JP6736392B2 - Travel pattern creation device and travel pattern creation method - Google Patents

Travel pattern creation device and travel pattern creation method Download PDF

Info

Publication number
JP6736392B2
JP6736392B2 JP2016134892A JP2016134892A JP6736392B2 JP 6736392 B2 JP6736392 B2 JP 6736392B2 JP 2016134892 A JP2016134892 A JP 2016134892A JP 2016134892 A JP2016134892 A JP 2016134892A JP 6736392 B2 JP6736392 B2 JP 6736392B2
Authority
JP
Japan
Prior art keywords
section
time
travel
traveling
stations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016134892A
Other languages
Japanese (ja)
Other versions
JP2018007497A5 (en
JP2018007497A (en
Inventor
小田 篤史
篤史 小田
将尭 横田
将尭 横田
佐藤 裕
佐藤  裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016134892A priority Critical patent/JP6736392B2/en
Priority to PCT/JP2017/021720 priority patent/WO2018008337A1/en
Publication of JP2018007497A publication Critical patent/JP2018007497A/en
Publication of JP2018007497A5 publication Critical patent/JP2018007497A5/ja
Application granted granted Critical
Publication of JP6736392B2 publication Critical patent/JP6736392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/40Adaptation of control equipment on vehicle for remote actuation from a stationary place
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Description

本発明は、車両の駅間における走行パターンの作成に関する。 The present invention relates to creation of a running pattern between stations of a vehicle.

列車運行ダイヤの過密化やホームドアの整備充実化等を背景にして、自動列車運転(ATO:Automatic Train Operation)装置が多くの路線で導入されている。近年では、本来の目的である定時運行や省力化に加えて、消費電力量の削減もATO装置に要求される項目になってきている。
一方、ATO装置が導入されていない路線向けに、消費エネルギーが少ない走行パターンで走行できるように、運転士に対して運転操作の支援を行う運転支援装置の導入も進められている。
Background of the Invention With the background of overcrowding of train operation schedules and improvement of maintenance of platform doors, automatic train operation (ATO) devices have been introduced on many routes. In recent years, in addition to the original purpose of scheduled operation and labor saving, reduction in power consumption has become an item required for ATO devices.
On the other hand, the introduction of a driving support device for assisting a driver in driving operation is being promoted so that the driver can travel in a driving pattern with low energy consumption for routes where the ATO device is not installed.

ATO装置や運転支援装置は、シミュレーションで導出された消費エネルギーが少ない走行パターンを駅間走行時分に応じて読み出して、走行制御や運転操作支援を実施する。駅間走行時分が地上の運行管理装置から随時更新される場合は、予めシミュレーションで導出した走行パターンを駅間走行時分に応じて修正したり、駅間走行時分を満たす走行パターンを新たに作成する必要がある。 The ATO device and the driving support device read out the driving pattern with low energy consumption derived by the simulation according to the running time between stations, and carry out running control and driving operation support. If the running time between stations is updated from time to time by the operation management device on the ground, the running pattern derived in advance from the simulation can be modified according to the running time between stations, or a new running pattern that satisfies the running time between stations can be added. Need to create.

特許文献1には、駅間走行時分に応じて省エネの走行パターンを導出する技術が開示されている。具体的には、駅間を、定速走行と惰行とを組み合わせて走行する場合において、車両が走行する駅間を示す駅間情報と、駅間を走行する際の目標走行時分から駅間の走行に要する駅間走行時分と駅間の走行に要する消費エネルギーとの関係をあらかじめシミュレーションで算出し、記録した定速走行速度情報を参照して、定速走行を行う速度を決定する車両走行制御装置及び車両走行支援装置が開示されている。 Patent Document 1 discloses a technique for deriving an energy-saving driving pattern according to the running time between stations. Specifically, when traveling between stations in a combination of constant-speed traveling and coasting, station-to-station information indicating the station between which the vehicle is traveling and the target traveling time from the target traveling time when traveling between stations. A vehicle running that calculates the relationship between the running time between stations required for running and the energy consumption required for running between stations by simulation and refers to the recorded constant speed running speed information to determine the speed at which constant speed running is performed A control device and a vehicle travel support device are disclosed.

特開2013−146166号公報JP, 2013-146166, A

特許文献1に記載の技術では、現時点の駅間走行時分で定速走行速度情報を参照して定速走行を行う速度を決定し、駅間全体で省エネパターンとなるように制御が行われる。つまり、次駅の到着時分が前倒しされ駅間走行時分が短くなった場合は駅間全体の定速速度を上げて駅間走行時分を満たすように制御される。このため、たとえば駅間走行中に次駅の到着時分が複数回にわたって段階的に前倒しされた場合、次駅の到着時分が前倒しされるたびに定速運転速度を上げる。言い換えれば、与えられた駅間走行時分でなるべくゆっくり走行するように制御がなされる。駅間走行時分が短縮される状況は、ダイヤ乱れから復旧が行われている状況が想定され、今後も到着時分が前倒しされる可能性が高い。
しかしながら、特許文献1に記載の技術では、到着時分の前倒しが連続して発生する場合に、到着時分の前倒しがあった時点の駅間走行時分でなるべくゆっくり走行するように制御がなされるため、実現可能な次駅の到着時分の前倒し量が減少し、ダイヤ乱れからの遅延回復に時間がかかるという課題がある。
In the technique described in Patent Document 1, the speed at which constant-speed traveling is performed is determined by referring to the constant-speed traveling speed information at the current traveling time between stations, and control is performed so that an energy-saving pattern is achieved across stations. .. That is, when the arrival time of the next station is moved forward and the running time between stations is shortened, the constant speed of the entire station is increased to control the running time between stations. For this reason, for example, when the arrival time of the next station is advanced ahead of time a plurality of times while traveling between stations, the constant speed operation speed is increased every time the arrival time of the next station is advanced. In other words, the control is performed so as to travel as slowly as possible during the given traveling time between stations. As for the situation where the running time between stations is shortened, it is assumed that the situation is being restored from the disorder of the schedule, and there is a high possibility that the arrival time will be moved forward in the future.
However, in the technique described in Patent Document 1, when advancement of arrival time occurs continuously, control is performed so that the vehicle travels as slowly as possible during the traveling time between stations at the time of advancement of arrival time. Therefore, there is a problem that the amount of advancement of the feasible arrival time at the next station is reduced, and it takes time to recover the delay from the disorder of the schedule.

