JP2017080738A - Catalyst for producing conjugated diolefin and method for producing the same - Google Patents

Catalyst for producing conjugated diolefin and method for producing the same Download PDF

Info

Publication number
JP2017080738A
JP2017080738A JP2016205848A JP2016205848A JP2017080738A JP 2017080738 A JP2017080738 A JP 2017080738A JP 2016205848 A JP2016205848 A JP 2016205848A JP 2016205848 A JP2016205848 A JP 2016205848A JP 2017080738 A JP2017080738 A JP 2017080738A
Authority
JP
Japan
Prior art keywords
catalyst
conjugated diolefin
producing
weight
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016205848A
Other languages
Japanese (ja)
Inventor
成喜 奥村
Shigeki Okumura
成喜 奥村
佑太 中澤
Yuta Nakazawa
佑太 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Publication of JP2017080738A publication Critical patent/JP2017080738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a molded catalyst capable of improving hardness and improving the long-term stability of the reaction in the reaction for producing a conjugated diolefin from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen by catalytic oxidation dehydrogenation; and a method for producing the same.SOLUTION: There is provided a catalyst for producing a conjugated diolefin from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen by catalytic oxidation dehydrogenation, in which a mineral fibrous inorganic auxiliary is added during preparation.SELECTED DRAWING: None

Description

本発明は、炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素反応により共役ジオレフィンを製造する触媒とその製造方法に関する。 The present invention relates to a catalyst for producing a conjugated diolefin from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen by catalytic oxidative dehydrogenation, and a method for producing the same.

従来、合成ゴム等の原料であるブタジエンは、工業的にはナフサ留分の熱分解および抽出により製造されているが、今後市場への安定供給の悪化が懸念されることから、新たなブタジエンの製造方法が求められている。そこで、n−ブテンと分子状酸素を含む混合ガスから、触媒の存在下でn−ブテンを酸化脱水素する方法が注目されている。しかし、目的生成物および/または反応副生成物によるコーク状物質が触媒表面、イナート物質、反応管内や後工程設備内に析出または付着することによって、工業プラントにおいて反応ガスの流通の阻害、反応管の閉塞やそれらに伴うプラントのシャットダウンや収率の低下等さまざまなトラブルを引き起こす点が懸念される。前記トラブルを回避する目的で、一般的に工業プラントでは閉塞が生じる前に反応を停止し、反応管や後工程設備等の閉塞箇所の昇温等によりコーク状物質を燃焼除去する再生処理を行うが、定常運転である反応を中止して再生処理を行うことは工業プラントにおける経済性の悪化につながるため、コーク状物質の生成は可能な限り抑制されることが望まれている。 Conventionally, butadiene, which is a raw material for synthetic rubber and the like, has been industrially produced by thermal decomposition and extraction of naphtha fractions. There is a need for a manufacturing method. Therefore, attention has been focused on a method for oxidative dehydrogenation of n-butene from a mixed gas containing n-butene and molecular oxygen in the presence of a catalyst. However, the coke-like substance by the target product and / or reaction by-product is deposited or deposited on the catalyst surface, the inert substance, the reaction tube or the post-process equipment, thereby inhibiting the reaction gas flow in the industrial plant, There is a concern that various troubles such as the blockage of the plant, the shutdown of the plant and the decrease in the yield associated therewith may be caused. For the purpose of avoiding the trouble, generally, in industrial plants, the reaction is stopped before clogging occurs, and a regeneration process is performed in which the coke-like substance is burned and removed by raising the temperature of the clogged portion of the reaction tube or the post-process equipment. However, stopping the reaction that is a steady operation and performing the regeneration treatment leads to a deterioration in economic efficiency in the industrial plant, and therefore it is desired that the production of coke-like substances be suppressed as much as possible.

さらに、ブタジエンの製造方法における別の課題として、触媒の破損が挙げられる。これは、長期反応により充填時の触媒の形状から触媒片に、すなわち欠片状、顆粒状、さらには粉状にまで形状が変化または劣化し崩れる(破損する)、共役ジオレフィンの製造プロセスに特有の現象であり、次にあげるようなトラブルが懸念される。すなわち、破損した触媒片が反応器内に蓄積することによる圧力損失の増大、反応器内に局所的に蓄積した触媒による好ましくない副反応、および後段の精製系への破損した触媒片の混入等が懸念され、従来技術における対策は以下に示すような文献が公知である。 Furthermore, another problem in the method for producing butadiene is damage to the catalyst. This is unique to the process of producing conjugated diolefins, where the shape of the catalyst changes from a packed catalyst shape to a catalyst piece due to a long-term reaction, that is, fragments, granules, or even powders change in shape or deteriorate (break). There are concerns about the following problems. That is, an increase in pressure loss due to accumulation of damaged catalyst pieces in the reactor, an undesirable side reaction due to the catalyst locally accumulated in the reactor, and contamination of the broken catalyst pieces into the subsequent purification system, etc. The following literatures are known as countermeasures in the prior art.

特許文献1は、反応前後の触媒の外径変化率と強度変化の相関を開示している。特許文献1の触媒の成形方法である打錠成形は、触媒の機械的強度が高くなる一方、触媒活性成分が緻密に凝集するよう成形されるため触媒内部においてコーク状物質が副反応により生成および/または滞留しやすく他の成形方法による触媒と比較してコーク状物質が析出しやすい点、触媒内部においても反応熱が蓄積しやすく収率低下や反応暴走が生じる点、さらには触媒そのものの生産性が悪い点が課題である。特許文献2は、充填触媒中の破砕率とコーク状物質生成量の相関を開示しているが、長期反応における破砕率を抑制するための触媒または反応条件に関する開示はない。 Patent Document 1 discloses the correlation between the change rate of the outer diameter of the catalyst and the change in strength before and after the reaction. In the tableting method, which is a catalyst molding method of Patent Document 1, the mechanical strength of the catalyst is increased, while the catalyst active component is molded so as to be densely aggregated. / Or the point that coke-like substances are likely to deposit compared to catalysts formed by other molding methods, the heat of reaction is likely to accumulate inside the catalyst, the yield is reduced, and the reaction runaway occurs, and the production of the catalyst itself. The bad point is the problem. Patent Document 2 discloses the correlation between the crushing rate in the packed catalyst and the amount of coke-like substance produced, but there is no disclosure regarding the catalyst or reaction conditions for suppressing the crushing rate in the long-term reaction.

