JP6734178B2 - Catalyst for selectively reducing purification system inhibitor and method for producing the same - Google Patents

Catalyst for selectively reducing purification system inhibitor and method for producing the same Download PDF

Info

Publication number
JP6734178B2
JP6734178B2 JP2016212844A JP2016212844A JP6734178B2 JP 6734178 B2 JP6734178 B2 JP 6734178B2 JP 2016212844 A JP2016212844 A JP 2016212844A JP 2016212844 A JP2016212844 A JP 2016212844A JP 6734178 B2 JP6734178 B2 JP 6734178B2
Authority
JP
Japan
Prior art keywords
mass
parts
catalyst
mother liquor
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016212844A
Other languages
Japanese (ja)
Other versions
JP2018069170A (en
Inventor
成喜 奥村
成喜 奥村
佑太 中澤
佑太 中澤
大樹 元村
大樹 元村
文吾 西沢
文吾 西沢
友洋 小畑
友洋 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2016212844A priority Critical patent/JP6734178B2/en
Priority to KR1020170140873A priority patent/KR20180048353A/en
Publication of JP2018069170A publication Critical patent/JP2018069170A/en
Application granted granted Critical
Publication of JP6734178B2 publication Critical patent/JP6734178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/881Molybdenum and iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor

Description

本発明は、精製系阻害物質、特にメチルビニルケトンを選択的に低減させるための新規な触媒およびその製造方法、ならびにその触媒を使用した共役ジオレフィンの製造方法
に関するものである。本発明は特に、気相または液相中で低濃度のメチルビニルケトンを含有する共役ジオレフィン、特にブタジエンを製造する際に、炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから副生するメチルビニルケトンを選択的に低減させるための新規な触媒およびその製造方法、ならびにその触媒を使用した共役ジオレフィン、特にブタジエンの製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a novel catalyst for selectively reducing purification system inhibitors, particularly methyl vinyl ketone, a method for producing the same, and a method for producing a conjugated diolefin using the catalyst. The present invention is particularly suitable for producing a conjugated diolefin containing a low concentration of methyl vinyl ketone in a gas phase or a liquid phase, particularly butadiene, from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen. The present invention relates to a novel catalyst for selectively reducing by-produced methyl vinyl ketone, a method for producing the same, and a method for producing a conjugated diolefin, particularly butadiene, using the catalyst.

従来、合成ゴム等の原料であるブタジエンは、工業的にはナフサ留分の熱分解および抽出により製造されているが、今後市場への安定供給の悪化が懸念されることから、新たなブタジエンの製造方法が求められている。そこで、n−ブテンと分子状酸素を含む混合ガスから、触媒の存在下でn−ブテンを酸化脱水素する方法が注目されている。 Conventionally, butadiene, which is a raw material for synthetic rubber, has been industrially produced by thermal decomposition and extraction of naphtha fraction, but since there is concern that stable supply to the market will deteriorate in the future, new butadiene A manufacturing method is required. Therefore, attention has been paid to a method of oxidatively dehydrogenating n-butene from a mixed gas containing n-butene and molecular oxygen in the presence of a catalyst.

工業プラントでの経済性の観点からは、目的生成物であるブタジエンを高い収率で得られる点のみならず、より高い性能の精製系に関してまで着眼点を置くことで、長期間にわたり連続して安定的に反応を行い、最終製品として純度の高いブタジエンを得ることが求められる。しかしながら、特定の副生成物を精製系で除去または処理する場合、殊に商業プラントでは設備コストが増大し、結果としてブタジエンの製造コストも増大し、他の競合するブタジエン製造プロセスと比較して本プロセスによるブタジエンの価格競争力が低下する点が懸念される。すなわち、ブタジエン生成量の向上、且つ、共役ジオレフィンの大幅な製造コスト低下が期待できる触媒の開発が求められていた。 From the viewpoint of economic efficiency in an industrial plant, not only the objective product butadiene can be obtained in a high yield, but also by focusing on a purification system with higher performance, continuous production over a long period of time is possible. It is required to carry out a stable reaction and obtain highly pure butadiene as a final product. However, the removal or treatment of certain by-products in the refining system, especially in commercial plants, results in increased equipment costs and, as a result, increased production costs for butadiene, compared to other competing butadiene production processes. There is concern that the price competitiveness of butadiene due to the process will decline. That is, there has been a demand for the development of a catalyst that can be expected to improve the production amount of butadiene and to significantly reduce the production cost of conjugated diolefins.

ブタジエンの製造に伴う副生成物低減の研究については既に数多くの報告がなされている。
特許文献1は、共役ジエンを含む溶液を得るにあたり、該溶液中の炭素原子数1〜4の有機カルボン酸の濃度が0.45wt%以下であることを特徴とする共役ジエンの製造方法である。
Numerous reports have already been made on research on the reduction of by-products associated with the production of butadiene.
Patent Document 1 is a method for producing a conjugated diene characterized in that, when a solution containing a conjugated diene is obtained, the concentration of the organic carboxylic acid having 1 to 4 carbon atoms in the solution is 0.45 wt% or less. ..

特許文献2は、有機溶媒中の金属の濃度を特定の濃度とすることで、共役ジエンと不飽和アルデヒド類やシクロヘキセニル類との反応を抑制し、高沸点化合物を低減することができる共役ジエンの製造方法である。 Patent Document 2 is a conjugated diene capable of suppressing the reaction of a conjugated diene with unsaturated aldehydes or cyclohexenyls by reducing the concentration of a metal in an organic solvent to a specific concentration, and reducing high boiling point compounds. Is a manufacturing method.

特許文献3は、エタノールからブタジエンに一段階で変換するに際して、再利用できない副生成物を低減することができるブタジエンの製造方法である。 Patent Document 3 is a method for producing butadiene that can reduce unreusable by-products when converting ethanol to butadiene in one step.

特許文献4は、共役ジオレフィンを含む反応生成ガスを生成させる工程と、前記反応生成ガスを急冷塔に送入し、急冷剤によって洗浄する工程を含み、前記急冷剤として有機アミン水溶液を用いる共役ジオレフィンの製造方法である。 Patent Document 4 includes a step of generating a reaction product gas containing a conjugated diolefin and a step of feeding the reaction product gas to a quenching tower and washing with a quenching agent, and using an organic amine aqueous solution as the quenching agent. It is a manufacturing method of diolefin.

特許文献5は、触媒の存在下に高温で処理することにより反応生成ガス中に副生物として存在する重質分を分解せしめたのち、1,3−ブタジエンを回収することを特徴とする1,3−ブタジエンの製造方法である。 Patent Document 5 is characterized by recovering 1,3-butadiene after decomposing heavy components present as by-products in the reaction product gas by treating at high temperature in the presence of a catalyst. It is a method for producing 3-butadiene.

特許文献6は、反応器内の触媒量に対する混合ガスの流量の比が1,500〜5,000h−1であって、且つ、炭素原子数4以上のモノオレフィンの転化率が87%以下であることを特徴とする共役ジエンの製造方法である。 In Patent Document 6, the ratio of the flow rate of the mixed gas to the amount of the catalyst in the reactor is 1,500 to 5,000 h -1 , and the conversion rate of the monoolefin having 4 or more carbon atoms is 87% or less. It is a method for producing a conjugated diene characterized by the following.

特許文献7は、原料ガス中の炭素原子数4以上の直鎖型モノオレフィンに対する炭素原子数4以上の分岐型モノオレフィンのモル比が0.010以上0.100以下であることを特徴とする共役ジエンの製造方法である。 Patent Document 7 is characterized in that the molar ratio of the branched monoolefin having 4 or more carbon atoms to the linear monoolefin having 4 or more carbon atoms in the raw material gas is 0.010 or more and 0.100 or less. It is a method for producing a conjugated diene.

しかし、特許文献1〜7では、具体的に精製系においてどのような化合物が課題となるのか明記されておらず、また触媒においてどのような組成比が、共役ジオレフィン中の精製系阻害物質を低減することができるかという点に全く着眼点が置かれていない。 However, in Patent Documents 1 to 7, it is not specifically specified what kind of compound is a problem in the purification system, and what kind of composition ratio in the catalyst is the purification system inhibitor in the conjugated diolefin. There is no focus on whether it can be reduced.

ここで、非特許文献1ではメチルビニルケトンがブタジエンとディールス―アルダー反応することにより、高沸点の多管式化合物が生成する旨の記載があり、このような多管式化合物は触媒反応における反応管だけではなく後工程である精製系においても配管内および精製系での析出や目詰まり等の課題を引き起こすことが想定される。 Here, Non-Patent Document 1 describes that methylvinylketone reacts with butadiene in a Diels-Alder reaction to produce a high-boiling multitubular compound. Such a multitubular compound reacts in a catalytic reaction. It is assumed that problems such as precipitation and clogging in the piping and in the purification system will occur not only in the pipe but also in the purification system that is a post-process.

特開2012−111751号公報JP 2012-111751 A 特開2012−077076号公報JP, 2012-077706, A 特開2016−023141号公報JP, 2016-023141, A 国際特許第WO2012/157495号公報International Patent No. WO2012/157495 特開昭57−140730号公報JP, 57-140730, A 特開2011−148764号公報JP, 2011-148664, A 特開2011−132218号公報JP, 2011-132218, A

Lyle W. Castle, M. L. Gross, Organic Mass Spectrometry, 24, 637−646 (1989)Lyle W. Castle, M.A. L. Gross, Organic Mass Spectrometry, 24, 637-646 (1989).

本発明は、共役ジオレフィンの生成量に大きく影響を及ぼすことなく、炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから副生成物のメチルビニルケトンを選択的に低減するための触媒を提供することを目的とする。 The present invention is intended to selectively reduce by-product methyl vinyl ketone from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen without significantly affecting the production amount of a conjugated diolefin. The purpose is to provide a catalyst.

本発明者は前記課題を解決すべく鋭意研究の結果、特定の組成比を満たす触媒により、炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素反応により精製系阻害物質のメチルビニルケトンを選択的に低減することができるため、共役ジオレフィンを長期間にわたり連続して安定的な製造を可能とし、前記課題を解決できることを見出し、本発明を完成させるに至った。 As a result of earnest research to solve the above-mentioned problems, the present inventors have shown that a catalyst satisfying a specific composition ratio inhibits a purification system from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen by catalytic oxidative dehydrogenation reaction. Since methyl vinyl ketone as a substance can be selectively reduced, it has been found that a conjugated diolefin can be continuously and stably produced over a long period of time, and the above problems can be solved, and the present invention has been completed. ..