また他方で、駅間の前半を最速で走行し、到着駅付近で速度を低下させ走行時分を要求される駅間走行時分となるように調整する走行パターンを作成する方法もある。これによると、到着時分の前倒しが連続して発生する場合に、実現可能な次駅の到着時分の前倒し量を維持できるという利点はあるが、ダイヤ乱れの発生などで到着時分の後ろ倒しが連続して発生する場合、駅間全体で最高速度を下げた方が省エネ走行パターンとなる際には、省エネ走行パターンを作成できないという課題がある。 On the other hand, there is also a method of creating a travel pattern in which the train travels in the first half between stations at the fastest speed and the speed is reduced near the arrival station to adjust the travel time to the required travel time between stations. According to this, there is an advantage that it is possible to maintain the amount of advance for the arrival time of the next station that can be realized when the advance of the arrival time occurs in succession, but it is possible to maintain the amount of advance for the arrival time of the next station. There is a problem that the energy-saving driving pattern cannot be created when lowering the maximum speed between the stations is the energy-saving driving pattern when the tilts occur continuously.

本発明は、以上の点を考慮してなされたもので、ダイヤ乱れの復旧時は、遅延回復時間を短縮するために到着時分の前倒し可能な時分を最大限確保しつつ、ダイヤ乱れの発生で到着時分が連続して後ろ倒しされる場合は、省エネ走行パターンを作成可能なように、駅間の複数の区間の走行時分を決定する走行パターン作成装置を提案するものである。 The present invention has been made in consideration of the above points, and at the time of restoration of the disorder of the diamond, in order to shorten the delay recovery time, while ensuring the maximum time that can be advanced ahead of the arrival time, The present invention proposes a travel pattern creation device that determines travel times of a plurality of sections between stations so that an energy-saving travel pattern can be created when the arrival times are continuously moved backwards due to occurrence.

上述した課題を解決するために、本発明に係る走行パターン作成装置は、区間走行時分決定部と走行パターン作成部とを備え、区間走行時分決定部は、駅間走行時分から駅間を複数に分割した区間ごとの区間走行時分を割り当てると共に、次駅の要求到着時分の変化に応じて区間走行時分の割り当てを変更し、走行パターン作成部は、区間走行時分に基づいて区間ごとに走行パターンを作成し、当該走行パターンを結合させて駅間の走行パターンを作成することを特徴とする。 In order to solve the above-mentioned problem, the travel pattern creation device according to the present invention includes a section travel time/minute determination unit and a travel pattern creation unit, and the section travel time/minute determination unit changes between station-to-station travel times. While assigning the section travel time for each section divided into multiple sections, the assignment of the section travel time is changed according to the change in the requested arrival time at the next station, and the travel pattern creation unit is based on the section travel time. It is characterized in that a running pattern is created for each section, and the running patterns are combined to create a running pattern between stations.

本発明によれば、駅間走行時分の変化に応じて駅間の走行パターンを作成し、作成した省エネ走行パターンに基づいてATO装置や運転支援装置を制御できるようになる。 According to the present invention, it becomes possible to create a travel pattern between stations according to a change in running time between stations and control the ATO device and the driving support device based on the created energy-saving travel pattern.

図1は、自動列車運転装置が搭載された列車及び関連機器を示す構成図である。FIG. 1 is a configuration diagram showing a train equipped with an automatic train operation device and related devices. 図2は、実施例1に係る走行パターン作成装置を含む機能構成図である。FIG. 2 is a functional configuration diagram including the travel pattern creation device according to the first embodiment. 図3は、実施例1に係る走行パターン作成装置が実行する区間走行時分決定処理を示すフローチャート図である。FIG. 3 is a flowchart illustrating the section traveling time/minute determination process executed by the traveling pattern creation device according to the first embodiment. 図4は、走行時分と走行に必要な消費エネルギーの関係を示す概念図である。FIG. 4 is a conceptual diagram showing the relationship between the traveling time and the energy consumption required for traveling. 図5は、実施例1を実施した時の到着時分変化に伴う走行パターンの変化例を示す説明図である。FIG. 5 is an explanatory diagram illustrating a change example of the traveling pattern due to a change in arrival time when the first embodiment is performed.

本発明の実施形態として、本発明に係る走行パターン作成装置の実施例について以下に説明する。 As an embodiment of the present invention, an example of a travel pattern creating device according to the present invention will be described below.

本発明の実施例1は、自動列車運転装置(ATO装置、以下では「ATO装置」という場合もある)が搭載された列車を例にした走行パターン作成装置である。 Example 1 of the present invention is a travel pattern creation device that exemplifies a train equipped with an automatic train operation device (ATO device, which may be hereinafter referred to as "ATO device").

図1及び図2に図示する各装置は、プロセッサ、記憶媒体又はプログラムの何れか又はそれらを組み合わせて構成される機器である。例えば、プロセッサは、記憶媒体に記憶されているプログラムを読み出して各種機能を実現する。
図1は、自動列車運転装置(ATO装置)の機能を示す構成図である。ATO装置は、速度位置検出部により、車輪軸に設置された速度発電機から速度信号を検出し、また地上子と通信する車上子から位置を検出する。また、ATO装置は、制御指令算出部により、取得した速度信号と位置とに基づいて制駆動指令を算出し、算出した制駆動指令を車両情報制御装置や制駆動制御装置に出力する。車両情報制御装置は、次駅情報や地上の運行管理装置から受信した到着時分をATO装置に送信する。
Each apparatus illustrated in FIGS. 1 and 2 is a processor, a storage medium, a program, or a device configured by combining them. For example, the processor reads a program stored in a storage medium to realize various functions.
FIG. 1 is a block diagram showing the functions of an automatic train operation device (ATO device). The ATO device detects the speed signal from the speed generator installed on the wheel shaft and also detects the position from the car top that communicates with the ground child by the speed position detection unit. Further, the ATO device calculates the braking/driving command based on the obtained speed signal and position by the control command calculation unit, and outputs the calculated braking/driving command to the vehicle information control device and the braking/driving control device. The vehicle information control device transmits the next station information and the arrival time received from the operation management device on the ground to the ATO device.

