JP6735082B2 - Steel member, steel plate, and manufacturing method thereof - Google Patents
Steel member, steel plate, and manufacturing method thereof Download PDFInfo
- Publication number
- JP6735082B2 JP6735082B2 JP2015218435A JP2015218435A JP6735082B2 JP 6735082 B2 JP6735082 B2 JP 6735082B2 JP 2015218435 A JP2015218435 A JP 2015218435A JP 2015218435 A JP2015218435 A JP 2015218435A JP 6735082 B2 JP6735082 B2 JP 6735082B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- pwht
- heating
- toughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/50—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/05—Grain orientation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は、鋼部材および鋼板ならびにこれらの製造方法に関する。詳細には、本発明は、鋼板に対して溶接および溶接後熱処理(Post Weld Heat Treatment、以下「PWHT」ということがある)を施して得られる鋼部材、特には、該PWHTが高温長時間であっても板厚中央部の強度および低温靭性に優れた鋼部材と、該鋼部材の製造に用いられる鋼板と、これらの製造方法に関する。以下では、低温靭性を単に「靭性」ということがある。 The present invention relates to a steel member, a steel plate, and manufacturing methods thereof. More specifically, the present invention relates to a steel member obtained by subjecting a steel sheet to welding and post-weld heat treatment (Post Weld Heat Treatment, hereinafter sometimes referred to as “PWHT”), particularly, the PWHT at high temperature and for a long time. Even if it exists, it relates to a steel member excellent in strength and low temperature toughness in the central portion of the plate thickness, a steel plate used for manufacturing the steel member, and a manufacturing method thereof. Hereinafter, the low temperature toughness may be simply referred to as “toughness”.
石油精製をはじめとする化学工業で用いる中・高温圧力容器は、操業の高能率化を目的に、更なる耐高温高圧化が要求される傾向にある。よって、上記圧力容器等の鋼部材に使用される鋼板は、高強度化が求められる。また安全性の観点から、上記鋼部材に対し高レベルの低温靭性も要求される。 Medium- and high-temperature pressure vessels used in the petroleum refining and other chemical industries tend to be required to have further high temperature and high pressure resistance for the purpose of high efficiency operation. Therefore, the steel plate used for the steel member such as the pressure vessel is required to have high strength. Further, from the viewpoint of safety, a high level of low temperature toughness is required for the above steel members.
上記高強度化を図るべく、上記鋼板には、焼ならしや焼入れが施される。しかし上記鋼板の板厚が厚めであると、焼ならしまたは焼入れ時の鋼板内部、特に板厚中央部の冷却速度が小さく、高強度等が得られにくいといった問題がある。また上記圧力容器等の鋼部材は、上記鋼板を溶接した後、ひずみ除去のための応力除去焼なまし、即ちPWHTが施されて得られる。上記ひずみ除去のためにPWHTが長時間行われるが、PWHTが長時間施された鋼部材は、低温靭性等が低下するといった問題がある。 In order to increase the strength, the steel sheet is subjected to normalization and quenching. However, when the plate thickness of the above steel plate is thick, there is a problem that it is difficult to obtain high strength because the cooling rate of the inside of the steel plate during normalizing or quenching, especially the central part of the plate thickness, is small. Further, the steel member such as the pressure vessel is obtained by welding the above steel plates and then performing stress relief annealing for strain relief, that is, PWHT. Although PWHT is carried out for a long time to remove the strain, the steel member subjected to the PWHT for a long time has a problem that the low temperature toughness and the like are deteriorated.
また、高靭性を確保する方法として、合金元素量を高めることが挙げられる。上記圧力容器等の鋼部材には、合金元素としてCrおよびMoを含むCr−Mo鋼が用いられる。上記Cr−Mo鋼として、例えば2.25Cr−1.0Mo鋼を用いた場合には、靭性の確保が難しい、厚鋼板の板厚中央部でも良好な靭性が得られることが知られている。しかし近年は、省資源化やコストダウンの志向が高まっている。よって、上記2.25Cr−1.0Mo鋼よりも合金元素量を抑えたCr−Mo鋼を用いることを前提に、板厚中央部の強度と靭性に優れた鋼部材を実現することが強く求められている。 As a method of ensuring high toughness, increasing the amount of alloying elements can be mentioned. Cr-Mo steel containing Cr and Mo as alloy elements is used for steel members such as the pressure vessel. It is known that, when 2.25Cr-1.0Mo steel, for example, is used as the Cr-Mo steel, it is difficult to secure the toughness, and good toughness can be obtained even in the central portion of the plate thickness of the thick steel plate. However, in recent years, there has been an increasing tendency to save resources and reduce costs. Therefore, it is strongly demanded to realize a steel member having excellent strength and toughness in the central portion of the plate thickness on the premise that Cr-Mo steel having a smaller amount of alloying elements than the 2.25Cr-1.0Mo steel is used. Has been.
上記課題に対し、合金元素量を抑えつつ化学成分を適正に調整することによって、高強度や高靭性を達成する技術が提案されている。例えば特許文献1および2には、靭性確保の難しい1.25Cr−0.5Moレベルの成分組成の鋼を対象に、低温靭性を改善する技術が示されている。 With respect to the above problems, a technique has been proposed in which high strength and high toughness are achieved by appropriately adjusting chemical components while suppressing the amount of alloying elements. For example, Patent Documents 1 and 2 disclose a technique for improving low temperature toughness for a steel having a compositional composition of 1.25Cr-0.5Mo level where it is difficult to secure toughness.
特許文献1には、NbおよびCaを添加することで、焼入れ性を確保し、かつSR(Stress Relief、応力除去焼鈍)時の特性低下の抑制を図った技術が示されている。しかしこの技術を、造塊法での鋳造が主となる厚めの鋼板に適用すると、前記Caが粗大な介在物を形成し、靭性に悪影響を及ぼす懸念がある。よって、板厚が厚めの鋼部材の板厚中央部の靭性を、安定して確保することは難しいと思われる。 Patent Document 1 discloses a technique in which by adding Nb and Ca, the hardenability is secured and the characteristic deterioration at the time of SR (Stress Relief, stress relief annealing) is suppressed. However, if this technique is applied to a thick steel plate that is mainly cast by the ingot-making method, the Ca forms coarse inclusions, which may adversely affect the toughness. Therefore, it seems difficult to stably secure the toughness in the central part of the plate thickness of a steel member having a large plate thickness.
また特許文献2には、製造工程において、焼入れ前に制御圧延、または、制御圧延+加速冷却を施すことにより、オーステナイト粒径を微細化し、低温靭性を確保した技術が示されている。しかしこの技術における上記制御圧延は、圧延ラインの生産性の低下を招く場合があるため、実用的とは言い難い。 Further, Patent Document 2 discloses a technique in which austenite grain size is refined and low temperature toughness is ensured by performing controlled rolling or controlled rolling+accelerated cooling before quenching in a manufacturing process. However, the above-described controlled rolling in this technique may cause a decrease in productivity of the rolling line, and is therefore not practical.
本発明は上記の様な事情に着目してなされたものであって、その目的は、鋼部材の製造工程において、溶接後のPWHTを長時間、特には高温長時間とした場合にも、鋼材内部が高強度かつ高い低温靭性を示す鋼部材と、該鋼部材の製造に有用な鋼板、およびこれらの製造方法を確立することにある。上記「鋼材内部」は、特には「板厚中央部」を意味する。以下同じである。 The present invention has been made by paying attention to the above circumstances, and an object thereof is to provide a steel material even when the PWHT after welding is carried out for a long time, particularly at a high temperature and a long time in the manufacturing process of the steel member. It is to establish a steel member having high strength and high low temperature toughness inside, a steel sheet useful for manufacturing the steel member, and a manufacturing method thereof. The “inside of steel material” means especially “a central portion of plate thickness”. The same applies hereinafter.
上記課題を解決し得た本発明の鋼部材は、
C:0.110%(質量%の意味。化学成分について以下同じ)以上0.15%以下、
Si:0.50%以上0.80%以下、
Mn:0.40%以上0.65%以下、
P:0%超0.0070%以下、
S:0%超0.0070%以下、
Al:0.030%以上0.080%以下、
Cu:0.05%以上0.20%以下、
Ni:0.05%以上0.30%以下、
Cr:1.05%以上1.50%以下、
Mo:0.45%以上0.65%以下、
N:0.0030%以上0.0070%以下、
B:0.0003%以上0.0010%以下、および
V:0%以上0.030%以下
を満たし、
Nbが0.005%以下、Tiが0.001%以下、かつCa、Mg、REMおよびZrの合計が0.0010%以下に抑えられ、残部が鉄および不可避不純物であり、
板厚が100mm以下であって、
板厚中央部における組織が、下記(a)、(b)の全てを満たし、かつ−38℃におけるシャルピー吸収エネルギーが100J以上であるところに特徴を有する。
(a)組織が焼戻ベイナイトと焼戻マルテンサイトの少なくとも一方である。
(b)隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径をD、粒界炭化物の最大径をdとしたとき、D/dで表わされる値が54以下である。
The steel member of the present invention that can solve the above problems,
C: 0.110% (meaning mass%; the same applies to chemical components) 0.15% or less,
Si: 0.50% or more and 0.80% or less,
Mn: 0.40% or more and 0.65% or less,
P: more than 0% and 0.0070% or less,
S: more than 0% and 0.0070% or less,
Al: 0.030% or more and 0.080% or less,
Cu: 0.05% or more and 0.20% or less,
Ni: 0.05% or more and 0.30% or less,
Cr: 1.05% or more and 1.50% or less,
Mo: 0.45% or more and 0.65% or less,
N: 0.0030% or more and 0.0070% or less,
B: 0.0003% or more and 0.0010% or less, and V: 0% or more and 0.030% or less,
Nb is 0.005% or less, Ti is 0.001% or less, and the total amount of Ca, Mg, REM and Zr is suppressed to 0.0010% or less, and the balance is iron and inevitable impurities,
The plate thickness is 100 mm or less,
It is characterized in that the structure in the central part of the plate thickness satisfies all of the following (a) and (b) and the Charpy absorbed energy at -38°C is 100 J or more.
(A) The structure is at least one of tempered bainite and tempered martensite.
(B) When the average equivalent circle diameter of crystal grains surrounded by large-angle grain boundaries in which the orientation difference between two adjacent crystals is 15° or more is D and the maximum diameter of grain boundary carbides is d, it is expressed as D/d. The value to be displayed is 54 or less.
また上記課題を解決し得た本発明の鋼板は、上記鋼部材の製造に用いる鋼板であって、
C:0.110%以上0.15%以下、
Si:0.50%以上0.80%以下、
Mn:0.40%以上0.65%以下、
P:0%超0.0070%以下、
S:0%超0.0070%以下、
Al:0.030%以上0.080%以下、
Cu:0.05%以上0.20%以下、
Ni:0.05%以上0.30%以下、
Cr:1.05%以上1.50%以下、
Mo:0.45%以上0.65%以下、
N:0.0030%以上0.0070%以下、
B:0.0003%以上0.0010%以下、および
V:0%以上0.030%以下
を満たし、
Nbが0.005%以下、Tiが0.001%以下、かつCa、Mg、REM、およびZrの合計が0.0010%以下に抑えられ、残部が鉄および不可避不純物であり、かつ板厚が100mm以下であるところに特徴を有する。
Further, the steel sheet of the present invention that has solved the above problems is a steel sheet used for manufacturing the steel member,
C: 0.110% or more and 0.15% or less,
Si: 0.50% or more and 0.80% or less,
Mn: 0.40% or more and 0.65% or less,
P: more than 0% and 0.0070% or less,
S: more than 0% and 0.0070% or less,
Al: 0.030% or more and 0.080% or less,
Cu: 0.05% or more and 0.20% or less,
Ni: 0.05% or more and 0.30% or less,
Cr: 1.05% or more and 1.50% or less,
Mo: 0.45% or more and 0.65% or less,
N: 0.0030% or more and 0.0070% or less,
B: 0.0003% or more and 0.0010% or less, and V: 0% or more and 0.030% or less,
Nb is 0.005% or less, Ti is 0.001% or less, the total of Ca, Mg, REM, and Zr is suppressed to 0.0010% or less, the balance is iron and inevitable impurities, and the plate thickness is It is characterized in that it is 100 mm or less.