触媒の破損を解決するための手段として、触媒そのものの硬度の向上が挙げられる。従来、当業者において用いられていた機械的強度の評価方法として、後述する磨損度が挙げられるが、これは触媒充填時の衝撃に対する破損の程度を示す物性値であり、機械的強度の評価方法として次に示す課題が挙げられる。すなわち、磨損度評価では触媒に加えられる機械的負荷が低いため、後述するように磨損度が良好な触媒でも長期反応により破損が見られた。これに対して引張圧縮試験機を使用する硬度評価では、後述するように長期反応による触媒の破損との相関を有意に確認できるため、従来の機械的強度の評価である磨損度評価よりも厳しくかつ好適な物性評価をすることができる。また、後述するように磨損度が良好な触媒においても、硬度が低く長期反応により破損するものが見られ、長期反応による触媒の破損と相関関係を示す物性評価方法は公知ではなかった。
成形触媒に関する、一般的な機械的強度の向上のための方法としては、以下の文献が公知である。
As a means for solving the damage of the catalyst, there is an improvement in the hardness of the catalyst itself. Conventionally, as a mechanical strength evaluation method used by those skilled in the art, the degree of abrasion described later can be mentioned. This is a physical property value indicating the degree of breakage against impact at the time of catalyst filling, and is a method for evaluating mechanical strength. The following problems are listed. In other words, since the mechanical load applied to the catalyst is low in the evaluation of the degree of abrasion, even a catalyst having a good degree of abrasion was damaged by a long-term reaction as described later. On the other hand, in the hardness evaluation using a tension / compression tester, the correlation with the damage of the catalyst due to the long-term reaction can be significantly confirmed as will be described later, so it is more severe than the conventional evaluation of mechanical strength. And suitable physical property evaluation can be performed. Further, as will be described later, even a catalyst with a good degree of wear is found to have a low hardness and is damaged by a long-term reaction, and a physical property evaluation method that correlates with the damage of the catalyst due to a long-term reaction has not been known.
The following documents are known as methods for improving the general mechanical strength of the molded catalyst.

特許文献3から特許文献9は、いずれも特定の粒径分布、繊維長、酸強度等を持つ有機助剤または/および無機助剤を添加する触媒またはその製造方法に関するものであり、機械的強度の評価方法は充填による粉化率や前記磨損度評価に該当し、硬度の向上に対する効果は不明である。すなわち成形触媒、特に担持成形触媒において、機械的強度のうち特に硬度を向上する助剤の種類や添加量に関する知見は特許文献3から特許文献9に記載がなく、当業者においても公知ではなかった。 Patent Documents 3 to 9 all relate to a catalyst for adding an organic auxiliary agent and / or an inorganic auxiliary agent having a specific particle size distribution, fiber length, acid strength, etc., or a method for producing the same, and mechanical strength. This evaluation method corresponds to the pulverization rate by filling and the evaluation of the degree of wear, and the effect on the improvement in hardness is unknown. That is, in the molded catalyst, particularly the supported molded catalyst, the knowledge about the kind and the addition amount of the auxiliary agent that improves the hardness among mechanical strengths is not described in Patent Documents 3 to 9, and is not known to those skilled in the art. .

触媒をセラミックス材料と捉えると、無機助剤の添加以外に硬度を向上する方法として、非特許文献1のように細孔構造の制御が挙げられる。触媒の破損は、長期反応または再生処理における触媒内部の応力に起因すると考えられ、細孔の周辺では応力が高くなり破損に至ると推測できる。すなわち、触媒の破損を抑制するためには細孔を減らすことが好ましいが、非特許文献1には担持成形触媒において有機助剤を全く添加しないで硬度を向上させる記載がなく公知ではなかった。 Assuming that the catalyst is a ceramic material, as a method for improving the hardness in addition to the addition of the inorganic auxiliary agent, as in Non-Patent Document 1, control of the pore structure can be mentioned. The failure of the catalyst is considered to be caused by the stress inside the catalyst in the long-term reaction or regeneration treatment, and it can be estimated that the stress increases around the pores, leading to the failure. That is, it is preferable to reduce the pores in order to suppress the breakage of the catalyst. However, Non-Patent Document 1 is not publicly known because there is no description of improving the hardness without adding any organic auxiliary in the supported molded catalyst.

また、工業プラントでの経済性の観点からは、目的生成物であるブタジエンを高い収率で得られる点も当然重要である。ブタジエン収率が低いことは相対的に副生成物の収率が高いことを意味するが、この場合工業プラントにおける最終製品として純度の高いブタジエンを得るためには、より高い性能の精製系が必要となり、それらの設備コストが高くなる点が懸念される。硬度向上のための助剤の添加により、好ましくない副反応が生じる点が懸念される。すなわち、ブタジエン生成量の低下や副生成物生成量の増加がなく長期反応による触媒の破損を抑制した触媒の開発が求められていた。 In addition, from the viewpoint of economic efficiency in an industrial plant, it is naturally important that butadiene which is the target product can be obtained in a high yield. A low butadiene yield means a relatively high by-product yield, but in this case a higher performance purification system is required to obtain high purity butadiene as the final product in an industrial plant. Therefore, there is a concern that the cost of these facilities will increase. There is a concern that an undesirable side reaction occurs due to the addition of an auxiliary agent for improving the hardness. That is, there has been a demand for the development of a catalyst that does not decrease the amount of butadiene produced or increase the amount of by-product produced, and suppresses damage to the catalyst due to a long-term reaction.

特開2011−241208号公報JP 2011-241208 A 特開2012−046509号公報JP 2012-046509 A 特許第3313863号公報Japanese Patent No. 3313863 特許第4863436号公報Japanese Patent No. 4863436 特開2002−273229号公報JP 2002-273229 A 特許第5388897号公報Japanese Patent No. 5388897 国際公開第2012/036038号パンフレットInternational Publication No. 2012/036038 Pamphlet 特許第5628936号公報Japanese Patent No. 5628936 特開平07−16463号公報Japanese Patent Laid-Open No. 07-16463

宮田昇、神野博、“材料”32,354,P102−108Noboru Miyata, Hiroshi Kanno, “Materials” 32, 354, P102-108

本発明は、炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素により共役ジオレフィンを製造する反応において、反応の長期安定性を改善でき、硬度が向上した触媒とその製造方法を提供することを目的とする。 The present invention relates to a catalyst capable of improving the long-term stability of a reaction and improving the hardness in a reaction for producing a conjugated diolefin by catalytic oxidative dehydrogenation from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen. It aims at providing the manufacturing method.

