JP6737238B2 - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
JP6737238B2
JP6737238B2 JP2017110630A JP2017110630A JP6737238B2 JP 6737238 B2 JP6737238 B2 JP 6737238B2 JP 2017110630 A JP2017110630 A JP 2017110630A JP 2017110630 A JP2017110630 A JP 2017110630A JP 6737238 B2 JP6737238 B2 JP 6737238B2
Authority
JP
Japan
Prior art keywords
magnetic pole
claw
shaped magnetic
permanent magnet
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017110630A
Other languages
Japanese (ja)
Other versions
JP2018207667A (en
Inventor
佳純 北原
佳純 北原
高橋 裕樹
裕樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017110630A priority Critical patent/JP6737238B2/en
Priority to PCT/JP2018/021239 priority patent/WO2018225656A1/en
Publication of JP2018207667A publication Critical patent/JP2018207667A/en
Application granted granted Critical
Publication of JP6737238B2 publication Critical patent/JP6737238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/22Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/04Windings on magnets for additional excitation ; Windings and magnets for additional excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

本発明は、ステータと、ロータと、を備える回転電機に関する。 The present invention relates to a rotating electric machine including a stator and a rotor.

従来、ステータと、ロータと、を備える車両用交流発電機などの回転電機が知られている(例えば、特許文献1など)。特許文献1記載の発電機では、ロータは、界磁巻線と、その界磁巻線により回転周方向に交互に異なる極性の磁極が形成される複数の爪状磁極部と、を有するランデル型ロータである。このロータは、回転周方向に隣接する2つの爪状磁極部の間に配置され、界磁巻線の起磁力により爪状磁極部に交互に現れる極性と一致するように磁極が形成される永久磁石を有している。この永久磁石によれば、より大きな出力密度を得ることができる。このような発電機では、永久磁石の大きさや、ランデル型ロータのロータコアのボス部、ディスク部、爪状磁極部の形状などについて、最適化により設計がなされており、発電能力の向上と逆起電力の低減との両立が図られている。 BACKGROUND ART Conventionally, a rotating electric machine such as a vehicle AC generator including a stator and a rotor is known (for example, Patent Document 1). In the generator described in Patent Document 1, the rotor has a field winding and a plurality of claw-shaped magnetic pole portions in which magnetic poles having different polarities are alternately formed in the circumferential direction of rotation by the field winding. It is a rotor. This rotor is arranged between two claw-shaped magnetic pole portions that are adjacent to each other in the circumferential direction of rotation, and the magnetic poles are formed so as to match the polarities alternately appearing in the claw-shaped magnetic pole portions due to the magnetomotive force of the field winding. It has a magnet. With this permanent magnet, a larger output density can be obtained. In such a generator, the size of the permanent magnet and the shapes of the boss, disk, and claw-shaped magnetic poles of the rotor core of the Lundell-type rotor are optimized for design, which improves the power generation capacity and counteracts it. Achieving compatibility with reduction of electric power.

特開平4−255451号公報JP-A-4-255451

近年では、例えば回転電機が車両に搭載される場合を想定すると、車両走行抵抗を減らすためのスラントノーズ化や、エンジンルームの小型化などに伴って、車両用交流発電機やスタータの搭載スペースが極小化されつつある。このような状況で重要視される能力として、スタータ能力や車両を高効率動作でアシストするための高効率な力行,回生能力が加わったため、純粋な発電能力だけに能力改善を求める割合は相対的に少なくなっており、界磁電流が短期間で大電流となる場合の発電機の発電、トルク、回生能力が注目されている。この界磁電流が短期間で大電流になると、ロータ自信が生み出す界磁磁界と、巻線が巻かれたステータから発生する励磁磁界との双方が永久磁石に加わり、永久磁石に強力な反磁界が加わる。 In recent years, assuming a case where a rotating electric machine is mounted on a vehicle, for example, a slant nose for reducing vehicle running resistance, a smaller engine room, and the like are accompanied by a space for mounting a vehicle AC generator and a starter. It is being minimized. Since the ability to starter, the highly efficient powering to assist the vehicle in high efficiency operation, and the regenerative ability are added as the ability that is regarded as important in such a situation, the ratio of the ability improvement only to the pure power generation ability is relatively high. Since the field current becomes large in a short period of time, the power generation, torque, and regenerative ability of the generator are attracting attention. When this field current becomes a large current in a short period of time, both the field magnetic field generated by the rotor and the magnetic field generated by the stator wound with the winding are added to the permanent magnet, and the permanent magnet has a strong demagnetizing field. Is added.

一般的に、特許文献1に示されるランデル型ロータの如く、永久磁石による磁気回路と界磁コアによる磁気回路との少なくとも二つを持つ並列磁気回路が形成される電磁石/磁石併用型のロータでは、界磁電流が短期間で大電流になると、永久磁石が、界磁コイルからの強力な反磁界と、ステータ側の励磁コイルから受ける強力な反磁界と、を同時に受ける。永久磁石に強力な反磁界が加わると、その永久磁石が大きく減磁されるおそれがある。 Generally, in a rotor of a combined electromagnet/magnet type in which a parallel magnetic circuit having at least two magnetic circuits of a permanent magnet and a magnetic circuit of a field core is formed as in the Lundell type rotor disclosed in Patent Document 1. When the field current becomes large in a short period of time, the permanent magnet simultaneously receives a strong demagnetizing field from the field coil and a strong demagnetizing field received from the stator side exciting coil. When a strong demagnetizing field is applied to the permanent magnet, the permanent magnet may be significantly demagnetized.

本発明は、このような点に鑑みてなされたものであり、耐減磁性能を向上させることが可能な回転電機を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a rotating electric machine capable of improving demagnetization resistance performance.

本発明の一態様は、ステータコアに電機子巻線が巻装されている環状のステータと、前記ステータの径方向内側に対向して配置されたロータと、を備える回転電機であって、前記ロータは、筒状のボス部、及び、前記ボス部の径方向外側に配置され、回転周方向に交互に異なる極性の磁極が形成される複数の爪状磁極部を有する界磁コアと、前記ボス部の外周側に巻装され、通電により起磁力を発生する界磁巻線と、回転周方向に隣接する前記爪状磁極部の間に磁化容易軸が周方向に向くように配置され、前記界磁巻線の起磁力により前記爪状磁極部に交互に現れる極性と一致するように磁極が形成されている永久磁石と、を有し、前記爪状磁極部と前記永久磁石との互いに回転周方向に対向する対向面間の距離は、前記ステータから遠い径方向内側位置に比べて前記ステータに近い径方向外側位置における方が長く、前記爪状磁極部と前記永久磁石との互いに回転周方向に対向する方向の磁気抵抗は、前記径方向内側位置に比べて前記径方向外側位置における方が大きく、前記爪状磁極部は、前記対向面の前記径方向外側位置に窪んだ窪み部を有し、前記ロータは、前記窪み部内に一部が収容された、前記永久磁石を保持する磁石ホルダを有する、回転電機である。 One aspect of the present invention is a rotating electric machine comprising: an annular stator having an armature winding wound around a stator core; and a rotor arranged to face an inner side in a radial direction of the stator. Is a cylindrical boss portion, and a field core having a plurality of claw-shaped magnetic pole portions arranged radially outside of the boss portion and having magnetic poles of different polarities formed alternately in the circumferential direction of rotation, and the boss. A field winding that is wound around the outer peripheral side of the portion and that generates a magnetomotive force by energization, and an easy axis of magnetization is arranged in the circumferential direction between the claw-shaped magnetic pole portions that are adjacent in the rotational circumferential direction, and has a permanent magnet poles to match the polarities appear alternately on the claw-shaped magnetic pole portions by the magnetomotive force of the field winding is formed, the rotation each other of the permanent magnet and the claw-shaped magnetic pole portions The distance between the facing surfaces facing each other in the circumferential direction is longer at the radially outer position closer to the stator than at the radially inner position far from the stator, and the claw-shaped magnetic pole portion and the permanent magnet rotate relative to each other. magnetic resistance in the direction opposite to the direction, the radial who in the radially outer position than in the inward position rather large, the claw-shaped magnetic pole portions are recessed in the radially outer position of the facing surface recess And the rotor is a rotating electric machine having a magnet holder for holding the permanent magnet, a part of which is housed in the hollow portion .

この構成によれば、爪状磁極部と永久磁石との間で回転周方向に流れる磁界が、径方向外側で流れ難く、径方向内側で流れ易くなるので、ステータ側から爪状磁極部へ流れた磁界がその爪状磁極部のより径方向内側の部位にまで導かれ、爪状磁極部から永久磁石側へ流れ出る磁界がその対向部位の径方向全体に分散される。このため、永久磁石が受ける反磁界の影響をその永久磁石の径方向位置で均一化させることができる。従って、永久磁石の局所的な減磁を防ぐことができ、その耐減磁性能を向上させることができる。 According to this configuration, the magnetic field flowing in the rotational circumferential direction between the claw-shaped magnetic pole portion and the permanent magnet is hard to flow on the radially outer side and easily flows on the radially inner side. The magnetic field is guided to a portion radially inward of the claw-shaped magnetic pole portion, and the magnetic field flowing out from the claw-shaped magnetic pole portion to the permanent magnet side is dispersed in the entire radial direction of the facing portion. Therefore, the influence of the demagnetizing field on the permanent magnet can be made uniform at the radial position of the permanent magnet. Therefore, local demagnetization of the permanent magnet can be prevented, and its demagnetization resistance performance can be improved.

この構成によれば、爪状磁極部と永久磁石との対向面間のギャップを径方向外側位置で径方向内側位置に比べて大きくすることができるので、爪状磁極部と永久磁石との互いに回転周方向に対向する方向のステータに近い径方向外側位置における磁気抵抗を、ステータから遠い径方向内側位置における磁気抵抗に比べて大きくすることができる。従って、永久磁石が受ける反磁界の影響をその永久磁石の径方向位置で均一化させることができるので、永久磁石の局所的な減磁を防ぐことができ、その耐減磁性能を向上させることができる。 With this configuration, the gap between the facing surfaces of the claw-shaped magnetic pole portion and the permanent magnet can be made larger at the radially outer position than at the radially inner position. The magnetic resistance at the radially outer position closer to the stator in the direction opposed to the circumferential direction of rotation can be made larger than the magnetic resistance at the radially inner position far from the stator. Therefore, since the influence of the demagnetizing field on the permanent magnet can be made uniform in the radial position of the permanent magnet, it is possible to prevent local demagnetization of the permanent magnet and improve its demagnetization resistance performance. You can

この構成によれば、窪み部が存在する部位における対向面間の距離を、窪み部が存在しない部位における対向面間の距離に比べて長くして、爪状磁極部と永久磁石との対向面間のギャップを径方向外側位置で径方向内側位置に比べて大きくすることができる。このため、爪状磁極部と永久磁石との互いに回転周方向に対向する方向のステータに近い径方向外側位置における磁気抵抗を、ステータから遠い径方向内側位置における磁気抵抗に比べて大きくすることができる。従って、永久磁石が受ける反磁界の影響をその永久磁石の径方向位置で均一化させることができるので、永久磁石の局所的な減磁を防ぐことができ、その耐減磁性能を向上させることができる。 According to this configuration, the distance between the facing surfaces in the portion where the recess is present is made longer than the distance between the facing surfaces in the portion where the recess is not present, and the facing surface between the claw-shaped magnetic pole portion and the permanent magnet is increased. The gap between them can be made larger at the radially outer position than at the radially inner position. Therefore, the magnetic resistance of the claw-shaped magnetic pole portion and the permanent magnet at the radially outer position closer to the stator in the direction opposed to each other in the circumferential direction of rotation can be made larger than the magnetic resistance at the radially inner position far from the stator. it can. Therefore, since the influence of the demagnetizing field on the permanent magnet can be made uniform in the radial position of the permanent magnet, it is possible to prevent local demagnetization of the permanent magnet and improve its demagnetization resistance performance. You can

の構成によれば、爪状磁極部の窪み部内に、永久磁石を保持する磁石ホルダの一部を収容することができ、永久磁石を爪状磁極部に対して位置固定することができる。 According to the configuration of this, in a recess portion of the claw-shaped magnetic pole portions, it is possible to receive a portion of the magnet holder for holding the permanent magnets, it is possible to position fixing the permanent magnet against the claw-shaped magnetic pole portions.

、前記爪状磁極部は、前記窪み部と、前記窪み部の径方向外側において回転周方向に突出する突出部と、を有し、前記磁石ホルダは、前記窪み部を形成する外面と前記突出部とに係止されていてよい The claw-shaped magnetic pole portion includes the recess portion and a protrusion portion that protrudes in the rotation circumferential direction on the outer side in the radial direction of the recess portion, and the magnet holder has an outer surface that forms the recess portion and the outer surface. It may be locked to the protrusion.

この構成によれば、磁石ホルダひいてはその磁石ホルダが保持する永久磁石を爪状磁極部に対して移動規制することができる。このため、反磁界による永久磁石の振動や剥がれが生じることや、永久磁石の着磁時におけるショック磁界による割れや欠けなどが生じることを低減することができる。 According to this configuration, the magnet holder, and thus the permanent magnet held by the magnet holder, can be restricted in movement with respect to the claw-shaped magnetic pole portion. Therefore, it is possible to reduce the occurrence of vibration or peeling of the permanent magnet due to the demagnetizing field, and the occurrence of cracking or chipping due to the shock magnetic field when the permanent magnet is magnetized.

また、前記ロータは、前記爪状磁極部の径方向外側に前記爪状磁極部の外周面を覆うように配置される筒状の磁極鉄心を有し、前記磁石ホルダは、前記磁極鉄心の内周面と前記爪状磁極部の前記窪み部を形成する外面との間に形成される空間内に嵌め込み固定されていてよい Further , the rotor has a cylindrical magnetic pole iron core arranged radially outside of the claw-shaped magnetic pole portion so as to cover an outer peripheral surface of the claw-shaped magnetic pole portion, and the magnet holder includes an inner portion of the magnetic pole iron core. It may be fitted and fixed in a space formed between a peripheral surface and an outer surface of the claw-shaped magnetic pole portion forming the recess.