更に、前記課題を解決し得た鋼板の製造方法は、前記成分組成を満たす鋼片を熱間圧延後、焼入れを、加熱温度:910℃以上940℃以下、かつ該加熱温度での保持時間:25分以上60分以下の条件で行い、この焼入れ後に焼戻しを、加熱温度:620℃以上Ac1点以下、かつ下記式(1)で表されるPT値が19.2以上20.6以下となる加熱温度および加熱時間で行うところに特徴を有する。
PT値=TT×(20+logtT)×10-3 …(1)
式(1)中、TTは焼戻しの加熱温度(K)、tTは焼戻しの加熱時間(hr)を示す。
Further, in the method for manufacturing a steel sheet that has solved the above-mentioned problems, after hot rolling a steel slab satisfying the above-mentioned composition, quenching is performed at a heating temperature of 910°C or higher and 940°C or lower, and a holding time at the heating temperature: The heating is performed at a temperature of 620° C. or higher and Ac 1 point or lower, and a P T value represented by the following formula (1) is 19.2 or more and 20.6 or less. It is characterized in that it is performed at a heating temperature and a heating time.
P T value=T T ×(20+logt T )×10 −3 (1)
In the formula (1), T T represents a heating temperature for tempering (K), and t T represents a heating time for tempering (hr).
本発明には、前記鋼部材の製造方法も含まれる。該鋼部材の製造方法は、前記鋼板を用いて溶接し、更に溶接後熱処理を、下記式(2)で表されるPPWHT値が20以上となる加熱温度および加熱時間で行うところに特徴を有する。
PPWHT値=TPWHT×(20+logtPWHT)×10-3 …(2)
式(2)中、TPWHTは溶接後熱処理の加熱温度(K)、tPWHTは溶接後熱処理の加熱時間(hr)を示す。
The present invention also includes a method for manufacturing the steel member. The method for producing the steel member is characterized in that the steel sheet is welded, and post-weld heat treatment is performed at a heating temperature and a heating time at which a P PWHT value represented by the following formula (2) is 20 or more. Have.
P PWHT value=T PWHT ×(20+logt PWHT )×10 −3 (2)
In the formula (2), T PWHT represents the heating temperature (K) of the heat treatment after welding, and t PWHT represents the heating time (hr) of the heat treatment after welding.
本発明の鋼板を鋼部材の製造に用いれば、該鋼部材の製造工程中のPWHTを長時間、特には高温長時間とした場合にも、鋼材内部が高強度かつ靭性の十分に優れた鋼部材が得られる。その結果、高強度かつ高靭性を示す中・高温圧力容器等を提供することができる。 When the steel sheet of the present invention is used for manufacturing a steel member, even if the PWHT during the manufacturing process of the steel member is set for a long time, especially at a high temperature for a long time, the steel having high strength and sufficiently excellent toughness inside the steel material The member is obtained. As a result, it is possible to provide a medium/high temperature pressure vessel having high strength and high toughness.
更に、本発明の鋼部材は、合金元素量が抑えられているため、省資源化かつコストダウンに寄与する。 Further, the steel member of the present invention has a reduced amount of alloying elements, which contributes to resource saving and cost reduction.
本発明者らは、合金元素量が、前記2.25Cr−1.0Mo鋼よりも抑えられたCr−Mo鋼からなる鋼板を用いることを前提に、該鋼板に対し、特に長時間のPWHTを施して鋼部材を製造した場合であっても、該鋼部材として板厚中央部の低温靭性と強度に優れたものを得るべく、鋭意研究を重ねた。 The present inventors presuppose that a steel plate made of Cr-Mo steel in which the amount of alloying elements is suppressed more than that of the 2.25Cr-1.0Mo steel is used, and PWHT for a particularly long time is performed on the steel plate. Even when the steel member was manufactured by applying the steel member, intensive research was conducted in order to obtain a steel member having excellent low temperature toughness and strength in the central portion of the plate thickness.
その結果、まず板厚中央部が高靭性の鋼部材を得るには、特に、
・微細な組織とし、かつ粗大化しやすく破壊の起点となりやすい粒界炭化物の微細化を図る。詳細には、(a)焼戻ベイナイトと焼戻マルテンサイトの少なくとも一方とすると共に、(b)隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径(以下、単に「大角粒界サイズ」ということがある)をD、粒界炭化物の最大径をdとしたとき、D/dで表わされる値が54以下とする;および
・焼戻し脆化感受性の抑制を図る、詳細には、後述する成分組成を満たすようにする;
ことが有効であることを見出した。上記「焼戻し脆化感受性の抑制」を、以下「焼戻し脆化の抑制」、「粒界割れの抑制」ともいう。
As a result, first, in order to obtain a steel member having a high toughness in the central part of the plate thickness
-A fine structure is used, and the grain boundary carbides that tend to become coarse and easily become the starting point of fracture are refined. Specifically, (a) at least one of tempered bainite and tempered martensite, and (b) the average circle of crystal grains surrounded by large-angle grain boundaries in which the orientation difference between two adjacent crystals is 15° or more. When the equivalent diameter (hereinafter sometimes simply referred to as "large-angle grain boundary size") is D and the maximum diameter of grain boundary carbide is d, the value represented by D/d is 54 or less; and temper embrittlement To suppress sensitivity, in particular, to satisfy the component composition described later;
Have found that is effective. The above "suppression of temper embrittlement susceptibility" is also referred to as "suppression of temper embrittlement" and "suppression of grain boundary cracking".
以下では、本発明の鋼部材の、板厚中央部のミクロ組織に関する上記(a)および(b)についてまず説明する。 Below, the said (a) and (b) regarding the microstructure of the plate|board thickness center part of the steel member of this invention are demonstrated first.
尚、以下の説明では、「板厚中央部の組織」を、単に「組織」という。また、下記に示す特性、即ち、強度、低温靭性は、鋼部材、即ち、鋼板に対して溶接およびPWHTを施した後の、少なくとも板厚中央部の各特性をいうものとする。 In the following description, the "structure in the central part of the plate thickness" is simply referred to as "structure". Further, the properties shown below, that is, strength and low temperature toughness, refer to each property of at least the central portion of the plate thickness after welding and PWHT are performed on a steel member, that is, a steel plate.
(a)組織が焼戻ベイナイトと焼戻マルテンサイトの少なくとも一方である。
上記焼戻ベイナイトや焼戻マルテンサイトは、微細な組織であり、特に板厚中央部の強度および靭性を確保するのに有効な組織である。本発明の鋼部材は、組織が焼戻ベイナイトと焼戻マルテンサイトの少なくとも一方である。その他の不可避的に含まれうる組織として、ポリゴナルフェライト、残留オーステナイト、パーライト等が挙げられるが、これらの組織は合計で5面積%以下に抑えられ、最も好ましくはこれらの組織が0面積%である。特に前記ポリゴナルフェライトが存在する場合、結晶粒サイズの粗大な上部ベイナイト組織が主体となり、良好な靭性を確保することができない。
(A) The structure is at least one of tempered bainite and tempered martensite.
The tempered bainite and the tempered martensite have a fine structure, and are structures particularly effective for ensuring the strength and toughness of the central portion of the plate thickness. The structure of the steel member of the present invention is at least one of tempered bainite and tempered martensite. Other structures that can be inevitably included include polygonal ferrite, retained austenite, and pearlite, but these structures can be suppressed to 5 area% or less in total, and most preferably these structures are 0 area%. is there. In particular, when the polygonal ferrite is present, the coarse upper bainite structure having a crystal grain size is the main constituent, and good toughness cannot be secured.
(b)隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径をD、粒界炭化物の最大径をdとしたとき、D/dで表わされる値が54以下である。 (B) When the average equivalent circle diameter of crystal grains surrounded by large-angle grain boundaries in which the orientation difference between two adjacent crystals is 15° or more is D and the maximum diameter of grain boundary carbides is d, it is expressed as D/d. The value to be displayed is 54 or less.
板厚中央部の組織を、上述の通り、焼戻ベイナイトと焼戻マルテンサイトの少なくとも一方とすることで、組織の微細化を図ることができるが、本発明では、組織の確実な微細化により高い靭性を得るべく、上記(b)を規定する。 The structure of the central portion of the plate thickness, as described above, by at least one of tempered bainite and tempered martensite, it is possible to refine the structure, in the present invention, by reliable refinement of the structure In order to obtain high toughness, the above (b) is specified.
焼戻ベイナイトと焼戻マルテンサイトの組織の場合、一般的には、隣接する2つの結晶の方位差(結晶方位差)が15°以上の、いわゆる大角粒界は、隣接する2つの結晶方位差が大きいため、脆性破壊の進展が湾曲され、脆性破壊の破面単位が小さくなり、靭性向上に寄与する。一方、本発明の鋼部材は、上述の通り、PWHT、特には長時間のPWHT、更には高温長時間のPWHTを受けたものである。鋼部材を構成するCr−Mo鋼は、PWHTを受けると、一般的にM23C6の粒界炭化物が生成する。このPWHTの条件が高温、長時間といった厳しい条件になると、上記粒界炭化物は粗大化して破壊の起点となりやすく、靭性劣化を招く。 In the case of structures of tempered bainite and tempered martensite, generally, a so-called large-angle grain boundary in which the orientation difference (crystal orientation difference) between two adjacent crystals is 15° or more is a difference between two adjacent crystal orientations. Is large, the progress of brittle fracture is curved, the fracture surface unit of brittle fracture becomes small, and it contributes to the improvement of toughness. On the other hand, the steel member of the present invention has undergone PWHT, in particular, PWHT for a long time, and further PWHT for a long time at high temperature, as described above. When Cr-Mo steel constituting a steel member is subjected to PWHT, M 23 C 6 grain boundary carbides are generally formed. When the PWHT conditions are severe such as high temperature and long time, the grain boundary carbides become coarse and easily become a starting point of fracture, resulting in deterioration of toughness.
本発明では、これら大角粒界サイズの平均円相当径Dと上記粒界炭化物のうちの最大径dの関係について、上記(b)の通りD/dで表わされる値が54以下を満たせば、PWHT後であっても十分に優れた靭性を確保できることを見出した。上記D/dは、好ましくは50以下、より好ましくは48以下である。尚、本発明で規定する成分組成や製造条件等を考慮すると、上記D/dの下限値は12程度となる。 In the present invention, regarding the relationship between the average circle equivalent diameter D of these large-angle grain boundary sizes and the maximum diameter d of the grain boundary carbides, if the value represented by D/d as described above in (b) satisfies 54 or less, It has been found that a sufficiently excellent toughness can be secured even after PWHT. The D/d is preferably 50 or less, more preferably 48 or less. The lower limit of D/d is about 12 in consideration of the component composition and manufacturing conditions specified in the present invention.