ATO装置が有する機能は、上記の通り、速度信号と位置を検出する速度位置検出機能及び制駆動指令を算出する制御指令算出機能であるところ、制御指令算出機能を有する制御指令算出部は、さらに計画機能を有する計画部及び追従機能を有する追従部から構成される。 As described above, the functions of the ATO device are the speed position detection function for detecting the speed signal and the position and the control command calculation function for calculating the braking/driving command, and the control command calculation unit having the control command calculation function further includes It is composed of a planning unit having a planning function and a tracking unit having a tracking function.

計画機能とは、現在時刻と到着時分から駅間走行時分を算出し、駅間走行時分に対応した予め保持する駅間走行パターンに対し、現在の位置を照らし合わせて目標速度を算出する機能である。また、追従機能とは、目標速度と現在の速度との速度偏差を入力し、出力すべき制駆動力を算出する機能である。ATO装置は、この算出した制駆動力を制駆動指令に含めて車両情報制御装置や制駆動制御装置に出力する。
なお、制駆動指令にはノッチ指令及びトルク指令等がある。車両情報制御装置は、車上の情報伝送を管理する装置であり、ATO装置からの制駆動指令を入力すると、入力した制駆動指令を制駆動制御装置に出力する。制駆動制御装置は、入力した制駆動指令に基づいて列車の走行を制御する。
The planning function calculates the running time between stations from the current time and arrival time, and calculates the target speed by comparing the current position with the inter-station running pattern that is held in advance corresponding to the running time between stations. It is a function. The follow-up function is a function of inputting the speed deviation between the target speed and the current speed and calculating the braking/driving force to be output. The ATO device includes the calculated braking/driving force in the braking/driving command and outputs the braking/driving command to the vehicle information control device or the braking/driving control device.
The braking/driving command includes a notch command and a torque command. The vehicle information control device is a device that manages information transmission on the vehicle. When a braking/driving command is input from the ATO device, the vehicle information control device outputs the input braking/driving command to the braking/driving control device. The braking/driving control device controls traveling of the train based on the input braking/driving command.

図2は、本発明の実施例1に係る走行パターン作成装置の構成と図1に示す各装置との関係を示す図である。実施例1に係る走行パターン作成装置(203)は、車両情報制御装置(202)より、次駅情報、次駅の到着時分、運用パターン、ダイヤ情報、位置及び速度を受信する。車両情報制御装置(202)は、次駅の到着時分を地上に設置された運行管理装置(201)から地上・車上通信網を介して受信する。次駅の到着時分に関しては、運行管理装置(201)以外から取得してもよく、例えば乗務員が運転台に設置された表示器を通して設定してもよい。走行パターン作成装置(203)は、次駅の到着時分を満たしつつ、走行に必要な消費エネルギーが小さくなる走行パターンを作成し、作成した走行パターンをATO装置(204)に送信する。なお、走行パターン作成装置(203)とATO装置(204)間のデータ形式は問わない。 FIG. 2 is a diagram showing the relationship between the configuration of the travel pattern creation device according to the first embodiment of the present invention and each device shown in FIG. The travel pattern creation device (203) according to the first embodiment receives the next station information, arrival time of the next station, operation pattern, timetable information, position and speed from the vehicle information control device (202). The vehicle information control device (202) receives the arrival time of the next station from the operation management device (201) installed on the ground via the ground/vehicle communication network. The arrival time of the next station may be acquired from other than the operation management device (201), and may be set by, for example, a crew member through a display installed in the cab. The travel pattern creation device (203) creates a travel pattern that consumes less energy required for travel while satisfying the arrival time at the next station, and transmits the created travel pattern to the ATO device (204). The data format between the travel pattern creating device (203) and the ATO device (204) does not matter.

走行パターン作成装置(203)は、区間走行時分決定部(205)、走行時分データベース(206)及び走行パターン作成部(207)から構成される。以下に、各処理部の詳細を説明する。
区間走行時分決定部(205)は、車両情報制御装置(202)から受信した情報より到着時分の変化を判定する。到着時分の変化の仕方によって、駅間を1以上に分割した区間ごとの走行時分(以下、「区間走行時分」という)の割り当てを変化させる。区間の分割は、所定距離ごとに分割してもよいし、制限速度区間の前後で分割してもよい。駅間が1以上の区間に分割されればよく、分割方法は問わない。
The travel pattern creation device (203) includes a section travel time/minute determination unit (205), a travel time/minute database (206), and a travel pattern creation unit (207). The details of each processing unit will be described below.
The section travel time determination unit (205) determines a change in arrival time based on the information received from the vehicle information control device (202). Depending on how the arrival time changes, the allocation of travel time (hereinafter referred to as "section travel time") for each section obtained by dividing the station into one or more sections is changed. The division of the section may be performed for each predetermined distance or may be performed before and after the speed limit section. The station may be divided into one or more sections, and the division method does not matter.

走行時分データベース(206)は、ダイヤで規定された駅間走行時分を省エネ走行パターンで走行した時の区間ごとの省エネ走行時分と、駅間を最速パターンで走行した時の区間ごとの最速走行時分を格納している。なお、区間ごとの省エネ走行時分と最速走行時分は、走行時分データベース(206)のようにデータベースとして保持していてもよいし、走行パターン作成装置(203)で随時シミュレーションによって算出してもよい。要するに、区間ごとの省エネ走行時分と最速走行時分を、区間走行時分決定部(205)が把握できるのであればその方法は問わない。 The travel time database (206) stores the energy saving travel time for each section when the energy saving travel pattern is used between the station travel times defined by the schedule, and the section when the station is traveled in the fastest pattern. Stores the fastest running time. The energy-saving travel time and the fastest travel time for each section may be held as a database such as a travel time database (206), or may be calculated by a simulation by the travel pattern creation device (203) at any time. Good. In short, any method can be used as long as the section traveling time determination unit (205) can grasp the energy-saving traveling time and the fastest traveling time for each section.