この構成によれば、磁石ホルダひいてはその磁石ホルダが保持する永久磁石を爪状磁極部及び磁極鉄心に対して移動規制することができる。このため、反磁界による永久磁石の振動や剥がれが生じることや、永久磁石の着磁時におけるショック磁界による割れや欠けなどが生じることを低減することができる。また、磁石ホルダの一部を収容するために必要な爪状磁極部の窪み部と、永久磁石の局所的な減磁を防ぐために必要な爪状磁極部の窪み部と、を一つで兼用することができる。このため、爪状磁極部の形状の簡素化や成形の容易化を図ることができる。更に、磁極鉄心が爪状磁極部の外周面を覆うように配置されるので、回転周方向に並んだ複数の爪状磁極部をその磁極鉄心を介して互いに連結することができる。このため、永久磁石による重量増に伴ってロータに作用する遠心力が増大しても、爪状磁極部の変形を確実に抑えることができ、強度低下を抑えることができる。 According to this structure, movement of the magnet holder, and thus the permanent magnet held by the magnet holder, can be restricted with respect to the claw-shaped magnetic pole portion and the magnetic pole core. Therefore, it is possible to reduce the occurrence of vibration or peeling of the permanent magnet due to the demagnetizing field, and the occurrence of cracking or chipping due to the shock magnetic field when the permanent magnet is magnetized. In addition, the depression of the claw-shaped magnetic pole portion required to accommodate a part of the magnet holder and the depression of the claw-shaped magnetic pole portion required to prevent local demagnetization of the permanent magnet can be used together. can do. Therefore, it is possible to simplify the shape of the claw-shaped magnetic pole portion and facilitate the molding. Further, since the magnetic pole iron core is arranged so as to cover the outer peripheral surface of the claw-shaped magnetic pole portion, a plurality of claw-shaped magnetic pole portions arranged in the circumferential direction of rotation can be connected to each other via the magnetic pole iron core. Therefore, even if the centrifugal force acting on the rotor increases as the weight of the permanent magnets increases, the deformation of the claw-shaped magnetic pole portions can be reliably suppressed, and the reduction in strength can be suppressed.

また、前記磁石ホルダは、磁性材により形成されていてよい。この構成によれば、永久磁石と爪状磁極部との間に磁性体である磁石ホルダが径方向略全域に亘って配置されるので、永久磁石全体の磁気抵抗を下げることができ、そのパーミアンスを増加させることができる。このため、永久磁石の反磁界をより低下させることができる。 Further , the magnet holder may be made of a magnetic material. According to this structure, since the magnet holder, which is a magnetic body, is arranged between the permanent magnet and the claw-shaped magnetic pole portion over substantially the entire area in the radial direction, the magnetic resistance of the entire permanent magnet can be reduced, and the permeance thereof can be reduced. Can be increased. Therefore, the demagnetizing field of the permanent magnet can be further reduced.

また、前記爪状磁極部と前記永久磁石との互いに回転周方向に対向する対向部位の透磁率は、前記径方向内側位置に比べて前記径方向外側位置における方が小さくてよい In addition, the magnetic permeability of the facing portions facing each other circumferential direction of rotation of the permanent magnet and the claw-shaped magnetic pole portions, is small Kuteyoi person in the radially outward position than that of the radially inward position.

この構成によれば、爪状磁極部と永久磁石との互いに回転周方向に対向する方向の、ステータに近い径方向外側位置における磁気抵抗を、ステータから遠い径方向内側位置における磁気抵抗に比べて大きくすることができる。従って、永久磁石が受ける反磁界の影響をその永久磁石の径方向位置で均一化させることができるので、永久磁石の局所的な減磁を防ぐことができ、その耐減磁性能を向上させることができる。 According to this configuration, the magnetic resistance of the claw-shaped magnetic pole portion and the permanent magnet at the radially outer position closer to the stator in the direction opposed to each other in the circumferential direction of rotation is compared to the magnetic resistance at the radially inner position far from the stator. Can be large. Therefore, since the influence of the demagnetizing field on the permanent magnet can be made uniform in the radial position of the permanent magnet, it is possible to prevent local demagnetization of the permanent magnet and improve its demagnetization resistance performance. You can

また、前記永久磁石は、回転周方向に隣接する前記爪状磁極部の間に組み付けられた状態で着磁された磁石であってよい
The front SL permanent magnet may be magnetized magnets in a state of being assembled between said claw-shaped magnetic pole portion adjacent to the circumferential direction of rotation.

この構成によれば、爪状磁極部と永久磁石との間で回転周方向に流れる着磁磁界が、径方向外側で流れ難く、径方向内側で流れ易くなるので、爪状磁極部へ流れた着磁磁界がその爪状磁極部のより径方向内側の部位にまで導かれ、爪状磁極部から永久磁石側へ流れ出る着磁磁界がその対向部位の径方向全体に分散される。従って、永久磁石が受ける着磁磁界をその永久磁石の径方向位置で均一化させることができるので、永久磁石の着磁が全体で不均一なものとなるのを防止することができる。 According to this structure, the magnetizing magnetic field flowing in the circumferential direction of rotation between the claw-shaped magnetic pole portion and the permanent magnet is hard to flow on the outer side in the radial direction and easily flows on the inner side in the radial direction. The magnetizing magnetic field is guided to a portion radially inward of the claw-shaped magnetic pole portion, and the magnetizing magnetic field flowing out from the claw-shaped magnetic pole portion toward the permanent magnet is dispersed in the entire radial direction of the facing portion. Therefore, the magnetizing magnetic field received by the permanent magnet can be made uniform at the radial position of the permanent magnet, so that the magnetizing of the permanent magnet can be prevented from becoming non-uniform as a whole.

本発明の一実施形態に係る回転電機の構成を表した断面図である。It is sectional drawing showing the structure of the rotary electric machine which concerns on one Embodiment of this invention. 本実施形態の回転電機が備えるロータを径方向外側から見た際の図である。It is a figure when the rotor with which the rotary electric machine of this embodiment is equipped is seen from the radial outside. 本実施形態の回転電機が備えるロータの斜視図である。It is a perspective view of the rotor with which the rotary electric machine of this embodiment is equipped. 本実施形態の回転電機が備えるロータのうち、爪状磁極部の外周を覆う磁極鉄心を取り除いた状態での斜視図である。It is a perspective view in the state where the magnetic pole iron core which covers the perimeter of a claw-shaped magnetic pole part was removed among the rotors with which the rotary electric machine of this embodiment was equipped. 本実施形態の回転電機が備えるロータの要部を軸方向から見た際の図である。It is a figure when the principal part of the rotor with which the rotary electric machine of this embodiment is equipped was seen from an axial direction. 永久磁石に不可逆減磁が生じたときにおける磁界と磁束密度との関係を示す減磁カーブの一例を表した図である。It is a figure showing an example of the demagnetization curve which shows the relation between a magnetic field and magnetic flux density when irreversible demagnetization generate|occur|produces in a permanent magnet. 永久磁石に不可逆減磁が生じないようにロータの磁気抵抗を設定する手法を説明するための磁界と磁束密度との関係を示す減磁カーブの一例を表した図である。It is a figure showing an example of a demagnetization curve showing a relation between a magnetic field and magnetic flux density for explaining a method of setting magnetic resistance of a rotor so that irreversible demagnetization does not occur in a permanent magnet. 本実施形態のロータの組み立て手順を表した一例のフローチャートである。It is an example of the flowchart showing the assembly procedure of the rotor of the present embodiment. 本実施形態のロータが有する磁石ホルダ及びその周辺を軸方向から見た際の図である。It is a figure when the magnet holder which the rotor of this embodiment has and its periphery are seen from the axial direction. 本実施形態のロータが有する磁石ホルダの斜視図である。It is a perspective view of the magnet holder which the rotor of this embodiment has. 本発明の一変形形態に係る回転電機のロータが有する磁石ホルダ及びその周辺を軸方向から見た際の図である。It is the figure when the magnet holder which the rotor of the rotary electric machine which concerns on the modification of this invention has, and its periphery are seen from an axial direction. 本発明の他の変形形態に係る回転電機のロータの要部を軸方向から見た際の図である。It is a figure when the principal part of the rotor of the rotary electric machine which concerns on the other modified form of this invention is seen from the axial direction. 本発明の更に他の変形形態に係る回転電機のロータの要部を軸方向から見た際の図である。It is a figure when the principal part of the rotor of the rotary electric machine which concerns on another modification of this invention is seen from the axial direction.

以下、本発明に係る回転電機の具体的な実施形態及び変形形態について、図1〜図13を参照しつつ説明する。 Specific embodiments and modifications of the rotary electric machine according to the present invention will be described below with reference to FIGS. 1 to 13.

まず、一実施形態の回転電機1の構成について説明する。回転電機1は、例えば車両に搭載されており、バッテリなどの電源から電力が供給されることで車両を駆動するための駆動力を発生すると共に、また、車両のエンジンから駆動力が供給されることでバッテリを充電するための電力を発生する装置である。回転電機1は、三相交流モータジェネレータである。回転電機1は、図1に示す如く、ハウジング10と、ステータ20と、ロータ30と、ブラシ装置40と、整流装置50と、電圧調整器60と、プーリ70と、を備えている。 First, the configuration of the rotary electric machine 1 according to the embodiment will be described. The rotating electric machine 1 is mounted in, for example, a vehicle, and generates a driving force for driving the vehicle by being supplied with power from a power source such as a battery, and is also supplied with a driving force from an engine of the vehicle. This is a device that generates electric power for charging the battery. The rotary electric machine 1 is a three-phase AC motor generator. As shown in FIG. 1, the rotary electric machine 1 includes a housing 10, a stator 20, a rotor 30, a brush device 40, a rectifying device 50, a voltage regulator 60, and a pulley 70.

ハウジング10は、ステータ20及びロータ30を収容するケース部材である。ハウジング10は、ロータ30に嵌合された回転シャフト80をベアリングを介して軸回りに回転可能に支持していると共に、ステータ20を固定している。 The housing 10 is a case member that houses the stator 20 and the rotor 30. The housing 10 supports the rotating shaft 80 fitted to the rotor 30 via a bearing so as to be rotatable about its axis, and also fixes the stator 20.

ステータ20は、電流が流れることでロータ30を回転させる磁界を発生すると共に、ロータ30の回転により磁界を発生して起電力を発生する部材である。ステータ20は、ステータコア21と、電機子巻線22と、を備えている。ステータコア21は、中空の円筒状に形成された部材である。ステータコア21は、鉄やケイ素鋼からなる電磁鋼板などの軟磁性材により形成されており、磁路の一部を構成する。ステータコア21は、円環状に形成された円環部と、円環部の径方向内面から径方向内側に向けて延びる、周回り所定角度をおいて配置されるように複数設けられたティース部と、回転周方向に隣接する2つのティース部間に空いたスロット部と、を有している。 The stator 20 is a member that generates a magnetic field that rotates the rotor 30 when an electric current flows and also generates a magnetic field by the rotation of the rotor 30 to generate an electromotive force. The stator 20 includes a stator core 21 and an armature winding 22. The stator core 21 is a hollow cylindrical member. The stator core 21 is made of a soft magnetic material such as an electromagnetic steel plate made of iron or silicon steel, and constitutes a part of the magnetic path. The stator core 21 includes an annular portion formed in an annular shape, and a plurality of teeth portions extending inward in the radial direction from an inner surface in the radial direction of the annular portion and arranged at predetermined circumferential angles. , And a slot portion that is vacant between two tooth portions that are adjacent to each other in the circumferential direction of rotation.

電機子巻線22は、ステータコア21に巻装されている。電機子巻線22は、ステータコア21のスロット部に収容される直線状のスロット収容部と、ステータコア21の軸方向端から軸方向外側に突出する湾曲状のコイルエンド部と、を有している。電機子巻線22は、回転電機1の相数に対応した数だけ設けられた多相巻線(例えば三相巻線)である。電機子巻線22の各相巻線は、インバータ装置に接続されている。各相巻線に印加される電圧は、インバータ装置内のスイッチング素子がスイッチング駆動されることにより制御される。 The armature winding 22 is wound around the stator core 21. The armature winding 22 has a linear slot housing portion housed in the slot portion of the stator core 21, and a curved coil end portion that projects axially outward from the axial end of the stator core 21. .. The armature windings 22 are polyphase windings (for example, three-phase windings) provided in the number corresponding to the number of phases of the rotary electric machine 1. Each phase winding of the armature winding 22 is connected to the inverter device. The voltage applied to each phase winding is controlled by switching-driving a switching element in the inverter device.

ロータ30は、ステータ20(具体的には、ティース部の先端)に対して径方向内側に所定のエアギャップを空けて対向配置されている。すなわち、ステータ20とロータ30とは、互いに径方向に所定のエアギャップを介して対向して配置されている。ロータ30は、回転により電機子巻線22側に磁界を付与することができる。ロータ30は、いわゆるランデル型ロータである。ロータ30は、界磁コア31と、界磁巻線32と、磁極筒部33と、永久磁石34と、を備えている。 The rotor 30 is disposed to face the stator 20 (specifically, the tips of the teeth) radially inward with a predetermined air gap. That is, the stator 20 and the rotor 30 are arranged to face each other in the radial direction with a predetermined air gap therebetween. The rotor 30 can apply a magnetic field to the armature winding 22 side by rotation. The rotor 30 is a so-called Lundell type rotor. The rotor 30 includes a field core 31, a field winding 32, a magnetic pole tube portion 33, and a permanent magnet 34.

界磁コア31は、軟磁性材により形成されており、磁路の一部を構成する。界磁コア31は、ボス部35と、ディスク部36と、爪状磁極部37と、を有している。ボス部35とディスク部36と爪状磁極部37とは、ポールコア(界磁鉄心)を形成する。この界磁コア31は、例えば鍛造成形されている。 The field core 31 is made of a soft magnetic material and constitutes a part of the magnetic path. The field core 31 has a boss portion 35, a disk portion 36, and a claw-shaped magnetic pole portion 37. The boss portion 35, the disk portion 36, and the claw-shaped magnetic pole portion 37 form a pole core (field iron core). The field core 31 is, for example, forged.