本発明では、上記D/dが54以下を満たせばよく、大角粒界の平均円相当径Dと上記粒界炭化物の最大径dの個々の値については特に限定されない。大角粒界サイズの平均円相当径Dは、例えば45μm以下、更には35μm以下、更には30μm以下、更には25μm以下、更には15μm以下とすることができる。大角粒界サイズの下限は、製造上、おおよそ10μm程度となる。また、上記粒界炭化物の最大径dは、例えば0.8μm以下とすることができる。該粒界炭化物の最大径は、更に0.70μm以下、更に0.60μm以下とすることができる。尚、上記粒界炭化物の最大径の下限は、本発明で規定の成分組成および製造条件の範囲内において、おおよそ0.20μm程度である。 In the present invention, it suffices that D/d be 54 or less, and the individual values of the average circle equivalent diameter D of the large angle grain boundary and the maximum diameter d of the grain boundary carbide are not particularly limited. The average circle equivalent diameter D of the large-angle grain boundary size can be, for example, 45 μm or less, further 35 μm or less, further 30 μm or less, further 25 μm or less, further 15 μm or less. The lower limit of the large-angle grain boundary size is about 10 μm in manufacturing. Further, the maximum diameter d of the grain boundary carbide can be set to, for example, 0.8 μm or less. The maximum diameter of the grain boundary carbide can be 0.70 μm or less, and further 0.60 μm or less. The lower limit of the maximum diameter of the grain boundary carbide is about 0.20 μm within the range of the component composition and manufacturing conditions specified in the present invention.
本発明では、板厚中央部の組織を上記の通り制御する必要があるが、その他の部位、例えば板厚表層部等の組織については特に限定されない。なお、板厚中央部より表層側の部分は、板厚中央部よりも一般的に焼入れ時の冷却速度が大きいので、板厚中央部よりも微細な組織が得られやすく、強度、靭性ともに板厚中央部よりも良くなる傾向にある。 In the present invention, it is necessary to control the structure of the central part of the plate thickness as described above, but the structure of other parts such as the surface layer part of the plate thickness is not particularly limited. In addition, since the cooling rate at the time of quenching is generally higher in the surface layer side part than the plate thickness center part, it is easy to obtain a finer structure than in the plate thickness center part, and both strength and toughness It tends to be better than the thick center part.
板厚中央部において、上記(a)および(b)の微細な組織を得るには、上記鋼部材の製造に用いる鋼板の成分組成を、特に下記の通りとする必要がある。即ち、上記平均円相当径Dの微細のために後述する量のBを含有させ、フリーB(固溶B)として存在させることによって焼入れ性を高めることが必要である。そのためには、フリーBを確保すべく、Bと結合してBNを形成しやすいNを、後述する量のAlを添加してAlNとして固定することが重要である。このAlNは、焼入れ時に旧オーステナイト(γ)粒の粗大化を抑制して、微細な組織を得るために有用である。 In order to obtain the above-mentioned fine structures (a) and (b) in the central part of the plate thickness, it is necessary that the composition of the steel sheet used for manufacturing the steel member be as follows. That is, it is necessary to improve the hardenability by including B in an amount described below and making it exist as free B (solid solution B) in order to make the average circle equivalent diameter D fine. For that purpose, in order to secure free B, it is important to fix N, which is easy to combine with B to form BN, as AlN by adding the amount of Al described later. This AlN is useful for suppressing coarsening of prior austenite (γ) grains during quenching and obtaining a fine structure.
上記の通りDの微細化のために、合金元素を添加して焼入性を向上させることが有効であるが、過剰なC、過剰なCuやNiは強度を必要以上に高めて、靭性の低下を招く。よって靭性確保の観点から、C、CuおよびNiの上限を設定する必要がある。 As described above, for the refinement of D, it is effective to add an alloying element to improve the hardenability. However, excessive C, excessive Cu and Ni increase the strength more than necessary to improve the toughness. Cause decline. Therefore, from the viewpoint of ensuring toughness, it is necessary to set the upper limits of C, Cu and Ni.
また本発明では、NbとTiの含有量を抑える。これらの元素が多く含まれると、上記範囲のD/dを達成することが困難となるからである。またこれらの元素は、必要以上に強度を高めて加工性の低下を招くからである。更に、Ca、Mg、REMおよびZrの含有量も抑える。これらの元素は介在物を増加させ、靭性の低下を招くからである。また上記粒界炭化物のサイズ制御には、上記Cの他にCrの含有量も制御が必要である。更に、焼戻し脆化感受性を抑制して靭性を確保するには、Si等の含有量の制御も必要である。 Further, in the present invention, the contents of Nb and Ti are suppressed. This is because if the content of these elements is large, it becomes difficult to achieve the D/d in the above range. Further, these elements increase the strength more than necessary, resulting in deterioration of workability. Further, the contents of Ca, Mg, REM and Zr are also suppressed. This is because these elements increase inclusions and lead to a decrease in toughness. Further, in order to control the size of the grain boundary carbides, it is necessary to control the Cr content in addition to the above C. Furthermore, in order to suppress temper embrittlement susceptibility and ensure toughness, it is also necessary to control the content of Si and the like.
更に製造条件として、後に詳述する通り、溶接に供する鋼板の製造時に、焼入れと焼戻しの条件を適正に制御することが重要である。 Further, as the manufacturing conditions, as will be described in detail later, it is important to appropriately control the conditions of quenching and tempering at the time of manufacturing the steel sheet to be used for welding.
以下ではまず、上記組織や特性の確保に必要な、鋼板および鋼部材の成分組成について説明する。 In the following, first, the component compositions of the steel plate and the steel member necessary for ensuring the above-mentioned structure and characteristics will be described.
C:0.110%以上0.15%以下
Cは、鋼板の焼入れ時に、冷却速度の小さい板厚中央部でも、焼戻ベイナイトと焼戻マルテンサイトの少なくとも一方を得ること、及び焼入れ性を増加させて平均結晶粒径Dの微細化を図り、D/dを上記範囲内とするために必要な元素である。また、粒界炭化物を確保して、十分な母材強度を得るためにも必要な元素である。これらの効果を十分発揮させるため、C量を0.110%以上とする。C量は、好ましくは0.120%以上、より好ましくは0.130%以上である。しかしC量が過剰であると、長時間のPWHT後に、粒界炭化物の粗大化を招き、靭性が劣化する。また、鋼板の溶接時に溶接割れが生じやすくなる。よってC量は0.15%以下とする。C量は、好ましくは0.145%以下である。
C: 0.110% or more and 0.15% or less When quenching a steel sheet, C obtains at least one of tempered bainite and tempered martensite and increases hardenability even in the central portion of the thickness where the cooling rate is small. This is an element necessary for making the average crystal grain size D fine and setting D/d within the above range. Further, it is an element necessary for securing grain boundary carbides and obtaining sufficient base metal strength. In order to fully exert these effects, the C content is set to 0.110% or more. The C content is preferably 0.120% or more, more preferably 0.130% or more. However, when the amount of C is excessive, after a long PWHT, the grain boundary carbides are coarsened and the toughness deteriorates. In addition, weld cracking tends to occur during welding of steel sheets. Therefore, the C content is 0.15% or less. The C content is preferably 0.145% or less.
Si:0.50%以上0.80%以下
Siは、鋼部材の母材強度、即ち、板厚中央部の強度の向上に有効な元素である。また脱酸材として用いられる元素でもある。更に、焼戻し脆化感受性を抑制して靭性確保にも有用な元素である。これらの効果を発揮させるため、Si量は0.50%以上とする。Si量は、好ましくは0.55%以上、より好ましくは0.60%以上である。しかしながら、Si量が過剰になると、焼戻し脆化感受性が高まり、靭性が劣化するので、0.80%以下とする。Si量は、好ましくは0.75%以下、より好ましくは0.70%以下である。
Si: 0.50% or more and 0.80% or less Si is an element effective for improving the base metal strength of the steel member, that is, the strength of the central portion of the plate thickness. It is also an element used as a deoxidizer. Furthermore, it is an element that is also useful for securing toughness by suppressing temper embrittlement susceptibility. In order to exert these effects, the Si content is 0.50% or more. The amount of Si is preferably 0.55% or more, more preferably 0.60% or more. However, if the Si amount becomes excessive, the temper embrittlement susceptibility increases and the toughness deteriorates, so the content is made 0.80% or less. The amount of Si is preferably 0.75% or less, more preferably 0.70% or less.
Mn:0.40%以上0.65%以下
Mnは、オーステナイトを安定化させ、変態温度を低温化させることで、焼入れ性を向上させ、微細な組織を得て、その結果、強度と靭性を確保する上で有効な元素である。こうした効果を発揮させるため、Mnは0.40%以上含有させる。Mn量は、好ましくは0.45%以上であり、より好ましくは0.46%以上である。しかしながらMnを過剰に含有させると、焼戻し脆化感受性が高まり、靭性が劣化する。よって、Mn量は、0.65%以下、好ましくは0.60%以下、より好ましくは0.55%以下、より更に好ましくは0.50%以下である。
Mn: 0.40% or more and 0.65% or less Mn stabilizes austenite and lowers the transformation temperature to improve hardenability and obtain a fine structure, resulting in strength and toughness. It is an effective element for securing. In order to exert such effects, Mn is contained by 0.40% or more. The Mn amount is preferably 0.45% or more, more preferably 0.46% or more. However, if Mn is excessively contained, temper embrittlement susceptibility increases and toughness deteriorates. Therefore, the Mn content is 0.65% or less, preferably 0.60% or less, more preferably 0.55% or less, still more preferably 0.50% or less.
P:0%超0.0070%以下
不可避不純物であるPは、母材と溶接部の靭性に悪影響を及ぼすとともに、特に鋼部材の粒界に偏析し、粒界割れを招き、靭性を劣化させる。これらの不都合を招かないように、P量は0.0070%以下に抑制する。P量は、好ましくは0.0060%以下、より好ましくは0.0050%以下である。
P: more than 0% and 0.0070% or less P, which is an unavoidable impurity, adversely affects the toughness of the base metal and the welded portion, and segregates particularly at the grain boundaries of the steel member, causing intergranular cracking and degrading the toughness. .. In order not to cause these inconveniences, the P amount is suppressed to 0.0070% or less. The P amount is preferably 0.0060% or less, more preferably 0.0050% or less.
S:0%超0.0070%以下
Sは、MnSを形成し、鋼板の溶接時に溶接割れを招きやすい元素である。よってSは、できるだけ少ない方が好ましく、S量は0.0070%以下、好ましくは0.0050%以下、より好ましくは0.0030%以下に抑える。
S: more than 0% and 0.0070% or less S is an element that forms MnS and easily causes weld cracking during welding of steel sheets. Therefore, the S content is preferably as small as possible, and the S content is suppressed to 0.0070% or less, preferably 0.0050% or less, and more preferably 0.0030% or less.
Al:0.030%以上0.080%以下
Alは、上述の通り、本発明では非常に重要な元素であり、焼入れ時にNをAlNとして固定し、フリーBによる焼入れ性確保に必要な元素である。また、AlNは、焼入れ時の旧γ粒の粗大化を抑制し、微細な組織を得るために有用である。更にAlは脱酸に必要な元素でもある。これらの効果を発揮させるため、Al量を0.030%以上とする。Al量は、好ましくは0.040%以上、より好ましくは0.045%以上、更に好ましくは0.050%以上である。一方、Al量が過剰になると、アルミナ系の粗大な介在物が形成されて靭性が低下する。よってAl量は0.080%以下とする。Al量は、好ましくは0.075%以下であり、より好ましくは0.071%以下である。
Al: 0.030% or more and 0.080% or less Al is an extremely important element in the present invention as described above, and is an element necessary for securing N as AlN at the time of quenching and ensuring hardenability by free B. is there. Further, AlN is useful for suppressing coarsening of old γ grains during quenching and obtaining a fine structure. Further, Al is also an element necessary for deoxidation. In order to exert these effects, the amount of Al is set to 0.030% or more. The Al amount is preferably 0.040% or more, more preferably 0.045% or more, still more preferably 0.050% or more. On the other hand, when the amount of Al is excessive, coarse alumina-based inclusions are formed and the toughness is reduced. Therefore, the Al amount is 0.080% or less. The amount of Al is preferably 0.075% or less, more preferably 0.071% or less.