ここにおいて、区間走行時分決定部(205)が区間走行時分(区間ごとの走行時分)を決定する考え方を説明する。
到着時分が前倒しされている間は、ダイヤ乱れからの復旧が行われている状況が想定され、今後も到着時分が前倒しされる可能性が高いと考えられる。そのため、更なる前倒しに対応できるように、駅間の前半を最速走行パターンで制御し、次駅付近で到着時分が調整可能なように、区間走行時分を設定する。
一方、到着時分が後ろ倒しされている場合は、ダイヤ乱れが発生し先行車両との間隔が詰まってきている状況が想定される。このとき、さらに到着時分が後ろ倒しされる可能性が高く、速く走行し先行列車に近づき過ぎると機外停止が発生する可能性がある。そのため、先行列車に近づき過ぎないようにゆっくり走行するように制御する。このとき、区間走行時分は、走行パターンが省エネとなるように設定する。
Here, the concept of the section travel time determination unit (205) determining the section travel time (run time for each section) will be described.
While the arrival time is ahead of schedule, it is assumed that the recovery from the disorder of the schedule is being performed, and it is highly possible that the arrival time will be ahead of schedule. Therefore, the first half between stations is controlled according to the fastest driving pattern so that further advancement can be accommodated, and the segment running time is set so that the arrival time can be adjusted near the next station.
On the other hand, when the arrival time has been pushed backward, it is assumed that the schedule disorder has occurred and the distance from the preceding vehicle is becoming narrower. At this time, there is a high possibility that the arrival time will be pushed backward, and if the vehicle runs fast and gets too close to the preceding train, an outage may occur. Therefore, it is controlled to run slowly so as not to get too close to the preceding train. At this time, the traveling time of the section is set so that the traveling pattern is energy-saving.

図3は、走行パターン作成装置(203)の区間走行時分決定部(205)により実行される処理手順を示す。ステップ301〜316を実行することにより、区間走行時分の割り当てを決定する。また、本処理は、走行パターン作成装置(203)の動作周期ごとに実行される。以下に、順を追って各ステップの処理内容を説明する。各ステップの処理主体は、区間走行時分決定部(205)で共通しているので、処理主体の記載は省略することとする。 FIG. 3 shows a processing procedure executed by the section travel time determination unit (205) of the travel pattern creation device (203). By executing steps 301 to 316, the allocation for the traveling time of the section is determined. In addition, this processing is executed in each operation cycle of the travel pattern creation device (203). Below, the processing contents of each step will be explained step by step. Since the processing subject of each step is common to the section traveling time determination unit (205), the description of the processing subject will be omitted.

(ステップ301)
次駅が更新されているか否かを判断する。次駅の更新がなければ(Yes)、ステップ302に進む。次駅が更新されれば(No)、ステップ303に進む。
(Step 301)
Determine whether the next station has been updated. If the next station is not updated (Yes), the process proceeds to step 302. If the next station is updated (No), the process proceeds to step 303.

(ステップ302)
到着時分の更新があるか否かを判断する。到着時分が更新されていれば(Yes)、ステップ304に進む。到着時分の更新がなければ(No)、ステップ316に進む。
(Step 302)
Determine whether there is an update for the arrival time. If the arrival time has been updated (Yes), the process proceeds to step 304. If the arrival time has not been updated (No), the process proceeds to step 316.

(ステップ303)
区間走行時分に、走行時分データベース(206)から読み出した次駅までの区間ごとの省エネ走行時分を割り当てる。続いてステップ316に進む。
(Step 303)
The energy-saving travel time for each section up to the next station read from the travel time database (206) is assigned to the section travel time. Then, it proceeds to step 316.

(ステップ304)
出発駅の出発時分と次駅の到着時分から駅間の走行時分を算出する。列車が既に出発駅を出ている場合は、出発駅を出発した実際の時分と次駅の到着時分から駅間の走行時分を算出する。続いてステップ305に進む。
(Step 304)
The running time between stations is calculated from the departure time of the departure station and the arrival time of the next station. If the train has already left the departure station, the running time between stations is calculated from the actual time when the departure station left and the arrival time at the next station. Then, it proceeds to step 305.

(ステップ305)
次駅の到着時分が、以前に取得した到着時分に対して、前倒し(到着時分が早くなる)されているか、後ろ倒し(到着時分が遅くなる)されているかを判定する。前倒しされている場合(Yes)は、ステップ306に進む。後ろ倒しされている場合(No)は、ステップ314に進む。
(Step 305)
It is determined whether the arrival time at the next station is ahead of time (earlier in arrival time) or behind (earlier in arrival time) with respect to the previously acquired arrival time. If it has been moved forward (Yes), the process proceeds to step 306. If it has been pushed backward (No), the process proceeds to step 314.

(ステップ306)
区間ごとの最速走行時分を走行時分データベース(206)から読み込む。続いてステップ307に進む。
(Step 306)
The fastest travel time for each section is read from the travel time database (206). Then, it proceeds to step 307.

(ステップ307)
区間を識別するID(以下、「区間識別ID」という)であるnを、n=1にセットする。nは、出発駅に最も近い区間をn=1とし、次駅に向かって昇順で定義される。次駅を含む区間nは、n=Nとする。続いてステップ308に進む。
(Step 307)
An ID for identifying a section (hereinafter referred to as "section identification ID") is set to n=1. The n is defined in ascending order toward the next station, where n=1 is the section closest to the departure station. The section n including the next station is n=N. Then, it proceeds to step 308.