本発明者は前記課題を解決すべく鋭意研究の結果、鉱物繊維状無機助剤を添加することにより目的生成物である共役ジオレフィンの収率を低下させずに硬度を向上させることができ、長期反応による触媒の破損を顕著に抑制でき、前記課題を解決できることを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above problems, the present inventor can improve the hardness without decreasing the yield of the conjugated diolefin as the target product by adding a mineral fibrous inorganic auxiliary, It has been found that damage to the catalyst due to a long-term reaction can be remarkably suppressed and the above problems can be solved, and the present invention has been completed.

本発明は以下の(1)から(9)の特徴を単独または組み合わせて有するものである。即ち、本発明は、
(1)炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素反応により共役ジオレフィンを製造するための触媒であって、複合金属酸化物と鉱物繊維状無機助剤を成形することを特徴とする共役ジオレフィン製造用成形触媒、
(2)下記式(A)の条件を満たすことを特徴とする、(1)に記載の共役ジオレフィン製造用成形触媒、
0.1≦R(=La/Dc)≦12 (A)
(式中、Laは鉱物繊維状無機助剤の平均繊維長であり、Dcは予備焼成工程により得られる予備焼成粉体の平均粒径である。)、
(3)有機助剤を含有しない、(1)または(2)に記載の共役ジオレフィン製造用成形触媒、
(4)複合金属酸化物が、下記組成式(D)を満たす、(1)から(3)のいずれか1項に記載の共役ジオレフィン製造用成形触媒、
Mo12BiFeCoNi・・・・(D)
(式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロビウム、アンチモン、タングステン、鉛、亜鉛、セリウム、タリウムから選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f及びgは各々モリブデン12に対するビスマス、鉄、コバルト、ニッケル、X、Y及びZの原子比を示し、0.3<a<3.5、0.6<b<3.4、5<c<8、0<d<3、0<e<0.5、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である。)、
(5)炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素反応により共役ジオレフィンを製造するための触媒であって、複合金属酸化物と鉱物繊維状無機助剤を担体に担持したことを特徴とする、(1)から(4)のいずれか1項に記載の共役ジオレフィン製造用担持成形触媒、
(6)下記工程を含むことを特徴とする(1)〜(5)のいずれか一項に記載の共役ジオレフィン製造用触媒の製造方法:
工程(A1):複合金属酸化物の各金属を含有する化合物を含む混合溶液またはスラリーを20℃以上90℃以下の条件化で調製し、該混合溶液または該スラリーを乾燥して乾燥体を得る工程、
工程(A2):工程(A1)で得られた乾燥体を予備焼成し、予備焼成粉体を得る工程、
工程(A3):工程(A2)で得られた予備焼成粉体と鉱物繊維状無機助剤を成形し、成形体を得る工程、
工程(A4):工程(A3)で得られた成形体を本焼成し、共役ジオレフィン製造用触媒を得る工程、
(7)予備焼成の温度が200℃以上600℃以下であり、本焼成温度が200℃以上600℃以下である、(6)に記載の共役ジオレフィン製造用成形触媒の製造方法、
(8)担体に複合金属酸化物と鉱物繊維状無機助剤をバインダーとともにコーティングする成形工程を有し、かつ触媒活性成分の担持率が20重量%以上80重量%以下であり、触媒の平均粒径が3.0mm以上10.0mm以下である、(6)または(7)に記載の共役ジオレフィン製造用担持成形触媒の製造方法、
(9)全製造工程において、有機助剤を使用しない、(6)から(8)のいずれか1項に記載の成形触媒の製造方法、
に関する。
The present invention has the following features (1) to (9) alone or in combination. That is, the present invention
(1) A catalyst for producing a conjugated diolefin by a catalytic oxidative dehydrogenation reaction from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen, comprising a composite metal oxide and a mineral fibrous inorganic auxiliary A molded catalyst for producing conjugated diolefin, characterized by molding
(2) The molded catalyst for conjugated diolefin production according to (1), characterized by satisfying the condition of the following formula (A):
0.1 ≦ R (= La / Dc) ≦ 12 (A)
(In the formula, La is the average fiber length of the mineral fibrous inorganic auxiliary, and Dc is the average particle diameter of the pre-fired powder obtained by the pre-fire step).
(3) The molded catalyst for conjugated diolefin production according to (1) or (2), which does not contain an organic auxiliary agent,
(4) The molded catalyst for conjugated diolefin production according to any one of (1) to (3), wherein the composite metal oxide satisfies the following composition formula (D):
Mo 12 Bi a Fe b Co c Ni d X e Y f Z g O h ···· (D)
(In the formula, X represents at least one element of an alkali metal selected from lithium, sodium, potassium, rubidium, and cesium, and Y represents at least one element of an alkaline earth metal selected from magnesium, calcium, strontium, and barium. Z represents at least one element selected from lanthanum, cerium, praseodymium, neodymium, samarium, eurobium, antimony, tungsten, lead, zinc, cerium, thallium, and a, b, c, d, e, f and g represent atomic ratios of bismuth, iron, cobalt, nickel, X, Y and Z, respectively, with respect to molybdenum 12, and 0.3 <a <3.5, 0.6 <b <3.4, 5 <c <8, 0 <d <3, 0 <e <0.5, 0 ≦ f ≦ 4.0, 0 ≦ g ≦ 2.0, and h satisfies the oxidation state of other elements. Is a numerical value to be.),
(5) A catalyst for producing a conjugated diolefin from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen by catalytic oxidative dehydrogenation, comprising a composite metal oxide and a mineral fibrous inorganic auxiliary The supported molded catalyst for producing conjugated diolefin according to any one of (1) to (4), characterized in that is supported on a carrier,
(6) The method for producing a conjugated diolefin production catalyst according to any one of (1) to (5), comprising the following steps:
Step (A1): A mixed solution or slurry containing a compound containing each metal of the composite metal oxide is prepared under conditions of 20 ° C. or higher and 90 ° C. or lower, and the mixed solution or the slurry is dried to obtain a dried product. Process,
Step (A2): a step of pre-baking the dried body obtained in step (A1) to obtain a pre-baked powder,
Step (A3): a step of molding the pre-fired powder obtained in Step (A2) and the mineral fibrous inorganic auxiliary to obtain a molded body,
Step (A4): A step of subjecting the molded body obtained in Step (A3) to main firing to obtain a conjugated diolefin production catalyst,
(7) The method for producing a shaped catalyst for conjugated diolefin production according to (6), wherein the pre-calcination temperature is 200 ° C. or more and 600 ° C. or less, and the main calcination temperature is 200 ° C. or more and 600 ° C. or less,
(8) It has a molding step of coating a carrier with a composite metal oxide and a mineral fibrous inorganic auxiliary together with a binder, and the loading ratio of the catalyst active component is 20 wt% or more and 80 wt% or less, and the average particle size of the catalyst The method for producing a supported molded catalyst for conjugated diolefin production according to (6) or (7), wherein the diameter is 3.0 mm or more and 10.0 mm or less,
(9) The method for producing a shaped catalyst according to any one of (6) to (8), wherein no organic auxiliary is used in all production steps,
About.