Cu:0.05%以上0.20%以下、Ni:0.05%以上0.30%以下
CuおよびNiは、靭性を大きく損なうことなく、強度を高めるのに有効な元素である。この効果を十分に発揮させるため、Cuを0.05%以上、好ましくは0.10%以上、より好ましくは0.11%以上、かつNiを0.05%以上、好ましくは0.10%以上、より好ましくは0.15%以上、更に好ましくは0.16%以上含有させる。ただし、これらの元素の多量の添加は、前述の通り強度を必要以上に高めて、靭性の低下を招く。よって、Cu量の上限は0.20%以下、Ni量の上限は0.30%以下とする。Cu量は、より好ましくは0.18%以下、更に好ましくは0.17%以下である。またNi量は、より好ましくは0.28%以下、更に好ましくは0.26%以下である。
Cu: 0.05% or more and 0.20% or less, Ni: 0.05% or more and 0.30% or less Cu and Ni are effective elements for increasing the strength without significantly impairing the toughness. In order to sufficiently exert this effect, Cu is 0.05% or more, preferably 0.10% or more, more preferably 0.11% or more, and Ni is 0.05% or more, preferably 0.10% or more. , More preferably 0.15% or more, still more preferably 0.16% or more. However, the addition of a large amount of these elements causes the strength to be increased more than necessary and the toughness to be lowered as described above. Therefore, the upper limit of the amount of Cu is 0.20% or less and the upper limit of the amount of Ni is 0.30% or less. The amount of Cu is more preferably 0.18% or less, still more preferably 0.17% or less. The amount of Ni is more preferably 0.28% or less, still more preferably 0.26% or less.
Cr:1.05%以上1.50%以下
Crは、PWHTによる炭化物の粗大化を抑制し、鋼部材の靭性を確保するのに有効な元素である。また、中・高温域における強度の確保、更には耐食性の向上にも有効な元素である。これらの効果を発揮させるため、Crを1.05%以上含有させる。Cr量は、好ましくは1.10%以上、より好ましくは1.20%以上である。一方、Crを過剰に含有させると、焼戻し脆化感受性が高まり、PWHT後に粒界割れが生じやすく、靭性に悪影響を及ぼす。また過剰のCrは、加工性や溶接性の低下、更には製造コストの上昇を招く。よって、Cr量は1.50%以下とする。Cr量は、好ましくは1.45%以下、より好ましくは1.40%以下である。
Cr: 1.05% or more and 1.50% or less Cr is an element effective in suppressing the coarsening of carbide due to PWHT and ensuring the toughness of the steel member. In addition, it is an element that is effective for securing strength in the medium and high temperature range and for improving corrosion resistance. In order to exert these effects, Cr is contained at 1.05% or more. The Cr amount is preferably 1.10% or more, more preferably 1.20% or more. On the other hand, if Cr is contained excessively, temper embrittlement susceptibility is increased, grain boundary cracking easily occurs after PWHT, and toughness is adversely affected. Further, excessive Cr causes deterioration in workability and weldability, and further increases in manufacturing cost. Therefore, the Cr content is set to 1.50% or less. The Cr amount is preferably 1.45% or less, more preferably 1.40% or less.
Mo:0.45%以上0.65%以下
Moは、焼入れ性を高めるとともに、焼戻し脆化の抑制に有効な元素である。これらの効果を得るには、Moを0.45%以上含有させる必要がある。Mo量は、好ましくは0.50%以上であり、より好ましくは0.55%以上である。一方、Mo量が0.65%を超えても効果の向上は小さく、製造コストの上昇につながるため、Mo量の上限は0.65%以下とする。Mo量は、好ましくは0.62%以下である。
Mo: 0.45% or more and 0.65% or less Mo is an element that enhances hardenability and is effective in suppressing temper embrittlement. To obtain these effects, it is necessary to contain Mo by 0.45% or more. The amount of Mo is preferably 0.50% or more, more preferably 0.55% or more. On the other hand, even if the amount of Mo exceeds 0.65%, the improvement of the effect is small, which leads to an increase in manufacturing cost. Therefore, the upper limit of the amount of Mo is made 0.65% or less. The amount of Mo is preferably 0.62% or less.
N:0.0030%以上0.0070%以下
Nは、Alとともに本発明に重要な元素である。AlNを生成し、焼入れ時にNを固定することにより、フリーBによる焼入れ性向上効果を最大限発揮させることができる。またAlNは、焼入れ時の旧γ粒の粗大化を抑制し、微細な組織を得るために有用である。N量が0.0030%未満であると、AlNが不足し、旧γ粒が粗大になり、その結果、微細な組織が得られず靭性が劣化する。よって、N量は0.0030%以上とする。好ましくは0.0035%以上、より好ましくは0.0040%以上である。一方、N量が0.0070%を超えると、AlによるN固定効果が得られず、BNが生成してしまい、フリーBによる焼入れ性向上効果が阻害されて、組織が粗大化し、靭性が劣化する。よってN量は0.0070%以下とする。N量は、好ましくは0.0060%以下、より好ましくは0.0055%以下、更に好ましくは0.0050%以下である。
N: 0.0030% to 0.0070% N is an important element in the present invention together with Al. By generating AlN and fixing N during quenching, the hardenability improving effect of Free B can be maximized. AlN is also useful for suppressing coarsening of old γ grains during quenching and obtaining a fine structure. When the amount of N is less than 0.0030%, AlN becomes insufficient and the old γ grains become coarse, and as a result, a fine structure cannot be obtained and the toughness deteriorates. Therefore, the amount of N is 0.0030% or more. It is preferably 0.0035% or more, more preferably 0.0040% or more. On the other hand, when the amount of N exceeds 0.0070%, the N fixing effect of Al cannot be obtained and BN is generated, and the hardenability improving effect of free B is hindered, the structure becomes coarse, and the toughness deteriorates. To do. Therefore, the N content is 0.0070% or less. The N content is preferably 0.0060% or less, more preferably 0.0055% or less, still more preferably 0.0050% or less.
B:0.0003%以上0.0010%以下
Bは、上述した通り、フリーB(固溶B)として存在させることで、焼入れ性を高め、特に、焼入れ時の冷却速度が遅い板厚が厚めの鋼板の板厚中央部においても、平均結晶粒径Dを微細化することができる。その結果、上記板厚中央部においても優れた靭性を確保することができる。この様な効果を得るには、前述のAlおよびNの含有量と後述する焼入れ条件を制御することを前提としても、Bは0.0003%以上必要である。B量は、好ましくは0.0005%以上であり、より好ましくは0.0007%以上である。一方、Bを過度に含有させると、かえって焼入れ性が低下する場合や、溶接割れ等を招くことがあるため、B量の上限は0.0010%とする。B量は、好ましくは0.0009%以下であり、より好ましくは0.0008%以下である。
B: 0.0003% or more and 0.0010% or less As described above, B is present as free B (solid solution B) to enhance hardenability, and in particular, the cooling rate during quenching is slow and the plate thickness is thick. The average crystal grain size D can be refined also in the central part of the plate thickness of the steel plate. As a result, excellent toughness can be secured even in the central portion of the plate thickness. In order to obtain such an effect, B is required to be 0.0003% or more even on the premise that the above-mentioned Al and N contents and the quenching conditions described later are controlled. The amount of B is preferably 0.0005% or more, more preferably 0.0007% or more. On the other hand, if B is contained excessively, the hardenability may be rather deteriorated, or weld cracking may be caused. Therefore, the upper limit of the B content is 0.0010%. The amount of B is preferably 0.0009% or less, more preferably 0.0008% or less.
V:0%以上0.030%以下
Vは、炭化物、窒化物を形成して強度向上に寄与するとともに、焼入れ性を高めて微細な組織を得るのにも有効な元素である。これらの効果を得るため、V量を好ましくは0.003%以上含有させてもよい。V量は、より好ましくは0.005%以上である。一方、Vの過剰な添加は、コストの上昇を招くため、上限は0.030%以下とする。V量は、好ましくは0.027%以下であり、より好ましくは0.020%以下、さらに好ましくは0.010%以下である。
V: 0% or more and 0.030% or less V is an element that is effective in forming carbides and nitrides to contribute to the improvement of strength and enhancing hardenability to obtain a fine structure. In order to obtain these effects, the V content may be preferably 0.003% or more. The V amount is more preferably 0.005% or more. On the other hand, excessive addition of V causes an increase in cost, so the upper limit is made 0.030% or less. The V amount is preferably 0.027% or less, more preferably 0.020% or less, still more preferably 0.010% or less.
Nbが0.005%以下、Tiが0.001%以下、かつCa、Mg、REMおよびZrの合計が0.0010%以下
本発明では、Nbを0.005%以下、Tiを0.001%以下、かつCa、Mg、REM(Rare Earth Metal)およびZrの合計を0.0010%以下に抑える。上述の通り、NbとTiは、焼入れ時の旧γ粒を微細にし、焼入性を低下させる。その結果、大角粒界サイズが粗大、即ち、平均円相当径Dが大きくなり、D/dが規定範囲を超えてしまう。またNbとTiは、必要以上に強度を高め、加工性の低下を招く元素でもある。更にCa、Mg、REMおよびZrは、介在物を増加させ、靭性の低下を招く。以上のことから、これらの元素は極力抑えることが好ましく、いずれの元素もゼロであってもよい。本発明において前記REMは、ランタノイド元素、即ちLaからLuまでの15元素、およびスカンジウムとイットリウムを含む意味である。
Nb is 0.005% or less, Ti is 0.001% or less, and the total of Ca, Mg, REM and Zr is 0.0010% or less. In the present invention, Nb is 0.005% or less and Ti is 0.001%. Below, the sum of Ca, Mg, REM (Rare Earth Metal) and Zr is suppressed to 0.0010% or less. As described above, Nb and Ti make the old γ grains during quenching fine and reduce the hardenability. As a result, the large-angle grain boundary size is coarse, that is, the average equivalent circle diameter D becomes large, and D/d exceeds the specified range. In addition, Nb and Ti are elements that increase the strength more than necessary and cause deterioration of workability. Further, Ca, Mg, REM, and Zr increase inclusions, leading to a decrease in toughness. From the above, it is preferable to suppress these elements as much as possible, and all elements may be zero. In the present invention, the REM means a lanthanoid element, that is, 15 elements from La to Lu, and scandium and yttrium.
本発明の鋼板および鋼部材は上記化学成分を含有し、残部は鉄および不可避不純物である。 The steel sheet and steel member of the present invention contain the above chemical components, and the balance is iron and inevitable impurities.
次に、本発明の鋼板および鋼部材の製造方法について説明する。まず鋼板の製造方法から説明する。 Next, a method of manufacturing the steel sheet and the steel member of the present invention will be described. First, a method of manufacturing a steel sheet will be described.
上述した成分組成を有する鋼片を、常法により熱間圧延して鋼板を得た後、該鋼板に対し、焼入れと焼戻しを行う。鋼部材の上記(a)および(b)で規定の微細な組織を得るには、鋼板の製造工程において、下記の条件で焼入れおよび焼戻しを行う必要がある。 A steel piece having the above-described composition is hot-rolled by a conventional method to obtain a steel sheet, and then the steel sheet is quenched and tempered. In order to obtain the fine structure specified in (a) and (b) of the steel member, it is necessary to perform quenching and tempering under the following conditions in the manufacturing process of the steel sheet.