(ステップ308)
列車が走行している区間よりも区間nが出発駅側の場合は、区間nに実際に走行するのにかかった実走行時分を割り当てる。列車が走行している区間よりも区間nが次駅側の場合は、区間nに対応した最速走行時分を割り当てる。区間nが現在走行中の区間の場合は、該当区間に割り当て済みの走行時分を区間nの走行時分とする。続いてステップ309に進む。
(Step 308)
When the section n is closer to the departure station than the section in which the train is traveling, the actual travel time required to actually travel is assigned to the section n. When the section n is closer to the next station than the section where the train is running, the fastest running time corresponding to the section n is assigned. When the section n is the section currently traveling, the traveling time allocated to the relevant section is set as the traveling time of the section n. Then, it proceeds to step 309.

(ステップ309)
区間n+1が、駅間最後の区間(n+1=N)か否かを判定する。区間n+1が駅間最後の区間である場合(Yes)は、ステップ310に進む。区間n+1が駅間最後の区間でない場合(No)は、ステップ311に進む。
(Step 309)
It is determined whether the section n+1 is the last section between stations (n+1=N). If the section n+1 is the last section between stations (Yes), the process proceeds to step 310. If the section n+1 is not the last section between stations (No), the process proceeds to step 311.

(ステップ310)
区間Nの割り当て走行時分を以下の式で算出する。算出後、ステップ312に進む。
区間Nの割り当て走行時分
=駅間走行時分−Σ(区間(n=1〜N−1)ごとに割り当てられた走行時分)
(Step 310)
The allocated traveling time of the section N is calculated by the following formula. After the calculation, proceed to step 312.
Allocation travel time of section N = Inter-station travel time-Σ (travel time allocated to each section (n=1 to N-1))

(ステップ311)
区間識別IDであるnを一つ繰り上げて(n=n+1)、ステップ308に戻る。
(Step 311)
The section identification ID n is incremented by one (n=n+1), and the process returns to step 308.

(ステップ312)
駅間最後の区間の走行時分が過大となり、区間の走行速度が過度に低下しないように、駅間最後の区間に割り当て可能な走行時分の最大値を設けておく。ステップ310で算出した区間Nの割り当て走行時分が、区間Nに割り当て可能な走行時分の最大値を超えているか否かを判断する。超えていない場合(Yes)は、ステップ316に進む。超えている場合(No)は、ステップ313に進む。
(Step 312)
In order to prevent the running time of the last section between stations from becoming excessive and the running speed of the section from dropping excessively, the maximum value of running time that can be assigned to the last section between stations is set. It is determined whether the allocated travel time for the section N calculated in step 310 exceeds the maximum value for the travel time that can be allocated to the section N. If not exceeded (Yes), the process proceeds to step 316. If it exceeds (No), the process proceeds to step 313.

(ステップ313)
ステップ310で算出した区間Nの割り当て走行時分と区間Nに割り当て可能な走行時分の最大値との差分を、ステップ308で区間N−1に割り当てられた最速走行時分に上乗せし、区間N−1の走行時分とする。なお、区間N−1に設定されている割り当て可能な走行時分の最大値を超える場合は、差分を区間N−2に上乗せすればよく、この処理を各区間に割り当てられた走行時分が、各区間の割り当て可能な最大値以下となるまで繰り返す。次にステップ316に進む。
(Step 313)
The difference between the allocated travel time of the section N calculated in step 310 and the maximum value of the travel time that can be allocated to the section N is added to the fastest travel time allocated to the section N-1 in step 308 to obtain the section The time is N-1. In addition, when the maximum value of the travel time settable for the section N-1 is exceeded, the difference may be added to the section N-2. , Repeat until the maximum value that can be assigned to each section is reached. Then, it proceeds to step 316.

(ステップ314)
残走行時分を以下の式で算出する。
残走行時分=駅間走行時分−Σ(既に走行した区間の実走行時分)
−現在走行中の区間に割り当てられている走行時分
既に走行済みの区間の走行時分は実際の走行にかかった実走行時分とし、到着時分の変更取得時の走行中の区間については、該当区間に割り当て済みの走行時分を区間走行時分とする。続いてステップ315に進む。
(Step 314)
The remaining running time is calculated by the following formula.
Remaining travel time = Inter-station travel time-Σ (actual travel time of the already traveled section)
-Running time assigned to the section currently running.The running time of the section that has already been run is the actual running time that took the actual running, and the running section at the time of acquiring the change of arrival time is , The travel time allocated to the relevant section is defined as the section travel time. Then, it proceeds to step 315.

(ステップ315)
ステップ314で算出した走行時分を次駅までの残りの各区間に割り当てる。続いてステップ316に進む。走行時分の割り当ての詳細については後述する。
(Step 315)
The travel time calculated in step 314 is assigned to each of the remaining sections to the next station. Then, it proceeds to step 316. Details of the allocation of running time will be described later.

(ステップ316)
区間走行時分を走行パターン作成部207に送信する。当該ステップで、一連の処理は終了する。
(Step 316)
The section travel time is transmitted to the travel pattern creation unit 207. At this step, the series of processes is completed.