本発明によれば、炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素により共役ジオレフィンを製造する反応に使用できる、硬度の高い触媒が得られ、かつ、長期反応において触媒の破損が抑制されるため、長期安定性を有する触媒とその製造方法を提供することができる。 According to the present invention, a catalyst having high hardness that can be used in a reaction for producing a conjugated diolefin by catalytic oxidative dehydrogenation from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen is obtained. Since damage to the catalyst is suppressed in the reaction, a catalyst having long-term stability and a method for producing the catalyst can be provided.

炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素反応により共役ジオレフィンを製造する反応に使用でき、好ましくはn−ブテンと分子状酸素を含む混合ガスから接触酸化脱水素反応によりブタジエンを製造する反応に使用できる触媒およびその製造方法であり、以下、鉱物繊維状無機助剤を添加し成形する本発明の共役ジオレフィン製造用触媒およびその製造方法について説明する。 It can be used in a reaction for producing a conjugated diolefin from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen by catalytic oxidative dehydrogenation, preferably catalytic oxidation from a mixed gas containing n-butene and molecular oxygen. A catalyst that can be used in a reaction for producing butadiene by a dehydrogenation reaction and a method for producing the catalyst, and a method for producing the conjugated diolefin according to the present invention in which a mineral fibrous inorganic auxiliary agent is added and molded will be described below.

本発明においてn−ブテンとは1−ブテン、トランス−2−ブテン、シス−2−ブテン、イソブチレンのうち、単一成分のガス、もしくは少なくとも一つの成分を含む混合ガスを意味するものとし、ブタジエンとは1,3−ブタジエンを意味するものとする。 In the present invention, n-butene means a single component gas or a mixed gas containing at least one component of 1-butene, trans-2-butene, cis-2-butene, and isobutylene. Means 1,3-butadiene.

本発明の触媒に使用する鉱物繊維状無機助剤とは、主に600℃の熱処理においても焼失かつガラス転移しない天然に産出する結晶質および/または非晶質の無機物を、天然に産出した前記無機物そのもの、または前記無機物のガラス転移温度以下での切削や劈開等で処理することにより調製される任意の繊維状または棒状助剤であり、後述する本焼成工程によりそのすべてが焼失しないものとする。鉱物繊維状無機助剤は、後述する本焼成工程においても残留するため、複合金属酸化物(予備焼成粉体)同士を結びつける役割があり、破損にかかる負荷が触媒に生じた際にも破損を抑制する効果が生じる。本発明において鉱物繊維状無機助剤の材質としては特に限定されないが、たとえば任意の硫化鉱物、酸化鉱物、ハロゲン化鉱物、無機酸塩鉱物、有機鉱物等を単独または組み合わせたものをガラス転移温度以上で熱処理したもののうちモース硬度が2以上のものが好ましく、これらのうち無機酸塩鉱物が好ましく、さらにケイ酸塩鉱物がより好ましく、さらにケイ酸カルシウム、すなわちワラストナイト(珪灰石)が、硬度の向上効果と製造コストの観点より最も好ましい。また鉱物繊維状無機助剤に対して、酸処理、アルカリ処理、およびシラン処理等を各々単独または組み合わせて実施することで、触媒反応に不活性となる点で好適となる。 The mineral fibrous inorganic auxiliary used in the catalyst of the present invention is the above-mentioned naturally produced crystalline and / or amorphous inorganic substance that does not burn and do not undergo glass transition mainly even at a heat treatment of 600 ° C. It is an inorganic material itself, or any fibrous or rod-like auxiliary agent prepared by processing by cutting or cleaving below the glass transition temperature of the inorganic material. . Mineral fibrous inorganic auxiliaries remain in the main firing step, which will be described later, and thus have a role of linking the composite metal oxides (pre-fired powders). The effect of suppressing occurs. In the present invention, the material of the mineral fibrous inorganic auxiliary agent is not particularly limited. For example, any sulfide mineral, oxide mineral, halogenated mineral, inorganic acid salt mineral, organic mineral, etc., alone or in combination, has a glass transition temperature or higher. Of these, those having a Mohs hardness of 2 or more are preferred. Of these, inorganic silicate minerals are preferred, silicate minerals are more preferred, and calcium silicate, ie wollastonite (wollastonite), has hardness. It is most preferable from the viewpoint of the improvement effect and the manufacturing cost. Moreover, it becomes suitable at the point which becomes inactive with respect to a catalytic reaction by performing an acid treatment, an alkali treatment, a silane treatment, etc. individually or in combination with respect to a mineral fibrous inorganic auxiliary agent.

さらに鉱物繊維状無機助剤の平均繊維長は、下記式(A)で表される条件を満たすことが好ましく、下記式(B)で表される条件を満たすことが最も好ましい。鉱物繊維状無機助剤は、例えば啓和炉材株式会社、林化成株式会社等から容易に入手可能である。また、鉱物繊維状無機助剤の平均粒径は、0.1μmから100μmが好ましく、1μmから50μmがより好ましい。鉱物繊維状無機助剤の平均繊維長は、1μmから4000μmが好ましく、7μmから700μmがより好ましい。
0.1≦R(=La/Dc)≦12 (A)
4≦R(=La/Dc)≦9.5 (B)
(式中、Laは鉱物繊維状無機助剤の平均繊維長であり、Dcは複合金属酸化物の平均粒径である。)
Furthermore, the average fiber length of the mineral fibrous inorganic auxiliary agent preferably satisfies the condition represented by the following formula (A), and most preferably satisfies the condition represented by the following formula (B). Mineral fibrous inorganic auxiliaries are easily available from, for example, Keiwa Furnace Co., Ltd., Hayashi Kasei Co., Ltd. and the like. The average particle size of the mineral fibrous inorganic auxiliary is preferably 0.1 μm to 100 μm, and more preferably 1 μm to 50 μm. The average fiber length of the mineral fibrous inorganic auxiliary is preferably 1 μm to 4000 μm, more preferably 7 μm to 700 μm.
0.1 ≦ R (= La / Dc) ≦ 12 (A)
4 ≦ R (= La / Dc) ≦ 9.5 (B)
(In the formula, La is the average fiber length of the mineral fibrous inorganic auxiliary, and Dc is the average particle diameter of the composite metal oxide.)