焼入れの加熱温度:910℃以上940℃以下、かつ該加熱温度での保持時間:25分以上60分以下
焼入れの加熱温度を910〜940℃、かつ加熱保持時間を25分以上とすることによって、旧γ粒をある程度成長させることができ、その結果、焼入れ性が向上し、微細な組織を得ることができる。
Quenching heating temperature: 910°C or more and 940°C or less, and holding time at the heating temperature: 25 minutes or more and 60 minutes or less By setting the quenching heating temperature to 910 to 940°C and the heating holding time to 25 minutes or more, The old γ grains can be grown to some extent, and as a result, the hardenability is improved and a fine structure can be obtained.
焼入れの加熱温度が910℃を下回ると、焼入れ時の旧γ粒が微細なままであるため、鋼板の板厚中央部の様に冷却速度の遅い部分では、微細な組織が得られず、優れた靭性を確保することができない。よって、焼入れの加熱温度は910℃以上とする。好ましくは920℃以上である。一方、加熱温度が940℃を超えると、AlNとして固定していたNが一部固溶し、Bと結合してBNとなり、フリーBによる焼入れ性向上効果が得られない。その結果、微細な組織が得られず、靭性が劣化する。よって、焼入れの加熱温度は940℃以下とする。好ましくは935℃以下である。 When the heating temperature of quenching is lower than 910°C, the old γ grains during quenching remain fine, so that a fine structure cannot be obtained in a portion with a slow cooling rate, such as the central portion of the plate thickness, which is excellent. Toughness cannot be secured. Therefore, the heating temperature for quenching is 910° C. or higher. It is preferably 920° C. or higher. On the other hand, when the heating temperature exceeds 940° C., part of N fixed as AlN is solid-solved and combined with B to form BN, and the effect of improving the hardenability by free B cannot be obtained. As a result, a fine structure cannot be obtained and the toughness deteriorates. Therefore, the heating temperature for quenching is set to 940°C or lower. It is preferably 935° C. or lower.
また、焼入れ時の加熱温度が上記範囲内であっても、該加熱温度での保持時間(加熱保持時間)が25分より短いと旧γ粒が微細なままであるため、所定量のBを含んでいても十分な焼入れ性が得られず、その結果、組織が粗大化して靭性が劣化する。よって加熱保持時間は25分以上とする。好ましくは30分以上である。加熱保持時間の上限は、生産性等の観点から60分以下であり、好ましくは55分である。 Even if the heating temperature at the time of quenching is within the above range, if the holding time at the heating temperature (heating holding time) is shorter than 25 minutes, the old γ grains remain fine. Even if it is included, sufficient hardenability cannot be obtained, and as a result, the structure becomes coarse and the toughness deteriorates. Therefore, the heating and holding time is set to 25 minutes or more. It is preferably 30 minutes or more. The upper limit of the heating and holding time is 60 minutes or less, preferably 55 minutes, from the viewpoint of productivity and the like.
尚、上記の通り焼入れ時の条件を制御して、旧γ粒径を50〜100μm程度の範囲内とすれば、微細な組織が容易に得られるため好ましい。 In addition, it is preferable to control the quenching conditions as described above so that the old γ grain size is within the range of about 50 to 100 μm because a fine structure can be easily obtained.
前記焼入れに続いて、焼戻しを620℃以上Ac1点以下の温度、かつ下記式(1)で表されるPT値が19.2以上20.6以下となる加熱温度および加熱時間で行う。
PT値=TT×(20+logtT)×10-3 …(1)
式(1)中、TTは焼戻しの加熱温度(K)、tTは焼戻しの加熱時間(hr)を示す。
Following the quenching, tempering is performed at a temperature of 620° C. or higher and an Ac 1 point or lower, and a heating temperature and a heating time at which the P T value represented by the following formula (1) is 19.2 or more and 20.6 or less.
P T value=T T ×(20+logt T )×10 −3 (1)
In the formula (1), T T represents a heating temperature for tempering (K), and t T represents a heating time for tempering (hr).
焼戻しの加熱温度(焼戻し温度):620℃以上Ac1点以下
前記焼入れでは、板厚によらず表層近傍は冷却速度が大きく、表層の硬さが硬くなりやすいため、焼入れ後、焼戻しを行うことにより鋼板の曲げ加工等の加工性を向上させることができる。よって、鋼部材の製造工程において、該鋼板の加工性を向上させる観点からは、表層の硬さを減じるために焼戻しを行うことが好ましい。焼戻しの条件としては、焼戻し温度を620℃以上Ac1点以下とすることが好ましい。焼戻し温度を620℃以上とすることによって、表層の硬さが十分低減されて、良好な加工性を確保することができる。焼戻し温度は、より好ましくは700℃以上である。一方、焼戻し温度がAc1点を超えると、組織の一部が逆変態し、その後空冷されるため、ポリゴナルフェライトが混在するようになる。その結果、所望の組織である焼戻ベイナイトと焼戻マルテンサイトの少なくとも一方が得られず、強度低下を招き、かつ逆変態部は組織が粗いため、靭性低下も招く。よって、焼戻し温度の上限はAc1点以下とすることが好ましい。前記焼戻し温度は、より好ましくは750℃以下である。尚、上記Ac1点は、後述する実施例に記載の方法で求められる。
Heating temperature for tempering (tempering temperature): 620°C or higher and Ac 1 point or lower In the above-mentioned quenching, the cooling rate is high near the surface layer regardless of the plate thickness, and the hardness of the surface layer tends to become hard. Thus, workability such as bending of the steel sheet can be improved. Therefore, in the manufacturing process of the steel member, it is preferable to perform tempering in order to reduce the hardness of the surface layer from the viewpoint of improving the workability of the steel sheet. As a condition for tempering, it is preferable to set the tempering temperature to 620° C. or higher and Ac 1 point or lower. By setting the tempering temperature to 620° C. or higher, the hardness of the surface layer is sufficiently reduced, and good workability can be secured. The tempering temperature is more preferably 700° C. or higher. On the other hand, when the tempering temperature exceeds the Ac 1 point, a part of the structure undergoes reverse transformation and is subsequently air-cooled, so that polygonal ferrite becomes mixed. As a result, at least one of tempered bainite and tempered martensite, which are the desired structures, cannot be obtained, leading to a decrease in strength, and the reverse transformation portion also has a rough structure, leading to a decrease in toughness. Therefore, the upper limit of the tempering temperature is preferably Ac 1 point or less. The tempering temperature is more preferably 750°C or lower. The Ac 1 point is determined by the method described in Examples below.
焼戻しは、更に、規定の式(1)で表されるPT値が上記範囲内となる加熱温度および加熱時間で行う。上記PT値が19.2を下回ると、硬さが高くなりすぎて加工性が低下するといった不具合が生じる。よって、上記PT値は19.2以上であり、好ましくは19.3以上、より好ましくは19.4以上である。一方、上記PT値が20.6を上回ると、炭化物の粗大化等が生じて、靭性等の特性の低下を招く。よって、上記PT値は20.6以下であり、好ましくは20.3以下、より好ましくは20.0以下である。 The tempering is further carried out at a heating temperature and a heating time such that the P T value represented by the prescribed formula (1) falls within the above range. If the P T value is less than 19.2, the hardness becomes too high and the workability deteriorates. Therefore, the P T value is 19.2 or more, preferably 19.3 or more, and more preferably 19.4 or more. On the other hand, when the P T value exceeds 20.6, coarsening of carbides occurs and the characteristics such as toughness deteriorate. Therefore, the P T value is 20.6 or less, preferably 20.3 or less, and more preferably 20.0 or less.
本発明の鋼板の板厚は、100mm以下である。板厚の下限は、6mm以上、更には10mm以上である。上記鋼板を用いて得られる鋼部材も、上記鋼板と同じ板厚である。 The plate thickness of the steel sheet of the present invention is 100 mm or less. The lower limit of the plate thickness is 6 mm or more, and further 10 mm or more. The steel member obtained by using the above steel plate also has the same plate thickness as the above steel plate.
本発明の鋼部材は、上記焼入れおよび焼戻しを行って得られた鋼板に対し、一般的に行われている方法で溶接、更には、上述した通りひずみを除去するために溶接後熱処理(PWHT)を施して得られる。 The steel member of the present invention is welded to a steel sheet obtained by carrying out the above-mentioned quenching and tempering by a generally-used method, and further, a post-weld heat treatment (PWHT) for removing strain as described above. It is obtained by applying.
本発明の鋼部材の製造方法は、上記溶接後熱処理を、下記式(2)で表されるPPWHT値が20以上となる加熱温度および加熱時間で行うところに特徴を有する。この条件は、高温長時間の厳しい条件(例えば、温度:680℃以上かつ加熱時間20時間以上の場合、PPWHT値は20.3)を示している。本発明では、この様に高温長時間の厳しい条件で熱処理を経た後であっても、靭性の十分に優れた鋼部材が得られる。上記PWHTの条件として、例えば加熱温度:600〜690℃、加熱時間:5時間〜22時間とすることが挙げられる。
PPWHT値=TPWHT×(20+logtPWHT)×10-3 …(2)
式(2)中、TPWHTは溶接後熱処理の加熱温度(K)、tPWHTは溶接後熱処理の加熱時間(hr)を示す。
The method for manufacturing a steel member of the present invention is characterized in that the post-weld heat treatment is performed at a heating temperature and a heating time at which the P PWHT value represented by the following formula (2) becomes 20 or more. This condition indicates a severe condition of high temperature and long time (for example, when the temperature is 680° C. or higher and the heating time is 20 hours or longer, the P PWHT value is 20.3). According to the present invention, a steel member having sufficiently excellent toughness can be obtained even after the heat treatment under such severe conditions of high temperature and long time. Examples of the PWHT conditions include heating temperature: 600 to 690° C. and heating time: 5 hours to 22 hours.
P PWHT value=T PWHT ×(20+logt PWHT )×10 −3 (2)
In the formula (2), T PWHT represents the heating temperature (K) of the heat treatment after welding, and t PWHT represents the heating time (hr) of the heat treatment after welding.
本発明の鋼部材は、例えば石油精製をはじめとする化学工業で用いる中・高温圧力容器等として用いることができる。 The steel member of the present invention can be used, for example, as a medium/high temperature pressure vessel used in the chemical industry including petroleum refining.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to the following Examples, and may be appropriately modified within a range compatible with the gist of the preceding and the following. Of course, it is possible to carry out, and all of them are included in the technical scope of the present invention.
表1−1および表1−2に示す成分組成を満たす鋼片に対し、常法により熱間圧延を施した後、表2に示す条件で焼入れおよび焼戻しを行い、表2に示す板厚の鋼板を得た。前記板厚は、鋼部材を模擬した試験片の板厚でもある。表2に示すAc1点は、表1−1および表1−2に示す成分組成の鋼板を用い、0.5℃/秒の昇温速度で加熱した際の膨張率変化を解析することによって求めた。尚、焼入れおよび焼戻しの加熱温度は、鋼板の板厚中心部の温度であり、熱処理炉の炉内雰囲気温度と在炉時間から差分法により計算するか、実験炉を用いた場合は同板厚のダミー材に熱電対を差し込んで実測した温度である。 Steel pieces satisfying the component compositions shown in Table 1-1 and Table 1-2 were hot-rolled by a conventional method, and then quenched and tempered under the conditions shown in Table 2 to obtain the plate thicknesses shown in Table 2. A steel plate was obtained. The plate thickness is also the plate thickness of a test piece simulating a steel member. The Ac 1 point shown in Table 2 was obtained by analyzing the expansion coefficient change when heating was performed at a temperature rising rate of 0.5° C./sec using steel sheets having the component compositions shown in Table 1-1 and Table 1-2. I asked. The heating temperature for quenching and tempering is the temperature at the center of the plate thickness of the steel sheet, and can be calculated by the difference method from the atmospheric temperature in the furnace of the heat treatment furnace and the time in the furnace, or when the experimental furnace is used, the plate thickness is the same. It is the temperature actually measured by inserting a thermocouple into the dummy material.