次に、ステップ315における残走行時分の割り当ての詳細を、図4で説明する。
図4は、走行時分と走行に必要な消費エネルギーの関係を示す概念図である。走行パターンを力行が2度含まれないような区間で分割した時、その区間の区間走行時分と消費エネルギーの関係は、単調減少曲線の関係をとることが知られており、この単調減少曲線は区間ごとに異なる。そこで、各区間に割り当てられた区間走行時分における単調減少曲線の接線の傾きが各区間で異なる場合には、傾きが小さい区間の区間走行時分を傾きの大きい区間に割り振る。これにより、傾きが小さい区間の消費エネルギーの増加よりも傾きの大きい区間の消費エネルギーの減少のほうが大きく、駅間の消費エネルギーを減少させることが可能である。この操作を繰り返すと、各区間の単調減少曲線の接線の傾きが一致する走行時分の割り振りが一意に決まることになる。単調減少曲線の接線の傾きが一致するまで各区間走行時分を調整し、単調減少曲線の接線の傾きが一致した時の各区間走行時分を、ステップ315で各区間に割り振る区間走行時分とする。
Next, details of the allocation for the remaining running time in step 315 will be described with reference to FIG.
FIG. 4 is a conceptual diagram showing the relationship between the traveling time and the energy consumption required for traveling. It is known that when a running pattern is divided into sections that do not include powering twice, the relationship between the section running time and energy consumption in that section has a monotonous decrease curve. Varies from section to section. Therefore, when the slope of the tangent line of the monotonically decreasing curve in the section running time assigned to each section is different in each section, the section running time of the section with a small slope is assigned to the section with a large slope. As a result, the energy consumption in the section having a large slope is larger than the energy consumption in the section having a small slope, and it is possible to reduce the energy consumption between the stations. By repeating this operation, the allocation for the running time when the slopes of the tangents of the monotonically decreasing curves in the respective sections match will be uniquely determined. The travel time for each section is adjusted until the tangent slopes of the monotonous decrease curves match, and the travel time for each section when the tangent slopes of the monotonous decrease curve match is allocated to each section in step 315. And

また、本実施例を実施した時の到着時分変化に伴う走行パターンの変化について、図5を用いて説明する。
図5は、(a)駅間を最速で走行したケース(実線、駅間走行時分90秒)、(b)ダイヤで規定された基準走行時分で走行したケース(点線、駅間走行時分110秒)、(c)到着時分が前倒し(破線、基準走行時分から駅間走行時分が短縮)されたケース(駅間走行時分110秒→100秒)、(d)到着時分が後ろ倒し(基準走行時分から駅間走行時分が延長)されたケース(一点鎖線、駅間走行時分110秒→120秒)、の4つの走行パターンの例と、各走行パターンの区間走行時分の割り当てを示している。
Further, the change of the traveling pattern due to the change of the arrival time when the present embodiment is carried out will be described with reference to FIG.
Fig. 5 shows the case where (a) the fastest running between stations (solid line, 90 minutes between running stations) and (b) the standard running time defined by the timetable (dotted line, running between stations). 110 seconds), (c) Arrival time is moved forward (broken line, running time between stations is shortened from standard running time) (Running time between stations 110 seconds → 100 seconds), (d) Arrival time Of the case where the vehicle is pushed backward (extended from the standard running time to the running time between stations) (one-dot chain line, running time between stations 110 seconds → 120 seconds), and four running patterns It shows the hourly allocation.

最速走行パターン(a)に対して、基準走行時分での走行パターン(b)は、区間1では定速運転を惰行に変更し、区間3では最高速度を低下させ、かつ定速運転を惰行に変更することで省エネ走行パターンとしている。 In contrast to the fastest traveling pattern (a), the traveling pattern (b) at the reference traveling time is that the constant speed operation is changed to coasting in the section 1, the maximum speed is decreased in the section 3, and the constant speed operation is coasted. Energy saving driving pattern is set by changing to.

到着時分が出発駅停車中に前倒しされた場合(c)を説明する。到着時分が前倒しされた場合は、区間ごとの最速走行時分を読み込む(図3のステップ306)。図5の場合、区間1が30秒、区間2が20秒、区間3が40秒となる。次に、各区間に対して、区間走行時分を出発駅に近い区間から割り当てる(図3のステップ308)。図5の場合、区間1が30秒、区間2が20秒となる。区間3の割り当て走行時分は、図3のステップ310に示した式より
区間3の割り当て走行時分=駅間走行時分100秒−区間1の割り当て走行時分30秒
−区間2の割り当て走行時分20秒
=50秒
となる。
各区間に割り当てられた区間走行時分に基づいて走行パターンを作成すると、図5の(c)に示すように、次駅に最も近い区間3以外の区間1及び区間2は、最速走行パターンとなる。
A case (c) in which the arrival time is moved forward while the departure station is stopped will be described. If the arrival time is moved forward, the fastest travel time for each section is read (step 306 in FIG. 3). In the case of FIG. 5, the interval 1 is 30 seconds, the interval 2 is 20 seconds, and the interval 3 is 40 seconds. Next, the section running time is assigned to each section from the section close to the departure station (step 308 in FIG. 3). In the case of FIG. 5, section 1 is 30 seconds and section 2 is 20 seconds. The allocated travel time of the section 3 is calculated from the formula shown in step 310 of FIG. 3. The allocated travel time of the section 3 is 100 seconds between the stations and the allocated travel time of the section 1 is 30 seconds.
-Assigned travel time for section 2 20 minutes
=50 seconds.
When a travel pattern is created based on the travel time of each section, as shown in FIG. 5C, the sections 1 and 2 other than the section 3 closest to the next station have the fastest travel patterns. Become.

到着時分が出発駅停車中に後ろ倒しされた場合(d)を説明する。到着時分が後ろ倒しされた場合は、残走行時分を算出する(図3のステップ314)。図5の場合、残走行時分は120秒となる。次に、各区間に対する区間走行時分を、各区間走行時分と走行に必要な消費エネルギーの関係を示す関数である単調減少曲線の接線の傾きが各区間で一致するように割り当てる(図3のステップ315)。図5の場合、区間1が44秒、区間2が20秒、区間3が56秒となった結果を示している。
各区間に割り当てられた区間走行時分に基づいて走行パターンを作成すると、図5の(d)に示すように、駅間全体で最高速度が低下した省エネ走行パターンとなる。
A case (d) in which the arrival time is pushed backward while the departure station is stopped will be described. When the arrival time is tilted backward, the remaining travel time is calculated (step 314 in FIG. 3). In the case of FIG. 5, the remaining running time is 120 seconds. Next, the section running time for each section is assigned so that the tangent slopes of the monotonically decreasing curves, which are functions showing the relationship between each section running time and the energy consumption required for running, match in each section (FIG. 3). Step 315). In the case of FIG. 5, the result is that the section 1 is 44 seconds, the section 2 is 20 seconds, and the section 3 is 56 seconds.
When the travel pattern is created based on the section travel time allocated to each section, as shown in FIG. 5D, the energy-saving travel pattern in which the maximum speed is decreased in the entire station is obtained.