本発明において、複合金属酸化物や有機助剤の平均粒径は、例えば以下方法により算出される。装置として特に制限はないが、例えば西山製作所社製LMS−2000eを用い、分散媒として精製水を用いてセルに各種サンプルを導入し、散乱光強度を4.0から6.0程度として測定し、質量百分率で得た粒径分布より平均粒径を算出する。複合金属酸化物の平均粒径は、1μmから500μmが好ましく、10μmから100μmがより好ましい。 In the present invention, the average particle diameter of the composite metal oxide and the organic auxiliary is calculated by, for example, the following method. Although there is no restriction | limiting in particular as an apparatus, For example, various samples are introduce | transduced into a cell using purified water as a dispersion medium using LMS-2000e by Nishiyama Seisakusho, and the scattered light intensity is measured as about 4.0 to 6.0. The average particle size is calculated from the particle size distribution obtained as a percentage by mass. The average particle size of the composite metal oxide is preferably 1 μm to 500 μm, and more preferably 10 μm to 100 μm.

本発明の触媒またはその製造方法においては、有機助剤を添加または使用しないことが好ましい。 In the catalyst of the present invention or the production method thereof, it is preferable that no organic auxiliary is added or used.

本発明における複合金属酸化物は、下記組成式(D)を満たすことが好ましい。
Mo12BiFeCoNi・・・・(D)
(式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロビウム、アンチモン、タングステン、鉛、亜鉛、セリウム、タリウムから選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f及びgは各々モリブデン12に対するビスマス、鉄、コバルト、ニッケル、X、Y及びZの原子比を示し、0.3<a<3.5、0.6<b<3.4、5<c<8、0<d<3、0<e<0.5、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である。)
The composite metal oxide in the present invention preferably satisfies the following composition formula (D).
Mo 12 Bi a Fe b Co c Ni d X e Y f Z g O h ···· (D)
(In the formula, X represents at least one element of an alkali metal selected from lithium, sodium, potassium, rubidium, and cesium, and Y represents at least one element of an alkaline earth metal selected from magnesium, calcium, strontium, and barium. Z represents at least one element selected from lanthanum, cerium, praseodymium, neodymium, samarium, eurobium, antimony, tungsten, lead, zinc, cerium, thallium, and a, b, c, d, e, f and g represent atomic ratios of bismuth, iron, cobalt, nickel, X, Y and Z, respectively, with respect to molybdenum 12, and 0.3 <a <3.5, 0.6 <b <3.4, 5 <c <8, 0 <d <3, 0 <e <0.5, 0 ≦ f ≦ 4.0, 0 ≦ g ≦ 2.0, and h satisfies the oxidation state of other elements. Is a numerical value to be.)

本発明の触媒を得るための各金属元素の原料としては特に制限はないが、各金属元素を少なくとも一種含む硝酸塩、亜硝酸塩、硫酸塩、アンモニウム塩、有機酸塩、酢酸塩、炭酸塩、次炭酸塩、塩化物、無機酸、無機酸の塩、ヘテロポリ酸、ヘテロポリ酸の塩、水酸化物、酸化物、金属、合金等、またはこれらの混合物を用いることができる。このうち好ましいのは硝酸塩原料である。 The raw material of each metal element for obtaining the catalyst of the present invention is not particularly limited, but nitrates, nitrites, sulfates, ammonium salts, organic acid salts, acetates, carbonates containing at least one of each metal element, Carbonates, chlorides, inorganic acids, inorganic acid salts, heteropolyacids, heteropolyacid salts, hydroxides, oxides, metals, alloys, etc., or mixtures thereof can be used. Of these, nitrate raw materials are preferred.

本発明の触媒の調製法としては特に制限はないが、好ましいのは触媒の活性成分を粉末として得た後、有機助剤を添加または使用することなく成形する方法であり、以下に詳細を記載する。なお、以下では各工程の順を好ましい例として記載しているが、最終的な触媒製品を得るための各工程の順番、工程数、各工程の組み合わせについて制限はないものとする。 The method for preparing the catalyst of the present invention is not particularly limited, but preferred is a method in which the active component of the catalyst is obtained as a powder and then molded without adding or using an organic auxiliary. Details are described below. To do. In addition, although the order of each process is described as a preferable example below, the order of each process, the number of processes, and the combination of each process for obtaining the final catalyst product are not limited.

工程(A1) 調合と乾燥
触媒活性成分の原料の混合溶液またはスラリーを調製し、沈殿法、ゲル化法、共沈法、水熱合成法等の工程を経た後、乾燥噴霧法、蒸発乾固法、ドラム乾燥法、凍結乾燥法等の公知の乾燥方法を用いて、本発明の乾燥粉体を得る。この混合溶液またはスラリーは、溶媒として水、有機溶剤、またはこれらの混合溶液のいずれでも良く、触媒の活性成分の原料濃度も制限はなく、更に、この混合溶液またはスラリーの液温、雰囲気等の調合条件および乾燥条件について特に制限はないが、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明において最も好ましいのは、20℃から90℃の条件化で触媒の活性成分の原料の混合溶液またはスラリーを形成させ、これを噴霧乾燥器に導入して乾燥器出口温度が70℃から150℃、得られる乾燥粉体の平均粒径が10μmから700μmとなるよう熱風入口温度、噴霧乾燥器内部の圧力、およびスラリーの流量を調節する方法である。また、本工程の混合溶液またはスラリーの調製から前記乾燥までにおいて、後述する鉱物繊維状無機助剤または/および有機助剤を任意の量で添加することも本発明の触媒の製造方法に属するものとする。
Step (A1) Prepare a mixed solution or slurry of the raw material of the preparation and dry catalyst active ingredient, and after passing through steps such as precipitation method, gelation method, coprecipitation method, hydrothermal synthesis method, etc., then dry spray method, evaporation to dryness The dry powder of the present invention is obtained using a known drying method such as a method, a drum drying method or a freeze drying method. This mixed solution or slurry may be water, an organic solvent, or a mixed solution thereof as a solvent, and there is no restriction on the raw material concentration of the active component of the catalyst. Furthermore, the liquid temperature, atmosphere, etc. of this mixed solution or slurry are not limited. There are no particular restrictions on the blending conditions and drying conditions, but an appropriate range should be selected in consideration of the final catalyst performance, mechanical strength, moldability, production efficiency, and the like. Among these, the most preferable in the present invention is that a mixed solution or slurry of the raw material of the active component of the catalyst is formed under conditions of 20 ° C. to 90 ° C., and this is introduced into the spray dryer and the dryer outlet temperature is 70 ° C. To 150 ° C., and the hot air inlet temperature, the pressure inside the spray dryer, and the flow rate of the slurry are adjusted so that the average particle size of the resulting dry powder is 10 μm to 700 μm. In addition, it is also included in the method for producing the catalyst of the present invention that an optional amount of mineral fibrous inorganic auxiliary and / or organic auxiliary described later is added from the preparation of the mixed solution or slurry in this step to the drying. And