更に、溶接後のPWHTを模擬して、大気雰囲気の台車型電気炉にて、加熱温度:690℃で加熱保持時間:22時間の条件で熱処理を行って、鋼部材を模擬した試験片を得た。前記条件は、現状実施されている条件の中でも著しく厳しい条件であり、この場合、PPWHT値は20.6である。室温から上記加熱温度までの昇温速度と、上記加熱温度から室温までの降温速度は、いずれも55℃/hr以下とした。 Further, after simulating PWHT after welding, heat treatment was performed in a trolley-type electric furnace in the air atmosphere under the conditions of heating temperature: 690° C. and heating holding time: 22 hours to obtain a test piece simulating a steel member. It was The above-mentioned condition is a remarkably severe condition among the currently practiced conditions, and in this case, the P PWHT value is 20.6. The rate of temperature increase from room temperature to the heating temperature and the rate of temperature decrease from the heating temperature to room temperature were both 55° C./hr or less.
尚、鋼部材を製造する際、前記鋼板を溶接してからPWHTを施すが、該溶接として例えば多層溶接が実施される後、該溶接は、鋼部材(溶接熱影響部も含む)の特性(特に靭性)に悪影響を及ぼすことは少ないため、本実施例では、溶接に関する熱処理は施さずに試験片を作製した。 When manufacturing a steel member, the steel plate is welded and then PWHT is applied. After the welding, for example, multi-layer welding is performed, the welding is performed after the characteristics of the steel member (including the weld heat affected zone) ( In particular, the test piece was produced without performing the heat treatment for welding in this example because it does not adversely affect the toughness.
上記の様にして得られた試験片を用い、金属組織の評価、引張試験、およびシャルピー衝撃試験を下記の要領で実施した。また、鋼部材の製造工程で要求されうる特性である鋼板の加工性を評価するため、前記PWHT実施前の鋼板を用いて表層硬さの測定を行った。 Using the test pieces obtained as described above, evaluation of the metal structure, tensile test, and Charpy impact test were carried out in the following manner. Further, in order to evaluate the workability of a steel sheet, which is a characteristic required in the manufacturing process of steel members, the surface hardness was measured using the steel sheet before the PWHT was performed.
[金属組織の観察]
金属組織の観察は以下のようにして実施した。
(1)圧延方向に平行でかつ鋼板表面に対して垂直な、鋼板表裏面を含む板厚断面を観察できるよう上記鋼板からサンプルを採取した。
(2)湿式エメリー研磨紙(#150〜#1000)での研磨、またはそれと同等の機能を有する研磨方法(ダイヤモンドスラリー等の研磨剤を用いた研磨等)により、観察面の鏡面仕上を行った。
(3)研磨されたサンプルを、3%ナイタール溶液を用いて腐食し、結晶粒界を現出させた。
(4)t(板厚)/2部位において、現出させた組織を400倍の倍率で写真撮影した。本実施例では6cm×8cmの写真として撮影した。次に、撮影した写真にて、旧オーステナイト粒界にポリゴナルフェライトが生成しているものを判別し、黒く塗りつぶした。次に、前記写真を画像解析装置に取り込んだ。前記写真の領域は400倍の場合、150μm×200μmに相当する。画像解析装置への取り込みは、いずれの倍率の場合も、領域の合計が1mm×1mm以上となるよう取り込んだ。即ち、400倍の場合、上記写真を少なくとも35枚取り込んだ。
(5)画像解析装置において、写真毎に黒色の面積率を算出し、全ての写真の平均値をポリゴナルフェライト(F)分率とし、全体から差し引いたものを、焼戻ベイナイトと焼戻マルテンサイトの少なくとも一方(B+M)の分率とした。
[Observation of metal structure]
The observation of the metal structure was carried out as follows.
(1) A sample was taken from the above steel sheet so that a cross section of the sheet thickness including the front and back surfaces of the steel sheet, which was parallel to the rolling direction and perpendicular to the steel sheet surface, could be observed.
(2) The observation surface was mirror-finished by polishing with wet emery polishing paper (#150 to #1000) or by a polishing method having a function equivalent to that (polishing with an abrasive such as diamond slurry). ..
(3) The polished sample was corroded with a 3% nital solution to reveal grain boundaries.
(4) At the t (plate thickness)/2 site, the exposed tissue was photographed at a magnification of 400 times. In this example, a 6 cm×8 cm photograph was taken. Next, in the photograph taken, it was determined that polygonal ferrite was generated at the old austenite grain boundary, and it was painted black. Next, the photograph was taken into an image analysis device. The area of the photograph corresponds to 150 μm×200 μm at 400 times magnification. The image was taken into the image analysis device so that the total area was 1 mm×1 mm or more at any magnification. That is, at a magnification of 400, at least 35 of the above photographs were taken.
(5) In the image analysis device, the black area ratio was calculated for each photo, and the average value of all the photos was taken as the polygonal ferrite (F) fraction, which was subtracted from the whole to obtain tempered bainite and tempered martens. The fraction of at least one of the sites (B+M) was used.
尚、ここでいう焼戻ベイナイトは、上部ベイナイト、下部ベイナイト、ベイニティックフェライトなどが焼戻された組織をいうが、一般的に焼戻マルテンサイトも含め、これらの組織を選別することは難しいこと、またPWHT後は組織が十分焼き戻されていることから、ポリゴナルフェライト以外の組織を、焼戻ベイナイトと焼戻マルテンサイトの少なくとも一方(B+M)とした。尚、本実施例で使用したいずれの試験片にも、パーライト組織は含まれていないことも確認した。 The term "tempered bainite" used herein refers to a structure in which upper bainite, lower bainite, bainitic ferrite, etc. are tempered, but it is generally difficult to select these structures including tempered martensite. In addition, since the structure was sufficiently tempered after PWHT, the structure other than polygonal ferrite was defined as at least one of tempered bainite and tempered martensite (B+M). It was also confirmed that none of the test pieces used in this example contained a pearlite structure.
[EBSP法による大角粒界サイズの測定]
EBSP法を用いて、隣接する2つの結晶の方位差(結晶方位差)が15°以上の大角粒界で囲まれた結晶粒の平均円相当径(大角粒界サイズ)を求めた。その測定要領は以下の通りとした。
(1)圧延方向に平行でかつ鋼板表面に対して垂直な、鋼板表裏面を含む板厚断面を、観察できるよう上記鋼板からサンプルを採取した。
(2)湿式エメリー研磨紙(#150〜#1000)での研磨、またはそれと同等の機能を有する研磨方法(ダイヤモンドスラリー等の研磨剤を用いた研磨等)により、観察面の鏡面仕上を行った。
(3)TexSEM Laboratories社製のEBSP(Electron BackScattering Pattern)装置を使用し、板厚方向のt/2部において測定範囲:200×200μm、0.5μmピッチで、結晶方位差が15°以上の境界を結晶粒界とし、該結晶粒界で囲まれた結晶粒(大傾角粒)のサイズを測定した。この時、測定方位の信頼性を示すコンフィデンス・インデックスが0.1よりも小さい測定点は解析対象から除外した。
(4)このようにして求められる大角粒界で囲まれた結晶粒のサイズの平均値を算出して、本発明における「隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径」とした。尚、大角粒界で囲まれた結晶粒のサイズが1.0μm以下の場合は、測定ノイズと判断し、平均値計算の対象から除外した。
[Measurement of large-angle grain boundary size by EBSP method]
Using the EBSP method, the average equivalent circle diameter (large-angle grain boundary size) of crystal grains surrounded by large-angle grain boundaries in which the orientation difference (crystal orientation difference) between two adjacent crystals was 15° or more was determined. The measurement procedure is as follows.
(1) A sample was taken from the above steel plate so that a cross section of the plate thickness including the front and back surfaces of the steel plate, which was parallel to the rolling direction and perpendicular to the steel plate surface, could be observed.
(2) The observation surface was mirror-finished by polishing with wet emery polishing paper (#150 to #1000) or by a polishing method having a function equivalent to that (polishing with an abrasive such as diamond slurry). ..
(3) Using an EBSP (Electron BackScattering Pattern) device manufactured by TexSEM Laboratories, the measurement range at t/2 part in the plate thickness direction: 200×200 μm, 0.5 μm pitch, with a crystal orientation difference of 15° or more. Was used as the crystal grain boundary, and the size of the crystal grain (large tilt angle grain) surrounded by the crystal grain boundary was measured. At this time, the measurement points whose confidence index indicating the reliability of the measurement direction is smaller than 0.1 were excluded from the analysis target.
(4) The average value of the sizes of the crystal grains surrounded by the large-angle grain boundaries obtained in this way is calculated, and in the present invention, “the large-angle grain boundaries in which the orientation difference between two adjacent crystals is 15° or more is The average circle equivalent diameter of the formed crystal grains". When the size of the crystal grain surrounded by the large angle grain boundaries was 1.0 μm or less, it was determined as measurement noise and excluded from the target of average value calculation.
[粒界炭化物のサイズの測定]
粒界炭化物のサイズは下記のとおり測定した。
(1)圧延方向に平行でかつ鋼板表面に対して垂直な、鋼板表裏面を含む板厚断面を観察できるよう上記鋼板からサンプルを採取した。
(2)湿式エメリー研磨紙(#150〜#1000)での研磨、またはそれと同等の機能を有する研磨方法(ダイヤモンドスラリー等の研磨剤を用いた研磨等)により、観察面の鏡面仕上を行った。
(3)研磨されたサンプルを、3%ナイタール溶液を用いて腐食し、結晶粒界を現出させた。
(4)t(板厚をいう。以下同じ)/2部位において、現出させた組織を1000倍の倍率で写真撮影した。本実施例では6cm×8cmの写真として撮影した。次に、前記写真を画像解析装置に取り込んだ。前記写真の領域は、1000倍の場合、60μm×80μmに相当する。画像解析装置への取り込みは、領域の合計が0.4mm×0.4mm以上となるよう取り込んだ。即ち、1000倍の場合は上記写真を少なくとも35枚取り込んだ。
(5)画像解析装置において、写真毎に粒界炭化物のサイズとして短軸長さを算出し、全ての写真の粒界炭化物サイズの最大値を算出した。
[Measurement of grain boundary carbide size]
The grain boundary carbide size was measured as follows.
(1) A sample was taken from the above steel sheet so that a cross section of the sheet thickness including the front and back surfaces of the steel sheet, which was parallel to the rolling direction and perpendicular to the steel sheet surface, could be observed.
(2) The observation surface was mirror-finished by polishing with wet emery polishing paper (#150 to #1000) or by a polishing method having a function equivalent to that (polishing with an abrasive such as diamond slurry). ..
(3) The polished sample was corroded with a 3% nital solution to reveal grain boundaries.
(4) At t (which refers to the plate thickness; the same applies hereinafter)/2 site, the exposed tissue was photographed at a magnification of 1000 times. In this example, a 6 cm×8 cm photograph was taken. Next, the photograph was taken into an image analysis device. The area of the photograph corresponds to 60 μm×80 μm when the magnification is 1000 times. The image was taken into the image analyzer so that the total area was 0.4 mm×0.4 mm or more. That is, in the case of 1000 times, at least 35 of the above photographs were taken.