ボス部35は、回転シャフト80の外周側に嵌合固定される部位である。ディスク部36は、ボス部35の回転軸方向端部から径方向外側に広がる円盤状の部位である。爪状磁極部37は、ディスク部36の外周端部に連接すると共に、その連接部から軸方向に延在する爪状に形成された部位である。爪状磁極部37は、ディスク部36との連接部から回転シャフト80の回転軸方向に沿って延在している。爪状磁極部37は、ボス部35に対して径方向外側に隙間を空けて配置されている。爪状磁極部37の外周面は、略円弧状に形成されている。 The boss portion 35 is a portion fitted and fixed to the outer peripheral side of the rotary shaft 80. The disk portion 36 is a disk-shaped portion that extends radially outward from the end of the boss portion 35 in the rotation axis direction. The claw-shaped magnetic pole part 37 is a claw-shaped part that is connected to the outer peripheral end of the disk part 36 and extends in the axial direction from the connected part. The claw-shaped magnetic pole portion 37 extends from the connecting portion with the disc portion 36 along the rotation axis direction of the rotation shaft 80. The claw-shaped magnetic pole portion 37 is arranged with a gap radially outward from the boss portion 35. The outer peripheral surface of the claw-shaped magnetic pole portion 37 is formed in a substantially arc shape.

爪状磁極部37は、互いに異なる極性(具体的には、N極及びS極)の磁極が形成される第1爪状磁極部37−1及び第2爪状磁極部37−2を含む。第1爪状磁極部37−1及び第2爪状磁極部37−2は、一対のポールコアを構成する。第1爪状磁極部37−1及び第2爪状磁極部37−2は、ロータ30の回転周方向において複数の同じ数(例えば、8個)ずつ設けられている。第1爪状磁極部37−1と第2爪状磁極部37−2とは、図4に示す如く、回転周方向に隙間空間38を空けて離間しつつ交互に配置されている。 The claw-shaped magnetic pole portion 37 includes a first claw-shaped magnetic pole portion 37-1 and a second claw-shaped magnetic pole portion 37-2 in which magnetic poles having different polarities (specifically, N pole and S pole) are formed. The first claw-shaped magnetic pole portion 37-1 and the second claw-shaped magnetic pole portion 37-2 form a pair of pole cores. The first claw-shaped magnetic pole portions 37-1 and the second claw-shaped magnetic pole portions 37-2 are provided in the same number (e.g., eight) in the circumferential direction of the rotor 30. As shown in FIG. 4, the first claw-shaped magnetic pole portions 37-1 and the second claw-shaped magnetic pole portions 37-2 are alternately arranged while being spaced apart from each other with a gap space 38 in the rotation circumferential direction.

第1爪状磁極部37−1と第2爪状磁極部37−2とは、ディスク部36に連接する軸方向根元側(又は軸方向先端側)が互いに軸方向逆側となるように回転周方向に交互に配置されている。第1爪状磁極部37−1と第2爪状磁極部37−2とは、互いに異なる極性に磁化される。第1爪状磁極部37−1は、ボス部35の軸方向一端側から径方向外側に広がるディスク部36の外周端に連接しており、軸方向他端側に延在している。また、第2爪状磁極部37−2は、ボス部35の軸方向他端側から径方向外側に広がるディスク部36の外周端に連接しており、軸方向一端側に延在している。第1爪状磁極部37−1と第2爪状磁極部37−2とは、配置位置や突出する軸方向の向きを除いて、互いに共通した形状に形成されている。 The first claw-shaped magnetic pole portion 37-1 and the second claw-shaped magnetic pole portion 37-2 rotate so that the axial root side (or the axial tip side) connected to the disc portion 36 is axially opposite to each other. They are arranged alternately in the circumferential direction. The first claw-shaped magnetic pole portion 37-1 and the second claw-shaped magnetic pole portion 37-2 are magnetized to have different polarities. The first claw-shaped magnetic pole portion 37-1 is connected to the outer peripheral end of the disk portion 36 that extends radially outward from one axial side of the boss portion 35, and extends to the other axial side. The second claw-shaped magnetic pole portion 37-2 is connected to the outer peripheral end of the disc portion 36 that extends radially outward from the other end side in the axial direction of the boss portion 35, and extends to one end side in the axial direction. .. The first claw-shaped magnetic pole portion 37-1 and the second claw-shaped magnetic pole portion 37-2 are formed in a common shape except for the arrangement position and the protruding axial direction.

各爪状磁極部37は、回転周方向において所定の幅(すなわち、周方向幅)を有すると共に、径方向において所定の厚さ(すなわち、径方向厚さ)を有するように形成されている。各爪状磁極部37は、ディスク部36との連接部近傍の根元側から軸方向先端側にかけて、周方向幅が徐々に小さくなりかつ径方向厚さが徐々に小さくなるように形成されている。すなわち、各爪状磁極部37は、軸方向先端側ほど回転周方向及び径方向の双方において細くなるように形成されている。尚、各爪状磁極部37は、回転周方向にその周方向中心を挟んで左右対称となるように形成されていることが好ましい。 Each claw-shaped magnetic pole portion 37 is formed so as to have a predetermined width (that is, a circumferential width) in the rotation circumferential direction and a predetermined thickness (that is, a radial thickness) in the radial direction. Each of the claw-shaped magnetic pole portions 37 is formed so that the width in the circumferential direction and the thickness in the radial direction gradually decrease from the root side in the vicinity of the connecting portion with the disc portion 36 to the tip side in the axial direction. .. That is, each claw-shaped magnetic pole portion 37 is formed so as to become thinner in both the circumferential direction of rotation and the radial direction toward the tip end side in the axial direction. It is preferable that each of the claw-shaped magnetic pole portions 37 is formed so as to be bilaterally symmetric with respect to the circumferential direction in the circumferential direction of rotation.

隙間空間38は、互いに回転周方向に隣接する第1爪状磁極部37−1と第2爪状磁極部37−2との間ごとに設けられている。隙間空間38は、軸方向斜めに延在しており、ロータ30の回転軸に対して軸方向端部から反対側の軸方向端部にかけて所定角度で傾斜している。各隙間空間38は、その回転周方向の大きさ(すなわち、寸法)が軸方向位置に応じて変化することがほとんど無いように、すなわち、その周方向寸法が一定若しくはその一定値を含む極僅かな範囲内に維持されるように設定されている。各隙間空間38には、永久磁石34が配置される。 The clearance space 38 is provided between each of the first claw-shaped magnetic pole portions 37-1 and the second claw-shaped magnetic pole portions 37-2 that are adjacent to each other in the rotation circumferential direction. The clearance space 38 extends obliquely in the axial direction, and is inclined at a predetermined angle from the axial end portion to the opposite axial end portion with respect to the rotation axis of the rotor 30. Each clearance space 38 has a size (that is, a dimension) in the circumferential direction of rotation that hardly changes in accordance with an axial position, that is, a circumferential dimension thereof is constant or a very small amount including the constant value. It is set to be maintained within a certain range. A permanent magnet 34 is arranged in each gap space 38.

界磁巻線32は、ボス部35と爪状磁極部37との径方向に空いた隙間に配置されている。界磁巻線32は、ボス部35の外周側においてそのボス部35に回転軸回りに巻装されている。界磁巻線32は、直流電流の通電により界磁コア31に磁束を発生させて起磁力を発生するコイル部材である。界磁巻線32により発生した磁束は、ボス部35及びディスク部36を介して爪状磁極部37に導かれる。すなわち、ボス部35及びディスク部36は、界磁巻線32にて発生した磁束を爪状磁極部37に導く磁路を形成する。界磁巻線32は、発生磁束により第1爪状磁極部37−1をN極に磁化させかつ第2爪状磁極部37−2をS極に磁化させる。 The field winding 32 is arranged in a radial gap between the boss portion 35 and the claw-shaped magnetic pole portion 37. The field winding 32 is wound around the boss portion 35 around the rotation axis on the outer peripheral side of the boss portion 35. The field winding 32 is a coil member that generates a magnetic flux in the field core 31 by applying a direct current to generate a magnetomotive force. The magnetic flux generated by the field winding 32 is guided to the claw-shaped magnetic pole portion 37 via the boss portion 35 and the disc portion 36. That is, the boss portion 35 and the disk portion 36 form a magnetic path that guides the magnetic flux generated in the field winding 32 to the claw-shaped magnetic pole portion 37. The field winding 32 magnetizes the first claw-shaped magnetic pole portion 37-1 to the N pole and the second claw-shaped magnetic pole portion 37-2 to the S pole by the generated magnetic flux.

磁極筒部33は、図2及び図3に示す如く、爪状磁極部37(すなわち、第1爪状磁極部37−1及び第2爪状磁極部37−2)の径方向外側にその爪状磁極部37の外周面を覆うように配置される略円筒状の部材である。磁極筒部33は、爪状磁極部37のディスク部36との連接部からその爪状磁極部37の軸方向先端までの距離程度の軸方向長さを有している。磁極筒部33は、径方向において所定厚さを有する薄皮部材である。この径方向厚さは、例えば、ロータ30での機械強度と磁気性能とを両立させることができる例えば0.6mm〜1.0mm程度である。磁極筒部33は、爪状磁極部37の円弧面に対向して配置されており、その爪状磁極部37に接している。磁極筒部33は、回転周方向に隣接する第1爪状磁極部37−1と第2爪状磁極部37−2との間の隙間空間38をその径方向外側で閉じるように配置されており、それらの爪状磁極部37−1,37−2同士を磁気的に接続する。 As shown in FIGS. 2 and 3, the magnetic pole tube portion 33 has its claw radially outward of the claw-shaped magnetic pole portion 37 (that is, the first claw-shaped magnetic pole portion 37-1 and the second claw-shaped magnetic pole portion 37-2). Is a substantially cylindrical member arranged so as to cover the outer peripheral surface of the magnetic pole portion 37. The magnetic pole tube portion 33 has an axial length of about the distance from the connecting portion of the claw-shaped magnetic pole portion 37 with the disk portion 36 to the axial tip of the claw-shaped magnetic pole portion 37. The magnetic pole tube portion 33 is a thin skin member having a predetermined thickness in the radial direction. The radial thickness is, for example, about 0.6 mm to 1.0 mm, which can achieve both mechanical strength and magnetic performance of the rotor 30. The magnetic pole tube portion 33 is arranged so as to face the circular arc surface of the claw-shaped magnetic pole portion 37, and is in contact with the claw-shaped magnetic pole portion 37. The magnetic pole tube portion 33 is arranged so as to close the gap space 38 between the first claw-shaped magnetic pole portion 37-1 and the second claw-shaped magnetic pole portion 37-2 which are adjacent to each other in the circumferential direction of rotation, on the radially outer side. And the claw-shaped magnetic pole portions 37-1 and 37-2 are magnetically connected to each other.

磁極筒部33は、軟磁性特性を有する金属材により形成された磁極鉄心である。磁極筒部33は、円筒状に形成されたパイプ状部材、打ち抜き加工した複数の薄板部材などが軸方向に積層された積層部材、又は、線材を巻き付け若しくは丸めて嵌め込んだものであってよい。磁極筒部33は、焼き嵌めや圧入,溶接或いはそれらの組み合わせなどによって爪状磁極部37に対して固定される。尚、磁極筒部33を構成する薄板状や線状,帯状の部材は、強度や磁気性能の観点から断面矩形状の角材であることが好ましいが、丸線或いは角部が湾曲したものであってもよい。 The magnetic pole tube portion 33 is a magnetic pole core formed of a metal material having soft magnetic characteristics. The magnetic pole cylinder portion 33 may be a pipe-shaped member formed in a cylindrical shape, a laminated member in which a plurality of punched thin plate members and the like are laminated in the axial direction, or a wire member wound or rolled and fitted. .. The magnetic pole tube portion 33 is fixed to the claw-shaped magnetic pole portion 37 by shrink fitting, press fitting, welding, or a combination thereof. The thin plate-shaped, linear, or strip-shaped member that constitutes the magnetic pole tube portion 33 is preferably a square member having a rectangular cross section from the viewpoint of strength and magnetic performance, but a round wire or a curved corner portion. May be.

磁極筒部33は、ロータ30の外周面を滑らかにして、ロータ30の外周面に形成される凹凸に起因する風切り音を低減する機能を有する。また、磁極筒部33は、回転周方向に並んだ複数の爪状磁極部37を互いに連結することで、遠心力が作用した時に各爪状磁極部37の変形(特に径方向外側への変形)を抑える機能を有する。 The magnetic pole cylinder portion 33 has a function of smoothing the outer peripheral surface of the rotor 30 and reducing wind noise caused by the unevenness formed on the outer peripheral surface of the rotor 30. In addition, the magnetic pole tube portion 33 connects the plurality of claw-shaped magnetic pole portions 37 arranged in the circumferential direction of rotation to each other, so that when the centrifugal force acts, the respective claw-shaped magnetic pole portions 37 are deformed (in particular, radially outwardly deformed). ) Has a function to suppress.

永久磁石34は、磁極筒部33の径方向内側に収容されている。永久磁石34は、回転周方向に隣接する2つの爪状磁極部37の間すなわち対をなす第1爪状磁極部37−1と第2爪状磁極部37−2との間にその隙間空間38を埋めるように配置された磁極間磁石である。永久磁石34は、隙間空間38ごとに配置されており、隙間空間38の数と同数だけ設けられている。 The permanent magnet 34 is housed inside the magnetic pole tube portion 33 in the radial direction. The permanent magnet 34 has a clearance space between the two claw-shaped magnetic pole portions 37 that are adjacent to each other in the circumferential direction of rotation, that is, between the pair of the first claw-shaped magnetic pole portion 37-1 and the second claw-shaped magnetic pole portion 37-2. 38 is a magnet between magnetic poles arranged so as to fill up 38. The permanent magnets 34 are arranged in each of the gap spaces 38, and the permanent magnets 34 are provided in the same number as the number of the gap spaces 38.

各永久磁石34は、概ね直方体形状に形成されている。各永久磁石34は、爪状磁極部37の表面側で周方向に傾斜するように軸方向斜めに延在した状態に配置されている。永久磁石34は、回転周方向に隣接する2つの爪状磁極部37間における磁束の漏れを低減して爪状磁極部37とステータ20のステータコア21との間の磁束を強化する機能を有している。 Each permanent magnet 34 is formed in a substantially rectangular parallelepiped shape. The permanent magnets 34 are arranged in a state of extending obliquely in the axial direction so as to be inclined in the circumferential direction on the surface side of the claw-shaped magnetic pole portion 37. The permanent magnet 34 has a function of reducing leakage of magnetic flux between the two claw-shaped magnetic pole portions 37 adjacent to each other in the circumferential direction of rotation and strengthening the magnetic flux between the claw-shaped magnetic pole portion 37 and the stator core 21 of the stator 20. ing.