工程(A2) 予備焼成
こうして得られた乾燥粉体を200℃以上600℃以下で予備焼成し、平均粒径が10μmから100μmである本発明の複合金属酸化物(予備焼成粉体)を得ることができる。本発明においては、複合金属酸化物を予備焼成粉体と呼ぶことがある。この予備焼成の条件に関しても、焼成時間や焼成時の雰囲気について特に制限はなく、焼成の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明において最も好ましいのは、トンネル焼成炉において300℃以上600℃以下の範囲で1時間から12時間、空気雰囲気下による方法である。また、本工程の予備焼成前または予備焼成後において、後述する鉱物繊維状無機助剤および有機助剤を任意の量で添加することも本発明の触媒の製造方法に属するものとする。
Step (A2) Pre-baking The dry powder thus obtained is pre-baked at 200 ° C. to 600 ° C. to obtain the composite metal oxide (pre-baked powder) of the present invention having an average particle size of 10 μm to 100 μm. Can do. In the present invention, the composite metal oxide is sometimes referred to as pre-fired powder. There are no particular restrictions on the firing time and atmosphere during firing, and there are no particular restrictions on the firing method such as a fluidized bed, rotary kiln, muffle furnace, tunnel firing furnace, and the final catalyst performance and machine. Appropriate ranges should be selected in consideration of mechanical strength, formability and production efficiency. Among these, the most preferable method in the present invention is a method in an air atmosphere in a tunnel firing furnace in the range of 300 ° C. to 600 ° C. for 1 hour to 12 hours. In addition, it is also included in the method for producing a catalyst of the present invention to add a mineral fibrous inorganic auxiliary and an organic auxiliary to be described later in an arbitrary amount before or after the preliminary calcination in this step.

工程(A3) 成形
本発明においては、こうして得られた予備焼成粉体を、そのまま触媒として使用することもできるが、成形して使用することもできる。成形品の形状は球状、円柱状、リング状など特に制限されないが、一連の調製で最終的に得られる触媒における機械的強度、反応器、調製の生産効率等を考慮して選択するべきである。成形方法についても特に制限はないが、以下に示す担体や有機助剤、鉱物繊維状無機助剤、バインダー等を予備焼成粉体に添加して円柱状、リング状に成形する際には打錠成形機や押出成形機などを用い、球状に成形する際には造粒機などを用いて成形品を得る。このうち本発明において、不活性な担体に予備焼成粉体と共に、上記鉱物繊維状無機助剤を添加して転動造粒法によりコーティングさせ担持成形する方法が好ましい。
Step (A3) Molding In the present invention, the pre-fired powder obtained in this way can be used as a catalyst as it is, but can also be used after molding. The shape of the molded product is not particularly limited, such as a spherical shape, a cylindrical shape, or a ring shape, but it should be selected in consideration of the mechanical strength, the reactor, the production efficiency of the preparation, etc. in the catalyst finally obtained by a series of preparations. . There is no particular limitation on the molding method, but when the carrier, organic auxiliary, mineral fibrous inorganic auxiliary, binder, etc. shown below are added to the pre-fired powder and molded into a cylindrical shape or ring shape, tableting is performed. When forming into a spherical shape using a molding machine or an extrusion molding machine, a molded product is obtained using a granulator or the like. Among these, in the present invention, a method in which the above-mentioned mineral fibrous inorganic auxiliary agent is added to an inert carrier together with a pre-fired powder, and is coated by rolling granulation and supported and molded is preferable.

担体の材質としてはアルミナ、シリカ、チタニア、ジルコニア、ニオビア、シリカアルミナ、炭化ケイ素、炭化物、およびこれらの混合物など公知の物を使用でき、さらにその粒径、吸水率、機械的強度、各結晶相の結晶化度や混合割合なども特に制限はなく、最終的な触媒の性能、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。担体と予備焼成粉体の混合の割合は、各原料の仕込み重量により、下記式より担持率として算出される。
担持率(重量%)=(成形に使用した予備焼成粉体の重量)/{(成形に使用した予備焼成粉体の重量)+(成形に使用した担体の重量)}×100
Known materials such as alumina, silica, titania, zirconia, niobia, silica alumina, silicon carbide, carbides, and mixtures thereof can be used as the material of the carrier, and the particle size, water absorption rate, mechanical strength, each crystal phase There are no particular restrictions on the crystallinity and mixing ratio, and an appropriate range should be selected in consideration of the final catalyst performance, moldability, production efficiency, and the like. The mixing ratio of the carrier and the pre-fired powder is calculated as a loading rate from the following formula based on the charged weight of each raw material.
Support rate (% by weight) = (weight of pre-fired powder used for molding) / {(weight of pre-fired powder used for molding) + (weight of carrier used for molding)} × 100

鉱物繊維状無機助剤の添加量は、予備焼成粉体の重量に対して0.1重量%から25重量%が好ましく、0.3重量%から10重量%が特に好ましく、0.5重量%から5重量%が最も好ましい。また、鉱物繊維状無機助剤は、成形の前に粉砕工程を実施しても良く、粉砕の方法としては特に制限はないがたとえばボールミル、ロッドミル、SAGミル、ジェットミル、自主粉砕ミル、ハンマーミル、ペレットミル、ディスクミル、ローラーミル、高圧粉砕ロール、VSIミルなどを単独または組み合わせて実施され、この粉砕の対象は鉱物繊維状無機助剤単独でもよいが、予備焼成粉体その他成形工程に添加される触媒原料を混合したものでもよい。 The amount of the mineral fibrous inorganic auxiliary added is preferably 0.1% to 25% by weight, particularly preferably 0.3% to 10% by weight, and 0.5% by weight based on the weight of the pre-fired powder. To 5% by weight is most preferred. Further, the mineral fibrous inorganic auxiliary agent may be subjected to a pulverization step before molding, and the pulverization method is not particularly limited. For example, a ball mill, a rod mill, a SAG mill, a jet mill, a self-pulverizing mill, a hammer mill , Pellet mill, disk mill, roller mill, high-pressure grinding roll, VSI mill, etc. are used alone or in combination, and the object of grinding may be mineral fibrous inorganic auxiliary agent alone, but added to pre-fired powder and other molding processes The catalyst raw material to be mixed may be used.

本発明において有機助剤とは、主に200℃以上600℃以下の熱処理により焼失する有機物よりなる任意の粉状、顆粒状、繊維状、鱗片状の助剤であり、後述する本焼成工程により、その一部またはすべてが焼失するものとし、たとえばポリエチレングリコールや各種エステルなどの重合物またはポリマービーズ、高吸水性樹脂の乾燥体または任意の吸水率による吸水物、各種界面活性剤、小麦粉または精製デンプン等の各種デンプン類、および結晶性またはアモルファス状のセルロースおよびその誘導体が挙げられる。本焼成工程により有機助剤が焼失し、後述するように触媒中に空隙が形成されると、破損にかかる負荷が触媒に生じた際にその周辺における応力が高まり、結果として破損が生じやすくなると考えられるため、本発明の触媒の製造の際には、有機助剤を添加しないことが好ましい。本発明における有機助剤の平均粒径は、予備焼成粉体の平均粒径に対して0.001から1000の範囲である。 In the present invention, the organic auxiliary is an arbitrary powdery, granular, fibrous, or scale-like auxiliary mainly composed of an organic material that is burned down by a heat treatment of 200 ° C. or higher and 600 ° C. or lower. , Part or all of which shall be burnt down, for example, polymers or polymer beads such as polyethylene glycol or various esters, dried products of superabsorbent resin or water-absorbing products with any water absorption rate, various surfactants, flour or refined Examples include various starches such as starch, and crystalline or amorphous cellulose and its derivatives. When the organic auxiliaries are burned out by the main calcination process and voids are formed in the catalyst as described later, when a load is applied to the catalyst, the stress around the catalyst increases, and as a result, the breakage tends to occur. For this reason, it is preferable not to add an organic auxiliary during the production of the catalyst of the present invention. The average particle size of the organic auxiliary agent in the present invention is in the range of 0.001 to 1000 with respect to the average particle size of the pre-fired powder.

ここで、本発明におけるバインダーとは、その分子直径が予備焼成粉体の平均粒径に対して0.001以下の範囲である化合物群からなる単独または組み合わせにより構成される液体とし、例えば次のようなものが挙げられる。すなわち、液状の有機溶剤、有機物の分散体、水溶性有機溶剤、およびそれらと水の任意の割合での混合物であり、特に制限はないが、グリセリン等の多価アルコールの水溶液またはイオン交換水が好ましく、さらにイオン交換水が成形性の観点から最も好ましい。バインダーは水または有機物を含むため、後述する本焼成工程にてその一部またはすべてが焼失する。一般に、バインダーに使用される有機物の分子直径は、予備焼成粉体の平均粒径と比較すると十分に小さいため、バインダーを使用しても、有機助剤のような触媒中の空隙の形成には至らない。また、このバインダーに前記触媒原料の溶液を使用することで、工程(A1)とは異なる態様で触媒の最表面に元素を導入することも可能である。 Here, the binder in the present invention is a liquid composed of a single group or a combination of compounds having a molecular diameter of 0.001 or less with respect to the average particle diameter of the pre-fired powder. Such a thing is mentioned. That is, it is a liquid organic solvent, an organic dispersion, a water-soluble organic solvent, and a mixture of these with water in any proportion, and although there is no particular limitation, an aqueous solution of polyhydric alcohol such as glycerin or ion-exchanged water Further, ion-exchanged water is more preferable from the viewpoint of moldability. Since the binder contains water or an organic substance, part or all of the binder is burned out in the main firing step described later. In general, the molecular diameter of the organic substance used in the binder is sufficiently small compared to the average particle size of the pre-calcined powder. Therefore, even if a binder is used, it is necessary to form voids in the catalyst such as an organic auxiliary. It does n’t come. In addition, by using the catalyst raw material solution for the binder, it is possible to introduce the element into the outermost surface of the catalyst in a mode different from the step (A1).

コーティングによる担持成形の方法において、バインダーの使用量は、予備焼成粉体100重量部に対して2重量部から60重量部であることが好ましく、10重量部から50重量部がより好ましい。本発明の反応は酸化的脱水素であり発熱反応であるので、触媒内部の放熱のため、さらには生成した共役ジオレフィンの効率的な拡散による、コーク状物質の生成および/または滞留の抑制のため、担持成形が最も好ましい成形方法である。 In the support molding method by coating, the amount of the binder used is preferably 2 to 60 parts by weight, more preferably 10 to 50 parts by weight with respect to 100 parts by weight of the pre-fired powder. Since the reaction of the present invention is an oxidative dehydrogenation and an exothermic reaction, the generation of coke-like substances and / or the suppression of the residence are suppressed by the heat dissipation inside the catalyst and further by the efficient diffusion of the produced conjugated diolefin. Therefore, support molding is the most preferable molding method.

工程(A4) 本焼成
このようにして得られた予備焼成粉体または成形品は、反応に使用する前に200℃以上600℃以下で再度焼成(本焼成)することが好ましい。本焼成に関しても、焼成時間や焼成時の雰囲気について特に制限はなく、焼成の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明において最も好ましいのは、トンネル焼成炉において300℃以上600℃以下の温度範囲で1時間から12時間、空気雰囲気下による焼成である。
Step (A4) Main Firing The pre-fired powder or molded product thus obtained is preferably fired again (main firing) at 200 ° C. or higher and 600 ° C. or lower before being used for the reaction. Regarding the main firing, there is no particular limitation on the firing time and atmosphere at the time of firing, and the firing method is not particularly limited, such as a fluidized bed, rotary kiln, muffle furnace, tunnel firing furnace, and the final catalyst performance, mechanical strength, An appropriate range should be selected in consideration of production efficiency. Among these, the most preferable in the present invention is firing in an air atmosphere in a tunnel firing furnace in a temperature range of 300 ° C. to 600 ° C. for 1 hour to 12 hours.