(5) In the image analyzer, the minor axis length was calculated as the size of the grain boundary carbide for each photograph, and the maximum value of the grain boundary carbide size of all the photographs was calculated.
[引張試験(引張特性の評価)]
t/2の部位から圧延直角方向に丸棒引張試験片を採取して、ASTM A370の要領で引張試験を行い、降伏強度および引張強度を測定した。そして、降伏強度であるYSが310MPa以上、かつ引張強度であるTSが515MPa以上の場合を、高強度であると評価した。
[Tensile test (evaluation of tensile properties)]
A round bar tensile test piece was sampled in the direction perpendicular to the rolling direction from the t/2 portion, and a tensile test was performed in the same manner as ASTM A370 to measure the yield strength and the tensile strength. Then, the case where YS which is the yield strength is 310 MPa or more and TS which is the tensile strength is 515 MPa or more was evaluated as high strength.
[シャルピー衝撃試験(衝撃特性の評価)]
t/2の部位から圧延直角方向にフルサイズのVノッチ試験片を採取して、ASTM A370の要領で試験温度−38℃にてシャルピー衝撃試験を行い、シャルピー吸収エネルギーを測定した。なお、シャルピー吸収エネルギーは3本の試験片の平均値を採用した。そして、−38℃におけるシャルピー吸収エネルギーvE-38が100J以上の場合を、靭性に優れている、即ち衝撃特性に優れていると評価した。
[Charpy impact test (evaluation of impact properties)]
A full-size V-notch test piece was sampled in the direction perpendicular to the rolling direction from the t/2 portion, and a Charpy impact test was performed at a test temperature of -38°C according to the procedure of ASTM A370 to measure the Charpy absorbed energy. The Charpy absorbed energy was the average value of three test pieces. Then, when the Charpy absorbed energy vE −38 at −38° C. was 100 J or more, it was evaluated that the toughness was excellent, that is, the impact property was excellent.
[表層硬さの測定(鋼板の加工性の評価)]
鋼板の加工性を評価するため、PWHT実施前の鋼板を用い、表面から1mm深さの位置にて、ASTM 370の要領でブリネル硬さ試験を行った。そして、HBWの平均値が200以下の場合を、加工性に優れると評価し、該HBWの平均値が200超の場合を、加工性は通常レベルと評価した。
[Measurement of surface hardness (evaluation of workability of steel sheet)]
In order to evaluate the workability of the steel sheet, a Brinell hardness test was performed according to ASTM 370 at a position 1 mm deep from the surface using the steel sheet before PWHT. Then, when the average value of HBW was 200 or less, it was evaluated as excellent in workability, and when the average value of HBW was more than 200, the workability was evaluated as normal level.
これらの結果を表2および表3に示す。尚、以下のNo.は、表2および表3の試験No.を示す。 The results are shown in Tables 2 and 3. In addition, the following No. Is the test No. of Table 2 and Table 3. Indicates.
表1−1、表1−2、表2および表3から次のことがわかる。即ち、No.1〜5、7〜9、12〜36は、本発明で規定の成分組成を満たす鋼を用い、かつ規定の条件で製造しているため、鋼板は優れた加工性を示し、かつ得られた鋼部材は、所望の組織を有し、板厚中央部において優れた強度と靭性を示した。 The following can be seen from Table 1-1, Table 1-2, Table 2 and Table 3. That is, No. Steel sheets 1 to 5, 7 to 9, and 12 to 36 were produced using the steel satisfying the prescribed composition in the present invention and under the prescribed conditions, so that the steel sheet exhibited excellent workability and was obtained. The steel member had a desired structure and exhibited excellent strength and toughness in the central portion of the plate thickness.
これに対し、上記以外の例は、成分組成・製造条件のいずれかが外れているため、鋼板の加工性を確保できないか、板厚中央部における引張特性、衝撃特性の少なくともいずれかが劣る結果となった。 On the other hand, in the examples other than the above, the result is that the workability of the steel sheet cannot be secured or at least one of the tensile properties and impact properties in the central part of the plate thickness is inferior because either the component composition or the manufacturing conditions are out Became.
即ち、No.6は、成分組成を満たしているが、焼戻し時のPT値が低すぎたため、十分に焼戻しされず、ブリネル硬さが高い、即ち加工性に劣った。一方、No.11は成分組成を満たしているが、焼戻し時のPT値が高すぎたため、炭化物が粗大化し、特性が低下した。 That is, No. Sample No. 6 satisfied the component composition, but the P T value at the time of tempering was too low, so it was not sufficiently tempered, and the Brinell hardness was high, that is, the workability was poor. On the other hand, No. Although No. 11 satisfied the component composition, the P T value at the time of tempering was too high, so that the carbides coarsened and the properties deteriorated.
No.10は、成分組成を満たしているが、焼入れの加熱時間が短すぎるため、十分に焼入れが行われず、D/dが上限を超え、靭性に劣る結果となった。 No. Although No. 10 satisfied the component composition, since the heating time for quenching was too short, quenching was not sufficiently performed, and D/d exceeded the upper limit, resulting in poor toughness.
No.37は、C量が過剰であるため、靭性が劣化すると共に、ブリネル硬さが高く加工性に劣る結果となった。 No. Since No. 37 had an excessive amount of C, the toughness was deteriorated, and the Brinell hardness was high and the workability was poor.
No.38、42および49は、Bを含んでいないため、D/dが大きくなり、靭性に劣った。またNo.48は、Bを含んでいないためD/dが大きくなり、かつP量が過剰であるため、靭性に劣った。 No. Since Nos. 38, 42 and 49 did not contain B, D/d was large and the toughness was poor. In addition, No. The sample No. 48, which did not contain B, had a large D/d and had an excessive amount of P, and thus was inferior in toughness.
No.39とNo.46は、一定以上のNbを含んでいるため、焼入れ時の旧γ粒が微細となり、十分な焼入性が得られずD/dが大きくなり、靭性に劣った。またNo.46では加工性も低下した。 No. 39 and No. 39. Since No. 46 contained a certain amount or more of Nb, the old γ grains at the time of quenching became fine, sufficient hardenability was not obtained, D/d increased, and the toughness was poor. In addition, No. In No. 46, the workability also deteriorated.
No.40および43は、C量が不足しているために十分な焼入れ性を確保できず、D/dが大きくなり、靭性に劣った。またNo.41は、C量が不足しているため、フェライトが多く生成して所望の強度を確保できず、かつD/dが大きくなり、靭性に劣った。No.44は、C量が不足しかつBを含んでいないため、十分な焼入れ性を確保できず、その結果、強度が低く、かつD/dが大きくなり靭性が低下した。No.51は、C量が不足しているために、炭化物サイズが小さくD/dが大きくなり、特に所望の靭性を確保できなかった。 No. Nos. 40 and 43 were not sufficient in hardenability due to lack of C content, D/d was large, and toughness was poor. In addition, No. In No. 41, since the amount of C was insufficient, a large amount of ferrite was generated and desired strength could not be ensured, and D/d became large, resulting in poor toughness. No. No. 44 was insufficient in the amount of C and did not contain B, so that it was not possible to secure sufficient hardenability, and as a result, the strength was low and the D/d became large and the toughness deteriorated. No. In No. 51, since the amount of C was insufficient, the carbide size was small and D/d was large, and it was not possible to secure particularly desired toughness.
No.45は、一定以上のTiを含んでいるため、焼入れ時の旧γ粒が微細となり、十分な焼入性が得られずD/dが大きくなり、靭性に劣った。 No. Since No. 45 contained a certain amount or more of Ti, the old γ grains during quenching became fine, sufficient hardenability was not obtained, D/d increased, and toughness was poor.
No.47は、P量が過剰であるため、靭性に劣った。 No. No. 47 was inferior in toughness because the P amount was excessive.
No.50は、B量が不足しており、焼入れ性が足りないため靭性が低下した。 No. In No. 50, the amount of B was insufficient and the hardenability was insufficient, so the toughness decreased.
No.52は、CuとNiを過剰に含んでおり、かつC量も過剰であるため、靭性が低下した。 No. No. 52 contained Cu and Ni in an excessive amount and contained an excessive amount of C, so that the toughness was deteriorated.
図1は、上記表2および表3のデータを用い、D/dと−38℃でのシャルピー吸収エネルギーとの関係を示したグラフである。このグラフから、D/dを54以下とすれば、十分に優れた靭性を確保できることがわかる。尚、図1中のNo.47および52は、上述の通り、D/dは本発明の範囲を満たしているものの、成分組成が外れたため靭性が低下した例である。 FIG. 1 is a graph showing the relationship between D/d and Charpy absorbed energy at −38° C., using the data in Tables 2 and 3 above. From this graph, it is understood that if D/d is 54 or less, sufficiently excellent toughness can be secured. No. 1 in FIG. As described above, 47 and 52 are examples in which the D/d satisfies the range of the present invention, but the toughness is lowered due to the deviation of the component composition.
Claims (4)
Si:0.50%以上0.80%以下、
Mn:0.40%以上0.65%以下、
P:0%超0.0070%以下、
S:0%超0.0070%以下、
Al:0.030%以上0.080%以下、
Cu:0.05%以上0.20%以下、
Ni:0.05%以上0.30%以下、
Cr:1.05%以上1.50%以下、
Mo:0.45%以上0.65%以下、
N:0.0030%以上0.0070%以下、
B:0.0003%以上0.0010%以下、および
V:0%以上0.030%以下
を満たし、
Nbが0.005%以下、Tiが0.001%以下、かつCa、Mg、REMおよびZrの合計が0.0010%以下に抑えられ、残部が鉄および不可避不純物であり、
板厚が100mm以下であって、
板厚中央部における組織が、下記(a)、(b)の全てを満たし、かつ−38℃におけるシャルピー吸収エネルギーが100J以上であることを特徴とする鋼部材。
(a)組織が焼戻ベイナイトと焼戻マルテンサイトの少なくとも一方である。
(b)隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径をD、粒界炭化物の最大径をdとしたとき、D/dで表わされる値が54以下である。 C: 0.110% (meaning mass%; the same applies to chemical components) 0.15% or less,
Si: 0.50% or more and 0.80% or less,
Mn: 0.40% or more and 0.65% or less,
P: more than 0% and 0.0070% or less,
S: more than 0% and 0.0070% or less,
Al: 0.030% or more and 0.080% or less,
Cu: 0.05% or more and 0.20% or less,
Ni: 0.05% or more and 0.30% or less,
Cr: 1.05% or more and 1.50% or less,
Mo: 0.45% or more and 0.65% or less,
N: 0.0030% or more and 0.0070% or less,
B: 0.0003% or more and 0.0010% or less, and V: 0% or more and 0.030% or less,
Nb is 0.005% or less, Ti is 0.001% or less, and the total amount of Ca, Mg, REM and Zr is suppressed to 0.0010% or less, and the balance is iron and inevitable impurities,
The plate thickness is 100 mm or less,
A steel member characterized in that the structure in the central portion of the plate thickness satisfies all of the following (a) and (b), and the Charpy absorbed energy at -38°C is 100 J or more.
(A) The structure is at least one of tempered bainite and tempered martensite.
(B) When the average equivalent circle diameter of crystal grains surrounded by large-angle grain boundaries in which the orientation difference between two adjacent crystals is 15° or more is D and the maximum diameter of grain boundary carbides is d, it is expressed as D/d. The value to be displayed is 54 or less.