以上のように、本実施例によれば、到着時分の変化に応じて駅間の区間走行時分が調整される。到着時分が前倒しされている間は、ダイヤ乱れからの復旧が行われている状況が想定され、今後も到着時分が前倒しされる可能性が高いと考えられる。そのため、更なる前倒しに対応できるように駅間の前半を最速走行パターンとし、次駅付近で到着時分調整可能なように区間走行時分を設定する。
一方、到着時分が後ろ倒しされている場合は、ダイヤ乱れが発生し先行車両との間隔が詰まってきている状況が想定される。このとき、さらに到着時分が後ろ倒しされる可能性が高く、速く走行し先行列車に近づき過ぎると機外停止が発生する可能性がある。そのため、先行列車に近づき過ぎないようにゆっくり走行する。このとき、区間走行時分は、走行パターンが省エネとなるように設定する。
すなわち、本実施例によれば、ダイヤ乱れ復旧時は、遅延回復時間を短縮するために到着時分の前倒し可能な時分を最大限確保しつつ、ダイヤ乱れ発生で到着時分が連続して後ろ倒しされる場合は、省エネ走行パターンを作成可能となる。
As described above, according to the present embodiment, the section travel time between stations is adjusted according to the change in arrival time. While the arrival time is ahead of schedule, it is assumed that the recovery from the disorder of the schedule is being performed, and it is highly possible that the arrival time will be ahead of schedule. Therefore, the fastest running pattern is set in the first half between stations so that further advancement can be accommodated, and the running time for each section is set so that the arrival time can be adjusted near the next station.
On the other hand, when the arrival time has been pushed backward, it is assumed that the schedule disorder has occurred and the distance from the preceding vehicle is becoming narrower. At this time, there is a high possibility that the arrival time will be pushed backward, and if the vehicle runs fast and gets too close to the preceding train, an outage may occur. Therefore, drive slowly so as not to get too close to the preceding train. At this time, the traveling time of the section is set so that the traveling pattern is energy-saving.
That is, according to the present embodiment, when the timetable disorder is recovered, the timetable for arrival is continuously increased due to the occurrence of the timetable disorder while maximally securing the time that can be advanced ahead of the time of arrival to shorten the delay recovery time. If it is pushed backwards, it becomes possible to create an energy-saving driving pattern.

本実施例では、区間走行時分の割り当て結果を自動的にATO装置や運転支援装置に送信していたが、区間走行時分の割り当て結果を乗務員や司令員に表示するようにし、乗務員や司令員が変更や却下ができるようにしてもよい。 In the present embodiment, the allocation result for the section traveling time is automatically transmitted to the ATO device or the driving support device. However, the allocation result for the section traveling time is displayed to the crew member or the commander, and the crew member or the commander. Members may be able to change or reject.

また、乗務員や司令員が、区間走行時分の割り当てを、任意に入力できるようにするか、複数の候補から任意に選択できるようにしてもよい。このようにすることで、特に運転支援装置の場合、乗務員が将来の走行パターンをイメージすることができ、余裕をもった運転操作が可能となる。 Further, the crew member or the commander may be allowed to arbitrarily input the allocation for the traveling time of the section or may be arbitrarily selected from a plurality of candidates. By doing so, especially in the case of the driving support device, the crew can imagine the future driving pattern, and the driving operation can be performed with a sufficient margin.

さらにまた、本実施例では走行パターン作成装置が列車に搭載されている例を示したが、走行パターン作成装置の設置場所は、列車及び地上を問わない。例えば、走行パターン作成装置を地上に設置し、列車に対して走行パターンを送信するようにしてもよい。 Furthermore, in the present embodiment, the example in which the traveling pattern creating device is mounted on the train is shown, but the location of the traveling pattern creating device may be on the train or on the ground. For example, the travel pattern creation device may be installed on the ground and the travel pattern may be transmitted to the train.

201 運行管理装置
202 車両情報制御装置
203 走行パターン作成装置
204 自動列車運転装置(ATO装置)
205 区間走行時分決定部
206 走行時分データベース
207 走行パターン作成部
201 Operation management device 202 Vehicle information control device 203 Running pattern creation device 204 Automatic train operation device (ATO device)
205 Traveling time/minute determination unit 206 Traveling time/minute database 207 Travel pattern creation unit

Claims (2)

区間走行時分決定部と、
走行パターン作成部とを備え、
前記区間走行時分決定部は、駅間走行時分から駅間を複数に分割した区間ごとの区間走行時分を割り当てると共に、次駅の要求到着時分の変化に応じて前記区間走行時分の割り当てを変更し、
前記走行パターン作成部は、前記区間走行時分に基づいて前記区間ごとに走行パターンを作成し、当該走行パターンを結合させて前記駅間の走行パターンを作成し、
前記次駅の要求到着時分の変化が、次駅の到着時分を早くする前倒しの要求である場合に、
前記区間走行時分決定部は、次駅に近い区間以外の区間に対して、当該前倒しの要求時点で割り当てられている区分走行時分よりも小さい値を区間走行時分として割り当て、次駅に近い区間に対して、当該前倒しの要求時点で割り当てられている区分走行時分よりも大きい値を区間走行時分として割り当てると共に、前記駅間の最後の区間に割り当て可能な走行時分の最大値を設けておく
ことを特徴とする走行パターン作成装置。
Section running time determination part,
With a driving pattern creation unit,
The section travel time determination unit allocates the section travel time for each section obtained by dividing the inter-station travel time into a plurality of stations, and the section travel time according to the change in the requested arrival time of the next station. Change the assignment,
The travel pattern creation unit creates a travel pattern for each section based on the section travel time, creates a travel pattern between the stations by combining the travel patterns,
If the change in the requested arrival time of the next station is an advance request to accelerate the arrival time of the next station,
For the section other than the section near the next station, the section traveling time determination unit assigns a value smaller than the section traveling time assigned at the time of the advance request to the next station. A value greater than the segment travel time allocated at the time of the request for advance is assigned to the nearby section as the section travel time, and the maximum value of the travel time that can be assigned to the last section between the stations. A travel pattern creating device characterized by being provided.
駅間走行時分から駅間を複数に分割した区間ごとの区間走行時分を次駅の要求到着時分の変化に応じて割り当てる第1のステップと、A first step of allocating a section travel time for each section obtained by dividing the inter-station travel time into a plurality of sections according to a change in the requested arrival time at the next station,
前記区間走行時分に基づいて前記区間ごとに走行パターンを作成する第2のステップと、A second step of creating a traveling pattern for each section based on the section traveling time;
前記走行パターンを結合させて前記駅間の走行パターンを作成する第3のステップとA third step of combining the traveling patterns to create a traveling pattern between the stations;
を有し、Have
前記第1のステップは、次駅の到着時分を早くする前倒しの要求時には、前記駅間の最後の区間に割り当て可能な走行時分の最大値を設け、次駅に近い区間以外の区間に対して、当該前倒しの要求時点で割り当てられている区分走行時分よりも小さい値を区間走行時分として割り当て、次駅に近い区間に対して、当該前倒しの要求時点で割り当てられている区分走行時分よりも大きい値を区間走行時分として割り当てる処理であるThe first step is to set a maximum value for the traveling time that can be assigned to the last section between the stations when an advance request is made to accelerate the arrival time at the next station, and to set the section other than the section near the next station. On the other hand, a value smaller than the segment travel time assigned at the time of the advance request is assigned as the section travel time, and the segment travel assigned to the section near the next station at the time of the advance request is assigned. This is a process that assigns a value larger than the hour and minute as the section traveling time and hour.
ことを特徴とする走行パターン作成方法。A driving pattern creating method characterized by the above.
JP2016134892A 2016-07-07 2016-07-07 Travel pattern creation device and travel pattern creation method Active JP6736392B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016134892A JP6736392B2 (en) 2016-07-07 2016-07-07 Travel pattern creation device and travel pattern creation method
PCT/JP2017/021720 WO2018008337A1 (en) 2016-07-07 2017-06-13 Running pattern creation device and running pattern creation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016134892A JP6736392B2 (en) 2016-07-07 2016-07-07 Travel pattern creation device and travel pattern creation method

Publications (3)

Publication Number Publication Date
JP2018007497A JP2018007497A (en) 2018-01-11
JP2018007497A5 JP2018007497A5 (en) 2019-03-14
JP6736392B2 true JP6736392B2 (en) 2020-08-05

Family

ID=60912595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016134892A Active JP6736392B2 (en) 2016-07-07 2016-07-07 Travel pattern creation device and travel pattern creation method

Country Status (2)

Country Link
JP (1) JP6736392B2 (en)
WO (1) WO2018008337A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7164306B2 (en) * 2018-01-30 2022-11-01 株式会社日立製作所 Running pattern creation device, running pattern creation method, and automatic train operation device
CN109649441B (en) * 2018-12-21 2021-05-11 中国铁道科学研究院集团有限公司通信信号研究所 Automatic train driving energy-saving control method
JP2020191697A (en) * 2019-05-20 2020-11-26 株式会社日立製作所 Travel pattern creation device and travel pattern creation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515013A (en) * 1991-07-02 1993-01-22 Central Japan Railway Co Method and apparatus for controlling traveling of train
JP3881302B2 (en) * 2002-11-06 2007-02-14 財団法人鉄道総合技術研究所 Driving curve creation device and running curve creation information
IN2014CN02754A (en) * 2011-10-19 2015-07-03 Mitsubishi Electric Corp
JP6139372B2 (en) * 2013-10-23 2017-05-31 株式会社東芝 Operation plan creation device
JP6334282B2 (en) * 2014-06-11 2018-05-30 株式会社東芝 Information processing apparatus and operation curve creation method

Also Published As

Publication number Publication date
WO2018008337A1 (en) 2018-01-11
JP2018007497A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
EP3088240B1 (en) Driving curve creation device, driving assistance device, driving control device, and driving curve creation method
JP5944229B2 (en) Train control device
JP6563757B2 (en) Travel pattern creation device, automatic train operation system with travel pattern creation device and automatic train operation device, and drive support system with travel pattern creation device and operation support device
JP6736392B2 (en) Travel pattern creation device and travel pattern creation method
EP2292492A2 (en) Apparatus and method for controlling speed in automatic train operation
JP5680262B1 (en) Train travel prediction apparatus and train travel prediction method
EA033800B1 (en) System and method for vehicle operation
JP2020179790A5 (en) Timetable creation device, timetable creation method, and automatic vehicle control system
CN110997449B (en) Train operation plan support system and data structure of data relating to train operation plan
JP5089640B2 (en) Train group operation management system
JP4410643B2 (en) Diamond creation support device, diamond creation support method, and storage medium storing the processing program
JP2018107940A (en) Railway vehicle
CN101495929B (en) Method, system and computer software code for trip optimization with train/track database augmentation
JP2006006030A (en) Drive pattern creation device, vehicle speed control device and vehicle drive support device
JP6712959B2 (en) Travel control device, travel control method, and travel control system
JP2018034610A (en) Travel control system and travel control device
JP2017121835A (en) Train battery control device, method and program
JP2019089449A (en) Device, method and program for train travel control
JP6440817B2 (en) Train operation management system, train operation management method, and train operation management program
JP2018007402A (en) Train operation control device
Toletti et al. Energy savings in mixed rail traffic rescheduling: an RCG approach
JP2019013112A (en) Train control system and method
JP4011539B2 (en) Operation plan creation device
JPH0479705A (en) Preparation of train operating system
JP2018144676A (en) Train control system, train control method and onboard device of train

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200715

R150 Certificate of patent or registration of utility model

Ref document number: 6736392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150