本発明は以下の(1)から(8)の特徴を単独または組み合わせて有するものである。即ち、本発明は、
(1)炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素反応によりメチルビニルケトンを選択的に低減するのに用いる共役ジオレフィン製造用触媒であって、
その複合金属酸化物が、下記組成式(A)を満たす複合金属酸化物触媒、
Mo12BiFeCoNi・・・・(A)
(式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、アンチモン、タングステン、鉛、亜鉛、タリウムから選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f及びgは各々モリブデン12に対する各成分の原子比を示し、0<a≦1.6、1.85≦b≦2.9、3.2≦c≦7.0、1.0≦d≦3.0、0<e<0.115、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である。)、
(2)複合金属酸化物が、下記組成式(B)を満たす、(1)の複合金属酸化物触媒、
Mo12BiFeCoNi・・・・(B)
(式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、アンチモン、タングステン、鉛、亜鉛、タリウムから選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f及びgは各々モリブデン12に対する各成分の原子比を示し、0.3≦a≦1.6、1.85≦b≦2.85、4.0≦c≦7.0、1.2≦d≦3.0、0.01≦e<0.105、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である。)、
(3)炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素反応により共役ジオレフィンを製造するための触媒であって、複合金属酸化物を担体に担持したことを特徴とする、(1)または(2)に記載の共役ジオレフィン製造用担持成形触媒、
(4)下記工程を含むことを特徴とする、(1)〜(3)のいずれか一項に記載の共役ジオレフィン製造用触媒の製造方法:
工程(A1):複合金属酸化物の各金属を含有する化合物を含む混合溶液またはスラリーを20℃以上90℃以下の条件化で調製し、該混合溶液または該スラリーを乾燥して乾燥体を得る工程、
工程(A2):工程(A1)で得られた乾燥体を予備焼成し、予備焼成粉体を得る工程、
工程(A3):工程(A2)で得られた予備焼成粉体を成形し、成形体を得る工程、
工程(A4):工程(A3)で得られた成形体を本焼成し、共役ジオレフィン製造用触媒を得る工程、
(5)予備焼成の温度が200℃以上600℃以下であり、本焼成温度が200℃以上600℃以下である、(4)に記載の共役ジオレフィン製造用成形触媒の製造方法、
(6)担体に触媒活性成分をバインダーとともにコーティングする成形工程を有し、かつ触媒活性成分の担持率を20質量%以上80質量%以下とする触媒の平均粒径が3.0mm以上10.0mm以下である(4)または(5)に記載の共役ジオレフィン製造用担持成形触媒の製造方法、
(7)(1)〜(3)のいずれか一項に記載の触媒を用いて、メチルビニルケトン収率/ブタジエン収率の比を0.006未満に低減させる共役ジオレフィンの製造方法、
(8)(1)〜(3)のいずれか一項に記載の触媒を用いて、炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスの存在下で接触酸化脱水素することを特徴とする共役ジオレフィンの製造方法、
に関する。
The present invention has the following features (1) to (8) alone or in combination. That is, the present invention is
(1) A catalyst for producing a conjugated diolefin, which is used to selectively reduce methyl vinyl ketone by catalytic oxidative dehydrogenation reaction from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen,
A composite metal oxide whose composite metal oxide satisfies the following composition formula (A):
Mo 12 Bi a Fe b Co c Ni d X e Y f Z g O h ···· (A)
(In the formula, X represents at least one element of an alkali metal selected from lithium, sodium, potassium, rubidium, and cesium, and Y represents at least one element of an alkaline earth metal selected from magnesium, calcium, strontium, and barium. Represents an element, Z represents at least one element selected from lanthanum, cerium, praseodymium, neodymium, samarium, europium, antimony, tungsten, lead, zinc, and thallium, and a, b, c, d, e, f, and g represents the atomic ratio of each component to molybdenum 12, and 0<a≦1.6, 1.85≦b≦2.9, 3.2≦c≦7.0, 1.0≦d≦3. 0, 0<e<0.115, 0≦f≦4.0, 0≦g≦2.0, and h is a numerical value satisfying the oxidation states of other elements.),
(2) The composite metal oxide according to (1), wherein the composite metal oxide satisfies the following composition formula (B):
Mo 12 Bi a Fe b Co c Ni d X e Y f Z g O h ···· (B)
(In the formula, X represents at least one element of an alkali metal selected from lithium, sodium, potassium, rubidium, and cesium, and Y represents at least one element of an alkaline earth metal selected from magnesium, calcium, strontium, and barium. Represents an element, Z represents at least one element selected from lanthanum, cerium, praseodymium, neodymium, samarium, europium, antimony, tungsten, lead, zinc, and thallium, and a, b, c, d, e, f, and g represents the atomic ratio of each component to molybdenum 12, and 0.3≦a≦1.6, 1.85≦b≦2.85, 4.0≦c≦7.0, 1.2≦d≦ 3.0, 0.01≦e<0.105, 0≦f≦4.0, 0≦g≦2.0, and h is a numerical value satisfying the oxidation states of other elements.) ,
(3) A catalyst for producing a conjugated diolefin by a catalytic oxidative dehydrogenation reaction from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen, which comprises supporting a composite metal oxide on a carrier. A supported shaped catalyst for producing a conjugated diolefin according to (1) or (2),
(4) The method for producing a conjugated diolefin production catalyst according to any one of (1) to (3), which comprises the following steps:
Step (A1): A mixed solution or slurry containing a compound containing each metal of the composite metal oxide is prepared under the conditions of 20° C. or higher and 90° C. or lower, and the mixed solution or slurry is dried to obtain a dried body. Process,
Step (A2): a step of pre-baking the dried body obtained in the step (A1) to obtain a pre-baked powder,
Step (A3): A step of molding the pre-baked powder obtained in the step (A2) to obtain a molded body,
Step (A4): a step of subjecting the molded body obtained in step (A3) to a main calcination to obtain a catalyst for producing a conjugated diolefin.
(5) The method for producing a molded catalyst for producing a conjugated diolefin according to (4), wherein the pre-calcination temperature is 200° C. or higher and 600° C. or lower, and the main calcination temperature is 200° C. or higher and 600° C. or lower.
(6) The catalyst has a molding step of coating the catalyst with the catalytically active component together with a binder, and the average particle size of the catalyst is 3.0 mm or more and 10.0 mm, and the supporting rate of the catalytically active component is 20% by mass or more and 80% by mass or less. A method for producing a supported and molded catalyst for producing a conjugated diolefin as described in (4) or (5) below,
(7) A method for producing a conjugated diolefin, which comprises reducing the ratio of methyl vinyl ketone yield/butadiene yield to less than 0.006 by using the catalyst according to any one of (1) to (3).
(8) Catalytic oxidative dehydrogenation in the presence of a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen using the catalyst according to any one of (1) to (3). A method for producing a conjugated diolefin characterized by the following:
Regarding

本発明の触媒を使用することにより、共役ジオレフィンからメチルビニルケトンを選択的に低減させることによって、精製系阻害物質の副生を抑制することができ、触媒の劣化がなく、長期間にわたり連続して安定的に酸化脱水素反応を行うことができる。すなわち、複雑な精製分離工程を無くすことにもつながり、精製プロセスの簡略化の観点からも共役ジオレフィンの大幅な製造コスト低減が期待できる。 By using the catalyst of the present invention, by selectively reducing the methyl vinyl ketone from the conjugated diolefin, it is possible to suppress the by-product of the purification system inhibitor, without deterioration of the catalyst, continuous for a long period of time. Thus, the oxidative dehydrogenation reaction can be stably performed. That is, it is possible to eliminate a complicated purification and separation step, and from the viewpoint of simplification of the purification process, a large reduction in the production cost of the conjugated diolefin can be expected.

炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素反応により共役ジオレフィンを製造する反応に使用でき、好ましくはn−ブテンと分子状酸素を含む混合ガスから接触酸化脱水素反応によりブタジエンを製造する反応に使用できる触媒およびその製造方法であり、以下その詳細について説明する。 It can be used in a reaction for producing a conjugated diolefin by a catalytic oxidative dehydrogenation reaction from a mixed gas containing a mono-olefin having 4 or more carbon atoms and molecular oxygen, and is preferably catalytically oxidized from a mixed gas containing n-butene and molecular oxygen. A catalyst that can be used in a reaction for producing butadiene by a dehydrogenation reaction and a method for producing the catalyst, and the details thereof will be described below.

本発明においてn−ブテンとは1−ブテン、トランス−2−ブテン、シス−2−ブテン、イソブチレンのうち、単一成分のガス、もしくは少なくとも一つの成分を含む混合ガスを意味するものとし、ブタジエンとはより厳密には1,3−ブタジエンを意味するものとする。 In the present invention, n-butene means 1-butene, trans-2-butene, cis-2-butene, isobutylene, a single component gas, or a mixed gas containing at least one component. More strictly, it means 1,3-butadiene.

本発明において触媒活性とは、特定の反応浴温度における、後述するn−ブテン転化率を示し、本発明において収率とは後述するブタジエン収率と同義である。 In the present invention, the catalytic activity means an n-butene conversion rate described later at a specific reaction bath temperature, and the yield in the present invention is synonymous with the butadiene yield described later.

本発明の触媒に使用する無機助剤とは、主に600℃の熱処理においても焼失しない任意の無機物による任意の形状の助剤であり、後述する本焼成工程によりそのすべてが焼失しないものとする。無機助剤は、後述する本焼成工程においても残留するため、予備焼成粉体同士を結びつける役割があり、破損にかかる負荷が触媒に生じた際にも破損を抑制する効果が生じる。本発明において無機助剤の材質としてモース硬度は特に限定されないが、たとえば任意の硫化鉱物、酸化鉱物、ハロゲン化鉱物、無機酸塩鉱物、有機鉱物等を単独または組み合わせたものをガラス転移温度以上で熱処理したもののうちモース硬度が2以上のもの(本発明のガラス)が好ましく、これら材質の原料としては無機酸塩鉱物がさらに好ましい。また無機助剤に対して、酸処理、アルカリ処理、およびシラン処理等を各々単独または組み合わせて実施することで、触媒反応に不活性となる点で好適となる。 The inorganic auxiliary agent used in the catalyst of the present invention is an auxiliary agent having an arbitrary shape mainly made of an inorganic material which is not burned even in the heat treatment at 600° C., and it is assumed that all of them are not burned by the main calcination step described later. .. Since the inorganic auxiliary agent remains in the main calcination step described later, it has a role of connecting the pre-calcined powders to each other, and has an effect of suppressing damage even when a load for damage is generated in the catalyst. Mohs hardness is not particularly limited as a material of the inorganic auxiliary agent in the present invention, but for example, any sulfide mineral, oxide mineral, halogenated mineral, inorganic acid salt mineral, organic mineral or the like alone or in combination at a glass transition temperature or higher. Among the heat-treated materials, those having a Mohs hardness of 2 or more (glass of the present invention) are preferable, and inorganic acid salt minerals are more preferable as a raw material of these materials. Further, it is preferable to carry out the acid treatment, the alkali treatment, the silane treatment and the like, singly or in combination, with respect to the inorganic auxiliary agent, since it becomes inactive in the catalytic reaction.

本発明の触媒は、式(A)で表される組成の触媒活性成分を含有する。
Mo12BiFeCoNi・・・・(A)
(式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、アンチモン、タングステン、鉛、亜鉛、タリウムから選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f及びgは各々モリブデン12に対する各成分の原子比を示し、0<a≦1.6、1.85≦b≦2.9、3.2≦c≦7.0、1.0≦d≦3.0、0<e<0.115、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である。)。
The catalyst of the present invention contains a catalytically active component having a composition represented by formula (A).
Mo 12 Bi a Fe b Co c Ni d X e Y f Z g O h ···· (A)
(In the formula, X represents at least one element of an alkali metal selected from lithium, sodium, potassium, rubidium, and cesium, and Y represents at least one element of an alkaline earth metal selected from magnesium, calcium, strontium, and barium. Represents an element, Z represents at least one element selected from lanthanum, cerium, praseodymium, neodymium, samarium, europium, antimony, tungsten, lead, zinc, and thallium, and a, b, c, d, e, f, and g represents the atomic ratio of each component to molybdenum 12, and 0<a≦1.6, 1.85≦b≦2.9, 3.2≦c≦7.0, 1.0≦d≦3. 0, 0<e<0.115, 0≦f≦4.0, 0≦g≦2.0, and h is a numerical value satisfying the oxidation states of other elements.)