C:0.110%以上0.15%以下、
Si:0.50%以上0.80%以下、
Mn:0.40%以上0.65%以下、
P:0%超0.0070%以下、
S:0%超0.0070%以下、
Al:0.030%以上0.080%以下、
Cu:0.05%以上0.20%以下、
Ni:0.05%以上0.30%以下、
Cr:1.05%以上1.50%以下、
Mo:0.45%以上0.65%以下、
N:0.0030%以上0.0070%以下、
B:0.0003%以上0.0010%以下、および
V:0%以上0.030%以下
を満たし、
Nbが0.005%以下、Tiが0.001%以下、かつCa、Mg、REM、およびZrの合計が0.0010%以下に抑えられ、残部が鉄および不可避不純物であり、かつ板厚が100mm以下であり、
組織が焼戻ベイナイトと焼戻マルテンサイトの少なくとも一方であり、
加熱温度:690℃で加熱保持時間:22時間の条件で熱処理を行ったときに、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径をD、粒界炭化物の最大径をdとしたとき、D/dで表わされる値が54以下となることを特徴とする鋼板。 A steel plate used for manufacturing the steel member according to claim 1,
C: 0.110% or more and 0.15% or less,
Si: 0.50% or more and 0.80% or less,
Mn: 0.40% or more and 0.65% or less,
P: more than 0% and 0.0070% or less,
S: more than 0% and 0.0070% or less,
Al: 0.030% or more and 0.080% or less,
Cu: 0.05% or more and 0.20% or less,
Ni: 0.05% or more and 0.30% or less,
Cr: 1.05% or more and 1.50% or less,
Mo: 0.45% or more and 0.65% or less,
N: 0.0030% or more and 0.0070% or less,
B: 0.0003% or more and 0.0010% or less, and V: 0% or more and 0.030% or less,
Nb is 0.005% or less, Ti is 0.001% or less, the total of Ca, Mg, REM, and Zr is suppressed to 0.0010% or less, the balance is iron and inevitable impurities, and the plate thickness is 100mm Ri der below,
The structure is at least one of tempered bainite and tempered martensite,
When the heat treatment is performed under the conditions of heating temperature: 690° C. and heating holding time: 22 hours, the average equivalent circle diameter of the crystal grains surrounded by the large angle grain boundaries in which the orientation difference between two adjacent crystals is 15° or more is determined. D, where D is the maximum diameter of the grain boundary carbides, the value represented by D/d is 54 or less .
PT値=TT×(20+logtT)×10-3 …(1)
式(1)中、TTは焼戻しの加熱温度(K)、tTは焼戻しの加熱時間(hr)を示す。 It is a manufacturing method of the steel plate of Claim 2, Comprising: The steel piece which satisfy|fills the component composition of Claim 2 is hot-rolled, Then, quenching is carried out at heating temperature: 910 degreeC or more and 940 degreeC or less, and this heating temperature. Holding time: 25 minutes or more and 55 minutes or less, tempering after the quenching, heating temperature: 620° C. or more, Ac 1 point or less, and a P T value represented by the following formula (1) of 19.2 or more A method for producing a steel sheet, which is performed at a heating temperature and a heating time of 20.6 or less.
P T value=T T ×(20+logt T )×10 −3 (1)
In the formula (1), T T represents a heating temperature for tempering (K), and t T represents a heating time for tempering (hr).
PPWHT値=TPWHT×(20+logtPWHT)×10-3 …(2)
式(2)中、TPWHTは溶接後熱処理の加熱温度(K)、tPWHTは溶接後熱処理の加熱時間(hr)を示す。 It is a manufacturing method of the steel member of Claim 1, Comprising: Welding using the steel plate of Claim 2, and also post-weld heat processing makes P PWHT value represented by following formula (2) 20 or more. The method for manufacturing a steel member is characterized in that the heating is performed at different heating temperatures and heating times.
P PWHT value=T PWHT ×(20+logt PWHT )×10 −3 (2)
In the formula (2), T PWHT represents the heating temperature (K) of the heat treatment after welding, and t PWHT represents the heating time (hr) of the heat treatment after welding.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015218435A JP6735082B2 (en) | 2015-11-06 | 2015-11-06 | Steel member, steel plate, and manufacturing method thereof |
CN201680062919.0A CN108350539B (en) | 2015-11-06 | 2016-10-31 | Steel member, steel plate, and method for manufacturing same |
PCT/JP2016/082223 WO2017077967A1 (en) | 2015-11-06 | 2016-10-31 | Steel member and steel plate, and production processes therefor |
KR1020187015414A KR102106766B1 (en) | 2015-11-06 | 2016-10-31 | Steel members and steel plates, and methods for manufacturing them |
EP16862027.6A EP3372702B1 (en) | 2015-11-06 | 2016-10-31 | Steel member and steel plate and manufacturing method for them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015218435A JP6735082B2 (en) | 2015-11-06 | 2015-11-06 | Steel member, steel plate, and manufacturing method thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020038032A Division JP2020090728A (en) | 2020-03-05 | 2020-03-05 | Steel member and steel sheet and manufacturing method for them |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017088938A JP2017088938A (en) | 2017-05-25 |
JP6735082B2 true JP6735082B2 (en) | 2020-08-05 |
Family
ID=58663102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015218435A Active JP6735082B2 (en) | 2015-11-06 | 2015-11-06 | Steel member, steel plate, and manufacturing method thereof |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3372702B1 (en) |
JP (1) | JP6735082B2 (en) |
KR (1) | KR102106766B1 (en) |
CN (1) | CN108350539B (en) |
WO (1) | WO2017077967A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101917444B1 (en) * | 2016-12-20 | 2018-11-09 | 주식회사 포스코 | Steel plate for pressure vessel having excellent resistance for high-temperature tempering and post weld heat treatment, and method for manufacturing same |
KR102326684B1 (en) * | 2019-09-17 | 2021-11-17 | 주식회사 포스코 | Chromium steel sheet having excellent creep strength and high temperature ductility and method of manufacturing the same |
CN114166605B (en) * | 2021-12-07 | 2024-03-29 | 安徽林洪重工科技有限公司 | Method for simulating and predicting core tissue performance of large-size CrMo steel member |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2743765B2 (en) | 1993-03-30 | 1998-04-22 | 住友金属工業株式会社 | Cr-Mo steel plate for pressure vessel and method for producing the same |
US5716465A (en) * | 1994-09-30 | 1998-02-10 | Nippon Steel Corporation | High-corrosion-resistant martensitic stainless steel having excellent weldability and process for producing the same |
JP3800836B2 (en) * | 1998-12-15 | 2006-07-26 | 住友金属工業株式会社 | Manufacturing method of steel with excellent strength and toughness |
JP2000345281A (en) | 1999-06-02 | 2000-12-12 | Nippon Steel Corp | Low alloy heat resistant steel excellent in weldability and low temperature toughness, and its production |
JP3785392B2 (en) * | 2002-10-23 | 2006-06-14 | 新日本製鐵株式会社 | Thick steel with excellent fatigue crack propagation characteristics and its manufacturing method |
JP5028760B2 (en) * | 2004-07-07 | 2012-09-19 | Jfeスチール株式会社 | Method for producing high-tensile steel plate and high-tensile steel plate |
CN101168826B (en) * | 2006-10-26 | 2010-04-07 | 鞍钢股份有限公司 | High-performance low-carbon bainite structural steel and production method thereof |
JP5079419B2 (en) * | 2007-08-09 | 2012-11-21 | 新日本製鐵株式会社 | Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure |
WO2011099408A1 (en) * | 2010-02-15 | 2011-08-18 | 新日本製鐵株式会社 | Production method for thick steel plate |
JP6056236B2 (en) * | 2011-10-28 | 2017-01-11 | Jfeスチール株式会社 | Method for producing high-tensile steel sheet having excellent weldability and delayed fracture resistance and tensile strength of 780 MPa or more |
JP6302161B2 (en) * | 2012-02-08 | 2018-03-28 | 新日鐵住金株式会社 | Steel sheet for hot-dip zinc bath equipment with excellent hot-zinc corrosion resistance and hot-zinc cracking resistance |
JP5870007B2 (en) * | 2012-11-09 | 2016-02-24 | 株式会社神戸製鋼所 | Steel member and manufacturing method thereof |
JP6007847B2 (en) * | 2013-03-28 | 2016-10-12 | Jfeスチール株式会社 | Wear-resistant thick steel plate having low temperature toughness and method for producing the same |
-
2015
- 2015-11-06 JP JP2015218435A patent/JP6735082B2/en active Active
-
2016
- 2016-10-31 WO PCT/JP2016/082223 patent/WO2017077967A1/en unknown
- 2016-10-31 EP EP16862027.6A patent/EP3372702B1/en active Active
- 2016-10-31 KR KR1020187015414A patent/KR102106766B1/en active IP Right Grant
- 2016-10-31 CN CN201680062919.0A patent/CN108350539B/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2017077967A1 (en) | 2017-05-11 |
JP2017088938A (en) | 2017-05-25 |
KR102106766B1 (en) | 2020-05-06 |
EP3372702B1 (en) | 2022-07-27 |
CN108350539A (en) | 2018-07-31 |
EP3372702A4 (en) | 2019-04-03 |
CN108350539B (en) | 2021-04-27 |
EP3372702A1 (en) | 2018-09-12 |
KR20180075659A (en) | 2018-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190338402A1 (en) | Method for manufacturing railway vehicle wheel | |
JP6418358B1 (en) | High Mn steel sheet and method for producing the same | |
JP5833964B2 (en) | Steel sheet excellent in bending workability, impact property and tensile property, and method for producing the same | |
JP2019131892A (en) | Abrasion resistant steel sheet, and manufacturing method of abrasion resistant steel sheet | |
JP6583374B2 (en) | Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet | |
JP6711434B2 (en) | Abrasion resistant steel plate and manufacturing method thereof | |
JP7147960B2 (en) | Steel plate and its manufacturing method | |
JP6572952B2 (en) | Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet | |
JP6583375B2 (en) | Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet | |
JP7226598B2 (en) | Abrasion-resistant steel plate and manufacturing method thereof | |
JP5870007B2 (en) | Steel member and manufacturing method thereof | |
WO2015174424A1 (en) | Seamless steel pipe for line pipe, and method for producing same | |
JP2015183279A (en) | Thick steel sheet for marine vessel, for marine structure and for hydraulic pressure steel pipe excellent in brittle crack arrest property | |
JP6737208B2 (en) | Wear-resistant steel plate | |
JP6735082B2 (en) | Steel member, steel plate, and manufacturing method thereof | |
JP7022822B2 (en) | Thick steel sheet with excellent low-temperature deformation aging impact characteristics and its manufacturing method | |
JP6177733B2 (en) | Low yield ratio high-strength steel sheet with large work-hardening ability and excellent uniform elongation and weldability, and its manufacturing method | |
JP6582590B2 (en) | Steel sheet for LPG storage tank and method for producing the same | |
JP7048379B2 (en) | High strength and high ductility steel sheet | |
JP6631702B2 (en) | High-strength steel sheet with excellent low-temperature toughness | |
JP5796369B2 (en) | Tempered low-yield-thickness steel plate with excellent sour resistance and manufacturing method thereof | |
JP7088235B2 (en) | Wear-resistant steel sheet and its manufacturing method | |
JP2019081929A (en) | Nickel-containing steel plate and method for manufacturing the same | |
JP6673320B2 (en) | Thick steel plate and method for manufacturing thick steel plate | |
JP5870525B2 (en) | High strength steel plate excellent in bending workability and low temperature toughness and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20170210 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170321 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170901 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180515 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20180711 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180910 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20181016 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200305 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20200406 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200713 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6735082 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |