjusted. The aberration generating lens 09 and the aberration characteristic compensating lens 20 fix the object surface Zm of the objective lens 14 and adjust the lens strength for each inclination angle so that the expression (3) is always satisfied. This corrects the primary off-axis chromatic aberration and deflection coma aberration when the beam of the primary electrons is tilted, suppresses the high-order off-axis chromatic aberration, and fixes the secondary electron focusing position at the center Ps of the secondary electron deflecting EXB 22. The secondary electrons 42 are deflected toward the detector 17 by the secondary electron deflection EXB 22.

但し二次電子偏向用EXB22が対物レンズ14の物面Zmから離れているため、二次電子偏向用EXBが一次電子に与える色分散が顕在化する。分散調整用EXB23は平均エネルギーの一次電子を直進させ、且つ、二次電子偏向用EXB22を出たエネルギーの異なる一次電子の分散の起点が仮想的に対物レンズ14の物面Zmの中心点P3となるように調整される。その結果、分散調整用EXB23と二次電子偏向用EXB22で生じる一次電子の色分散は対物レンズ14により試料16上に集束されゼロとなり顕在化しない。 However, since the secondary electron deflecting EXB 22 is away from the object plane Zm of the objective lens 14, the chromatic dispersion given to the primary electrons by the secondary electron deflecting EXB becomes apparent. The EXB23 for dispersion adjustment causes the primary electrons of average energy to go straight, and the origin of dispersion of the primary electrons having different energies emitted from the EXB22 for secondary electron deflection is virtually the center point P3 of the object surface Zm of the objective lens 14. Adjusted to be. As a result, the chromatic dispersion of the primary electrons generated in the dispersion adjusting EXB 23 and the secondary electron deflecting EXB 22 is focused on the sample 16 by the objective lens 14 and becomes zero and does not become apparent.

本実施例では、二次電子偏向用EXB22及び分散調整用EXB23上で一次電子が広がっているためEXBのレンズ作用と非点結像作用を受ける。但し本実施例では、二次電子偏向用EXB22と分散調整用EXB23の強度が傾斜角、傾斜方向に依らず固定される。従って非点結像作用は非点補正器07の無傾斜時の調整で補正できる。また無傾斜時の対物レンズ14、二次電子集束レンズ21、収差発生レンズ09、収差特性補償レンズ20の調整を二次電子偏向用EXB22と分散調整用EXB23のレンズ作用を加味した上で実施すれば良い。 In this embodiment, since the primary electrons spread on the secondary electron deflection EXB 22 and the dispersion adjustment EXB 23, they are subjected to the lens function and astigmatism function of the EXB. However, in this embodiment, the strengths of the secondary electron deflection EXB 22 and the dispersion adjustment EXB 23 are fixed regardless of the inclination angle and the inclination direction. Therefore, the astigmatism imaging action can be corrected by adjusting the astigmatism corrector 07 when there is no inclination. Further, the objective lens 14, the secondary electron converging lens 21, the aberration generating lens 09, and the aberration characteristic compensating lens 20 in the non-tilted state may be adjusted in consideration of the lens functions of the secondary electron deflecting EXB 22 and the dispersion adjusting EXB 23. Good.

本実施例では、第一の実施例において、傾斜角10°、二次電子偏向角10°以上の大角度の際に二次電子偏向用EXB22が一次電子に与える色分散がビーム傾斜時の高次軸外色収差を顕在化させる場合について、高次軸外色収差を発生させない好適な構成を提供する。 In the present embodiment, in the first embodiment, when the tilt angle is 10° and the secondary electron deflection angle is 10° or more, the chromatic dispersion given to the primary electrons by the secondary electron deflection EXB 22 is high when the beam is inclined. Provided is a suitable configuration that does not cause high-order off-axis chromatic aberration when the secondary off-axis chromatic aberration is to be manifested.

図3は本実施例の構成概略図である。本実施例では二次電子偏向用EXB22が対物レンズ14の物面位置Zmに配置される高次軸外色収差抑制レンズ11と二次電子集束用レンズ21の間に配置される。検出器17は高次軸外色収差抑制レンズ11と二次電子偏向用EXB22の間に配置される。また高次軸外色収差抑制レンズ11と同位置に分散補償用第二EXB32が配置される。対物レンズ14の物面Zmを挟んで対称な位置に二次電子偏向用EXB22と全く同じEXBである分散補償用第一EXB31が配置される。 FIG. 3 is a schematic diagram of the configuration of this embodiment. In this embodiment, the secondary electron deflecting EXB 22 is arranged between the high-order off-axis chromatic aberration suppressing lens 11 and the secondary electron focusing lens 21 arranged at the object plane position Zm of the objective lens 14. The detector 17 is arranged between the high-order off-axis chromatic aberration suppressing lens 11 and the secondary electron deflection EXB 22. Further, the second dispersion compensation EXB 32 is arranged at the same position as the high-order off-axis chromatic aberration suppressing lens 11. A dispersion compensating first EXB 31, which is exactly the same EXB as the secondary electron deflecting EXB 22, is arranged at a symmetrical position with the object plane Zm of the objective lens 14 in between.

本実施例では、第二の実施例と同じく対物レンズ14、二次電子集束レンズ21、収差発生レンズ09、収差特性補償レンズ20の調整が二次電子偏向用EXB22と分散補償用第一EXB31のレンズ作用を加味した上で実施され、二次電子42の集束点が二次電子偏向用EXB22の中心点Psに固定される。 In this embodiment, the objective lens 14, the secondary electron focusing lens 21, the aberration generating lens 09, and the aberration characteristic compensation lens 20 are adjusted by the secondary electron deflecting EXB 22 and the dispersion compensating first EXB 31 as in the second embodiment. The focusing point of the secondary electrons 42 is fixed at the center point Ps of the secondary electron deflecting EXB 22 after the lens action is taken into consideration.

二次電子偏向用EXB22と分散補償用第一EXB31は全く同じEXBであり発生させる双極電磁場の強度も同じである。但し双極電磁場の発生方向は、高次軸外色収差抑制レンズ11が磁場レンズの場合はその回転角だけ回転させる。 The secondary electron deflection EXB 22 and the dispersion compensation first EXB 31 are exactly the same EXB, and the strength of the generated dipole electromagnetic field is also the same. However, when the high-order off-axis chromatic aberration suppressing lens 11 is a magnetic lens, the direction of generation of the dipole electromagnetic field is rotated by that rotation angle.

これらのEXBの一次電子に対する作用を説明する。分散補償用第一EXB31により一次電子に色分散が発生する。この色分散は分散補償用第一EXB31の中心Pを起点として発生する。分散補償用第二EXB32は分散補償用第一EXB31により発生した色分散が高次軸外色収差抑制レンズ11のレンズ作用を含めて、二次電子偏向用EXB22の中心Pに集束するように双極場を発生する。更に二次電子偏向用EXB22の色分散が加わり、二次電子偏向用EXB22通過後には色分散が完全に補正される。従って対物レンズ14の主面上で二次電子偏向用EXBの色分散はゼロであり、大角度傾斜時、大角度二次電子偏向時でも高次軸外色収差を発生させることは無い。 The action of these EXBs on the primary electrons will be described. The first EXB 31 for dispersion compensation causes chromatic dispersion in primary electrons. This chromatic dispersion occurs from the center P A of the first dispersion compensation EXB 31 as a starting point. Second EXB32 for dispersion compensation, including the lens action of the first EXB31 chromatic dispersion higher shaft outer chromatic aberration suppression lens 11 generated by the dispersion compensation dipole to focus to the center P S of the secondary electron deflecting EXB22 Generate a place. Further, the chromatic dispersion of the secondary electron deflecting EXB22 is added, and the chromatic dispersion is completely corrected after passing through the secondary electron deflecting EXB22. Therefore, the chromatic dispersion of the secondary electron deflection EXB on the main surface of the objective lens 14 is zero, and high-order off-axis chromatic aberration does not occur even when the large-angle tilt and the large-angle secondary electron are deflected.

また、本実施例では一次電子が広がっている二次電子偏向用EXB22と分散補償用第一EXB31の電磁場強度、方向、分布が一次電子の集束面Zmに関して対称なので、二次電子偏向用EXB22と分散補償用第一EXB31の一次電子に対する2次収差が同時に補正される。 Further, in this embodiment, since the electromagnetic field strengths, directions, and distributions of the secondary electron deflecting EXB 22 in which the primary electrons are spread and the dispersion compensating first EXB 31 are symmetrical with respect to the focusing plane Zm of the primary electrons, the secondary electron deflecting EXB 22 is The secondary aberration of the dispersion compensating first EXB 31 with respect to the primary electrons is simultaneously corrected.

また、本実施例は二次電子偏向用EXB22と分散補償用第一EXB31の対称配置に制約されるものではない。下から順に二次電子偏向用EXB22、分散補償用第二EXB32、分散補償用第一EXB31の3つのEXBが配置されており各々のEXBの双極場強度、方向を適切に設定すると、電磁場分布、配置の如何に関わらずEXBによる色分散を完全に補正でき、EXBの2次収差が顕在化しない範囲で大角度傾斜、大角度二次電子偏向が実現できる。 The present embodiment is not limited to the symmetrical arrangement of the secondary electron deflection EXB 22 and the dispersion compensation first EXB 31. The three EXBs of the secondary electron deflection EXB22, the dispersion compensation second EXB32, and the dispersion compensation first EXB31 are arranged in order from the bottom. When the dipole field strength and direction of each EXB are appropriately set, the electromagnetic field distribution, Regardless of the arrangement, chromatic dispersion due to EXB can be completely corrected, and large-angle tilt and large-angle secondary electron deflection can be realized within a range where the secondary aberration of EXB does not become apparent.

第一、第二、第三の実施例はビーム傾斜時の対物レンズの収差を補正するための収差は収差発生用レンズ09とその軸外に一次電子を通過させる収差発生用偏向器08により発生させ、ビーム傾斜時の高次軸外色収差の抑制をレンズによって実現する構成である。 In the first, second, and third embodiments, the aberration for correcting the aberration of the objective lens at the time of beam tilt is generated by the aberration generating lens 09 and the aberration generating deflector 08 that passes primary electrons off the axis thereof. The lens is used to suppress the high-order off-axis chromatic aberration when the beam is tilted.

本実施例におけるビーム傾斜時の補正収差発生及び高次軸外色収差抑制のためのユニットは、上記の構成に限定されず、多極子を用いても良い。本実施例では斜時の収差発生ユニットに収差補正用多極子を使用し、高次軸外色収差の抑制光学要素として四極子場を発生させることができる多極子を用いる場合を説明する。 The unit for generating the correction aberration and suppressing the high-order off-axis chromatic aberration at the time of beam inclination in the present embodiment is not limited to the above configuration, and a multipole element may be used. In the present embodiment, a case will be described in which an aberration correcting multipole element is used in an oblique aberration generating unit and a multipole element capable of generating a quadrupole field is used as an optical element for suppressing high-order off-axis chromatic aberration.

図4は本実施例の構成概略図である。本実施例では第一の実施例の光学系構成において、収差発生用レンズ09の代わりに、収差発生用多極子50が、収差特性補償用レンズ20と第二コンデンサレンズ06の間に配置される。対物レンズ14の物面Zmに、傾斜用偏向器12、二次電子偏向用EXB22及び高次軸外色収差抑制用多極子51が配置される。 FIG. 4 is a schematic diagram of the configuration of this embodiment. In the present embodiment, in the optical system configuration of the first embodiment, instead of the aberration generating lens 09, the aberration generating multipole element 50 is arranged between the aberration characteristic compensating lens 20 and the second condenser lens 06. .. On the object plane Zm of the objective lens 14, the tilting deflector 12, the secondary electron deflecting EXB 22 and the high-order off-axis chromatic aberration suppressing multipole element 51 are arranged.

一次電子は収差発生用多極子50上で適切に広がっており、高次軸外色収差抑制用多極子37の中心点P3で集束し一次電子に対し余計な収差を発生させないようにされている。 The primary electrons are appropriately spread on the aberration generating multipole element 50, and are focused at the center point P3 of the high-order off-axis chromatic aberration suppressing multipole element 37 so as not to generate extra aberrations for the primary electrons.

収差発生用多極子50は対物レンズ14の物面Zmにおいて対物レンズ14と等価な色収差とコマ収差を発生させるように調整されている。 The aberration generating multipole element 50 is adjusted so as to generate chromatic aberration and coma aberration equivalent to the objective lens 14 on the object surface Zm of the objective lens 14.

対物レンズ14と二次電子集束レンズ21は、第一の実施例と同じく、ビーム傾斜角に応じて、一次電子を試料上に集束させ且つ二次電子42を二次電子偏向用EXB22の中心点P3に集束させるように協働して動作する。 Similar to the first embodiment, the objective lens 14 and the secondary electron focusing lens 21 focus the primary electrons on the sample according to the beam tilt angle and the secondary electrons 42 are the central points of the secondary electron deflection EXB 22. Work together to focus on P3.

また傾斜角、方向毎に高次軸外色収差抑制用多極子51の中心点P3に常に一次電子が集束し、且つ対物レンズ系と同量逆符号の色分散と2次コマ収差が発生するように、収差発生用多極子50、収差特性補償用レンズ20の強度が傾斜角毎に協働して調整される。 Further, the primary electrons are always focused on the center point P3 of the high-order off-axis chromatic aberration suppressing multipole element 51 for each tilt angle and direction, and chromatic dispersion and secondary coma aberration of the same amount and opposite sign to those of the objective lens system are generated. In addition, the strengths of the aberration generating multipole element 50 and the aberration characteristic compensating lens 20 are adjusted in cooperation for each tilt angle.

高次軸外色収差抑制用多極子51は、四極子場を発生させる。この四極子場の非点結像作用で、ビーム傾斜時の色収差の補正のために収差発生多極子50が発生させる色収差を対物レンズ14の主面に集束させる。この結果、高次軸外色収差の発生が抑制される。ビームの傾斜角、傾斜方向を変更する際は収差発生用多極子50の多極子強度と方向を変更し、高次軸外色収差抑制用多極子51の四極子場の方向を変更すれば良い。 The high-order off-axis chromatic aberration suppressing multipole element 51 generates a quadrupole field. By the astigmatic imaging action of the quadrupole field, the chromatic aberration generated by the aberration generating multipole element 50 for correcting the chromatic aberration when the beam is tilted is focused on the main surface of the objective lens 14. As a result, the occurrence of high-order off-axis chromatic aberration is suppressed. When changing the tilt angle and tilt direction of the beam, the multipole intensity and direction of the aberration generating multipole element 50 may be changed, and the quadrupole field direction of the high-order off-axis chromatic aberration suppressing multipole element 51 may be changed.

本実施例では二次電子偏向用EXB22が対物レンズ14の物面Zmに配置されるので第一の実施例と同じく二次電子偏向用EXB22が一次電子に与える色分散は試料16上でゼロとなり顕在化しないため低角度傾斜、二次電子低角度偏向時には問題が無い。 In this embodiment, since the secondary electron deflecting EXB22 is arranged on the object plane Zm of the objective lens 14, the chromatic dispersion given to the primary electrons by the secondary electron deflecting EXB22 is zero on the sample 16 as in the first embodiment. Since it does not become apparent, there is no problem when tilting at a low angle and deflecting secondary electrons at a low angle.

大角度傾斜、二次電子大角度偏向を実施する場合には第三の実施例のように二次電子偏向用EXB22の上方に分散補償用のEXBを2段配置すればよい。 When large-angle tilting and secondary-electron large-angle deflection are carried out, two stages of dispersion-compensating EXBs may be arranged above the secondary-electron deflecting EXB 22 as in the third embodiment.

第二コンデンサレンズ06と収差発生用多極子50の間に偏向器を追加したユニットを収差発生ユニットとし、収差発生用多極子51の軸外に一次電子を通過させることで色収差とコマ収差の発生比率の調整を行っても良い。 A unit in which a deflector is added between the second condenser lens 06 and the aberration generating multipole element 50 is used as an aberration generating unit, and primary electrons are passed off the axis of the aberration generating multipole element 51 to generate chromatic aberration and coma. The ratio may be adjusted.

本実施例における収差発生多極子50、高次収差抑制用多極子51は静電型、磁場型、電磁重畳型の何れでも良い。 The aberration-generating multipole element 50 and the high-order aberration suppressing multipole element 51 in this embodiment may be any of electrostatic type, magnetic field type, and electromagnetic superposition type.

本実施例ではビーム傾斜時の収差発生ユニット及び高次軸外色収差の抑制光学要素としてウィーンフィルタを用いる場合について説明する。 In this embodiment, a case where a Wien filter is used as an aberration generating unit at the time of beam tilt and a high-order off-axis chromatic aberration suppressing optical element will be described.

図5は本実施例の構成外略図である。本実施例では収差発生用レンズ09の代わりに、収差発生用ウィーンフィルタ36が、収差特性補償用レンズ20と第二コンデンサレンズ06の間に配置される。対物レンズ14の物面Zmに、傾斜用偏向器12と高次軸外色収差抑制用ウィーンフィルタ37が配置される。傾斜用偏向器12の偏向場は高次軸外色収差抑制ウィーンフィルタ37に重畳しても良い。また二次電子偏向用EXB22は、二次電子集束用レンズ22と高次軸外色収差抑制用ウィーンフィルタ37の間に配置され、検出器17は二次電子偏向用EXB22と高次軸外色収差抑制用ウィーンフィルタ37の間に配置される。 FIG. 5 is a schematic diagram of the configuration of this embodiment. In this embodiment, instead of the aberration generating lens 09, the aberration generating Wien filter 36 is arranged between the aberration characteristic compensating lens 20 and the second condenser lens 06. The tilting deflector 12 and the higher-order off-axis chromatic aberration suppressing Wien filter 37 are arranged on the object plane Zm of the objective lens 14. The deflection field of the tilting deflector 12 may be superimposed on the high-order off-axis chromatic aberration suppressing Wien filter 37. The secondary electron deflecting EXB 22 is arranged between the secondary electron focusing lens 22 and the high-order off-axis chromatic aberration suppressing Wien filter 37, and the detector 17 includes the secondary electron deflecting EXB 22 and the high-order off-axis chromatic aberration suppressing. It is arranged between the Wien filters 37.

一次電子は収差発生用ウィーンフィルタ36上で適切に広がっており、高次軸外色収差抑制用ウィーンフィルタ37の中心点P3で集束し一次電子に対し余計な収差を発生させないようにされている。 The primary electrons are appropriately spread on the aberration generating Wien filter 36, and are focused at the center point P3 of the higher-order off-axis chromatic aberration suppressing Wien filter 37 so as not to generate extra aberrations for the primary electrons.

収差発生用ウィーンフィルタ36は、双極場の強度と方向に従って一次電子の色分散と2次収差を発生させる。本構成では発生する2次収差のうち2次コマ収差を対物レンズ14のビーム傾斜時の収差補正に用いる。収差発生用ウィーンフィルタ36は対物レンズ14の物面Zmにおいて対物レンズ14と等価な色分散と2次コマ収差を発生させるように調整されている。 The aberration generating Wien filter 36 generates chromatic dispersion of primary electrons and secondary aberration according to the intensity and direction of the dipole field. In this configuration, of the secondary aberrations that occur, the secondary coma aberration is used to correct the aberration when the beam of the objective lens 14 is tilted. The aberration generating Wien filter 36 is adjusted so as to generate chromatic dispersion equivalent to the objective lens 14 and second-order coma aberration in the object plane Zm of the objective lens 14.

対物レンズ14と二次電子集束レンズ21は、第一の実施例と同じく、ビーム傾斜角に応じて、一次電子を試料上に集束させ且つ二次電子42を二次電子偏向用EXB22の中心点Pに集束させるように協働して動作する。 Similar to the first embodiment, the objective lens 14 and the secondary electron focusing lens 21 focus the primary electrons on the sample according to the beam tilt angle and the secondary electrons 42 are the central points of the secondary electron deflection EXB 22. Work together to focus on P S.

また傾斜角、方向毎に高次軸外色収差抑制用ウィーンフィルタ37の中心点P3に常に一次電子が集束し、且つ対物レンズ系と同量逆符号の色分散と2次コマ収差が発生するように、収差発生用ウィーンフィルタ36、収差特性補償用レンズ20の強度が傾斜角毎に協働して調整される。 In addition, primary electrons are always focused at the center point P3 of the Wien filter 37 for suppressing off-axis chromatic aberration for each tilt angle and direction, and chromatic dispersion and secondary coma aberration of the same amount and opposite sign to those of the objective lens system are generated. In addition, the strengths of the aberration generating Wien filter 36 and the aberration characteristic compensating lens 20 are adjusted in cooperation for each inclination angle.

高次軸外色収差抑制用ウィーンフィルタ37は収差発生用ウィーンフィルタ36で発生する色分散を対物レンズ14の主面に集束するように双極場を発生させるように動作させる。傾斜角、傾斜方向を変更する場合は、収差発生用ウィーンフィルタ36と高次軸外色収差抑制用ウィーンフィルタ37の双極場、四極場の発生強度と方向を変更すればよい。 The high-order off-axis chromatic aberration suppressing Wien filter 37 operates so as to generate a dipole field so that the chromatic dispersion generated by the aberration generating Wien filter 36 is focused on the main surface of the objective lens 14. When changing the inclination angle and the inclination direction, the generation intensity and direction of the dipole field and the quadrupole field of the aberration generating Wien filter 36 and the high-order off-axis chromatic aberration suppressing Wien filter 37 may be changed.

次に二次電子軌道の色分散の補正について説明する。本実施例では第三の実施例における分散補償第一EXB31の役割を収差発生用ウィーンフィルタ36が分散補償第二EXB32の役割を高次軸外色収差抑制用ウィーンフィルタ37が担う。二次電子偏向器22の動作により一次電子に発生する色分散を補正するように収差発生用ウィーンフィルタ36と高次軸外色収差抑制用ウィーンフィルタ37が二次電子の偏向方向に色分散を発生させるように双極場を重畳すれば良い。注目する二次電子のエネルギー、偏向方向、偏向角度に応じて重畳する場の強度と方向を設定する。これによりビーム傾斜時の一次電子の高次軸外色収差の発生が抑制される。 Next, correction of chromatic dispersion of secondary electron orbits will be described. In this embodiment, the aberration compensating first EXB 31 in the third embodiment plays the role of the aberration generating Wien filter 36, and the dispersion compensating second EXB 32 plays the role of the higher-order off-axis chromatic aberration suppressing Wien filter 37. The aberration generating Wien filter 36 and the higher-order off-axis chromatic aberration suppressing Wien filter 37 generate chromatic dispersion in the deflection direction of the secondary electrons so as to correct the chromatic dispersion generated in the primary electrons by the operation of the secondary electron deflector 22. It suffices to superimpose the dipole fields so that The intensity and direction of the superposed field are set according to the energy of the secondary electron of interest, the deflection direction, and the deflection angle. This suppresses the occurrence of high-order off-axis chromatic aberration of primary electrons when the beam is tilted.

本実施例により、ウィーンフィルタを収差発生ユニット及び高次軸外色収差抑制用光学要素として用いてもビーム傾斜時の一次電子の収差補正と二次電子の高精度弁別のための集束位置の制御が両立する。 According to the present embodiment, even when the Wien filter is used as the aberration generating unit and the optical element for suppressing the higher-order off-axis chromatic aberration, the aberration correction of the primary electrons at the time of beam tilting and the control of the focusing position for the highly accurate discrimination of the secondary electrons can be performed. compatible.

第二コンデンサレンズ06と収差発生用ウィーンフィルタ36の間に偏向器を追加したユニットを収差発生ユニットとし、収差発生用ウィーンフィルタ36の軸外に一次電子を通過させることで色分散の2次コマ収差の発生比率の調整を行っても良い。 A unit in which a deflector is added between the second condenser lens 06 and the aberration generating Wien filter 36 is used as an aberration generating unit, and primary electrons are passed off the axis of the aberration generating Wien filter 36 to generate a secondary coma of chromatic dispersion. The generation ratio of aberration may be adjusted.

また第一、第二、第三、第四及び本実施例において、収差発生光学要素はレンズ、多極子、ウィーンフィルタの何れでも可である。また高次軸外色収差抑制用光学要素もレンズ、四極子場の発生できる多極子、ウィーンフィルタの何れでも可である。 Further, in the first, second, third, fourth, and present examples, the aberration generating optical element may be any of a lens, a multipole element, and a Wien filter. Further, the optical element for suppressing high-order off-axis chromatic aberration may be a lens, a multipole element capable of generating a quadrupole field, or a Wien filter.

本実施例では、第一の実施例の構成において、高次色収差抑制レンズ11と二次電子偏向用EXB22の中心を一致させて同じ位置に配置するための構成の一例を説明する。 In this example, an example of a configuration for aligning the centers of the high-order chromatic aberration suppressing lens 11 and the secondary electron deflection EXB 22 in the same position in the configuration of the first example will be described.

図6は本実施例でのレンズとEXBの構成を示す断面図である。図6AはXZ断面図を図6Bは対物レンズ14の物面Zmの位置でのXY断面図である。物面ZmをZ方向の対称中心として常磁性金属の電極150〜153が配置され、その外に強磁性体コアを巻型に使用しない偏向コイル154〜157が配置され、EXBを形成する。またEXBの外側に磁場円レンズ用のコイル158が配置され、これらの構成物は、強磁性金属の円レンズ磁路159でケーシングされる。図示されていないが各電極、コイルには偏向双極電場、偏向双極磁場、円レンズ磁場を発生させるための電圧、電流を供給する電源が接続されている。これらの電源は二次電子偏向用EXB制御部110で制御される。 FIG. 6 is a sectional view showing the configuration of the lens and EXB in this embodiment. 6A is an XZ sectional view, and FIG. 6B is an XY sectional view at the position of the object plane Zm of the objective lens 14. Paramagnetic metal electrodes 150 to 153 are arranged with the object plane Zm as the center of symmetry in the Z direction, and deflection coils 154 to 157 not using a ferromagnetic core for winding are arranged outside the electrodes to form EXB. A coil 158 for a magnetic field circular lens is arranged outside the EXB, and these components are casing by a circular lens magnetic path 159 made of a ferromagnetic metal. Although not shown, each electrode and coil are connected to a power source for supplying a deflection dipole electric field, a deflection dipole magnetic field, a voltage for generating a circular lens magnetic field, and a current. These power supplies are controlled by the secondary electron deflection EXB control unit 110.

本実施例の構成ではEXBの偏向双極電場を発生させる電極を最も内側に配置することで発生した電場が静電遮蔽されるのを防ぐことができる。また電極材料を常磁性金属とすることで双極磁場や円レンズ磁場の発生を阻害しない。また双極磁場を発生させるコイル154〜157の巻型に強磁性体コアを使用しないことで、最も外側に配置した円レンズ用コイル158による円レンズ磁場の発生を妨げずに、偏向双極磁場を発生できる。 In the configuration of the present embodiment, the electrodes for generating the deflection bipolar electric field of EXB are arranged at the innermost side, so that the generated electric field can be prevented from being electrostatically shielded. In addition, by using paramagnetic metal as the electrode material, the generation of the dipole magnetic field and the circular lens magnetic field is not hindered. Further, since the ferromagnetic core is not used in the winding form of the coils 154 to 157 for generating the dipole magnetic field, the deflection dipole magnetic field is generated without hindering the generation of the circular lens magnetic field by the circular lens coil 158 arranged at the outermost side. it can.

本実施例では二次電子偏向用EXBの電極数を八極ないし十二極としたり、偏向コイルの巻線数の方位分布を調整したりして、六極子場以上の多極子場の発生を抑制しても良い。 In the present embodiment, the number of electrodes of the secondary electron deflection EXB is set to eight poles or twelve poles, or the azimuth distribution of the number of turns of the deflection coil is adjusted to generate a multipole field of hexapole field or more. You may suppress it.

本実施例では、第一から第三の実施例の構成において、高次色収差抑制レンズ11と二次電子偏向用EXB22の中心を一致させて同じ位置に配置するための第二の構成を説明する。 In the present embodiment, a second configuration for aligning the centers of the high-order chromatic aberration suppressing lens 11 and the secondary electron deflecting EXB 22 at the same position in the configurations of the first to third embodiments will be described. ..

本実施例では、二次電子偏向用EXBの電極と磁極を共通の電磁極とし、電場と磁場の分布を一致させ、ウィーンフィルタユニットとする。図7は本ウィーンフィルタユニットの構成を示す断面図である。本実施例では四つの電磁極201、202、203、204が各々方位方向に90°だけ回転して配置されている。各電磁極は強磁性体金属を材料とし、磁場励起用のコイルが巻かれている。図示はしないが、それぞれの電磁極とコイルには、独立に直流電源が接続されている。 In this embodiment, the electrode of the secondary electron deflection EXB and the magnetic pole are made to be a common electromagnetic pole, and the distribution of the electric field and the magnetic field are made to coincide with each other to form a Wien filter unit. FIG. 7 is a sectional view showing the configuration of the Wien filter unit. In this embodiment, four electromagnetic poles 201, 202, 203 and 204 are arranged by rotating 90° in the azimuth direction. Each electromagnetic pole is made of a ferromagnetic metal, and a coil for exciting a magnetic field is wound around it. Although not shown, a DC power source is independently connected to each electromagnetic pole and coil.

電磁極201〜204に同じ電圧を与えると、四つの電磁極が同電位となり静電円レンズ場が発生する。但し、同時に静電八極子場が発生する。電圧が正の場合は加速レンズ、負の場合は減速レンズ場が発生する。 When the same voltage is applied to the electromagnetic poles 201 to 204, the four electromagnetic poles have the same potential and an electrostatic circular lens field is generated. However, an electrostatic octupole field is generated at the same time. When the voltage is positive, an accelerating lens field is generated. When the voltage is negative, a decelerating lens field is generated.

静電円レンズ場を発生させる電圧を全ての電磁極に印加したまま、各電磁極201〜204に独立に電圧を重畳させることで、任意の方向に双極電場を発生させることができる。また電磁極励磁用のコイルに適切に電流を流すことで任意の方向に双極磁場を発生させることができる。 A bipolar electric field can be generated in an arbitrary direction by independently superposing the voltage on each of the electromagnetic poles 201 to 204 while applying the voltage for generating the electrostatic circular lens field to all the electromagnetic poles. In addition, a bipolar magnetic field can be generated in any direction by appropriately passing a current through the coil for exciting the electromagnetic pole.

また本実施例は、第一、第二、第三、第四の実施例で用いられるEXB及びウィーンフィルタの構成としても好適である。 The present embodiment is also suitable as the configuration of the EXB and Wien filter used in the first, second, third and fourth embodiments.

第七の実施例で示したウィーンフィルタユニットでは静電円レンズ場とともに静電八極子場が発生する。八極子場は三次幾何収差と三次色収差を発生させる。ビーム傾斜角や二次電子偏向角が大きくなるとこれらの収差が顕在化する可能性がある。そのためここでは、更に好適な例として八個の電磁極を用いたウィーンフィルタユニットを説明する。図8は本実施例の構成を示す断面図である。 In the Wien filter unit shown in the seventh embodiment, an electrostatic octopole field is generated together with the electrostatic circular lens field. The octupole field produces third-order geometrical aberrations and third-order chromatic aberrations. When the beam tilt angle and the secondary electron deflection angle increase, these aberrations may become apparent. Therefore, here, a Wien filter unit using eight electromagnetic poles will be described as a more preferable example. FIG. 8 is a sectional view showing the structure of this embodiment.

本ウィーンフィルタユニットは8個の電磁極211〜218と電磁極を励磁するコイルにより構成されている。各電磁極とコイルには独立に電圧、電流を供給する電源が接続されている。 The Wien filter unit is composed of eight electromagnetic poles 211 to 218 and a coil for exciting the electromagnetic poles. A power source for supplying voltage and current is independently connected to each electromagnetic pole and coil.

8個の電磁極に同じ電圧を印加すると静電円レンズ場と共に静電十六極子場が発生する。静電十六極子場の収差は七次の幾何収差と七次の色収差である。これらの収差は実用上問題にならないため無視できる。本構成では8個の電磁極に独立に電圧、電流を印加することで、静電円レンズ場の他に双極電場、双極磁場と四極電場、四極磁場を任意の方向に発生させることができる。 When the same voltage is applied to the eight electromagnetic poles, an electrostatic hexagonal field is generated together with the electrostatic circular lens field. The electrostatic hexapole field aberrations are the 7th-order geometrical aberration and the 7th-order chromatic aberration. These aberrations are negligible in practical use and can be ignored. In this configuration, by independently applying the voltage and the current to the eight electromagnetic poles, it is possible to generate the dipole electric field, the dipole magnetic field and the quadrupole electric field, and the quadrupole magnetic field in arbitrary directions in addition to the electrostatic circular lens field.

また、電磁極数を12とし、円レンズ場、双極場、四極場、六極場を任意に発生させるようにしても良い。 Further, the number of electromagnetic poles may be 12, and a circular lens field, a dipole field, a quadrupole field, and a hexapole field may be arbitrarily generated.

またウィーンフィルタユニットの電磁極励磁コイルに、全ての電磁極がN極もしくはS極に励磁するように電流を流すと同様に円レンズ磁場と八極子磁場、十六極子磁場を発生させることができる。 Further, a circular lens magnetic field, an octupole magnetic field, and a 16-pole magnetic field can be generated in the same manner as a current is applied to the electromagnetic pole exciting coil of the Wien filter unit so that all electromagnetic poles are excited to the N pole or the S pole. ..

また本実施例は、第一、第二、第三、第四、第五の実施例で用いられるEXB及びウィーンフィルタの構成として最も好適である。双極子場に加えて四極子場を自由に発生させることができるので、四極子の色消しをしたままウィーンフィルタの非点結像作用のキャンセルが可能である。また第四の実施例における高次軸外色収差抑制用多極子の構成としても最適である。 In addition, this embodiment is most suitable as the configuration of the EXB and Wien filter used in the first, second, third, fourth, and fifth embodiments. Since the quadrupole field can be freely generated in addition to the dipole field, it is possible to cancel the astigmatic imaging action of the Wien filter while achromatizing the quadrupole. It is also most suitable as the configuration of the high-order off-axis chromatic aberration suppressing multipole element in the fourth embodiment.

本実施例では、ビーム傾斜時の一次電子と二次電子の制御フローを説明する。図10は光学系制御部116の構成を示す図である。また図9は本実施例による一次電子のビーム傾斜のフローチャートである。 In this embodiment, a control flow of primary electrons and secondary electrons when the beam is tilted will be described. FIG. 10 is a diagram showing the configuration of the optical system controller 116. FIG. 9 is a flowchart of the beam tilt of the primary electrons according to this embodiment.

ステップ001で観察する光学条件(加速電圧、ブースター電圧、リターディング電圧、集束させる二次電子のエネルギー)を光学条件設定部301により設定する。 The optical condition setting unit 301 sets the optical conditions (accelerating voltage, booster voltage, retarding voltage, energy of secondary electrons to be focused) observed in step 001.

ステップ002で観察位置に試料ステージを移動させる。 In step 002, the sample stage is moved to the observation position.

ステップ003で試料高さ計測装置120によりワーキングディスタンスを計測する。 In step 003, the working distance is measured by the sample height measuring device 120.

ステップ004で、画像取得する検出器を選択する。 In step 004, a detector for image acquisition is selected.

ステップ005で、傾斜角度、傾斜方向を入力する。 In step 005, the tilt angle and tilt direction are input.

ステップ006で、ステップ001において設定した光学条件、ステップ004において選択した検出器、ステップ005で入力した傾斜角度と傾斜方向に従って、偏向器動作
条件記録部303、レンズ動作条件記録部304、EXB動作条件記録部305、非点補正器動作条件記録部306に記録されている動作条件テーブルを読み出し、ステップ003において計測したワーキングディスタンスに基づいて動作条件演算部302で各レンズ、各EXBもしくはウィーンフィルタ、各多極子、各偏向器、非点補正器の電圧、電流を決定し、各制御部を通じて設定する。
In step 006, according to the optical condition set in step 001, the detector selected in step 004, the tilt angle and tilt direction input in step 005, the deflector operation condition recording unit 303, the lens operation condition recording unit 304, and the EXB operation condition are recorded. The operating condition table recorded in the recording unit 305 and the astigmatism corrector operating condition recording unit 306 is read out, and based on the working distance measured in step 003, the operating condition calculating unit 302 uses each lens, each EXB or Wien filter, each. The voltage and current of the multipole element, each deflector, and astigmatism corrector are determined and set through each control unit.

ステップ007で、フォーカス、スティグマの微調整を行う。このとき、フォーカス微調整はステップ005において、演算された動作条件に基づき、対物レンズ14と二次電子集束レンズ20のレンズ強度が連動して変化し、二次電子の集束位置が変化せずに、一次電子のフォーカスだけ変化するように実行される。 In step 007, fine adjustment of focus and stigma is performed. At this time, in step 005, the focus fine adjustment is performed in step 005, in which the lens strengths of the objective lens 14 and the secondary electron focusing lens 20 are changed in conjunction with each other based on the calculated operating conditions, and the focus position of the secondary electrons is not changed. , Is executed so that only the focus of the primary electron is changed.

ステップ008で傾斜SEM像を取得する。 In step 008, a tilted SEM image is acquired.

ステップ009で傾斜角度、方向の変更要否を判断し、変更する場合はステップ005に戻る。 In step 009, it is determined whether or not the tilt angle and the direction need to be changed.

ステップ010で画像取得する検出器の変更要否を判断し、変更する場合はステップ004に戻る。 In step 010, it is judged whether or not the detector for acquiring an image needs to be changed.

ステップ110で試料観察位置の変更要否を判断し、変更する場合はステップ002に戻る。 In step 110, it is determined whether or not the sample observation position needs to be changed, and if it is necessary to change, the process returns to step 002.

01:陰極、02:第一陽極、03:第二陽極、04:第一コンデンサレンズ、05:対物絞り、06:第二コンデンサレンズ、07:非点補正器、08:収差発生用偏向器、09:収差発生用レンズ、11:高次色収差抑制レンズ、12:傾斜用偏向器、13:走査偏向器、14:対物レンズ、15:試料ステージ、16:試料、17:検出器、18:イメージシフト偏向器、20:収差特性補償用レンズ、21:二次電子集束用レンズ、22:二次電子偏向用EXB、23:分散調整用EXB、30:光軸、31:分散補償第一EXB、32:分散補償第二EXB、33:ブースター電極、34:リターディング電圧印加電源、35:軌道調整偏向器、36:収差発生用ウィーンフィルタ、37:高次軸外色収差抑制用ウィーンフィルタ、41:一次電子、42:二次電子、43:平均エネルギーの一次電子の中心軌道、44:低エネルギーの一次電子の中心軌道、45:高エネルギーの一次電子の中心軌道、50:収差補正用多極子、51:高次軸外色収差抑制用多極子、100:電子銃制御部、101:第一コンデンサレンズ制御部、102:第二コンデンサレンズ制御部、103:非点補正器制御部、104:収差発生用偏向器制御部、105:収差発生用レンズ制御部、106:収差特性補償用レンズ制御部、107:検出器制御部、108:高次色収差抑制レンズ制御部、109:傾斜用偏向器制御部、110:二次電子偏向用EXB制御部、111:走査偏向器制御部、112:二次電子集束用レンズ制御部、113:対物レンズ制御部、114:試料ステージ制御部、116:光学系制御部、120:試料高さ計測器、150:電極、151:電極、152:電極、153:電極、154:コイル、155:コイル、156:コイル、157:コイル、158:円レンズ磁場用コイル、159:磁路、201:電磁極、202:電磁極、203:電磁極、204:電磁極、211:電磁極、212:電磁極、213:電磁極、214:電磁極、215:電磁極、216:電磁極、217:電磁極、218:電磁極、301:光学条件設定部、302:動作条件演算部、303:偏向器動作条件記録部、304:レンズ動作条件記録部、305:EXB動作条件記録部、306:非点補正器動作条件記録部 01: cathode, 02: first anode, 03: second anode, 04: first condenser lens, 05: objective diaphragm, 06: second condenser lens, 07: astigmatism corrector, 08: aberration-deflecting deflector, 09: aberration generating lens, 11: high-order chromatic aberration suppressing lens, 12: tilting deflector, 13: scanning deflector, 14: objective lens, 15: sample stage, 16: sample, 17: detector, 18: image Shift deflector, 20: Aberration characteristic compensating lens, 21: Secondary electron focusing lens, 22: Secondary electron deflecting EXB, 23: Dispersion adjusting EXB, 30: Optical axis, 31: Dispersion compensation first EXB, 32: second dispersion compensation EXB, 33: booster electrode, 34: retarding voltage application power source, 35: orbit adjustment deflector, 36: Wien filter for aberration generation, 37: Wien filter for suppressing high-order off-axis chromatic aberration, 41: Primary electron, 42: secondary electron, 43: central orbit of primary electron of average energy, 44: central orbit of primary electron of low energy, 45: central orbit of primary electron of high energy, 50: multipole element for aberration correction, 51: multipole for suppressing higher-order off-axis chromatic aberration, 100: electron gun control unit, 101: first condenser lens control unit, 102: second condenser lens control unit, 103: astigmatism corrector control unit, 104: aberration generation Deflector control unit, 105: aberration generation lens control unit, 106: aberration characteristic compensation lens control unit, 107: detector control unit, 108: high-order chromatic aberration suppressing lens control unit, 109: tilt deflector control unit , 110: secondary electron deflection EXB control unit, 111: scanning deflector control unit, 112: secondary electron focusing lens control unit, 113: objective lens control unit, 114: sample stage control unit, 116: optical system control Part, 120: sample height measuring instrument, 150: electrode, 151: electrode, 152: electrode, 153: electrode, 154: coil, 155: coil, 156: coil, 157: coil, 158: circular lens magnetic field coil, 159: magnetic path, 201: electromagnetic pole, 202: electromagnetic pole, 203: electromagnetic pole, 204: electromagnetic pole, 211: electromagnetic pole, 212: electromagnetic pole, 213: electromagnetic pole, 214: electromagnetic pole, 215: electromagnetic pole, 216: Electromagnetic pole, 217: Electromagnetic pole, 218: Electromagnetic pole, 301: Optical condition setting unit, 302: Operating condition calculation unit, 303: Deflector operating condition recording unit, 304: Lens operating condition recording unit, 305: EXB operation Condition recording unit, 306: Astigmatism corrector operating condition recording unit

Claims (4)