本発明の触媒は、好ましくは式(B)で表される組成の触媒活性成分を含有する。
Mo12BiFeCoNi・・・・(B)
(式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、アンチモン、タングステン、鉛、亜鉛、タリウムから選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f及びgは各々モリブデン12に対する各成分の原子比を示し、0.3≦a≦1.6、1.85≦b≦2.85、4.0≦c≦7.0、1.2≦d≦3.0、0.01≦e<0.105、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である。)。
The catalyst of the present invention preferably contains a catalytically active component having a composition represented by the formula (B).
Mo 12 Bi a Fe b Co c Ni d X e Y f Z g O h ···· (B)
(In the formula, X represents at least one element of an alkali metal selected from lithium, sodium, potassium, rubidium, and cesium, and Y represents at least one element of an alkaline earth metal selected from magnesium, calcium, strontium, and barium. Represents an element, Z represents at least one element selected from lanthanum, cerium, praseodymium, neodymium, samarium, europium, antimony, tungsten, lead, zinc, and thallium, and a, b, c, d, e, f, and g represents the atomic ratio of each component to molybdenum 12, and 0.3≦a≦1.6, 1.85≦b≦2.85, 4.0≦c≦7.0, 1.2≦d≦ 3.0, 0.01≦e<0.105, 0≦f≦4.0, 0≦g≦2.0, and h is a numerical value satisfying the oxidation states of other elements.) ..

本発明の触媒は、更に好ましくは式(C)で表される組成の触媒活性成分を含有する。
Mo12BiFeCoNi・・・・(C)
(式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、アンチモン、タングステン、鉛、亜鉛、タリウムから選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f及びgは各々モリブデン12に対する各成分の原子比を示し、0.6≦a≦1.6、1.85≦b≦2.5、4.5≦c≦7.0、1.4≦d≦3.0、0.02≦e<0.105、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である。)。
The catalyst of the present invention more preferably contains a catalytically active component having a composition represented by formula (C).
Mo 12 Bi a Fe b Co c Ni d X e Y f Z g O h ···· (C)
(In the formula, X represents at least one element of an alkali metal selected from lithium, sodium, potassium, rubidium, and cesium, and Y represents at least one element of an alkaline earth metal selected from magnesium, calcium, strontium, and barium. Represents an element, Z represents at least one element selected from lanthanum, cerium, praseodymium, neodymium, samarium, europium, antimony, tungsten, lead, zinc, and thallium, and a, b, c, d, e, f, and g represents the atomic ratio of each component to molybdenum 12, and 0.6≦a≦1.6, 1.85≦b≦2.5, 4.5≦c≦7.0, 1.4≦d≦ 3.0, 0.02≦e<0.105, 0≦f≦4.0, 0≦g≦2.0, and h is a numerical value satisfying the oxidation states of other elements.) ..

本発明の触媒は、最も好ましくは式(D)で表される組成の触媒活性成分を含有する。
Mo12BiFeCoNi・・・・(D)
(式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、アンチモン、タングステン、鉛、亜鉛、タリウムから選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f及びgは各々モリブデン12に対する各成分の原子比を示し、0.7≦a≦1.6、1.85≦b≦2.5、4.95≦c≦6.95、1.6≦d≦3.0、0.02≦e<0.095、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である。)。
The catalyst of the present invention most preferably contains a catalytically active component having a composition represented by formula (D).
Mo 12 Bi a Fe b Co c Ni d X e Y f Z g O h ···· (D)
(In the formula, X represents at least one element of an alkali metal selected from lithium, sodium, potassium, rubidium, and cesium, and Y represents at least one element of an alkaline earth metal selected from magnesium, calcium, strontium, and barium. Represents an element, Z represents at least one element selected from lanthanum, cerium, praseodymium, neodymium, samarium, europium, antimony, tungsten, lead, zinc, and thallium, and a, b, c, d, e, f, and g represents the atomic ratio of each component to molybdenum 12, and 0.7≦a≦1.6, 1.85≦b≦2.5, 4.95≦c≦6.95, 1.6≦d≦ 3.0, 0.02≦e<0.095, 0≦f≦4.0, 0≦g≦2.0, and h is a numerical value satisfying the oxidation states of other elements.) ..

本発明の触媒を得るための各金属元素の原料としては特に制限はないが、各金属元素を少なくとも一種含む硝酸塩、亜硝酸塩、硫酸塩、アンモニウム塩、有機酸塩、酢酸塩、炭酸塩、次炭酸塩、塩化物、無機酸、無機酸の塩、ヘテロポリ酸、ヘテロポリ酸の塩、水酸化物、酸化物、金属、合金等、またはこれらの混合物を用いることができる。このうち好ましいのは硝酸塩原料である。 The raw material of each metal element for obtaining the catalyst of the present invention is not particularly limited, but nitrates, nitrites, sulfates, ammonium salts, organic acid salts, acetates, carbonates containing at least one metal element, Carbonates, chlorides, inorganic acids, salts of inorganic acids, heteropolyacids, salts of heteropolyacids, hydroxides, oxides, metals, alloys, etc., or mixtures thereof can be used. Of these, the nitrate raw material is preferable.

本発明の触媒の調製法としては特に制限はないが、好ましいのは触媒の活性成分を粉末として得た後、有機助剤を添加または使用することなく成形する方法であり、以下に詳細を記載する。なお、以下では各工程の順を好ましい例として記載しているが、最終的な触媒製品を得るための各工程の順番、工程数、各工程の組み合わせについて制限はないものとする。 The method for preparing the catalyst of the present invention is not particularly limited, but preferred is a method of obtaining the active component of the catalyst as a powder and thereafter molding without adding or using an organic auxiliary, which will be described in detail below. To do. In the following, the order of the steps is described as a preferred example, but there is no limitation on the order of the steps, the number of steps, and the combination of steps for obtaining the final catalyst product.

工程(A1) 調合と乾燥
触媒活性成分の原料の混合溶液またはスラリーを調製し、沈殿法、ゲル化法、共沈法、水熱合成法等の工程を経た後、乾燥噴霧法、蒸発乾固法、ドラム乾燥法、凍結乾燥法等の公知の乾燥方法を用いて、本発明の乾燥粉体を得る。この混合溶液またはスラリーは、溶媒として水、有機溶剤、またはこれらの混合溶液のいずれでも良く、触媒の活性成分の原料濃度も制限はなく、更に、この混合溶液またはスラリーの液温、雰囲気等の調合条件および乾燥条件について特に制限はないが、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明において最も好ましいのは、20℃から90℃の条件化で触媒の活性成分の原料の混合溶液またはスラリーを形成させ、これを噴霧乾燥器に導入して乾燥器出口温度が70℃から150℃、得られる乾燥粉体の平均粒径が10μmから700μmとなるよう熱風入口温度、噴霧乾燥器内部の圧力、およびスラリーの流量を調節する方法である。また、本工程の混合溶液またはスラリーの調製から前記乾燥までにおいて、後述する無機助剤または/および有機助剤を任意の量で添加することも本発明の触媒の製造方法に属するものとする。
Step (A1) Preparation and Drying Preparation of a mixed solution or slurry of raw materials of the catalytically active component, and after the steps such as precipitation method, gelation method, coprecipitation method, hydrothermal synthesis method, etc., dry spraying method, evaporation to dryness The dry powder of the present invention is obtained by using a known drying method such as a method, a drum drying method, and a freeze drying method. This mixed solution or slurry may be water, an organic solvent, or any of these mixed solutions as a solvent, and the raw material concentration of the active component of the catalyst is not limited, and further, the liquid temperature of this mixed solution or slurry, atmosphere, etc. There are no particular restrictions on the blending conditions and drying conditions, but an appropriate range should be selected in consideration of the final catalyst performance, mechanical strength, moldability, production efficiency, and the like. Of these, the most preferable in the present invention is to form a mixed solution or slurry of raw materials of the active ingredient of the catalyst under the condition of 20° C. to 90° C., and introduce this into a spray drier so that the drier outlet temperature is 70° C. To 150° C., the hot air inlet temperature, the pressure inside the spray dryer and the flow rate of the slurry are adjusted so that the average particle diameter of the obtained dry powder is 10 μm to 700 μm. In addition, adding an inorganic auxiliary agent and/or an organic auxiliary agent described below in an arbitrary amount from the preparation of the mixed solution or slurry in this step to the drying is also included in the method for producing the catalyst of the present invention.

工程(A2) 予備焼成
こうして得られた乾燥粉体を200℃以上600℃以下で予備焼成し、平均粒径が10μmから100μmである予備焼成粉体を得ることができる。この予備焼成の条件に関しても、焼成時間や焼成時の雰囲気について特に制限はなく、焼成の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明において最も好ましいのは、トンネル焼成炉において300℃以上600℃以下の範囲で1時間から12時間、空気雰囲気下による方法である。また、本工程の予備焼成前または予備焼成後において、後述する無機助剤または/および有機助剤を任意の量で添加することも本発明の触媒の製造方法に属するものとする。
Step (A2) Pre-baking The dry powder thus obtained is pre-baked at 200° C. or higher and 600° C. or lower to obtain a pre-baked powder having an average particle size of 10 μm to 100 μm. With respect to the conditions of this preliminary calcination, there is no particular restriction on the calcination time or the atmosphere at the time of calcination, and the calcination method is not particularly restricted such as fluidized bed, rotary kiln, muffle furnace, tunnel calcination furnace, etc. An appropriate range should be selected in consideration of dynamic strength, moldability and production efficiency. Of these, the most preferable method in the present invention is a method in an air atmosphere at a temperature of 300° C. or higher and 600° C. or lower for 1 to 12 hours. In addition, addition of an inorganic auxiliary agent and/or an organic auxiliary agent described below in an arbitrary amount before or after the preliminary calcination in this step also belongs to the method for producing the catalyst of the present invention.

工程(A3) 成形
こうして得られた予備焼成粉体をそのまま触媒として使用することもできるが、成形して使用することもできる。成形品の形状は球状、円柱状、リング状など特に制限されないが、一連の調製で最終的に得られる触媒における機械的強度、反応器、調製の生産効率等を考慮して選択するべきである。成形方法についても特に制限はないが、以下に示す担体や有機助剤、無機助剤、バインダー等を予備焼成粉体に添加して円柱状、リング状に成形する際には打錠成形機や押出成形機などを用い、球状に成形する際には造粒機などを用いて成形品を得る。
Step (A3) Molding The preliminarily calcined powder thus obtained can be used as a catalyst as it is, or can be molded and used. The shape of the molded product is not particularly limited, such as spherical, cylindrical, and ring-shaped, but it should be selected in consideration of the mechanical strength of the catalyst finally obtained in a series of preparations, the reactor, the production efficiency of the preparation, and the like. .. There is also no particular limitation on the molding method, but the following carriers, organic auxiliaries, inorganic auxiliaries, and binders are added to the pre-baked powder to form a columnar or ring-shaped tablet molding machine or A molded product is obtained by using a granulating machine or the like when forming into a spherical shape using an extrusion molding machine or the like.

担体の材質としてはアルミナ、シリカ、チタニア、ジルコニア、ニオビア、シリカアルミナ、炭化ケイ素、炭化物、およびこれらの混合物など公知の物を使用でき、さらにその粒径、吸水率、機械的強度、各結晶相の結晶化度や混合割合なども特に制限はなく、最終的な触媒の性能、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。担体と予備焼成粉体の混合の割合は、各原料の仕込み質量により、下記式より担持率として算出される。
担持率(質量%)=(成形に使用した予備焼成粉体の質量)/{(成形に使用した予備焼成粉体の質量)+(成形に使用した担体の質量)}×100
As the material of the carrier, known materials such as alumina, silica, titania, zirconia, niobia, silica-alumina, silicon carbide, carbide, and a mixture thereof can be used, and further, their particle size, water absorption rate, mechanical strength, each crystal phase There is no particular limitation on the crystallinity or the mixing ratio of the above, and an appropriate range should be selected in consideration of the final catalyst performance, moldability, production efficiency, and the like. The mixing ratio of the carrier and the preliminarily calcined powder is calculated as the loading rate from the following formula based on the charged mass of each raw material.
Carrying rate (mass %)=(mass of pre-baked powder used for molding)/{(mass of pre-baked powder used for molding)+(mass of carrier used for molding)×100

無機助剤の添加量は、予備焼成粉体の質量に対して0.1質量%から25質量%であり、0.3質量%から10質量%が好ましく、0.5質量%から5質量%が最も好ましい。また無機助剤の材質および成分組成にも特に制限はないが、たとえばEガラスのような無アルカリガラスや、シラン処理等各種化学的な不活性化処理を行ったガラスが、触媒反応に対する副生成物の生成などの悪影響を与えない点でより好ましい。また、無機助剤は、成形の前に粉砕工程を実施しても良く、粉砕の方法としては特に制限はないがたとえばボールミル、ロッドミル、SAGミル、ジェットミル、自主粉砕ミル、ハンマーミル、ペレットミル、ディスクミル、ローラーミル、高圧粉砕ロール、VSIミルなどを単独または組み合わせて実施され、この粉砕の対象は無機助剤単独でもよいが、予備焼成粉体その他成形工程に添加される触媒原料を混合したものでもよい。 The addition amount of the inorganic auxiliary is 0.1% by mass to 25% by mass, preferably 0.3% by mass to 10% by mass, and 0.5% by mass to 5% by mass, with respect to the mass of the pre-baked powder. Is most preferred. The material and composition of the inorganic auxiliary agent are also not particularly limited. For example, non-alkali glass such as E glass or glass that has undergone various chemical deactivation treatments such as silane treatment is a by-product of the catalytic reaction. It is more preferable in that it does not adversely affect the production of products. Further, the inorganic auxiliary agent may be subjected to a pulverizing step before molding, and the pulverizing method is not particularly limited, but examples thereof include a ball mill, a rod mill, a SAG mill, a jet mill, an independent pulverizing mill, a hammer mill, and a pellet mill. , A disc mill, a roller mill, a high-pressure crushing roll, a VSI mill, etc. may be used alone or in combination, and the object of this crushing may be the inorganic auxiliary agent alone, but the pre-calcined powder and other catalyst raw materials added to the molding process are mixed. You can use it.

本発明において有機助剤とは、主に200℃以上600℃以下の熱処理により焼失する有機物よりなる任意の粉状、顆粒状、繊維状、鱗片状の助剤とし、後述する本焼成工程によりその一部またはすべてが焼失するものとし、たとえばポリエチレングリコールや各種エステルなどの重合物またはポリマービーズ、高吸水性樹脂の乾燥体または任意の吸水率による吸水物、各種界面活性剤、小麦粉または精製デンプン等の各種デンプン類、および結晶性またはアモルファス状のセルロースおよびその誘導体、が挙げられる。 In the present invention, the organic auxiliary agent is any powdery, granular, fibrous, or scaly auxiliary agent composed mainly of an organic substance that is burned down by heat treatment at 200° C. or higher and 600° C. or lower, Some or all of them shall be burned down, for example, polymer or polymer beads such as polyethylene glycol or various esters, dried product of super absorbent polymer or water absorbent with arbitrary water absorption, various surfactants, flour or refined starch, etc. Of various starches, and crystalline or amorphous cellulose and its derivatives.

ここで、本発明におけるバインダーとは、その分子直径が予備焼成粉体の平均粒径に対して0.001以下の範囲である化合物群からなる単独または組み合わせにより構成される液体とし、例えば次のようなものが挙げられる。すなわち、液状の有機溶剤、有機物の分散体、水溶性有機溶剤、およびそれらと水の任意の割合での混合物であり、特に制限はないが、グリセリン等の多価アルコールの水溶液またはイオン交換水が好ましく、さらにイオン交換水が成形性の観点から最も好ましい。バインダーは水または有機物を含むため、後述する本焼成工程にてその一部またはすべてが焼失するが、一般にバインダーに使用される有機物の分子直径は予備焼成粉体の平均粒径と比較すると十分に小さい。また、このバインダーに前記触媒原料の溶液を使用することで、工程(A1)とは異なる態様で触媒の最表面に元素を導入することも可能である。 Here, the binder in the present invention is a liquid composed of a compound group having a molecular diameter of 0.001 or less with respect to the average particle diameter of the pre-baked powder, alone or in combination, and for example, Something like this. That is, a liquid organic solvent, a dispersion of an organic substance, a water-soluble organic solvent, and a mixture thereof with water at any ratio, without particular limitation, an aqueous solution of polyhydric alcohol such as glycerin or ion-exchanged water Ion-exchanged water is more preferable, and most preferable is moldability. Since the binder contains water or an organic substance, part or all of it is burned off in the main firing step described later, but the molecular diameter of the organic substance generally used for the binder is sufficiently smaller than the average particle size of the pre-fired powder. small. Further, by using a solution of the catalyst raw material for the binder, it is possible to introduce the element to the outermost surface of the catalyst in a mode different from the step (A1).

コーティングによる担持成形の方法としてバインダーの使用量は、予備焼成粉体100質量部に対して2質量部から60質量部であり、10質量部から50質量部がより好ましい。本発明の反応は酸化的脱水素であり発熱反応であるため、触媒内部の放熱のため、さらには生成した共役ジオレフィンの効率的な拡散による、コーク状物質の生成および/または滞留の抑制のため、担持成形が最も好ましい成形方法である。 The amount of the binder used as a method of carrying and molding by coating is 2 to 60 parts by mass, and more preferably 10 to 50 parts by mass, relative to 100 parts by mass of the pre-baked powder. Since the reaction of the present invention is an oxidative dehydrogenation and an exothermic reaction, suppression of generation and/or retention of coke-like substances is owing to heat release inside the catalyst and also due to efficient diffusion of the produced conjugated diolefin. Therefore, support molding is the most preferable molding method.

工程(A4) 本焼成
このようにして得られた予備焼成粉体または成形品は、反応に使用する前に200℃以上600℃以下で再度焼成(本焼成)することが好ましい。本焼成に関しても、焼成時間や焼成時の雰囲気について特に制限はなく、焼成の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明において最も好ましいのは、トンネル焼成炉において300℃以上600℃以下の温度範囲で1時間から12時間、空気雰囲気下による方法である。
Step (A4) Main calcination The pre-calcined powder or molded product thus obtained is preferably recalcined (main calcination) at 200° C. or higher and 600° C. or lower before being used for the reaction. Also regarding the main calcination, there is no particular limitation on the calcination time or atmosphere at the time of calcination, and the calcination method is not particularly limited such as fluidized bed, rotary kiln, muffle furnace, tunnel calcination furnace, etc., and the final catalyst performance, mechanical strength and An appropriate range should be selected in consideration of production efficiency. Of these, the most preferable method in the present invention is a method in an air atmosphere in a temperature range of 300° C. to 600° C. for 1 to 12 hours in a tunnel firing furnace.

次に、以下では(B)法による触媒調製方法を記載する。以下では各工程を順に記載しているが、最終的な触媒を得るための各工程の順番、工程数、各工程の組み合わせについて制限はないものとする。 Next, a method for preparing a catalyst by the method (B) will be described below. Although each step is described below in order, there is no limitation on the order of steps, the number of steps, and the combination of steps for obtaining the final catalyst.

工程(B1) 含浸
触媒の活性成分が導入された溶液またはスラリーを調製し、ここに成形担体または(A)法で得た触媒を含浸させ、成形品を得る。ここで、含浸による触媒の活性成分の担持手法はディップ法、インシピエントウェットネス法、イオン交換法、PHスイング法など特に制限はなく、前記溶液または前記スラリーの溶媒として水、有機溶剤、またはこれらの混合溶液のいずれでも良く、触媒の活性成分の原料濃度も制限はなく、更に、前記混合溶液または前記スラリーの液温、液にかかる圧力、液の周囲の雰囲気についても特に制限はないが、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。また、前記成形担体および前記(A)法で得た触媒のいずれも形状は球状、円柱状、リング状、粉末状など特に制限はなく、さらに材質、粒径、吸水率、機械的強度も特に制限はない。
Step (B1) A solution or slurry in which the active component of the impregnated catalyst is introduced is prepared and impregnated with the shaped carrier or the catalyst obtained by the method (A) to obtain a shaped article. Here, the method of supporting the active component of the catalyst by impregnation is not particularly limited such as a dip method, an incipient wetness method, an ion exchange method, a PH swing method, and water as a solvent of the solution or the slurry, an organic solvent, or Any of these mixed solutions may be used, and the raw material concentration of the active component of the catalyst is not limited, and the liquid temperature of the mixed solution or the slurry, the pressure applied to the liquid, and the atmosphere around the liquid are not particularly limited, either. The proper range should be selected in consideration of the final catalyst performance, mechanical strength, moldability and production efficiency. Further, the shape of the shaped carrier and the catalyst obtained by the method (A) are not particularly limited such as spherical, cylindrical, ring-shaped, and powdery, and the material, particle size, water absorption rate, and mechanical strength are also particularly preferable. There is no limit.

工程(B2) 乾燥
こうして得られた前記成形品を、蒸発乾固法、ドラム乾燥法、凍結乾燥法等の公知の乾燥方法を用いて20〜200℃の範囲において熱処理を行い、本発明の触媒成形乾燥体を得る。焼成時間や焼成時の雰囲気について特に制限はなく、焼成の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。
Step (B2) Drying The molded product thus obtained is subjected to a heat treatment in the range of 20 to 200° C. by a known drying method such as an evaporation dryness method, a drum drying method, a freeze drying method, and the catalyst of the present invention. A molded dry body is obtained. There is no particular limitation on the firing time or atmosphere at the time of firing, and the firing method is not particularly limited such as fluidized bed, rotary kiln, muffle furnace, tunnel firing furnace, etc., and the final catalyst performance, mechanical strength, formability and production efficiency The appropriate range should be selected in consideration of the above.

工程(B3) 本焼成
こうして得られた前記触媒成形乾燥体を、蒸発乾固法、ドラム乾燥法、凍結乾燥法等の公知の乾燥方法を用いて200〜600℃の範囲において熱処理を行い、本発明の触媒を得る。ここで、焼成時間や焼成時の雰囲気について特に制限はなく、焼成の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明において最も好ましいのは、トンネル焼成炉において300〜600℃の温度範囲で1〜12時間、空気雰囲気下による方法である。
Step (B3) Main calcination The catalyst molded dried body thus obtained is subjected to a heat treatment in the range of 200 to 600° C. by a known drying method such as an evaporation dryness method, a drum drying method, a freeze drying method, and the like. The catalyst of the invention is obtained. Here, there is no particular limitation on the firing time or atmosphere at the time of firing, and the firing method is also not particularly limited such as fluidized bed, rotary kiln, muffle furnace, tunnel firing furnace, etc., and the final catalyst performance, mechanical strength, formability An appropriate range should be selected in consideration of production efficiency, etc. Of these, the most preferable method in the present invention is a method in an air atmosphere in a temperature range of 300 to 600° C. for 1 to 12 hours in a tunnel firing furnace.

本発明において全製造工程とは、触媒原料から本発明の触媒を得るまでの、工程(A1)から工程(A4)および工程(B1)から工程(B3)の単独または組み合わせによる全ての工程である。本発明において成形工程とは、工程(A3)のうちその一部またはその全部である。 In the present invention, all the production steps are all steps from the catalyst raw material to the step of obtaining the catalyst of the present invention by the steps (A1) to (A4) and (B1) to (B3) alone or in combination. .. In the present invention, the molding step is a part or all of the step (A3).

以上の調製により得られた触媒は、その形状やサイズに特に制限はないが、反応管への充填の作業性と充填後の反応管内の圧力損失等を勘案すると、形状は球形状、平均粒径は2.0mmから10.0mm、好ましくは3.0mmから8.0mm、より好ましくは3.5mmから6.5mmであり、また触媒活性成分の担持率は20質量%から90質量%、より好ましくは25質量%から80質量%、さらに好ましくは30質量%から75質量%となる。 The catalyst obtained by the above preparation is not particularly limited in its shape and size, but considering the workability of filling the reaction tube and the pressure loss in the reaction tube after the filling, etc., the shape is a spherical shape, an average particle size. The diameter is 2.0 mm to 10.0 mm, preferably 3.0 mm to 8.0 mm, more preferably 3.5 mm to 6.5 mm, and the loading of the catalytically active component is 20% by mass to 90% by mass. It is preferably 25% by mass to 80% by mass, more preferably 30% by mass to 75% by mass.

本発明の触媒は以下に示すように、少なくとも反応開始前において一定の機械的強度を有することが好ましい。前述の通り、炭素原子数4以上のモノオレフィンから共役ジオレフィンを製造する反応を、特に工業プラントで実施する場合にはコーク状物質の生成およびコーク状物質の燃焼のための再生処理を行う場合が多く、触媒に機械的強度が不足すると、それぞれ触媒内部でコーク状物質が生成することによる触媒の破損および再生処理における燃焼ガスによる触媒の破損および/または触媒の劣化が考えられ、さらには破損した触媒が反応器内に蓄積し圧力損失の増大、反応器内に局所的に蓄積した触媒による望ましくない反応および/または収率の低下、および後段の精製系への混入等、諸々のトラブルに繋がる点が懸念される。ここで、触媒の機械的強度は成形時に添加した各種強度向上剤やバインダーの種類や量、またはそれらの組み合わせや、触媒組成の原子比や各結晶相の相形態およびそれらの割合、更に調合工程や乾燥工程で形成される触媒活性成分の二次粒子の直径、幾何学的構造、および凝集形態等さまざまな調製工程で影響を受け、触媒の性能とも密接な関係がある。 As shown below, the catalyst of the present invention preferably has a certain mechanical strength at least before the start of the reaction. As described above, when a reaction for producing a conjugated diolefin from a mono-olefin having 4 or more carbon atoms is carried out, particularly when it is carried out in an industrial plant, when a regeneration treatment for producing a coke-like substance and burning the coke-like substance is performed. If the mechanical strength of the catalyst is insufficient, the catalyst may be damaged due to the formation of coke-like substances inside the catalyst, and may be damaged and/or deteriorated by the combustion gas in the regeneration process. The accumulated catalyst accumulates in the reactor, resulting in increased pressure loss, undesired reaction due to the catalyst locally accumulated in the reactor and/or reduction in yield, and inclusion in the purification system in the subsequent stage. There is concern about the connection. Here, the mechanical strength of the catalyst is the kind and amount of various strength improvers and binders added at the time of molding, or a combination thereof, the atomic ratio of the catalyst composition, the phase morphology of each crystal phase and their ratio, and the mixing step. It is influenced by various preparation steps such as the diameter, geometrical structure, and agglomeration morphology of secondary particles of the catalytically active component formed in the drying step, and is closely related to the performance of the catalyst.

本発明において機械的強度を表す指標である磨損度は、以下方法により算出される。装置として林理化学社製錠剤磨損度試験器を用い、回転数を25rpm、処理時間を10分間として触媒サンプル50gを処理した後、目開きが1.70mmの標準ふるいで摩損した分をふるい、前記ふるい上に残った触媒質量を測定し、下記式により算出する。磨損度の値は小さいほど機械的強度が優れており、好ましい範囲としてはたとえば3質量%以下、より好ましくは1.5質量%以下、さらに好ましくは0.5質量%以下である。
磨損度(質量%)=100×〔(触媒質量−ふるい上に残った触媒質量)/触媒質量〕
In the present invention, the friability, which is an index representing mechanical strength, is calculated by the following method. Using a tablet friability tester manufactured by Hayashi Rikagaku Co., Ltd. as a device, 50 g of a catalyst sample was treated at a rotation speed of 25 rpm and a treatment time of 10 minutes, and then the abrasion was carried out by a standard sieve having an opening of 1.70 mm. The mass of the catalyst remaining on the sieve is measured and calculated by the following formula. The smaller the friability, the better the mechanical strength, and the preferable range is, for example, 3% by mass or less, more preferably 1.5% by mass or less, and further preferably 0.5% by mass or less.
Friability (mass %)=100×[(catalyst mass−catalyst mass remaining on the sieve)/catalyst mass]

本発明の触媒を使用すれば、メチルビニルケトン収率/ブタジエン収率の比を0.006未満に低減させられ、好ましくは0.005未満に低減させられ、更に好ましくは0.004未満に低減させることが可能である。 Using the catalyst of the present invention, the methyl vinyl ketone yield/butadiene yield ratio can be reduced to less than 0.006, preferably less than 0.005, and more preferably less than 0.004. It is possible to

本発明の触媒を使用してメチルビニルケトンを選択的に低減させる方法による炭素原子数4以上のモノオレフィンから共役ジオレフィンを製造する反応の条件は、原料ガス組成として1容量%から20容量%のモノオレフィン、5容量%から20容量%の分子状酸素、0容量%から60容量%の水蒸気及び0容量%から94容量%の不活性ガス、例えば窒素、炭酸ガスを含む混合ガスを用い、反応浴温度としては200℃から500℃の範囲であり、反応圧力としては常圧から10気圧の圧力下、本発明の触媒成形体に対する原料ガスの空間速度(GHSV)は350hr−1から7000hr−1の範囲、より好ましくは500hr−1から4000hr−1の範囲となる。反応の形態として固定床、移動床、および流動床の中で制約はないが、固定床が好ましい。さらにモノオレフィンに含まれる1−ブテンのモル組成比は1以上90未満、好ましくは1以上60未満、より好ましくは1以上40未満となる。 The reaction conditions for producing a conjugated diolefin from a monoolefin having 4 or more carbon atoms by the method of selectively reducing methyl vinyl ketone using the catalyst of the present invention are 1 vol% to 20 vol% as a raw material gas composition. Of mono-olefin, 5% by volume to 20% by volume of molecular oxygen, 0% by volume to 60% by volume of steam and 0% by volume to 94% by volume of an inert gas such as nitrogen and carbon dioxide, The reaction bath temperature is in the range of 200° C. to 500° C., the reaction pressure is from atmospheric pressure to 10 atmospheres, and the space velocity (GHSV) of the raw material gas with respect to the catalyst molded body of the present invention is 350 hr −1 to 7000 hr −. 1, more preferably in the range of 500 hr -1 of 4000 hr -1. There are no restrictions on the reaction form among fixed bed, moving bed, and fluidized bed, but the fixed bed is preferred. Furthermore, the molar composition ratio of 1-butene contained in the monoolefin is 1 or more and less than 90, preferably 1 or more and less than 60, and more preferably 1 or more and less than 40.

コーク状物質とは共役ジオレフィンを製造する反応において、反応原料または目的生成物または反応副生成物の少なくともいずれかにより生じるものであり、その化学的組成や生成メカニズムの詳細は不明であるが、触媒表面、イナート物質、反応管内や後工程設備内に析出または付着することによって、特に工業プラントにおいては反応ガスの流通の阻害、反応管の閉塞やそれらに伴う反応のシャットダウン等さまざまなトラブルを引き起こす原因物質であるものとする。さらに、前記トラブルを回避する目的で、工業プラントでは一般的に閉塞が生じる前に反応を停止し、反応管や後工程設備等の閉塞箇所の昇温等によりコーク状物質を燃焼除去する再生処理を行う。また、コーク状物質の生成メカニズムとしては、たとえば以下が想定される。すなわち、モリブデンを含む複合金属酸化物触媒の使用の際には昇華し反応器内に析出したモリブデン化合物を起点とした各種オレフィン類の重合および高沸点化合物の凝縮によるもの、触媒および反応器内の異常酸塩基点やラジカル生成点を起点とした各種オレフィン類の重合および高沸点化合物の凝縮によるもの、共役ジオレフィンおよびその他オレフィン化合物によるディールスアルダー反応による高沸点化合物の生成および反応器内で局所的に温度が低い点における凝縮によるもの、などが挙げられ、前記以外にも種々のメカニズムが知られている。 The coke-like substance is a substance produced by at least one of a reaction raw material, a target product and a reaction by-product in a reaction for producing a conjugated diolefin, and its chemical composition and details of the production mechanism are unknown, By depositing or adhering to the catalyst surface, inert substances, reaction tubes and post-process equipment, it causes various troubles such as obstruction of reaction gas flow, blockage of reaction tubes and accompanying shutdown of reactions especially in industrial plants. It shall be the causative substance. Further, for the purpose of avoiding the above-mentioned troubles, in industrial plants, the reaction is generally stopped before the blockage occurs, and the coke-like substance is burned and removed by burning and removing the coke-like substances by raising the temperature of the blockage points of the reaction tube and the post-process equipment. I do. Further, the following is assumed as a mechanism for producing the coke-like substance. That is, when using a composite metal oxide catalyst containing molybdenum, by sublimation and polymerization of various olefins starting from the molybdenum compound deposited in the reactor and condensation of high-boiling compounds, catalyst and in the reactor Polymerization of various olefins originating from abnormal acid-base points and radical generation points and condensation of high boiling point compounds, generation of high boiling point compounds by Diels-Alder reaction with conjugated diolefins and other olefin compounds, and local reaction in the reactor In addition to the above, various mechanisms are known.

精製系阻害物質とは共役ジオレフィンを製造する反応において、反応原料または目的生成物または反応副生成物の少なくともいずれかにより生じるものであり、広義にはC−C二重結合またはケトン基やアルデヒド基などの官能基を分子内に2つ以上含む化合物であり、ブタジエンと反応してディールスアルダー反応を引き起こすと想定される化合物である。精製系阻害物質は、反応管だけではなく後工程である精製系においても配管内および精製系での析出や目詰まりやそれらに伴う反応および精製系のシャットダウン等さまざまなトラブルを引き起こすことが想定される。精製系阻害物質のうち、特に上述の課題を引き起こすのはアクロレインやメチルビニルケトンなどのC−C二重結合とケトン基やアルデヒド基を分子内に少なくとも1つずつ以上含む化合物である。すなわち、精製系阻害物質とは広義にはコーク状物質に含まれる化合物となる。 The purification system inhibitor is a substance which is produced by at least one of a reaction raw material, a target product and a reaction by-product in a reaction for producing a conjugated diolefin, and is broadly defined as a C—C double bond or a ketone group or an aldehyde. It is a compound that contains two or more functional groups such as groups in the molecule, and is a compound that is expected to react with butadiene to cause a Diels-Alder reaction. Purification system inhibitors are expected to cause various troubles not only in the reaction tube but also in the subsequent purification system, such as precipitation and clogging in the piping and in the purification system, and accompanying reactions and shutdown of the purification system. It Among the refining system inhibitors, it is a compound containing at least one C—C double bond such as acrolein or methyl vinyl ketone and at least one ketone group or aldehyde group in the molecule that causes the above problems. That is, in the broad sense, the purification system inhibitor is a compound contained in the coke-like substance.

炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素により共役ジオレフィンを製造する反応において、ブタジエン収率を低下させることなくメチルビニルケトン収率/ブタジエン収率の比を低減させる触媒を得るためには、上述した触媒組成のほか、触媒の形状、成形方法、焼成温度を変更する方法が当業者にとって公知であるが、発明者らによる鋭意研究の結果、触媒組成が特定の範囲を満たすことが最も重要であることが分かり、本発明を完成させるに至った。 In a reaction for producing a conjugated diolefin by catalytic oxidative dehydrogenation from a mixed gas containing a mono-olefin having 4 or more carbon atoms and molecular oxygen, the ratio of methyl vinyl ketone yield/butadiene yield without decreasing the butadiene yield. In order to obtain a catalyst that reduces the amount of catalyst, in addition to the above-mentioned catalyst composition, the shape of the catalyst, the molding method, and the method of changing the calcination temperature are known to those skilled in the art. Has been found to be most important to satisfy the specific range, and the present invention has been completed.

以下、実施例により本発明を更に詳細に説明するが、本発明はその趣旨を超えない限り、以下の実施例に限定されるものではない。なお、以下において、%は特に断りがない限りmol%を意味する。また、以下においてn−ブテン転化率、ブタジエン収率、メチルビニルケトン収率、TOSの定義とは、以下の通りである。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples unless it exceeds the gist. In the following,% means mol% unless otherwise specified. The definitions of n-butene conversion rate, butadiene yield, methyl vinyl ketone yield and TOS are as follows.

n−ブテン転化率(モル%)
=(反応したn−ブテンのモル数/供給したn−ブテンのモル数)×100
ブタジエン収率(モル%)
=(生成したブタジエンのモル数/供給したn−ブテンのモル数)×100
メチルビニルケトン収率(モル%)
=(生成したメチルビニルケトンのモル数/供給したn−ブテンのモル数)×100
TOS=混合ガス流通時間(時間)
n-Butene conversion (mol %)
= (Moles of reacted n-butene/moles of supplied n-butene) x 100
Butadiene yield (mol%)
= (Moles of butadiene produced/moles of n-butene fed) x 100
Methyl vinyl ketone yield (mol%)
= (Moles of generated methyl vinyl ketone/moles of n-butene supplied) x 100
TOS = mixed gas flow time (hours)

実施例1
(触媒1の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸カリウム1.5質量部を純水17mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス171質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:K=12:0.9:2.0:6.5:2.4:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、530℃、5時間の条件で焼成し、本発明の触媒1を得た。
Example 1
(Preparation of catalyst 1)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 1.5 parts by mass of potassium nitrate was dissolved in 17 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 171 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-calcined powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:K=12:0.9:2.0:6.5:2.4:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 5.3 mm thus obtained was calcined at 530° C. for 5 hours to obtain the catalyst 1 of the present invention.

実施例2
(触媒2の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸カリウム3.6質量部を純水41mlに溶解させて、母液1に加えた。次に、硝酸第二鉄343質量部、硝酸コバルト544質量部及び硝酸ニッケル307質量部を60℃に加温した純水633mlに溶解させ、母液1に加えた。続いて硝酸ビスマス229質量部を60℃に加温した純水243mlに硝酸(60質量%)58質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:K=12:1.3:2.3:5.0:2.8:0.095)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.2mmの球状成形品を、510℃、5時間の条件で焼成し、本発明の触媒2を得た。
Example 2
(Preparation of catalyst 2)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 3.6 parts by mass of potassium nitrate was dissolved in 41 ml of pure water and added to mother liquor 1. Next, 343 parts by mass of ferric nitrate, 544 parts by mass of cobalt nitrate and 307 parts by mass of nickel nitrate were dissolved in 633 ml of pure water heated to 60° C. and added to the mother liquor 1. Subsequently, 229 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 58 parts by mass of nitric acid (60% by mass) to 243 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-calcined powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:K=12:1.3:2.3:5.0:2.8:0. 095), 5% by mass of crystalline cellulose was added and sufficiently mixed, and then 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 5.2 mm thus obtained was calcined at 510° C. for 5 hours to obtain the catalyst 2 of the present invention.

実施例3
(触媒3の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム1.5質量部を純水17mlに溶解させて、母液1に加えた。次に、硝酸第二鉄343質量部、硝酸コバルト544質量部及び硝酸ニッケル307質量部を60℃に加温した純水633mlに溶解させ、母液1に加えた。続いて硝酸ビスマス229質量部を60℃に加温した純水243mlに硝酸(60質量%)58質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:1.3:2.3:5.0:2.8:0.02)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.2mmの球状成形品を、510℃、5時間の条件で焼成し、本発明の触媒3を得た。
Example 3
(Preparation of catalyst 3)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 1.5 parts by mass of cesium nitrate was dissolved in 17 ml of pure water and added to mother liquor 1. Next, 343 parts by mass of ferric nitrate, 544 parts by mass of cobalt nitrate and 307 parts by mass of nickel nitrate were dissolved in 633 ml of pure water heated to 60° C. and added to the mother liquor 1. Subsequently, 229 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 58 parts by mass of nitric acid (60% by mass) to 243 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-calcined powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:1.3:2.3:5.0:2.8:0. 02%), 5% by mass of crystalline cellulose was added and sufficiently mixed, and then 33% by mass of a glycerin solution of 33% by mass was used as a binder in the tumbling granulation method. The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded article having a particle size of 5.2 mm thus obtained was calcined at 510° C. for 5 hours to obtain the catalyst 3 of the present invention.

実施例4
(触媒4の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス128質量部を60℃に加温した純水136mlに硝酸(60質量%)33質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.7:2.0:6.5:2.4:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.2mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒4を得た。
Example 4
(Preparation of catalyst 4)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 128 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 33 parts by mass of nitric acid (60% by mass) to 136 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-calcined powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.7:2.0:6.5:2.4:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 5.2 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 4 of the present invention.

実施例5
(触媒5の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒5を得た。
Example 5
(Preparation of catalyst 5)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-baked powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 5 of the present invention.

実施例6
(触媒6の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒6を得た。
Example 6
(Preparation of catalyst 6)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-baked powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was calcined at 520° C. for 5 hours to obtain a catalyst 6 of the present invention.

実施例7
(触媒7の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄357質量部、硝酸コバルト574質量部及び硝酸ニッケル316質量部を60℃に加温した純水661mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.3:5.2:2.9:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒7を得た。
Example 7
(Preparation of catalyst 7)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 357 parts by mass of ferric nitrate, 574 parts by mass of cobalt nitrate and 316 parts by mass of nickel nitrate were dissolved in 661 ml of pure water heated to 60° C. and added to the mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-calcined powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.3:5.2:2.9:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 7 of the present invention.

実施例8
(触媒8の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄327質量部、硝酸コバルト610質量部及び硝酸ニッケル290質量部を60℃に加温した純水650mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.1:5.6:2.6:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒8を得た。
Example 8
(Preparation of catalyst 8)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 327 parts by mass of ferric nitrate, 610 parts by mass of cobalt nitrate and 290 parts by mass of nickel nitrate were dissolved in 650 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-baked powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.1:5.6:2.6:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 8 of the present invention.

実施例9
(触媒9の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト652質量部及び硝酸ニッケル329質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:5.9:3.0:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒9を得た。
Example 9
(Preparation of catalyst 9)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 652 parts by mass of cobalt nitrate and 329 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-calcined powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:5.9:3.0:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 9 of the present invention.

実施例10
(触媒10の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト646質量部及び硝酸ニッケル264質量部を60℃に加温した純水640mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:5.9:2.4:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒10を得た。
Example 10
(Preparation of catalyst 10)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 646 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 640 ml of pure water heated to 60° C. and added to the mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-calcined powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:5.9:2.4:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 10 of the present invention.

実施例11
(触媒11の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト762質量部及び硝酸ニッケル220質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.9:2.0:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒11を得た。
Example 11
(Preparation of catalyst 11)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 762 parts by mass of cobalt nitrate and 220 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-calcined powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.9:2.0:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 11 of the present invention.

実施例12
(触媒12の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水722mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.5:2.4:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒12を得た。
Example 12
(Preparation of catalyst 12)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 381 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 722 ml of pure water heated to 60° C. and added to the mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-calcined powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.5:2.4:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 12 of the present invention.

実施例13
(触媒13の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト685質量部及び硝酸ニッケル220質量部を60℃に加温した純水681mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.2:2.0:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒13を得た。
Example 13
(Preparation of catalyst 13)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 381 parts by mass of ferric nitrate, 685 parts by mass of cobalt nitrate and 220 parts by mass of nickel nitrate were dissolved in 681 ml of pure water heated to 60° C. and added to the mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-calcined powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.2:2.0:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 13 of the present invention.

実施例14
(触媒14の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム6.6質量部を純水75mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.09)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒14を得た。
Example 14
(Preparation of catalyst 14)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 6.6 parts by mass of cesium nitrate was dissolved in 75 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to the mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-baked powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0. 09) 5% by mass of crystalline cellulose was added and sufficiently mixed, and then 33% by mass of glycerin solution was used as a binder in the rolling granulation method at 33% by mass with respect to the pre-calcined powder. The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 14 of the present invention.

実施例15
(触媒15の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト729質量部及び硝酸ニッケル176質量部を60℃に加温した純水681mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.6:1.6:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒15を得た。
Example 15
(Preparation of catalyst 15)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 381 parts by mass of ferric nitrate, 729 parts by mass of cobalt nitrate and 176 parts by mass of nickel nitrate were dissolved in 681 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-calcined powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.6:1.6:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 15 of the present invention.

実施例16
(触媒16の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト762質量部及び硝酸ニッケル220質量部を60℃に加温した純水722mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.9:2.0:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒16を得た。
Example 16
(Preparation of catalyst 16)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 381 parts by mass of ferric nitrate, 762 parts by mass of cobalt nitrate and 220 parts by mass of nickel nitrate were dissolved in 722 ml of pure water heated to 60° C. and added to the mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-calcined powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.9:2.0:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 16 of the present invention.

実施例17
(触媒17の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム1.5質量部を純水17mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.02)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒17を得た。
Example 17
(Preparation of catalyst 17)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 1.5 parts by mass of cesium nitrate was dissolved in 17 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-baked powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0. 02%), 5% by mass of crystalline cellulose was added and sufficiently mixed, and then 33% by mass of a glycerin solution of 33% by mass was used as a binder in the tumbling granulation method. The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded article having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 17 of the present invention.

実施例18
(触媒18の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸ルビジウム2.2質量部を純水25mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Rb=12:0.9:2.0:6.5:2.4:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒18を得た。
Example 18
(Preparation of catalyst 18)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.2 parts by mass of rubidium nitrate was dissolved in 25 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to the mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-baked powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Rb=12:0.9:2.0:6.5:2.4:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded article having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 18 of the present invention.

実施例19
(触媒19の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム1.5質量部および硝酸ルビジウム1.1質量部を純水29mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs:Rb=12:0.9:2.0:6.5:2.4:0.02:0.02)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒19を得た。
Example 19
(Preparation of catalyst 19)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 1.5 parts by mass of cesium nitrate and 1.1 parts by mass of rubidium nitrate were dissolved in 29 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-baked powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs:Rb=12:0.9:2.0:6.5:2.4: 0.02: 0.02) 5% by mass of crystalline cellulose was added and mixed well, and then 33% by mass glycerin solution as a binder was added to the pre-calcined powder by a tumbling granulation method. 33% by mass was used, and an inactive carrier was spherically shaped so as to have a supporting rate of 50% by mass. The spherical molded product having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 19 of the present invention.

実施例20
(触媒20の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸カリウム0.8質量部および硝酸セシウム1.5質量部を純水25mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:K:Cs=12:0.9:2.0:6.5:2.4:0.02:0.02)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒20を得た。
Example 20
(Preparation of catalyst 20)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 0.8 parts by mass of potassium nitrate and 1.5 parts by mass of cesium nitrate were dissolved in 25 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-calcined powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:K:Cs=12:0.9:2.0:6.5:2.4: 0.02: 0.02) 5% by mass of crystalline cellulose was added and mixed well, and then 33% by mass glycerin solution as a binder was added to the pre-calcined powder by a tumbling granulation method. 33% by mass was used, and an inactive carrier was spherically shaped so as to have a supporting rate of 50% by mass. The spherical molded article having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 20 of the present invention.

実施例21
(触媒21の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径6.4mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒21を得た。
Example 21
(Preparation of catalyst 21)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-baked powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 6.4 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 21 of the present invention.

実施例22
(触媒22の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒22を得た。
Example 22
(Preparation of catalyst 22)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-baked powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 22 of the present invention.

実施例23
(触媒23の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径3.6mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒23を得た。
Example 23
(Preparation of catalyst 23)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-baked powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 3.6 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 23 of the present invention.

実施例24
(触媒24の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が75質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒24を得た。
Example 24
(Preparation of catalyst 24)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-baked powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 75% by mass. The spherical molded product having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 24 of the present invention.

実施例25
(触媒25の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が40質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒25を得た。
Example 25
(Preparation of catalyst 25)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-baked powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 40% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was calcined at 520° C. for 5 hours to obtain a catalyst 25 of the present invention.

実施例26
(触媒26の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、500℃、5時間の条件で焼成し、本発明の触媒26を得た。
Example 26
(Preparation of catalyst 26)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to the mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-baked powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded article having a particle size of 5.3 mm thus obtained was calcined at 500° C. for 5 hours to obtain the catalyst 26 of the present invention.

実施例27
(触媒27の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、540℃、5時間の条件で焼成し、本発明の触媒27を得た。
Example 27
(Preparation of catalyst 27)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-baked powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 5.3 mm thus obtained was calcined at 540° C. for 5 hours to obtain the catalyst 27 of the present invention.

実施例28
(触媒28の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が30質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、500℃、5時間の条件で焼成し、本発明の触媒28を得た。
Example 28
(Preparation of catalyst 28)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 2.9 parts by mass of cesium nitrate was dissolved in 33 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-baked powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0. After adding 5% by mass of crystalline cellulose to 04) and mixing them sufficiently, 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was spherically shaped so as to have a supporting rate of 30% by mass. The spherical molded product having a particle size of 5.3 mm thus obtained was calcined at 500° C. for 5 hours to obtain the catalyst 28 of the present invention.

比較例1
(触媒29の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム11質量部を純水124mlに溶解させて、母液1に加えた。次に、硝酸第二鉄267質量部、硝酸コバルト791質量部及び硝酸ニッケル88質量部を60℃に加温した純水612mlに溶解させ、母液1に加えた。続いて硝酸ビスマス306質量部を60℃に加温した純水324mlに硝酸(60質量%)78質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:1.7:1.8:7.2:0.8:0.15)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、500℃、5時間の条件で焼成し、本発明の触媒29を得た。
Comparative Example 1
(Preparation of catalyst 29)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 11 parts by mass of cesium nitrate was dissolved in 124 ml of pure water and added to mother liquor 1. Next, 267 parts by mass of ferric nitrate, 791 parts by mass of cobalt nitrate and 88 parts by mass of nickel nitrate were dissolved in 612 ml of pure water heated to 60° C. and added to the mother liquor 1. Subsequently, 306 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 78 parts by mass of nitric acid (60% by mass) to 324 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-calcined powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:1.7:1.8:7.2:0.8:0. 5% by mass of crystalline cellulose was added to 15) and sufficiently mixed, and then 33% by mass of a glycerin solution of 33% by mass was used as a binder in a rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was calcined at 500° C. for 5 hours to obtain a catalyst 29 of the present invention.

比較例2
(触媒30の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸リチウム1.0質量部および硝酸カリウム1.5質量部および硝酸セシウム2.9質量部を純水62mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Li:K:Cs=12:0.9:2.0:6.5:2.4:0.04:0.04:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒30を得た。
Comparative example 2
(Preparation of catalyst 30)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 1.0 part by mass of lithium nitrate, 1.5 parts by mass of potassium nitrate and 2.9 parts by mass of cesium nitrate were dissolved in 62 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-calcined powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Li:K:Cs=12:0.9:2.0:6.5:2. (4:0.04:0.04:0.04) 5% by mass of crystalline cellulose was added and sufficiently mixed, and then a 33% by mass glycerin solution was preliminarily prepared as a binder by a tumbling granulation method. 33 mass% of the calcined powder was used, and spherical support molding was carried out on an inert carrier so that the supporting rate would be 50 mass %. The spherical molded article having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 30 of the present invention.

比較例3
(触媒31の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸ナトリウム1.3質量部および硝酸カリウム1.5質量部および硝酸セシウム2.9質量部を純水65mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Na:K:Cs=12:0.9:2.0:6.5:2.4:0.04:0.04:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒31を得た。
Comparative Example 3
(Preparation of catalyst 31)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 1.3 parts by mass of sodium nitrate, 1.5 parts by mass of potassium nitrate and 2.9 parts by mass of cesium nitrate were dissolved in 65 ml of pure water and added to mother liquor 1. Next, 297 parts by mass of ferric nitrate, 718 parts by mass of cobalt nitrate and 264 parts by mass of nickel nitrate were dissolved in 678 ml of pure water heated to 60° C. and added to the mother liquor 1. Subsequently, 170 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 43 parts by mass of nitric acid (60% by mass) to 181 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-calcined powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Na:K:Cs=12:0.9:2.0:6.5:2. (4:0.04:0.04:0.04) 5% by mass of crystalline cellulose was added and sufficiently mixed, and then a 33% by mass glycerin solution was preliminarily prepared as a binder by a tumbling granulation method. 33 mass% of the calcined powder was used, and spherical support molding was carried out on an inert carrier so that the supporting rate would be 50 mass %. The spherical molded article having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 31 of the present invention.

比較例4
(触媒32の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム7.4質量部を純水83mlに溶解させて、母液1に加えた。次に、硝酸第二鉄480質量部、硝酸コバルト554質量部及び硝酸ニッケル158質量部を60℃に加温した純水632mlに溶解させ、母液1に加えた。続いて硝酸ビスマス306質量部を60℃に加温した純水324mlに硝酸(60質量%)78質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:1.7:3.2:5.0:1.4:0.1)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒32を得た。
Comparative Example 4
(Preparation of catalyst 32)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 7.4 parts by mass of cesium nitrate was dissolved in 83 ml of pure water and added to mother liquor 1. Next, 480 parts by mass of ferric nitrate, 554 parts by mass of cobalt nitrate and 158 parts by mass of nickel nitrate were dissolved in 632 ml of pure water heated to 60° C. and added to the mother liquor 1. Subsequently, 306 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 78 parts by mass of nitric acid (60% by mass) to 324 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-calcined powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:1.7:3.2:5.0:1.4:0. 5% by mass of crystalline cellulose was added to 1) and mixed well, and then 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded article having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 32 of the present invention.

比較例5
(触媒33の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム7.4質量部を純水83mlに溶解させて、母液1に加えた。次に、硝酸第二鉄534質量部、硝酸コバルト475質量部及び硝酸ニッケル176質量部を60℃に加温した純水628mlに溶解させ、母液1に加えた。続いて硝酸ビスマス306質量部を60℃に加温した純水324mlに硝酸(60質量%)78質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:1.7:3.5:4.3:1.6:0.1)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒33を得た。
Comparative Example 5
(Preparation of catalyst 33)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 7.4 parts by mass of cesium nitrate was dissolved in 83 ml of pure water and added to mother liquor 1. Next, 534 parts by mass of ferric nitrate, 475 parts by mass of cobalt nitrate and 176 parts by mass of nickel nitrate were dissolved in 628 ml of pure water heated to 60° C. and added to mother liquor 1. Subsequently, 306 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 78 parts by mass of nitric acid (60% by mass) to 324 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-baked powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:1.7:3.5:4.3:1.6:0. 5% by mass of crystalline cellulose was added to 1) and mixed well, and then 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 33 of the present invention.

比較例6
(触媒34の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム7.4質量部を純水83mlに溶解させて、母液1に加えた。次に、硝酸第二鉄507質量部、硝酸コバルト514質量部及び硝酸ニッケル167質量部を60℃に加温した純水630mlに溶解させ、母液1に加えた。続いて硝酸ビスマス306質量部を60℃に加温した純水324mlに硝酸(60質量%)78質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:1.7:3.3:4.7:1.5:0.1)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒34を得た。
Comparative Example 6
(Preparation of catalyst 34)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 7.4 parts by mass of cesium nitrate was dissolved in 83 ml of pure water and added to mother liquor 1. Next, 507 parts by mass of ferric nitrate, 514 parts by mass of cobalt nitrate and 167 parts by mass of nickel nitrate were dissolved in 630 ml of pure water heated to 60° C. and added to the mother liquor 1. Subsequently, 306 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 78 parts by mass of nitric acid (60% by mass) to 324 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-baked powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:1.7:3.3:4.7:1.5:0. 5% by mass of crystalline cellulose was added to 1) and mixed well, and then 33% by mass of a glycerin solution of 33% by mass was used as a binder in the rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded article having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 34 of the present invention.

比較例7
(触媒35の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム11質量部を純水125mlに溶解させて、母液1に加えた。次に、硝酸第二鉄458質量部、硝酸コバルト791質量部及び硝酸ニッケル88質量部を60℃に加温した純水708mlに溶解させ、母液1に加えた。続いて硝酸ビスマス306質量部を60℃に加温した純水324mlに硝酸(60質量%)78質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:1.7:3.0:7.2:0.8:0.15)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径5.3mmの球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒35を得た。
Comparative Example 7
(Preparation of catalyst 35)
800 parts by mass of ammonium heptamolybdate was completely dissolved in 3000 parts by mass of pure water heated to 80° C. (mother liquor 1). Next, 11 parts by mass of cesium nitrate was dissolved in 125 ml of pure water and added to mother liquor 1. Next, 458 parts by mass of ferric nitrate, 791 parts by mass of cobalt nitrate and 88 parts by mass of nickel nitrate were dissolved in 708 ml of pure water heated to 60° C. and added to the mother liquor 1. Subsequently, 306 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 78 parts by mass of nitric acid (60% by mass) to 324 ml of pure water heated to 60° C., and added to mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-baked at 440° C. for 5 hours. The pre-calcined powder thus obtained (the atomic ratio calculated from the charged raw materials is Mo:Bi:Fe:Co:Ni:Cs=12:1.7:3.0:7.2:0.8:0. 5% by mass of crystalline cellulose was added to 15) and sufficiently mixed, and then 33% by mass of a glycerin solution of 33% by mass was used as a binder in a rolling granulation method, and The active carrier was supported and molded into a spherical shape so that the supporting rate was 50% by mass. The spherical molded product having a particle size of 5.3 mm thus obtained was calcined at 520° C. for 5 hours to obtain the catalyst 35 of the present invention.

上記実施例および比較例で得られた触媒を、以下の方法により反応評価した。各触媒53mlをステンレス鋼反応管に充填し、ガス体積比率がn−ブテン:酸素:窒素:水蒸気=1:1:7:1の混合ガスを用い、常圧下、GHSV1200hr−1の条件で、反応浴温度330℃にてTOS20時間以上のエージング反応後、反応管出口で、コンデンサーにより液成分とガス成分を分離し、ガス成分中の各成分を各々水素炎イオン化検出器と熱伝導検出器が装着されたガスクロマトグラフで定量分析した。ガスクロマトグラフにより得られた各データはファクター補正し、n−ブテン転化率、ブタジエン収率およびメチルビニルケトン収率を算出した。なお、本反応で使用したn−ブテンのモル組成比は、1−ブテン:シス−2−ブテン:トランス−2−ブテン=39:29:32であった。 The catalysts obtained in the above Examples and Comparative Examples were subjected to reaction evaluation by the following methods. 53 ml of each catalyst was filled in a stainless steel reaction tube, and a reaction was performed under the conditions of GHSV 1200 hr −1 under normal pressure using a mixed gas having a gas volume ratio of n-butene:oxygen:nitrogen:steam=1:1:7:1. After aging reaction for 20 hours or more at TOS at a bath temperature of 330° C., a liquid component and a gas component are separated by a condenser at the reaction tube outlet, and each component in the gas component is equipped with a hydrogen flame ionization detector and a heat conduction detector. Quantitative analysis was carried out using a gas chromatograph. Each data obtained by the gas chromatograph was factor-corrected, and the n-butene conversion rate, the butadiene yield, and the methyl vinyl ketone yield were calculated. The molar composition ratio of n-butene used in this reaction was 1-butene:cis-2-butene:trans-2-butene=39:29:32.

表1に実施例、比較例、および対応する試験例と比較試験例によるn−ブテン転化率、ブタジエン収率、ブタジエン収率に対するメチルビニルケトン収率の比(すなわち、メチルビニルケトン収率/ブタジエン収率の比)の結果を示す。表1より明らかなように、本発明の触媒組成により、ブタジエン収率を低下させることなくメチルビニルケトン収率/ブタジエン収率の比を低減させることができ、副生するメチルビニルケトンを低減でき、上述のように精製系での課題を克服し商業プラントにおいて精製系を含め長期間にわたり反応を継続させることができ、ブタジエンの製造コストの低減につなげられる。さらに、本発明の効果は焼成温度や担持率、触媒の粒径に起因するわけではなく、本質的に触媒の組成比そのものに起因していることが分かる。 Table 1 lists the n-butene conversion, the butadiene yield, and the ratio of methyl vinyl ketone yield to butadiene yield (ie, methyl vinyl ketone yield/butadiene yield) according to Examples, Comparative Examples, and corresponding Test Examples and Comparative Test Examples. The results of the yield ratio) are shown. As is clear from Table 1, the catalyst composition of the present invention makes it possible to reduce the ratio of methyl vinyl ketone yield/butadiene yield without lowering the butadiene yield, and to reduce by-produced methyl vinyl ketone. As described above, the problems in the refining system can be overcome, and the reaction can be continued for a long time in the commercial plant including the refining system, which leads to a reduction in the production cost of butadiene. Further, it is understood that the effect of the present invention is not caused by the calcination temperature, the supporting rate, and the particle size of the catalyst, but is essentially caused by the composition ratio of the catalyst itself.

Figure 0006734178
Figure 0006734178

Claims (8)

炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素反応によりメチルビニルケトンを選択的に低減するのに用いる共役ジオレフィン製造用触媒であって
下記組成式(A)を満たす触媒活性成分を含有する共役ジオレフィン製造用触媒。
Mo12BiFeCoNi・・・・(A)
(式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、アンチモン、タングステン、鉛、亜鉛、タリウムから選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f及びgは各々モリブデン12に対する各成分の原子比を示し、0<a≦1.6、1.85≦b≦2.9、3.2≦c≦7.0、1.0≦d≦3.0、0<e<0.115、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である。)。
A catalyst for producing a conjugated diolefin, which is used for selectively reducing methyl vinyl ketone by catalytic oxidative dehydrogenation from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen ,
Conjugated diolefins for producing a catalyst containing a catalytically active component that meets the following composition formula (A).
Mo 12 Bi a Fe b Co c Ni d X e Y f Z g O h ···· (A)
(In the formula, X represents at least one element of an alkali metal selected from lithium, sodium, potassium, rubidium, and cesium, and Y represents at least one element of an alkaline earth metal selected from magnesium, calcium, strontium, and barium. Represents an element, Z represents at least one element selected from lanthanum, cerium, praseodymium, neodymium, samarium, europium, antimony, tungsten, lead, zinc, and thallium, and a, b, c, d, e, f, and g represents the atomic ratio of each component to molybdenum 12, and 0<a≦1.6, 1.85≦b≦2.9, 3.2≦c≦7.0, 1.0≦d≦3. 0, 0<e<0.115, 0≦f≦4.0, 0≦g≦2.0, and h is a numerical value satisfying the oxidation states of other elements.)
記組成式(B)を満たす触媒活性成分を含有する請求項1記載の共役ジオレフィン製造用触媒。
Mo12BiFeCoNi・・・・(B)
(式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、アンチモン、タングステン、鉛、亜鉛、タリウムから選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f及びgは各々モリブデン12に対する各成分の原子比を示し、0.3≦a≦1.6、1.85≦b≦2.85、4.0≦c≦7.0、1.2≦d≦3.0、0.01≦e<0.105、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である。)。
Conjugated diolefin catalyst for producing according to claim 1 containing the catalyst active ingredients that meet under SL composition formula (B).
Mo 12 Bi a Fe b Co c Ni d X e Y f Z g O h ···· (B)
(In the formula, X represents at least one element of an alkali metal selected from lithium, sodium, potassium, rubidium, and cesium, and Y represents at least one element of an alkaline earth metal selected from magnesium, calcium, strontium, and barium. Represents an element, Z represents at least one element selected from lanthanum, cerium, praseodymium, neodymium, samarium, europium, antimony, tungsten, lead, zinc, and thallium, and a, b, c, d, e, f, and g represents the atomic ratio of each component to molybdenum 12, and 0.3≦a≦1.6, 1.85≦b≦2.85, 4.0≦c≦7.0, 1.2≦d≦ 3.0, 0.01≦e<0.105, 0≦f≦4.0, 0≦g≦2.0, and h is a numerical value satisfying the oxidation states of other elements.) ..
炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素反応により共役ジオレフィンを製造するための触媒であって、触媒活性成分を担体に担持したことを特徴とする、請求項1または請求項2に記載の共役ジオレフィン製造用触媒。 A catalyst for producing a conjugated diolefin by a catalytic oxidative dehydrogenation reaction from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen, characterized in that a catalytically active component is supported on a carrier. conjugated diolefin production for catalysts according to claim 1 or claim 2. 下記工程を含むことを特徴とする、請求項1〜3のいずれか一項に記載の共役ジオレフィン製造用触媒の製造方法:
工程(A1):触媒活性成分の各金属を含有する化合物を含む混合溶液またはスラリーを20℃以上90℃以下の条件化で調製し、該混合溶液または該スラリーを乾燥して乾燥体を得る工程、
工程(A2):工程(A1)で得られた乾燥体を予備焼成し、予備焼成粉体を得る工程、
工程(A3):工程(A2)で得られた予備焼成粉体を成形し、成形体を得る工程、
工程(A4):工程(A3)で得られた成形体を本焼成し、共役ジオレフィン製造用触媒を得る工程。
The method for producing a catalyst for producing a conjugated diolefin according to any one of claims 1 to 3, comprising the following steps:
Step (A1): A step of preparing a mixed solution or slurry containing a compound containing each metal of the catalytically active component under the condition of 20° C. or higher and 90° C. or lower, and drying the mixed solution or the slurry to obtain a dried body. ,
Step (A2): a step of pre-baking the dried body obtained in step (A1) to obtain a pre-baked powder,
Step (A3): a step of molding the pre-baked powder obtained in step (A2) to obtain a molded body,
Step (A4): A step of main-baking the molded body obtained in the step (A3) to obtain a catalyst for producing a conjugated diolefin.
予備焼成の温度が200℃以上600℃以下であり、本焼成温度が200℃以上600℃以下である、請求項4に記載の共役ジオレフィン製造用触媒の製造方法。 The temperature of pre-baking is at 200 ° C. or higher 600 ° C. or less, the sintering temperature is 200 ° C. or higher 600 ° C. A method for fabricating catalyze a conjugated diolefin production according to claim 4. 担体に触媒活性成分をバインダーとともにコーティングする成形工程を有し、かつ触媒活性成分の担持率を20質量%以上80質量%以下とする触媒の平均粒径が3.0mm以上10.0mm以下である請求項4または請求項5に記載の共役ジオレフィン製造用触媒の製造方法。 The catalyst has a molding step of coating the carrier with the catalytically active component together with a binder, and the average particle diameter of the catalyst is 3.0 mm or more and 10.0 mm or less, the supporting rate of the catalytically active component being 20% by mass or more and 80% by mass or less. method for producing catalyze a conjugated diolefin production according to claim 4 or claim 5. 請求項1〜請求項3のいずれか一項に記載の触媒を用いて、メチルビニルケトン収率/ブタジエン収率の比を0.006未満に低減させる共役ジオレフィンの製造方法。 A method for producing a conjugated diolefin, which comprises reducing the ratio of methyl vinyl ketone yield/butadiene yield to less than 0.006 using the catalyst according to any one of claims 1 to 3. 請求項1〜請求項3のいずれか一項に記載の触媒を用いて、炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスの存在下で接触酸化脱水素することを特徴とする共役ジオレフィンの製造方法。 Catalytic oxidative dehydrogenation in the presence of a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen using the catalyst according to any one of claims 1 to 3. Method for producing conjugated diolefin.
JP2016212844A 2016-10-31 2016-10-31 Catalyst for selectively reducing purification system inhibitor and method for producing the same Active JP6734178B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016212844A JP6734178B2 (en) 2016-10-31 2016-10-31 Catalyst for selectively reducing purification system inhibitor and method for producing the same
KR1020170140873A KR20180048353A (en) 2016-10-31 2017-10-27 Catalyst for reducing selectively inhibitor in purification system and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016212844A JP6734178B2 (en) 2016-10-31 2016-10-31 Catalyst for selectively reducing purification system inhibitor and method for producing the same

Publications (2)

Publication Number Publication Date
JP2018069170A JP2018069170A (en) 2018-05-10
JP6734178B2 true JP6734178B2 (en) 2020-08-05

Family

ID=62112414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016212844A Active JP6734178B2 (en) 2016-10-31 2016-10-31 Catalyst for selectively reducing purification system inhibitor and method for producing the same

Country Status (2)

Country Link
JP (1) JP6734178B2 (en)
KR (1) KR20180048353A (en)

Also Published As

Publication number Publication date
KR20180048353A (en) 2018-05-10
JP2018069170A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6559039B2 (en) Conjugated diolefin production catalyst and production method thereof
JP7455256B2 (en) Catalyst and its manufacturing method
JP7209578B2 (en) Catalyst and its manufacturing method
JP7061422B2 (en) Catalyst for producing conjugated diolefin and its production method
JP6564847B2 (en) Conjugated diolefin production catalyst and production method thereof
JP6734178B2 (en) Catalyst for selectively reducing purification system inhibitor and method for producing the same
US20190299195A1 (en) Method for regenerating catalyst for butadiene production
JP2017080738A (en) Catalyst for producing conjugated diolefin and method for producing the same
JP6731927B2 (en) Catalyst for producing conjugated diolefin and method for producing the same
JP2017149655A (en) Method for producing conjugated diolefin
JP2017080739A (en) Catalyst for producing conjugated diolefin and method for producing the same
JP7191482B2 (en) Catalyst and its manufacturing method
JP6392488B1 (en) Catalyst for producing conjugated diolefin and method for producing the same
JP2017149654A (en) Method for producing conjugated diolefin
JP2018140951A (en) Manufacturing method of conjugated diolefin
JP6534217B2 (en) Method of regenerating catalyst for conjugated diolefin production
JP2018140952A (en) Manufacturing method of conjugated diolefin
JP6534216B2 (en) Method of regenerating catalyst for conjugated diolefin production
JP2018103177A (en) Method for producing catalyst for producing conjugated diolefin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200709

R150 Certificate of patent or registration of utility model

Ref document number: 6734178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250