永久磁石34は、回転周方向に隣接する2つの爪状磁極部37の間の漏れ磁束を減少させる向きの磁極が形成されるようにすなわち磁化容易軸が周方向に向くように配置されている。具体的には、永久磁石34は、N極に磁化される第1爪状磁極部37−1に対向する回転周方向の面の磁極がN極となり、かつ、S極に磁化される第2爪状磁極部37−2に対向する回転周方向の面の磁極がS極となるように形成配置されている。永久磁石34は、ロータ30に組み込まれ、回転周方向に隣接する二つの爪状磁極部37−1,37−2の間に組み付けられた状態で着磁される。 The permanent magnets 34 are arranged so that magnetic poles are formed so as to reduce the leakage magnetic flux between two claw-shaped magnetic pole portions 37 that are adjacent in the rotation circumferential direction, that is, the easy axis of magnetization is oriented in the circumferential direction. .. Specifically, in the permanent magnet 34, the magnetic pole on the surface in the rotation circumferential direction facing the first claw-shaped magnetic pole portion 37-1 magnetized to the N pole becomes the N pole, and the second magnet magnetized to the S pole. The magnetic pole on the surface in the rotational circumferential direction facing the claw-shaped magnetic pole portion 37-2 is formed and arranged so as to be the S pole. The permanent magnet 34 is incorporated in the rotor 30, and is magnetized in a state of being assembled between the two claw-shaped magnetic pole portions 37-1 and 37-2 that are adjacent to each other in the rotation circumferential direction.

永久磁石34は、磁石ホルダ39により保持されており、磁石ホルダ39に一体化されている。永久磁石34は、磁石ホルダ39を用いてロータ30に保持固定される。永久磁石34は、その永久磁石34の全部又は一部が磁石ホルダ39により覆われた状態でロータ30に保持固定される。磁石ホルダ39は、鉄などの磁石に吸引されるいわゆる軟磁性材により形成されている。このため、回転電機1の無負荷時、磁石ホルダ39が永久磁石34の発する磁束を短絡させることができるので、逆起電圧の発生を抑制することができ、負荷回路の機器の損傷を抑えることができる。 The permanent magnet 34 is held by the magnet holder 39 and is integrated with the magnet holder 39. The permanent magnet 34 is held and fixed to the rotor 30 by using a magnet holder 39. The permanent magnet 34 is held and fixed to the rotor 30 in a state in which all or part of the permanent magnet 34 is covered by the magnet holder 39. The magnet holder 39 is formed of a so-called soft magnetic material that is attracted by a magnet such as iron. For this reason, when the rotating electric machine 1 is not loaded, the magnet holder 39 can short-circuit the magnetic flux generated by the permanent magnet 34, so that the occurrence of back electromotive force can be suppressed, and the damage to the equipment of the load circuit can be suppressed. You can

ブラシ装置40は、スリップリング41と、ブラシ42と、を有している。スリップリング41は、回転シャフト80の外周面の軸方向一端側に固定されている。スリップリング41は、ロータ30の界磁巻線32に直流電流を供給する機能を有している。ブラシ42は、2個一対設けられており、ハウジング10に取り付け固定されたブラシホルダに保持されている。ブラシ42は、その径方向内側の先端がスリップリング41の表面に摺動するようにバネによって回転シャフト80側に押圧された状態に配置されている。ブラシ42は、スリップリング41を介して界磁巻線32に直流電流を流す。 The brush device 40 has a slip ring 41 and a brush 42. The slip ring 41 is fixed to one end of the outer peripheral surface of the rotary shaft 80 in the axial direction. The slip ring 41 has a function of supplying a direct current to the field winding 32 of the rotor 30. Two brushes 42 are provided as a pair, and are held by a brush holder mounted and fixed to the housing 10. The brush 42 is arranged in a state of being pressed toward the rotary shaft 80 by a spring so that the tip on the radially inner side slides on the surface of the slip ring 41. The brush 42 causes a direct current to flow through the field winding 32 via the slip ring 41.

整流装置50は、ステータ20の電機子巻線22に電気的に接続されている。整流装置50は、電機子巻線22で生じた交流を直流に整流して出力する装置である。電圧調整器60は、界磁巻線32に流す界磁電流を制御することにより回転電機1の出力電圧を調整するためのものであり、電気負荷や発電量に応じて変化する出力電圧を略一定に維持させる機能を有している。プーリ70は、車両エンジンの回転を回転電機1のロータ30に伝達するためのものであり、回転シャフト80の軸方向他端に締め付け固定されている。 The rectifying device 50 is electrically connected to the armature winding 22 of the stator 20. The rectifying device 50 is a device that rectifies an alternating current generated in the armature winding 22 into a direct current and outputs the direct current. The voltage regulator 60 is for adjusting the output voltage of the rotary electric machine 1 by controlling the field current flowing through the field winding 32, and the output voltage that changes according to the electric load or the amount of power generation is substantially It has the function of keeping it constant. The pulley 70 is for transmitting the rotation of the vehicle engine to the rotor 30 of the rotary electric machine 1, and is fastened and fixed to the other axial end of the rotary shaft 80.

このような構造を有する回転電機1においては、電源からブラシ装置40を介してロータ30の界磁巻線32に直流電流が供給されると、その電流の通電により界磁巻線32を貫いてボス部35、ディスク部36、及び爪状磁極部37を流れる磁束が発生する。この磁束は、例えば、一方のポールコアのボス部35→ディスク部36→第1爪状磁極部37−1→ステータコア21→第2爪状磁極部37−2→他方のポールコアのディスク部36→ボス部35→一方のポールコアのボス部35の順に流れる磁気回路を形成する。 In the rotary electric machine 1 having such a structure, when a DC current is supplied from the power source to the field winding 32 of the rotor 30 via the brush device 40, the field winding 32 is penetrated by the energization of the current. A magnetic flux flowing through the boss portion 35, the disk portion 36, and the claw-shaped magnetic pole portion 37 is generated. This magnetic flux is, for example, the boss portion 35 of one pole core→the disc portion 36→the first claw-shaped magnetic pole portion 37-1→the stator core 21→the second claw-shaped magnetic pole portion 37-2→the disc portion 36 of the other pole core→the boss. A magnetic circuit is formed which flows in the order of the portion 35→the boss portion 35 of one pole core.

上記の磁束が第1爪状磁極部37−1及び第2爪状磁極部37−2に導かれると、第1爪状磁極部37−1がN極に磁化されると共に、第2爪状磁極部37−2がS極に磁化される。かかる爪状磁極部37の磁化が行われた状態で、電源から供給される直流が例えば三相交流に変換されて電機子巻線22に供給されると、ロータ30がステータ20に対して回転する。従って、回転電機1を、電機子巻線22への電力供給により回転駆動させる電動機として機能させることができる。 When the above magnetic flux is guided to the first claw-shaped magnetic pole portion 37-1 and the second claw-shaped magnetic pole portion 37-2, the first claw-shaped magnetic pole portion 37-1 is magnetized to the N pole and the second claw-shaped magnetic pole portion 37-1 is magnetized. The magnetic pole portion 37-2 is magnetized to the S pole. When the direct current supplied from the power supply is converted into, for example, three-phase alternating current and supplied to the armature winding 22 in the state where the claw-shaped magnetic pole portion 37 is magnetized, the rotor 30 rotates with respect to the stator 20. To do. Therefore, the rotary electric machine 1 can be made to function as an electric motor that is driven to rotate by supplying electric power to the armature winding 22.

また、回転電機1のロータ30は、車両エンジンの回転トルクがプーリ70を介して回転シャフト80に伝達されることにより回転する。かかるロータ30の回転は、ステータ20の電機子巻線22に回転磁界を付与することで、電機子巻線22に交流の起電力を発生させる。電機子巻線22で発生した交流起電力は、整流装置50を通って直流に整流された後、バッテリに供給される。従って、回転電機1を、電機子巻線22での起電力発生によりバッテリを充電させる発電機として機能させることができる。 Further, the rotor 30 of the rotary electric machine 1 is rotated by the rotation torque of the vehicle engine being transmitted to the rotary shaft 80 via the pulley 70. The rotation of the rotor 30 applies a rotating magnetic field to the armature winding 22 of the stator 20 to generate an AC electromotive force in the armature winding 22. The alternating electromotive force generated in the armature winding 22 is supplied to the battery after being rectified into a direct current through the rectifying device 50. Therefore, the rotary electric machine 1 can be made to function as a generator that charges the battery by the generation of electromotive force in the armature winding 22.

回転電機1のロータ30において、永久磁石34は、回転周方向に隣接する第1爪状磁極部37−1と第2爪状磁極部37−2との間の隙間空間38に配置されている。爪状磁極部37の隙間空間38側の回転周方向側に向いた面と永久磁石34の回転周方向側に向いた面とは、互いに略対向している。以下、この爪状磁極部37の面を対向面37aと、この永久磁石34の面を対向面34aと、それぞれ称す。 In the rotor 30 of the rotating electric machine 1, the permanent magnet 34 is arranged in the gap space 38 between the first claw-shaped magnetic pole portion 37-1 and the second claw-shaped magnetic pole portion 37-2 which are adjacent to each other in the rotation circumferential direction. .. A surface of the claw-shaped magnetic pole portion 37 facing the circumferential direction of rotation on the side of the clearance space 38 and a surface of the permanent magnet 34 facing the circumferential direction of rotation are substantially opposed to each other. Hereinafter, the surface of the claw-shaped magnetic pole portion 37 will be referred to as the facing surface 37a, and the surface of the permanent magnet 34 will be referred to as the facing surface 34a.

ロータ30において、爪状磁極部37と永久磁石34との互いに回転周方向に対向する方向の磁気抵抗は、ステータ20から遠い径方向内側位置に比べてステータ20に近い径方向外側位置における方が大きい。このロータ30における磁気抵抗の大小関係は、爪状磁極部37の対向面37aと永久磁石34の対向面34aとの距離(具体的には、回転周方向距離或いは対向距離)を径方向位置に応じて変えることにより実現される。具体的には、その距離は、図5に示す如く、ステータ20から遠い径方向内側位置に比べてステータ20に近い径方向外側位置における方が長い。 In the rotor 30, the magnetic reluctance of the claw-shaped magnetic pole portion 37 and the permanent magnet 34 in the directions opposed to each other in the circumferential direction of rotation is greater at a radially outer position closer to the stator 20 than at a radially inner position farther from the stator 20. large. The magnitude relationship of the magnetic resistance in the rotor 30 is that the distance between the facing surface 37a of the claw-shaped magnetic pole portion 37 and the facing surface 34a of the permanent magnet 34 (specifically, the circumferential distance in the rotating direction or the facing distance) is set to the radial position. It is realized by changing accordingly. Specifically, as shown in FIG. 5, the distance is longer at the radially outer position closer to the stator 20 than at the radially inner position far from the stator 20.

永久磁石34の対向面34aは、略平面状に形成されている。一方、爪状磁極部37の対向面37aは、その表面に径方向内側から径方向外側にかけて永久磁石34の対向面34aとの距離を長くさせる凹凸があるように形成されている。すなわち、爪状磁極部37は、対向面37aのうち径方向外側位置に窪んだ窪み部37bを有している。窪み部37bは、永久磁石34の対向面34aに対して略平行な平面を持つ部位が周方向に向けて切り欠かれたような形状に形成されている。尚、爪状磁極部37の対向面のうち径方向内側に位置する部位は、略平面状に形成されていてよい。対向面37aのうち径方向外側に位置する部位と永久磁石34の対向面34aとの距離L1は、対向面37aのうち径方向内側に位置する部位と永久磁石34の対向面34aとの距離L2に比して大きい。 The facing surface 34a of the permanent magnet 34 is formed in a substantially flat shape. On the other hand, the facing surface 37a of the claw-shaped magnetic pole portion 37 is formed such that the surface thereof has irregularities that increase the distance from the facing surface 34a of the permanent magnet 34 from the radially inner side to the radially outer side. That is, the claw-shaped magnetic pole portion 37 has a recessed portion 37b that is recessed at a radially outer position of the facing surface 37a. The recess 37b is formed in such a shape that a portion having a plane substantially parallel to the facing surface 34a of the permanent magnet 34 is cut out in the circumferential direction. The portion of the facing surface of the claw-shaped magnetic pole portion 37 located inside in the radial direction may be formed in a substantially flat shape. A distance L1 between a portion of the facing surface 37a located radially outside and the facing surface 34a of the permanent magnet 34 is a distance L2 between a portion of the facing surface 37a located radially inside and the facing surface 34a of the permanent magnet 34. Large compared to.

尚、爪状磁極部37の対向面37a及び永久磁石34の対向面34aの全体における両対向面37a,34a同士の距離は、径方向内側から径方向外側にかけて徐々に長くなることが望ましいが、径方向内側から径方向外側にかけて全体として長くなっていればよく、ワニスの流れ止めや永久磁石34或いは磁石ホルダ39の固定のための凹凸箇所など、径方向内側から径方向外側にかけて短くなる箇所が部分的に含まれていてもよい。また、窪み部37bにおける対向面37a,34a同士の距離は、径方向内側から径方向外側にかけて徐々に長くなることが望ましいが、上記したワニス止めや磁石固定のための凹凸箇所など、径方向内側から径方向外側にかけて短くなる箇所が部分的に含まれていてもよい。 The distance between the facing surfaces 37a of the claw-shaped magnetic pole portion 37 and the facing surface 34a of the permanent magnet 34 is preferably gradually increased from the radially inner side to the radially outer side. It suffices that the length increases from the inner side in the radial direction to the outer side in the radial direction, and there are points that become shorter from the inner side in the radial direction to the outer side in the radial direction, such as uneven portions for stopping the flow of varnish and fixing the permanent magnet 34 or the magnet holder 39. It may be partially included. Further, it is desirable that the distance between the facing surfaces 37a and 34a in the recessed portion 37b be gradually increased from the radially inner side to the radially outer side, but the radially inner side such as the above-mentioned uneven portion for varnishing or magnet fixing. From the radial direction to the outside in the radial direction may be partially included.

上記の如くロータ30における爪状磁極部37の対向面37aのうち径方向外側に位置する部位(窪み部37b)と永久磁石34の対向面34aとの距離L1が、その対向面37aのうち径方向内側に位置する部位と永久磁石34の対向面34aとの距離L2に比して大きいと、爪状磁極部37と永久磁石34との回転周方向における隙間が、径方向内側に比べて径方向外側の方が大きくなる。この場合、爪状磁極部37と永久磁石34との間において回転周方向に流れる磁気の抵抗は、径方向内側位置に比べて径方向外側位置の方が隙間の大きい分だけ大きくなるので、爪状磁極部37と永久磁石34との間で回転周方向に流れる磁界は、径方向外側で流れ難くなり、径方向内側で流れ易くなる。 As described above, the distance L1 between the portion of the facing surface 37a of the claw-shaped magnetic pole portion 37 of the rotor 30 located on the radially outer side (the recessed portion 37b) and the facing surface 34a of the permanent magnet 34 is the diameter of the facing surface 37a. If it is larger than the distance L2 between the portion located on the inner side in the direction and the facing surface 34a of the permanent magnet 34, the gap between the claw-shaped magnetic pole portion 37 and the permanent magnet 34 in the rotational circumferential direction is larger than the inner side in the radial direction. It becomes larger outside the direction. In this case, the magnetic resistance flowing in the rotational circumferential direction between the claw-shaped magnetic pole portion 37 and the permanent magnet 34 becomes larger at the radially outer position than at the radially inner position by the amount of the larger gap, so The magnetic field flowing in the circumferential direction of rotation between the magnetic pole portion 37 and the permanent magnet 34 is less likely to flow radially outside and easier to flow radially inside.

仮に、爪状磁極部37と永久磁石34との間において回転周方向に流れる磁気の抵抗が径方向位置に関係なく一律である構造では、ステータ20の電機子巻線22で発生した励磁磁界がステータ20(具体的には、そのティース部)の径方向内端からエアギャップを介して爪状磁極部37(具体的には、N極に磁化される第1爪状磁極部37−1)へ流れた場合に、以下の不都合が生じる。具体的には、その爪状磁極部37に流れた磁界が、その後、永久磁石34に対向する対向面37aのうちその構造で最短距離となるステータ20に近い径方向外側の部位に集中し易く、その対向面37aの径方向外側部位から隙間空間38を介して永久磁石34の対向面34aに流れ込み易くなる。そして、その磁界が永久磁石34の径方向外側(表面側)を通って隣接の爪状磁極部37(具体的には、S極に磁化される第2爪状磁極部37−2)へ流れてステータ20側へ戻る。このため、この対比構造では、永久磁石34の径方向外側(表面側)の部位が他の部位(具体的には、径方向内側すなわち表面に対して奥側)に比べて反磁界の影響を受け易いので、永久磁石34の径方向外側における減磁曲線上の動作点がクニック点よりも下がり易くなり、図6に示す如く、その動作点がクニック点よりも下がったときに、永久磁石34の特に径方向外側の部位が大きく減磁されてしまう。 If the resistance of the magnetism flowing in the circumferential direction of rotation between the claw-shaped magnetic pole portion 37 and the permanent magnet 34 is uniform regardless of the radial position, the exciting magnetic field generated in the armature winding 22 of the stator 20 is The claw-shaped magnetic pole portion 37 (specifically, the first claw-shaped magnetic pole portion 37-1 magnetized to the N pole) from the radially inner end of the stator 20 (specifically, its tooth portion) via the air gap. The following inconvenience occurs when the flow goes to. Specifically, the magnetic field flowing through the claw-shaped magnetic pole portion 37 is then likely to concentrate on the radially outer portion near the stator 20, which is the shortest distance in the structure, of the facing surface 37a facing the permanent magnet 34. It becomes easy for the permanent magnet 34 to flow into the facing surface 34a of the permanent magnet 34 from the radially outer portion of the facing surface 37a through the gap space 38. Then, the magnetic field flows to the adjacent claw-shaped magnetic pole portion 37 (specifically, the second claw-shaped magnetic pole portion 37-2 magnetized to the S pole) through the radially outer side (front surface side) of the permanent magnet 34. And return to the stator 20 side. Therefore, in this comparative structure, the portion of the permanent magnet 34 on the outer side (front side) in the radial direction is affected by the demagnetizing field more than other portions (specifically, on the inner side in the radial direction, that is, on the back side with respect to the surface). Since it is easily received, the operating point on the demagnetization curve on the outer side in the radial direction of the permanent magnet 34 is likely to be lower than the knick point, and as shown in FIG. 6, when the operating point is lower than the knick point, the permanent magnet 34 is In particular, the portion on the outer side in the radial direction is greatly demagnetized.

これに対して、本実施形態のロータ30の構造においては、ステータ20の電機子巻線22で発生した励磁磁界がステータ20(具体的には、そのティース部)の径方向内端からエアギャップを介して爪状磁極部37へ流れると、その磁界が、永久磁石34に対向する対向面37aのうち窪み部37bが存在する径方向外側で流れ難く、その窪み部37bが存在しない径方向内側で流れ易くなる。この場合には、爪状磁極部37へ流れた磁界がその爪状磁極部37のより径方向内側の部位にまで導かれ、対向面37aから永久磁石34側へ流れ出る反磁界がその対向面37aの径方向全体に分散される。 On the other hand, in the structure of the rotor 30 of the present embodiment, the exciting magnetic field generated in the armature winding 22 of the stator 20 causes the air gap from the radially inner end of the stator 20 (specifically, its teeth portion). When the magnetic field flows to the claw-shaped magnetic pole portion 37 via the magnetic field, it is difficult for the magnetic field to flow on the radial outer side where the concave portion 37b exists in the facing surface 37a facing the permanent magnet 34, and on the radial inner side where the concave portion 37b does not exist. Makes it easier to flow. In this case, the magnetic field flowing to the claw-shaped magnetic pole portion 37 is guided to a portion radially inward of the claw-shaped magnetic pole portion 37, and the demagnetizing field flowing from the facing surface 37a to the permanent magnet 34 side causes the facing surface 37a. Dispersed in the entire radial direction.

このため、永久磁石34に局所的(具体的には、ステータ20に近い径方向外側)に大きな反磁界が作用するのを抑えることができ、永久磁石34が受ける反磁界の影響をその永久磁石34の径方向位置で均一化させることができる。この場合は、図7に示す如く、永久磁石34の径方向外側における減磁曲線上の動作点がクニック点よりも下がることは抑制される。従って、回転電機1の構造によれば、永久磁石34の局所的な減磁を防ぐことができ、その永久磁石34の耐減磁性能を向上させることができる。 For this reason, it is possible to suppress a large demagnetizing field from acting locally on the permanent magnet 34 (specifically, radially outward near the stator 20), and the permanent magnet 34 is affected by the demagnetizing field. It can be made uniform at radial positions 34. In this case, as shown in FIG. 7, it is possible to prevent the operating point on the demagnetization curve on the radially outer side of the permanent magnet 34 from falling below the knick point. Therefore, according to the structure of the rotary electric machine 1, it is possible to prevent local demagnetization of the permanent magnet 34 and improve the demagnetization resistance performance of the permanent magnet 34.

また、ロータ30の着磁は、以下の手順で行われる。まず、ロータ30を構成する回転シャフト80に、ボス部35とディスク部36と爪状磁極部37とからなる界磁コア31を組み付ける(図8に示すステップS100)。その後、その界磁コア31に、着磁前の永久磁石34を組み付ける(ステップS110)。この着磁されていない永久磁石34の組み付けは、界磁コア31の二つの爪状磁極部37−1,37−2間の隙間空間38ごとに行われる。また、この永久磁石34の組み付けは、永久磁石34が磁石ホルダ39に保持された状態で界磁コア31の軸方向端部から軸方向へ挿入されることにより行われる。そして、そのロータ30を、例えばステータ20に対して径方向でエアギャップを介して対向させた状態で或いは着磁装置にセットした状態で、ステータ20の電機子巻線22などに着磁電流を流すことにより発生する磁界により、その永久磁石34を着磁する(ステップS120)。 The magnetization of the rotor 30 is performed in the following procedure. First, the field core 31 including the boss portion 35, the disk portion 36, and the claw-shaped magnetic pole portion 37 is attached to the rotary shaft 80 that constitutes the rotor 30 (step S100 shown in FIG. 8). Then, the permanent magnet 34 before magnetization is assembled to the field core 31 (step S110). The assembling of the non-magnetized permanent magnet 34 is performed for each gap space 38 between the two claw-shaped magnetic pole portions 37-1 and 37-2 of the field core 31. The permanent magnet 34 is assembled by inserting the permanent magnet 34 in the axial direction from the axial end of the field core 31 while the permanent magnet 34 is held by the magnet holder 39. A magnetizing current is applied to the armature winding 22 of the stator 20 while the rotor 30 is opposed to the stator 20 in the radial direction with an air gap or set in the magnetizing device. The permanent magnet 34 is magnetized by the magnetic field generated by the flow (step S120).

このように永久磁石34がロータ30に組み込まれた状態で着磁される構成では、その着磁磁界が、上記した反磁界と同様に、永久磁石34に対向する対向面37aのうち窪み部37bが存在する径方向外側で流れ難く、その窪み部37bが存在しない径方向内側で流れ易くなる。この場合には、爪状磁極部37へ流れた着磁磁界がその爪状磁極部37のより径方向内側の部位にまで導かれ、対向面37aから永久磁石34側へ流れ出る着磁磁界がその対向面37aの径方向全体に分散される。従って、回転電機1すなわちロータ30の構造によれば、永久磁石34が受ける着磁磁界をその永久磁石34の径方向位置で均一化させることができ、永久磁石34の着磁が全体で不均一なものとなるのを防止することができる。 In the configuration in which the permanent magnets 34 are magnetized in the state of being incorporated in the rotor 30 as described above, the magnetizing magnetic field is similar to the above-mentioned demagnetizing field, and the recessed portion 37b of the facing surface 37a facing the permanent magnets 34 is formed. Is difficult to flow on the outer side in the radial direction, and tends to flow on the inner side in the radial direction where the recess 37b does not exist. In this case, the magnetizing magnetic field flowing to the claw-shaped magnetic pole portion 37 is guided to a portion radially inside the claw-shaped magnetic pole portion 37, and the magnetizing magnetic field flowing out from the facing surface 37a to the permanent magnet 34 side is generated. It is dispersed in the entire radial direction of the facing surface 37a. Therefore, according to the structure of the rotary electric machine 1, that is, the rotor 30, the magnetizing magnetic field received by the permanent magnet 34 can be made uniform at the radial position of the permanent magnet 34, and the magnetizing of the permanent magnet 34 is not uniform as a whole. It can be prevented.

また、回転電機1のロータ30において、爪状磁極部37は、上記した窪み部37bと、突出部37cと、を有している。突出部37cは、窪み部37bの径方向外側において回転周方向の外方へ突出している。突出部37cの先端側は、永久磁石34の径方向外方に位置しており、その永久磁石34に対して径方向で対向している。突出部37cは、永久磁石34が径方向外側へ抜けるのを防止する機能を有している。 In addition, in the rotor 30 of the rotating electric machine 1, the claw-shaped magnetic pole portion 37 has the above-described recessed portion 37b and the protruding portion 37c. The projecting portion 37c projects outward in the circumferential direction of rotation on the radially outer side of the recess 37b. The tip side of the protrusion 37c is located radially outward of the permanent magnet 34, and faces the permanent magnet 34 in the radial direction. The protruding portion 37c has a function of preventing the permanent magnet 34 from coming off to the outside in the radial direction.

上記の如く、永久磁石34は、磁石ホルダ39により保持されている。磁石ホルダ39は、図9及び図10に示す如く、永久磁石34を覆うことが可能な断面U字状に形成されている。磁石ホルダ39は、軸方向(正確には、周方向に傾斜した軸方向斜めの方向)に延在している。磁石ホルダ39は、永久磁石34を爪状磁極部37に対して径方向に移動するのを規制する機能を有すると共に、永久磁石34を爪状磁極部37に対して回転周方向に移動するのを規制する機能を有している。尚、磁石ホルダ39は、永久磁石34を爪状磁極部37に対して軸方向に移動するのを規制する機能を有するものであってもよい。磁石ホルダ39は、底部39aと、側壁部39bと、係止部39cと、を有している。 As described above, the permanent magnet 34 is held by the magnet holder 39. As shown in FIGS. 9 and 10, the magnet holder 39 is formed in a U-shaped cross section capable of covering the permanent magnet 34. The magnet holder 39 extends in the axial direction (to be exact, in the oblique direction of the axial direction inclined in the circumferential direction). The magnet holder 39 has a function of restricting radial movement of the permanent magnet 34 with respect to the claw-shaped magnetic pole portion 37, and also moves the permanent magnet 34 in the circumferential direction of rotation with respect to the claw-shaped magnetic pole portion 37. Has the function of regulating The magnet holder 39 may have a function of restricting the axial movement of the permanent magnet 34 with respect to the claw-shaped magnetic pole portion 37. The magnet holder 39 has a bottom portion 39a, a side wall portion 39b, and a locking portion 39c.

底部39aは、回転周方向に沿って広がる部位であって、永久磁石34の径方向内端面に当接してその永久磁石34を保持する。永久磁石34は、磁石ホルダ39の底部39aと爪状磁極部37の突出部37cとに挟まれることにより磁石ホルダ39及び爪状磁極部37に対して径方向で干渉する。これにより、永久磁石34の径方向への移動が規制される。 The bottom portion 39a is a portion that spreads along the circumferential direction of rotation, and contacts the radially inner end surface of the permanent magnet 34 to hold the permanent magnet 34. The permanent magnet 34 is interposed between the bottom portion 39a of the magnet holder 39 and the protruding portion 37c of the claw-shaped magnetic pole portion 37, so that the permanent magnet 34 interferes with the magnet holder 39 and the claw-shaped magnetic pole portion 37 in the radial direction. As a result, the radial movement of the permanent magnet 34 is restricted.

側壁部39bは、底部39aの回転周方向の両端それぞれから径方向外方へ立設された部位であって、永久磁石34の回転周方向端面に当接してその永久磁石34を保持する。永久磁石34は、磁石ホルダ39の二つの側壁部39bに挟まれることにより磁石ホルダ39に対して回転周方向で干渉する。底部39aを挟んだ両側の側壁部39bは、回転周方向に隣接する二つの爪状磁極部37の離間距離(すなわち、隙間空間38の大きさ)と同じ程度だけ離れている。このため、磁石ホルダ39は爪状磁極部37に対して回転周方向で干渉する。これにより、永久磁石34の爪状磁極部37に対する回転周方向への移動が規制される。 The side wall portion 39b is a portion erected radially outward from both ends of the bottom portion 39a in the rotation circumferential direction, and contacts the rotation circumferential direction end surface of the permanent magnet 34 to hold the permanent magnet 34. The permanent magnet 34 is sandwiched between the two side wall portions 39b of the magnet holder 39, so that the permanent magnet 34 interferes with the magnet holder 39 in the rotation circumferential direction. The side wall portions 39b on both sides of the bottom portion 39a are separated from each other by the same distance as the separation distance (that is, the size of the gap space 38) between the two claw-shaped magnetic pole portions 37 adjacent to each other in the circumferential direction of rotation. Therefore, the magnet holder 39 interferes with the claw-shaped magnetic pole portion 37 in the rotation circumferential direction. As a result, the movement of the permanent magnet 34 with respect to the claw-shaped magnetic pole portion 37 in the circumferential direction of rotation is restricted.

また、係止部39cは、各側壁部39bそれぞれの径方向外端から回転周方向外方へ向けて延びて爪状磁極部37の窪み部37b内に収容されるフランジ状の部位であって、爪状磁極部37の窪み部37bを形成する外面及び突出部37cに係止されて嵌め込まれる。各側壁部39bそれぞれに対応する係止部39cが各爪状磁極部37の窪み部37b内に収容されて係止されると、磁石ホルダ39が、窪み部37bを形成する外面及び突出部37cとの摩擦力等により爪状磁極部37に対して位置固定される。これにより、その磁石ホルダ39が保持する永久磁石34が爪状磁極部37に対して移動するのは確実に規制される。 The locking portion 39c is a flange-shaped portion that extends outward from the radial outer end of each side wall portion 39b in the rotational circumferential direction and is housed in the recess 37b of the claw-shaped magnetic pole portion 37. The outer surface of the claw-shaped magnetic pole portion 37 forming the recess 37b and the protruding portion 37c are engaged and fitted. When the locking portions 39c corresponding to the respective side wall portions 39b are housed and locked in the recesses 37b of the claw-shaped magnetic pole portions 37, the magnet holder 39 causes the outer surface and the protrusions 37c forming the recesses 37b. The position is fixed with respect to the claw-shaped magnetic pole portion 37 by a frictional force with the. As a result, the permanent magnet 34 held by the magnet holder 39 is reliably restricted from moving with respect to the claw-shaped magnetic pole portion 37.

このように、磁石ホルダ39ひいてはその磁石ホルダ39が保持する永久磁石34を爪状磁極部37に対して移動規制することができる。このため、反磁界による永久磁石34の振動や剥がれが生じることや、永久磁石34の着磁時におけるショック磁界による割れや欠けなどが生じることを大幅に低減することができる。また、爪状磁極部37に対する磁石ホルダ39及び永久磁石34の移動規制を、爪状磁極部37に形成された窪み部37bを用いて行うことができる。このため、磁石ホルダ39の一部を収容してその移動規制を実現するために必要な爪状磁極部37の窪み部を、永久磁石34の局所的な減磁を防ぐために爪状磁極部37に形成される窪み部37bとは別に設けるのを不要とすることができ、それら両窪み部の機能を一つの窪み部37bで兼用することができる。これにより、ロータ30や爪状磁極部37の形状の簡素化や成形の容易化を図ることができる。 In this manner, the movement of the magnet holder 39, and thus the permanent magnet 34 held by the magnet holder 39, can be restricted with respect to the claw-shaped magnetic pole portion 37. Therefore, it is possible to greatly reduce the occurrence of vibration and peeling of the permanent magnet 34 due to the demagnetizing field, and the occurrence of cracking and chipping due to the shock magnetic field when the permanent magnet 34 is magnetized. The movement of the magnet holder 39 and the permanent magnet 34 with respect to the claw-shaped magnetic pole portion 37 can be restricted by using the recess 37b formed in the claw-shaped magnetic pole portion 37. For this reason, the concave portion of the claw-shaped magnetic pole portion 37 necessary for accommodating a part of the magnet holder 39 and restricting the movement of the magnet holder 39, and the claw-shaped magnetic pole portion 37 for preventing local demagnetization of the permanent magnet 34. It is not necessary to provide it separately from the recess 37b formed in the above, and the function of both recesses can be shared by one recess 37b. As a result, the shapes of the rotor 30 and the claw-shaped magnetic pole portion 37 can be simplified and the molding can be facilitated.

磁石ホルダ39は、軟磁性材により形成されている。永久磁石34を保持する磁石ホルダ39が磁性材により形成されていると、永久磁石34と爪状磁極部37との間に磁性体である磁石ホルダ39が径方向略全域に亘って配置されることとなる。このため、磁石ホルダ39が存在しない場合や磁石ホルダ39が磁性材により形成されていない場合に比べて、永久磁石34全体の磁気抵抗を下げることができ、そのパーミアンスを増加させることができるので、永久磁石34の反磁界をより低下させることができる。 The magnet holder 39 is made of a soft magnetic material. When the magnet holder 39 that holds the permanent magnet 34 is made of a magnetic material, the magnet holder 39, which is a magnetic body, is arranged between the permanent magnet 34 and the claw-shaped magnetic pole portion 37 over substantially the entire radial direction. It will be. Therefore, the magnetic resistance of the entire permanent magnet 34 can be reduced and the permeance thereof can be increased as compared with the case where the magnet holder 39 does not exist or the magnet holder 39 is not formed of a magnetic material. The demagnetizing field of the permanent magnet 34 can be further reduced.

また、回転電機1において、ロータ30は、互いに回転周方向に隣接する二つの爪状磁極部37の間に配置される永久磁石34を有している。永久磁石34がロータ30に組み込まれると、その永久磁石34の分だけロータ30の重量が増加する。ロータ30の重量が増加すると、遠心力発生時にその遠心力が増大するので、ロータ30の強度が低下し得る。これに対して、ロータ30は、爪状磁極部37の径方向外側にその外周面を覆うように配置される円筒状の磁極筒部33を有している。この磁極筒部33によれば、回転周方向に並んだ複数の爪状磁極部37がその磁極筒部33を介して互いに連結されるので、永久磁石34による重量増に伴ってロータ30に作用する遠心力が増大しても、爪状磁極部37の変形を抑えることができ、強度低下を抑えることができる。 Further, in the rotary electric machine 1, the rotor 30 has the permanent magnet 34 arranged between the two claw-shaped magnetic pole portions 37 that are adjacent to each other in the rotation circumferential direction. When the permanent magnet 34 is incorporated in the rotor 30, the weight of the rotor 30 increases by the amount of the permanent magnet 34. When the weight of the rotor 30 increases, the centrifugal force increases when the centrifugal force is generated, so the strength of the rotor 30 may decrease. On the other hand, the rotor 30 has a cylindrical magnetic pole cylinder portion 33 arranged radially outside the claw-shaped magnetic pole portion 37 so as to cover the outer peripheral surface thereof. According to the magnetic pole cylinder portion 33, the plurality of claw-shaped magnetic pole portions 37 arranged in the circumferential direction of rotation are connected to each other through the magnetic pole cylinder portion 33, so that the permanent magnet 34 acts on the rotor 30 as the weight increases. Even if the centrifugal force is increased, the deformation of the claw-shaped magnetic pole portion 37 can be suppressed, and the strength reduction can be suppressed.

以上、説明したことから明らかなように、回転電機1は、ステータコア21に電機子巻線22が巻装されている環状のステータ20と、ステータ20の径方向内側に対向して配置されたロータ30と、を備える。ロータ30は、界磁コア31と、界磁巻線32と、永久磁石34と、を有する。界磁コア31は、筒状のボス部35、及び、ボス部35の径方向外側に配置され、回転周方向に交互に異なる極性の磁極が形成される複数の爪状磁極部37を有する。界磁巻線32は、ボス部35の外周側に巻装され、通電により起磁力を発生する。永久磁石34は、回転周方向に隣接する爪状磁極部37−1,37−2の間に磁化容易軸が周方向に向くように配置され、界磁巻線32の起磁力により爪状磁極部37に交互に現れる極性と一致するように磁極が形成されている。また、爪状磁極部37と永久磁石34との互いに回転周方向に対向する方向の磁気抵抗は、ステータ20から遠い径方向内側位置に比べてステータ20に近い径方向外側位置における方が大きい。具体的には、爪状磁極部37と永久磁石34との互いに回転周方向に対向する対向面間の距離は、ステータ20から遠い径方向内側位置に比べてステータ20に近い径方向外側位置における方が長い。 As is clear from what has been described above, the rotating electric machine 1 includes the annular stator 20 in which the armature winding 22 is wound around the stator core 21, and the rotor arranged to face the inside of the stator 20 in the radial direction. 30 is provided. The rotor 30 has a field core 31, a field winding 32, and a permanent magnet 34. The field core 31 has a cylindrical boss portion 35 and a plurality of claw-shaped magnetic pole portions 37 which are arranged radially outside the boss portion 35 and in which magnetic poles of different polarities are alternately formed in the rotation circumferential direction. The field winding 32 is wound around the outer periphery of the boss portion 35 and generates a magnetomotive force when energized. The permanent magnet 34 is arranged between the claw-shaped magnetic pole portions 37-1 and 37-2 adjacent to each other in the circumferential direction of rotation so that the easy axis of magnetization is oriented in the circumferential direction, and the claw-shaped magnetic pole is generated by the magnetomotive force of the field winding 32. The magnetic poles are formed so as to match the polarities that alternately appear in the portion 37. Further, the magnetic resistance of the claw-shaped magnetic pole portion 37 and the permanent magnet 34 in the directions opposed to each other in the circumferential direction of rotation is larger at the radially outer position closer to the stator 20 than at the radially inner position farther from the stator 20. Specifically, the distance between the facing surfaces of the claw-shaped magnetic pole portion 37 and the permanent magnet 34 that face each other in the circumferential direction of rotation is at a radially outer position closer to the stator 20 than at a radially inner position farther from the stator 20. Is longer.

この構成によれば、爪状磁極部37と永久磁石34との間で回転周方向に流れる磁界が、径方向外側で流れ難く、径方向内側で流れ易くなるので、ステータ20側から爪状磁極部37へ流れた磁界がその爪状磁極部37のより径方向内側の部位にまで導かれ、爪状磁極部37から永久磁石34側へ流れ出る磁界がその対向部位の径方向全体に分散される。このため、永久磁石34が受ける反磁界の影響をその永久磁石34の径方向位置で均一化させることができる。従って、永久磁石34の局所的な減磁を防ぐことができ、その耐減磁性能を向上させることができる。 According to this configuration, the magnetic field flowing in the rotational circumferential direction between the claw-shaped magnetic pole portion 37 and the permanent magnet 34 is hard to flow outside in the radial direction and easily flows inside in the radial direction. The magnetic field flowing to the portion 37 is guided to a portion radially inward of the claw-shaped magnetic pole portion 37, and the magnetic field flowing from the claw-shaped magnetic pole portion 37 to the permanent magnet 34 side is dispersed in the entire radial direction of the facing portion. .. Therefore, the influence of the demagnetizing field on the permanent magnet 34 can be made uniform at the radial position of the permanent magnet 34. Therefore, it is possible to prevent local demagnetization of the permanent magnet 34 and improve its demagnetization resistance performance.

回転電機1において、爪状磁極部37は、対向面37aの径方向外側位置に窪んだ窪み部37bを有する。この構成によれば、爪状磁極部と永久磁石との互いに回転周方向に対向する対向面間の、径方向外側位置における距離を、径方向内側位置に比べて長くすることができる。 In the rotating electric machine 1, the claw-shaped magnetic pole portion 37 has a recessed portion 37b that is recessed at a radially outer position of the facing surface 37a. With this configuration, the distance between the facing surfaces of the claw-shaped magnetic pole portion and the permanent magnet that face each other in the circumferential direction of rotation can be made longer at the radially outer position than at the radially inner position.

回転電機1において、ロータ30は、窪み部37b内に一部が収容された、永久磁石34を保持する磁石ホルダ39を有する。この構成によれば、爪状磁極部37の窪み部37b内に、永久磁石34を保持する磁石ホルダ39の一部を収容することができ、永久磁石34を爪状磁極部37に対して位置固定することができる。 In the rotary electric machine 1, the rotor 30 has a magnet holder 39 that holds the permanent magnet 34, a part of which is housed in the recess 37 b. With this configuration, a part of the magnet holder 39 that holds the permanent magnet 34 can be housed in the recess 37 b of the claw-shaped magnetic pole portion 37, and the permanent magnet 34 is positioned with respect to the claw-shaped magnetic pole portion 37. Can be fixed.

回転電機1において、爪状磁極部37は、窪み部37bと、窪み部37bの径方向外側において周方向に突出する突出部37cと、を有し、磁石ホルダ39は、窪み部37bを形成する外面と突出部37cとに係止されている。この構成によれば、磁石ホルダ39ひいてはその磁石ホルダ39が保持する永久磁石34を爪状磁極部37に対して移動規制することができる。このため、反磁界による永久磁石34の振動や剥がれが生じることや、永久磁石34の着磁時におけるショック磁界による割れや欠けなどが生じることを低減することができる。 In the rotating electric machine 1, the claw-shaped magnetic pole portion 37 has a recess 37b and a protrusion 37c that projects in the circumferential direction on the outer side in the radial direction of the recess 37b, and the magnet holder 39 forms the recess 37b. It is locked to the outer surface and the protrusion 37c. With this configuration, the movement of the magnet holder 39, and thus the permanent magnet 34 held by the magnet holder 39, can be restricted with respect to the claw-shaped magnetic pole portion 37. Therefore, it is possible to reduce the occurrence of vibration and peeling of the permanent magnet 34 due to the demagnetizing field, and the occurrence of cracking or chipping due to the shock magnetic field when the permanent magnet 34 is magnetized.

回転電機1において、磁石ホルダ39は、磁性材により形成されている。この構成によれば、永久磁石34と爪状磁極部37との間に磁性体である磁石ホルダ39が径方向略全域に亘って配置されるので、永久磁石34全体の磁気抵抗を下げることができ、そのパーミアンスを増加させることができる。このため、永久磁石34の反磁界をより低下させることができる。 In the rotary electric machine 1, the magnet holder 39 is made of a magnetic material. According to this structure, since the magnet holder 39, which is a magnetic body, is arranged between the permanent magnet 34 and the claw-shaped magnetic pole portion 37 over substantially the entire radial direction, the magnetic resistance of the entire permanent magnet 34 can be reduced. Yes, you can increase its permeance. Therefore, the demagnetizing field of the permanent magnet 34 can be further reduced.

また、回転電機1において、永久磁石34は、回転周方向に隣接する爪状磁極部37の間に組み付けられた状態で着磁された磁石である。この構成によれば、爪状磁極部37と永久磁石34との間で回転周方向に流れる着磁磁界が、径方向外側で流れ難く、径方向内側で流れ易くなるので、爪状磁極部37へ流れた着磁磁界がその爪状磁極部37のより径方向内側の部位にまで導かれ、爪状磁極部37から永久磁石34側へ流れ出る着磁磁界がその対向部位の径方向全体に分散される。従って、永久磁石34が受ける着磁磁界をその永久磁石34の径方向位置で均一化させることができるので、永久磁石34の着磁が全体で不均一なものとなるのを防止することができる。 Further, in the rotary electric machine 1, the permanent magnet 34 is a magnet that is magnetized in a state of being assembled between the claw-shaped magnetic pole portions 37 that are adjacent to each other in the circumferential direction of rotation. According to this configuration, the magnetizing magnetic field flowing in the rotational circumferential direction between the claw-shaped magnetic pole portion 37 and the permanent magnet 34 is hard to flow on the radially outer side and easily flows on the radially inner side. The magnetizing magnetic field flowing into the claw-shaped magnetic pole portion 37 is guided to a radially inner portion of the claw-shaped magnetic pole portion 37, and the magnetizing magnetic field flowing from the claw-shaped magnetic pole portion 37 to the permanent magnet 34 side is dispersed in the entire radial direction of the facing portion. To be done. Therefore, the magnetizing magnetic field received by the permanent magnet 34 can be made uniform at the radial position of the permanent magnet 34, so that the magnetizing of the permanent magnet 34 can be prevented from becoming non-uniform as a whole. ..

(変形形態)
ところで、上記の実施形態においては、爪状磁極部37の対向面37aと永久磁石34の対向面34aとの距離について、ステータ20から遠い径方向内側位置に比べてステータ20に近い径方向外側位置における方を長くするために、爪状磁極部37の、永久磁石34との対向面37aのうち径方向外側に位置する部位に、平面部位を切り欠いたような形状に形成された窪み部37bを設けることとしている。しかし、本発明はこれに限定されるものではない。爪状磁極部37を、径方向内側から径方向外側にかけて徐々に永久磁石34との距離が長くなるようにテーパ状に形成することとしてもよい。
(Variation)
By the way, in the above-described embodiment, the distance between the facing surface 37a of the claw-shaped magnetic pole portion 37 and the facing surface 34a of the permanent magnet 34 is closer to the stator 20 in the radial outside position than to the stator 20 in the radial inner position. In order to increase the length of the claw-shaped magnetic pole portion 37, a recessed portion 37b formed in a shape that is formed by cutting out a planar portion in a portion of the facing surface 37a of the claw-shaped magnetic pole portion 37 that is located on the radially outer side of the facing surface 37a that faces the permanent magnet 34. Will be provided. However, the present invention is not limited to this. The claw-shaped magnetic pole portion 37 may be formed in a tapered shape so that the distance from the permanent magnet 34 gradually increases from the radially inner side to the radially outer side.

また、上記の実施形態においては、ロータ30の爪状磁極部37が、窪み部37bと、その窪み部の径方向外側において回転周方向に突出する突出部37cと、を有しており、そして、永久磁石34を保持する磁石ホルダ39の係止部39cが、その窪み部37bを形成する外面及び突出部37cに係止されて嵌め込まれている。しかし、本発明はこれに限定されるものではない。例えば図11に示す如く、爪状磁極部37の窪み部37bが、その爪状磁極部37の径方向外側端と回転周方向端とが交わる角部にテーパ状に形成された部位であるものとして、その爪状磁極部37が上記の突出部37cを有しないものとし、かつ、磁石ホルダ39が、磁極筒部33の内周面とその窪み部37bを形成する外面とにより形成される空間内にそれらの面に当接して嵌め込み固定されることとしてもよい。この変形形態の構造においても、磁石ホルダ39が窪み部37bを形成する外面及び磁極筒部33との摩擦力等により爪状磁極部37に対して位置固定されるので、その磁石ホルダ39を用いて永久磁石34を爪状磁極部37及び磁極筒部33に対して移動規制することが可能である。このため、反磁界による永久磁石34の振動や剥がれが生じることや、永久磁石34の着磁時におけるショック磁界による割れや欠けなどが生じることを低減することができる。 In addition, in the above-described embodiment, the claw-shaped magnetic pole portion 37 of the rotor 30 has the recess portion 37b and the protrusion portion 37c that projects in the rotation circumferential direction on the outer side in the radial direction of the recess portion, and The engaging portion 39c of the magnet holder 39 holding the permanent magnet 34 is engaged and fitted to the outer surface of the recess 37b and the protruding portion 37c. However, the present invention is not limited to this. For example, as shown in FIG. 11, the concave portion 37b of the claw-shaped magnetic pole portion 37 is a portion formed in a taper shape at a corner portion where the radially outer end of the claw-shaped magnetic pole portion 37 and the rotation circumferential direction end intersect. As the claw-shaped magnetic pole portion 37 does not have the above-mentioned protruding portion 37c, and the magnet holder 39 is formed by the inner peripheral surface of the magnetic pole cylinder portion 33 and the outer surface forming the recess 37b. It is also possible to abut against those surfaces and fit and fix them. Also in this modified structure, the magnet holder 39 is used because the magnet holder 39 is fixed in position with respect to the claw-shaped magnetic pole portion 37 by the frictional force between the outer surface forming the recess 37b and the magnetic pole tube portion 33. It is possible to restrict movement of the permanent magnet 34 with respect to the claw-shaped magnetic pole portion 37 and the magnetic pole cylinder portion 33. Therefore, it is possible to reduce the occurrence of vibration and peeling of the permanent magnet 34 due to the demagnetizing field, and the occurrence of cracking or chipping due to the shock magnetic field when the permanent magnet 34 is magnetized.

尚、上記の変形形態においては、磁石ホルダ39の係止部39cが爪状磁極部37の窪み部37b内に収容されてその窪み部37bの外面及び突出部37cに係止されることとしている。しかし、本発明はこれに限定されるものではない。磁石ホルダ39の底部39aと爪状磁極部37の突出部37c又は磁極筒部33との間で永久磁石34を挟み込みつつ、磁石ホルダ39の係止部39cを窪み部37bを形成する外面のうち径方向外方を向いた面に掛止させることとしてもよい。この構造を実現するためには、磁石ホルダ39の底部39aと係止部39cとの距離すなわち側壁部39bの高さと、永久磁石34の径方向高さと、を所定関係となるように規定することとすればよい。 In the above modification, the locking portion 39c of the magnet holder 39 is housed in the recess 37b of the claw-shaped magnetic pole portion 37 and is locked to the outer surface of the recess 37b and the protrusion 37c. .. However, the present invention is not limited to this. While the permanent magnet 34 is sandwiched between the bottom portion 39a of the magnet holder 39 and the projection portion 37c of the claw-shaped magnetic pole portion 37 or the magnetic pole tube portion 33, the locking portion 39c of the magnet holder 39 is formed on the outer surface forming the recess portion 37b. It may be hooked on a surface facing radially outward. In order to realize this structure, the distance between the bottom portion 39a and the locking portion 39c of the magnet holder 39, that is, the height of the side wall portion 39b and the radial height of the permanent magnet 34 are defined to have a predetermined relationship. And it is sufficient.

また、上記の実施形態においては、爪状磁極部37の、永久磁石34との対向面37aのうち径方向外側に位置する部位に窪み部37bを設けることとし、爪状磁極部37の対向面37aと永久磁石34の対向面34aとの距離について、ステータ20から遠い径方向内側位置に比べてステータ20に近い径方向外側位置における方を長くすることで、爪状磁極部37と永久磁石34との互いに回転周方向に対向する方向の磁気抵抗について、ステータ20から遠い径方向内側位置に比べてステータ20に近い径方向外側位置における方を長くすることとしている。しかし、本発明はこれに限定されるものではない。永久磁石34の、爪状磁極部37との対向面34aのうち径方向外側に位置する部位に、平面を切り欠いたような形状に形成された窪み部を設けることとし、上記の距離の関係及び磁気抵抗の関係を実現することとしてもよい。また、図12に示す如く、永久磁石34を、径方向内側から径方向外側にかけて徐々に爪状磁極部37との距離が長くなるようにテーパ状に形成することとしてもよい。 Further, in the above-described embodiment, the recessed portion 37b is provided in the portion of the facing surface 37a of the claw-shaped magnetic pole portion 37 facing the permanent magnet 34, which is located on the radially outer side, and the facing surface of the claw-shaped magnetic pole portion 37 is provided. By increasing the distance between 37a and the facing surface 34a of the permanent magnet 34 at the radially outer position closer to the stator 20 than at the radially inner position farther from the stator 20, the claw-shaped magnetic pole portion 37 and the permanent magnet 34 are provided. With respect to the magnetic resistance in the directions opposed to each other in the circumferential direction of rotation, the magnetic resistance at the radially outer position closer to the stator 20 is made longer than at the radial inner position far from the stator 20. However, the present invention is not limited to this. It is assumed that the permanent magnet 34 has a recess formed in a shape in which a flat surface is cut out in a portion of the surface 34a facing the claw-shaped magnetic pole portion 37, which is located on the radially outer side, and the above-mentioned distance relationship And the relationship of magnetic resistance may be realized. Further, as shown in FIG. 12, the permanent magnet 34 may be formed in a tapered shape such that the distance from the claw-shaped magnetic pole portion 37 gradually increases from the radially inner side to the radially outer side.

また、上記の実施形態においては、爪状磁極部37と永久磁石34との互いに回転周方向に対向する方向の磁気抵抗について径方向内側位置に比べて径方向外側位置における方を長くするために、爪状磁極部37の対向面37aと永久磁石34の対向面34aとの距離について径方向内側位置に比べて径方向外側位置における方を長くすることとしている。しかし、本発明はこれに限定されるものではない。上記の磁気抵抗の関係を実現するために、爪状磁極部37と永久磁石34との互いに回転周方向に対向する対向部位の透磁率について径方向内側位置に比べて径方向外側位置における方を小さくすることとしてもよい。この変形形態の構成においても、上記実施形態と同様の効果を得ることができる。 In the above embodiment, the magnetic resistance of the claw-shaped magnetic pole portion 37 and the permanent magnet 34 in the directions facing each other in the circumferential direction of rotation is set to be longer at the radially outer position than at the radially inner position. The distance between the facing surface 37a of the claw-shaped magnetic pole portion 37 and the facing surface 34a of the permanent magnet 34 is set longer at the radially outer position than at the radially inner position. However, the present invention is not limited to this. In order to realize the above-described magnetic resistance relationship, the magnetic permeability of the facing portions of the claw-shaped magnetic pole portion 37 and the permanent magnet 34, which face each other in the circumferential direction of rotation, is set to be larger at the radially outer position than at the radially inner position. You may make it small. Also in the configuration of this modification, the same effect as that of the above-described embodiment can be obtained.

例えば、爪状磁極部37の対向面37a及び永久磁石34の対向面34aを共に略平面状に形成して、両対向面37a,34aの距離を径方向位置によらず径方向内側から径方向外側にかけて一定としたうえで、爪状磁極部37及び永久磁石34の少なくとも何れか一方の対向部位の透磁率について、ステータ20から遠い径方向内側位置に比べてステータ20に近い径方向外側位置における方を小さくすることとしてもよい。 For example, the facing surface 37a of the claw-shaped magnetic pole portion 37 and the facing surface 34a of the permanent magnet 34 are both formed in a substantially flat shape, and the distance between the facing surfaces 37a and 34a is set from the radial inside to the radial direction regardless of the radial position. The magnetic permeability of the facing portion of at least one of the claw-shaped magnetic pole portion 37 and the permanent magnet 34 is constant at the outer side in the radial direction nearer to the stator 20 than at the radially inner side far from the stator 20. One may be made smaller.

また例えば、図13に示す如く、爪状磁極部37の窪み部37bを、その爪状磁極部37の径方向外側端と回転周方向端とが交わる角部にテーパ状に形成し、爪状磁極部37の対向面37aと永久磁石34の対向面34aとの距離について径方向内側位置に比べて径方向外側位置における方を長くしたうえで、その窪み部37b内に、爪状磁極部37に比べて透磁率の小さい磁性材からなる磁性体90を圧入し又はその磁性材を流し込んで充填成形することとしてもよい。この爪状磁極部37に比べて透磁率の小さい磁性材は、例えばソフトフェライトであってよい。また、この圧入や充填成形は、窪み部37b内に磁石ホルダ39の係止部39cが収容されて装着された後、その窪み部37bの隙間に棒状の磁性体90を圧入し或いはその磁性材を流し込むものであってよい。 Further, for example, as shown in FIG. 13, the recess 37b of the claw-shaped magnetic pole portion 37 is formed in a tapered shape at the corner where the radially outer end of the claw-shaped magnetic pole portion 37 and the circumferential edge of the claw-shaped magnetic pole portion 37 intersect to form a claw shape. The distance between the facing surface 37a of the magnetic pole portion 37 and the facing surface 34a of the permanent magnet 34 is longer at the radially outer position than at the radially inner position, and then the claw-shaped magnetic pole portion 37 is provided in the recess 37b. It is also possible to press-fit the magnetic body 90 made of a magnetic material having a smaller magnetic permeability than that of the above, or to pour the magnetic material and perform the filling molding. The magnetic material having a magnetic permeability smaller than that of the claw-shaped magnetic pole portion 37 may be, for example, soft ferrite. Further, in this press-fitting or filling molding, after the locking portion 39c of the magnet holder 39 is housed and mounted in the recess 37b, the rod-shaped magnetic body 90 is press-fitted into the gap of the recess 37b or its magnetic material. May be poured.

更に例えば、爪状磁極部37の対向面37a及び永久磁石34の対向面34aを共に略平面状に形成して、両対向面37a,34aの距離を径方向位置によらず径方向内側から径方向外側にかけて一定としたうえで、その対向面37a,34a間に配置される磁石ホルダ39の透磁率について、ステータ20から遠い径方向内側位置に比べてステータ20に近い径方向外側位置における方を小さくすることとしてもよい。 Further, for example, the facing surface 37a of the claw-shaped magnetic pole portion 37 and the facing surface 34a of the permanent magnet 34 are both formed into a substantially flat shape, and the distance between the facing surfaces 37a and 34a is set from the radial inner side regardless of the radial position. The magnetic permeability of the magnet holder 39 disposed between the facing surfaces 37a and 34a is set to be constant toward the outside in the direction, and the magnetic permeability at the radial outside position closer to the stator 20 compared to the radial inside position far from the stator 20. You may make it small.

また、上記の実施形態においては、永久磁石34がロータ30に組み込まれた後に着磁されるものとしている。例えば、ステータコア21に電機子巻線22が巻装されている環状のステータ20と、ステータ20の径方向内側に対向して配置されたロータ30と、を備え、ロータ30が、筒状のボス部35、及び、ボス部35の径方向外側に配置され、回転周方向に交互に異なる極性の磁極が形成される複数の爪状磁極部37を有する界磁コア31と、ボス部35の外周側に巻装され、通電により起磁力を発生する界磁巻線32と、回転周方向に隣接する爪状磁極部37の間に磁化容易軸が周方向に向くように配置される永久磁石34と、を有し、爪状磁極部37と永久磁石34との互いに回転周方向に対向する方向の、ステータ20に近い径方向外側位置における磁気抵抗が、ステータ20から遠い径方向内側位置における磁気抵抗に比べて大きい回転電機を構成する永久磁石34の着磁方法であって、永久磁石34をロータ30に組み込んだ後、永久磁石34に、界磁巻線32の起磁力により爪状磁極部37に交互に現れる極性と一致するように磁極を形成する着磁を行う。この構成によれば、回転周方向に並ぶすべての永久磁石34を同時に着磁することができるので、永久磁石34の着磁を容易に行うことができる。 In the above embodiment, the permanent magnet 34 is magnetized after being incorporated in the rotor 30. For example, an annular stator 20 having an armature winding 22 wound around a stator core 21 and a rotor 30 arranged to face the inside of the stator 20 in the radial direction are provided, and the rotor 30 has a tubular boss. A field core 31 having a portion 35 and a plurality of claw-shaped magnetic pole portions 37 arranged radially outside the boss portion 35 and having magnetic poles of different polarities formed alternately in the circumferential direction of rotation, and the outer periphery of the boss portion 35. The permanent magnet 34, which is wound on the side, is disposed between the field winding 32 that generates a magnetomotive force by energization and the claw-shaped magnetic pole portion 37 that is adjacent in the circumferential direction of rotation so that the easy axis of magnetization is oriented in the circumferential direction. And the magnetic resistance at the radially outer position near the stator 20 in the direction in which the claw-shaped magnetic pole portion 37 and the permanent magnet 34 oppose each other in the circumferential direction of rotation is the magnetic resistance at the radially inner position far from the stator 20. A method of magnetizing a permanent magnet 34 constituting a rotating electric machine, which is larger than resistance, in which the permanent magnet 34 is incorporated into a rotor 30 and then the permanent magnet 34 is magnetized by a magnetomotive force of a field winding 32. Magnetization is performed so that magnetic poles are formed so as to match the polarities alternately appearing at 37. According to this configuration, all the permanent magnets 34 arranged in the rotation circumferential direction can be magnetized at the same time, so that the permanent magnets 34 can be easily magnetized.

しかし、本発明はこれに限定されるものではない。各永久磁石34をロータ30に組み込む前に個別に着磁し、各永久磁石34をその着磁後にロータ30に組み込むこととしてもよい。 However, the present invention is not limited to this. Each permanent magnet 34 may be individually magnetized before being incorporated into the rotor 30, and each permanent magnet 34 may be incorporated into the rotor 30 after being magnetized.

尚、本発明は、上述した実施形態や変形形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更を施すことが可能である。例えば、上記の実施形態や各変形形態を組み合わせて回転電機1ひいてはロータ30を構成することとしてもよい。 It should be noted that the present invention is not limited to the above-described embodiments and modifications, and various modifications can be made without departing from the spirit of the present invention. For example, the rotating electric machine 1 and thus the rotor 30 may be configured by combining the above-described embodiments and the modified embodiments.

1:回転電機、20:ステータ、21:ステータコア、22:電機子巻線、30:ロータ、31:界磁コア、32:界磁巻線、33:磁極筒部、34:永久磁石、34a:対向面、35:ボス部、36:ディスク部、37:爪状磁極部、37a:対向面、37b:窪み部、37c:突出部、38:隙間空間、39:磁石ホルダ。
1: rotating electric machine, 20: stator, 21: stator core, 22: armature winding, 30: rotor, 31: field core, 32: field winding, 33: magnetic pole cylinder part, 34: permanent magnet, 34a: Opposing surface, 35: boss portion, 36: disk portion, 37: claw-shaped magnetic pole portion, 37a: opposing surface, 37b: dent portion, 37c: protruding portion, 38: gap space, 39: magnet holder.

Claims (6)

ステータコア(21)に電機子巻線(22)が巻装されている環状のステータ(20)と、前記ステータの径方向内側に対向して配置されたロータ(30)と、を備える回転電機(1)であって、
前記ロータは、
筒状のボス部(35)、及び、前記ボス部の径方向外側に配置され、回転周方向に交互に異なる極性の磁極が形成される複数の爪状磁極部(37)を有する界磁コア(31)と、
前記ボス部の外周側に巻装され、通電により起磁力を発生する界磁巻線(32)と、
回転周方向に隣接する前記爪状磁極部の間に磁化容易軸が周方向に向くように配置され、前記界磁巻線の起磁力により前記爪状磁極部に交互に現れる極性と一致するように磁極が形成されている永久磁石(34)と、
を有し、
前記爪状磁極部と前記永久磁石との互いに回転周方向に対向する対向面間の距離は、前記ステータから遠い径方向内側位置に比べて前記ステータに近い径方向外側位置における方が長く、
前記爪状磁極部と前記永久磁石との互いに回転周方向に対向する方向の磁気抵抗は、前記径方向内側位置に比べて前記径方向外側位置における方が大きく、
前記爪状磁極部は、前記対向面の前記径方向外側位置に窪んだ窪み部(37b)を有し、
前記ロータは、前記窪み部内に一部が収容された、前記永久磁石を保持する磁石ホルダ(39)を有する、回転電機。
A rotating electric machine comprising an annular stator (20) in which an armature winding (22) is wound around a stator core (21), and a rotor (30) arranged to face the inside of the stator in the radial direction. 1) and
The rotor is
A field core having a tubular boss portion (35) and a plurality of claw-shaped magnetic pole portions (37) arranged radially outside the boss portion and having magnetic poles of different polarities alternately formed in the circumferential direction of rotation. (31),
A field winding (32) that is wound around the outer periphery of the boss portion and that generates a magnetomotive force when energized;
An easy axis of magnetization is arranged between the claw-shaped magnetic pole portions adjacent to each other in the circumferential direction of rotation so that the easy axis of magnetization is oriented in the circumferential direction so as to coincide with the polarity that appears alternately on the claw-shaped magnetic pole portions due to the magnetomotive force of the field winding. A permanent magnet (34) having a magnetic pole formed on
Have
The distance between the facing surfaces of the claw-shaped magnetic pole portion and the permanent magnet that face each other in the circumferential direction of rotation is longer at a radial outer position closer to the stator than at a radial inner position far from the stator,
Wherein said claw-shaped magnetic pole portions mutually rotating circumferential-direction magnetic resistance opposed to the permanent magnet, is more in Ki径 outward position before than previously Ki径 inward position rather large,
The claw-shaped magnetic pole portion has a recessed portion (37b) recessed at the radially outer position of the facing surface,
The rotating electric machine , wherein the rotor has a magnet holder (39) for holding the permanent magnet, a part of which is housed in the hollow portion .
前記爪状磁極部は、前記窪み部と、前記窪み部の径方向外側において回転周方向に突出する突出部(37c)と、を有し、
前記磁石ホルダは、前記窪み部を形成する外面と前記突出部とに係止されている、請求項記載の回転電機。
The claw-shaped magnetic pole portion includes the recess portion and a protrusion portion (37c) that protrudes in the rotation circumferential direction on the outer side in the radial direction of the recess portion,
The magnet holder is locked to the outer surface and the projecting portion forming the recess, the rotary electric machine according to claim 1, wherein.
前記ロータは、前記爪状磁極部の径方向外側に前記爪状磁極部の外周面を覆うように配置される筒状の磁極鉄心(33)を有し、
前記磁石ホルダは、前記磁極鉄心の内周面と前記爪状磁極部の前記窪み部を形成する外面とにより形成される空間内に嵌め込み固定されている、請求項記載の回転電機。
The rotor has a cylindrical magnetic pole core (33) arranged radially outside the claw-shaped magnetic pole portion so as to cover the outer peripheral surface of the claw-shaped magnetic pole portion,
The magnet holder, the is fitted and fixed in a space formed by an outer surface forming the recess portion of the inner peripheral face of the pole core and the claw-shaped magnetic pole portions, the rotary electric machine according to claim 1, wherein.
前記磁石ホルダは、磁性材により形成されている、請求項1乃至3の何れか一項記載の回転電機。 The magnet holder is formed of a magnetic material, the rotating electrical machine of any one of claims 1 to 3. 前記爪状磁極部と前記永久磁石との互いに回転周方向に対向する対向部位の透磁率は、前記径方向内側位置に比べて前記径方向外側位置における方が小さい、請求項1乃至の何れか一項記載の回転電機。 Permeability of the facing portions facing each other circumferential direction of rotation of the permanent magnet and the claw-shaped magnetic pole portions, is smaller in the radially outward position than that of the radially inner position, any of claims 1 to 4 A rotating electric machine according to item 1. 前記永久磁石は、回転周方向に隣接する前記爪状磁極部の間に組み付けられた状態で着磁された磁石である、請求項1乃至の何れか一項記載の回転電機。 The permanent magnet is magnetized magnet assembled state between the claw-shaped magnetic pole portion adjacent to the circumferential direction of rotation, the rotating electrical machine of any one of claims 1 to 5.
JP2017110630A 2017-06-05 2017-06-05 Rotating electric machine Active JP6737238B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017110630A JP6737238B2 (en) 2017-06-05 2017-06-05 Rotating electric machine
PCT/JP2018/021239 WO2018225656A1 (en) 2017-06-05 2018-06-01 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017110630A JP6737238B2 (en) 2017-06-05 2017-06-05 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2018207667A JP2018207667A (en) 2018-12-27
JP6737238B2 true JP6737238B2 (en) 2020-08-05

Family

ID=64566712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017110630A Active JP6737238B2 (en) 2017-06-05 2017-06-05 Rotating electric machine

Country Status (2)

Country Link
JP (1) JP6737238B2 (en)
WO (1) WO2018225656A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3237217B2 (en) * 1991-08-08 2001-12-10 株式会社デンソー Vehicle alternator rotor
JP3541934B2 (en) * 2000-01-11 2004-07-14 三菱電機株式会社 Alternator rotor
JP5015214B2 (en) * 2009-09-04 2012-08-29 三菱電機株式会社 AC rotating electric machine
JP5427576B2 (en) * 2009-12-04 2014-02-26 日立オートモティブシステムズ株式会社 Rotating electric machine for vehicles
JP5848097B2 (en) * 2011-11-09 2016-01-27 アスモ株式会社 Rotor and motor
JP5641446B2 (en) * 2012-08-08 2014-12-17 株式会社デンソー Rotor for rotating electrical machine for vehicles

Also Published As

Publication number Publication date
WO2018225656A1 (en) 2018-12-13
JP2018207667A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP3239630B2 (en) AC generator for vehicles
US7466059B2 (en) Rotor of electric rotating machine
JP4489002B2 (en) Hybrid excitation rotating electric machine and vehicle equipped with hybrid excitation rotating electric machine
US7420314B2 (en) Alternating-current dynamoelectric machine
KR100271561B1 (en) Ac generator for vehicle
JP4413018B2 (en) AC rotating electric machine
JP5120801B2 (en) Rotating machine and method of manufacturing the rotating machine
JP2012175773A (en) Rotary electric machine
WO2018052033A1 (en) Rotating electrical machine
US7105978B2 (en) Rotor of electric rotating machine
US10848041B2 (en) Rotating electric machine
JPH05236714A (en) Permanent magnet type synchronous motor
JP6737238B2 (en) Rotating electric machine
JP2007336723A (en) Rotor for electric rotary machine
CN109417319B (en) Rotor for rotating electrical machine
JP3774987B2 (en) AC generator for vehicles
JP2009284763A (en) Ac rotary electric machine
US20190319521A1 (en) Rotor and rotating electric machine including rotor
US20170353074A1 (en) Rotor for rotating electric machine
JP2009201215A (en) Rotating electrical machine
JPH11299150A (en) Permanent-magnet motor
US10923970B2 (en) Rotary electric machine having magnetic flux supplied from a field coil
JP7141249B2 (en) Rotating electric machine
JP2004153975A (en) Rotor for rotary electric machine
CN109716619B (en) Rotating electrical machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R151 Written notification of patent or utility model registration

Ref document number: 6737238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250