荷電粒子源から放出された荷電粒子ビームを集束する対物レンズと、荷電粒子を検出する検出器と、前記対物レンズの理想光軸とは異なる方向からビームを照射するように、前記荷電粒子ビームを偏向、或いは試料から放出された前記荷電粒子を前記検出器に向かって偏向する1以上の偏向器と、前記荷電粒子源と前記対物レンズとの間に配置される収差補正ユニットと、前記収差補正ユニットと前記対物レンズとの間に配置され、前記収差補正ユニットを通過した荷電粒子ビームを集束する光学要素を備え、当該光学要素は、前記対物レンズの主面にエネルギーの異なる前記荷電粒子ビームを集束するレンズ、ウィーンフィルタ、或いは四極子場を発生させる多極子であることを特徴とする荷電粒子線装置。 An objective lens that focuses a charged particle beam emitted from a charged particle source, a detector that detects charged particles, and a charged particle beam that irradiates the beam from a direction different from the ideal optical axis of the objective lens. One or more deflectors for deflecting or deflecting the charged particles emitted from the sample toward the detector; an aberration correction unit arranged between the charged particle source and the objective lens; and the aberration correction. An optical element is provided between the unit and the objective lens to focus the charged particle beam that has passed through the aberration correction unit, and the optical element focuses the charged particle beam having different energies on the main surface of the objective lens. A charged particle beam device, which is a focusing lens, a Wien filter, or a multipole that generates a quadrupole field . 荷電粒子源から放出された荷電粒子ビームを集束する対物レンズと、荷電粒子を検出する検出器と、前記対物レンズの理想光軸とは異なる方向からビームを照射するように、前記荷電粒子ビームを偏向、或いは試料から放出された前記荷電粒子を前記検出器に向かって偏向する1以上の偏向器と、前記荷電粒子源と前記対物レンズとの間に配置される収差補正ユニットと、前記収差補正ユニットと前記対物レンズとの間に配置され、前記収差補正ユニットを通過した荷電粒子ビームを集束する光学要素を備え、前記1以上の偏向器の内、試料から放出された荷電粒子を偏向する荷電粒子偏向器は、前記対物レンズと前記対物レンズ物面との間に配置され、前記荷電粒子偏向器と、前記光学要素との間に、前記荷電粒子ビームを分散させる分散用偏向器を配置したことを特徴とする荷電粒子線装置。 An objective lens that focuses a charged particle beam emitted from a charged particle source, a detector that detects charged particles, and a charged particle beam that irradiates the beam from a direction different from the ideal optical axis of the objective lens. One or more deflectors for deflecting or deflecting the charged particles emitted from the sample toward the detector; an aberration correction unit arranged between the charged particle source and the objective lens; and the aberration correction. A charging element that is disposed between the unit and the objective lens, includes an optical element that focuses the charged particle beam that has passed through the aberration correction unit, and that deflects the charged particles emitted from the sample among the one or more deflectors. The particle deflector is arranged between the objective lens and the object surface of the objective lens, and a dispersion deflector for dispersing the charged particle beam is arranged between the charged particle deflector and the optical element. A charged particle beam device characterized by the above. 請求項において、
前記分散用偏向器を制御する制御装置を備え、当該制御装置は、前記分散用偏向器を通過した前記荷電粒子ビームの分散の起点が、仮想的に対物レンズの物面となるように、前記分散用偏向器を制御することを特徴とする荷電粒子線装置。
In claim 2 ,
A control device for controlling the dispersion deflector is provided, wherein the control device controls the dispersion origin of the charged particle beam that has passed through the dispersion deflector so as to be substantially the object plane of the objective lens. A charged particle beam device characterized by controlling a dispersion deflector .
請求項において、
前記分散用偏向器は、直交電磁界発生器であることを特徴とする荷電粒子線装置。
In claim 2 ,
The charged particle beam apparatus , wherein the dispersion deflector is an orthogonal electromagnetic field generator .
JP2019031267A 2019-02-25 2019-02-25 Charged particle beam device Active JP6737539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019031267A JP6737539B2 (en) 2019-02-25 2019-02-25 Charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019031267A JP6737539B2 (en) 2019-02-25 2019-02-25 Charged particle beam device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015011931A Division JP6554288B2 (en) 2015-01-26 2015-01-26 Charged particle beam equipment

Publications (2)

Publication Number Publication Date
JP2019075392A JP2019075392A (en) 2019-05-16
JP6737539B2 true JP6737539B2 (en) 2020-08-12

Family

ID=66543318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019031267A Active JP6737539B2 (en) 2019-02-25 2019-02-25 Charged particle beam device

Country Status (1)

Country Link
JP (1) JP6737539B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452175B1 (en) * 1999-04-15 2002-09-17 Applied Materials, Inc. Column for charged particle beam device
JP4627771B2 (en) * 2002-09-11 2011-02-09 株式会社日立ハイテクノロジーズ Charged particle beam equipment
EP1517353B1 (en) * 2003-09-11 2008-06-25 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam energy width reduction system for charged particle beam system
US8258475B2 (en) * 2009-01-19 2012-09-04 Hitachi High-Technologies Corporation Charged particle radiation device provided with aberration corrector
US8921782B2 (en) * 2012-11-30 2014-12-30 Kla-Tencor Corporation Tilt-imaging scanning electron microscope
JP6134145B2 (en) * 2013-01-24 2017-05-24 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and trajectory correction method in charged particle beam apparatus

Also Published As

Publication number Publication date
JP2019075392A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
JP6554288B2 (en) Charged particle beam equipment
KR102214294B1 (en) Charged particle beam device for inspection of a specimen with an array of primary charged particle beamlets
JP4620981B2 (en) Charged particle beam equipment
US9053900B2 (en) Apparatus and methods for high-resolution electron beam imaging
JP4378290B2 (en) Multi-axis compound lens, beam system using the compound lens, and method of using the compound lens
JP4275441B2 (en) Electron beam device with aberration corrector
JP5738378B2 (en) Octapole device and spot size improving method
JP6037693B2 (en) Charged particle beam equipment
US8866102B2 (en) Electron beam device with tilting and dispersion compensation, and method of operating same
WO2014115708A1 (en) Charged particle beam apparatus and trajectory correction method in charged particle beam apparatus
JP4291827B2 (en) Method for adjusting scanning electron microscope or length measuring SEM
EP3428949B1 (en) Electron beam system for aberration correction
JP6737539B2 (en) Charged particle beam device
JP7240525B2 (en) Charged particle beam device and aberration correction method
US20230245852A1 (en) Multiple particle beam microscope and associated method with fast autofocus around an adjustable working distance
JP2011040256A (en) Scanning charged particle beam device
CN117672786A (en) Magnetic multipole device, charged particle beam apparatus and method of influencing a charged particle beam propagating along an optical axis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200714

R150 Certificate of patent or registration of utility model

Ref document number: 6737539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150