本発明において全製造工程とは、触媒原料から本発明の触媒を得るまでの、工程(A1)から工程(A4)の単独または組み合わせによる全ての工程である。本発明において成形工程とは、工程(A3)のうちその一部またはその全部である。 In the present invention, all production steps are all steps from step (A1) to step (A4) alone or in combination until the catalyst of the present invention is obtained from a catalyst raw material. In the present invention, the molding step is a part or all of the step (A3).

以上の調製により得られた触媒は、その形状やサイズに特に制限はないが、反応管への充填の作業性と充填後の反応管内の圧力損失等を勘案すると、形状は球形状、平均粒径は3.0mmから10.0mm、また触媒活性成分の担持率は20重量%から80重量%が好ましい。 The shape and size of the catalyst obtained by the above preparation are not particularly limited, but considering the workability of filling the reaction tube and the pressure loss in the reaction tube after filling, the shape is spherical and the average particle size is The diameter is preferably 3.0 mm to 10.0 mm, and the catalyst active component loading is preferably 20 wt% to 80 wt%.

本発明において機械的強度を表す指標である磨損度は、以下の方法により算出される。装置として林理化学社製錠剤磨損度試験器を用い、回転数を25rpm、処理時間を10分間として触媒サンプル50gを処理した後、目開きが1.70mmの標準ふるいで摩損した分をふるい、ふるい上に残った触媒重量を測定し、下記式により算出する。磨損度の値が低いほど機械的強度が優れており、好ましい範囲としてはたとえば3重量%以下、より好ましくは1.5重量%以下、さらに好ましくは0.5重量%以下である。
磨損度(重量%)=100×〔(触媒重量−ふるい上に残った触媒重量)/触媒重量〕
In the present invention, the degree of wear, which is an index representing mechanical strength, is calculated by the following method. After treating 50 g of the catalyst sample with a rotation rate of 25 rpm and a treatment time of 10 minutes, using a Hayashiri Chemical Co., Ltd. tablet friability tester as the apparatus, the portion that was worn with a standard sieve having an opening of 1.70 mm was sieved and sieved. The remaining catalyst weight is measured and calculated by the following formula. The lower the value of the friability, the better the mechanical strength. A preferable range is, for example, 3% by weight or less, more preferably 1.5% by weight or less, and further preferably 0.5% by weight or less.
Abrasion degree (% by weight) = 100 × [(catalyst weight−catalyst weight remaining on sieve) / catalyst weight]

本発明において機械的強度を表す指標である硬度は、以下方法により算出される。装置として特に制限はないが、例えば引張圧縮試験機(ミネベア社製テクノグラフTG5kN)を用い、専用アタッチメントを接続して触媒1個を置いて、圧縮モードで負荷速度を2mm/minとし、変位―荷重曲線を得る。連続的に触媒に機械的負荷をかけていき、荷重が最高値の5%以上の低下、または0.1kgf以上の低下、または触媒に目視上クラック(ひび割れ)を確認した際に即座に評価を停止し、変位−荷重曲線の極大値を触媒の硬度とする。この評価を触媒30個以上で実施し、その平均値を硬度とする。以下実施例において、硬度とは引張圧縮試験機による硬度を記載しているが、本発明の硬度はより広義にはその方式を問わず、気屋式硬度やビッカース硬度など長期反応による触媒の破損と有意な相関が見られる硬度評価の範囲内であれば、同等に硬度と見なすものとする。機械的強度の指標として、前記の通り複数個の触媒の硬度の平均値以外に、複数個の触媒の硬度のバラつきの尺度、たとえば硬度が正規分布を取るものと仮定した場合の標準偏差等やワイブル分布を取るものと仮定した場合のワイブル係数等、および複数個の触媒の硬度の最低値、等も適用可能である。 In the present invention, hardness, which is an index representing mechanical strength, is calculated by the following method. The apparatus is not particularly limited. For example, a tensile compression tester (Technograph TG5kN manufactured by Minebea Co., Ltd.) is used, a dedicated attachment is connected, one catalyst is placed, the load speed is set to 2 mm / min in the compression mode, and the displacement − Obtain a load curve. Immediate evaluation is performed when a mechanical load is continuously applied to the catalyst, and the load drops by 5% or more of the maximum value, or falls by 0.1 kgf or more, or when the catalyst is visually checked for cracks. Stop and let the maximum value of the displacement-load curve be the hardness of the catalyst. This evaluation is carried out with 30 or more catalysts, and the average value is taken as the hardness. In the following examples, the hardness refers to the hardness measured by a tensile compression tester, but the hardness of the present invention is broadly defined regardless of the method, and damage to the catalyst due to a long-term reaction such as the Kaya-ya hardness or Vickers hardness. If it is within the range of hardness evaluation in which a significant correlation is found, it shall be regarded as equivalent to hardness. As an index of mechanical strength, in addition to the average value of the hardness of a plurality of catalysts as described above, a measure of variation in hardness of a plurality of catalysts, for example, a standard deviation assuming that the hardness has a normal distribution, etc. It is also possible to apply a Weibull coefficient or the like when assuming a Weibull distribution, and minimum hardness values of a plurality of catalysts.

本発明の触媒による炭素原子数4以上のモノオレフィンから共役ジオレフィンを製造する反応の条件は、原料ガス組成として1容量%から20容量%のモノオレフィン、5容量%から20容量%の分子状酸素、0容量%から60容量%の水蒸気及び0容量%から94容量%の不活性ガス、例えば窒素、炭酸ガスを含む混合ガスを用い、反応浴温度としては200℃から500℃の範囲であり、反応圧力としては常圧から10気圧の圧力下、本発明の触媒成形体に対する原料ガスの空間速度(GHSV)は350hr−1から7000hr−1の範囲となる。反応の形態として固定床、移動床、および流動床の中で制約はないが、固定床が好ましい。 The reaction conditions for producing a conjugated diolefin from a monoolefin having 4 or more carbon atoms by the catalyst of the present invention are as follows: 1 vol% to 20 vol% monoolefin, 5 vol% to 20 vol% molecular The reaction bath temperature is in the range of 200 ° C. to 500 ° C. using a mixed gas containing oxygen, 0% to 60% by volume of water vapor, and 0% to 94% by volume of an inert gas such as nitrogen and carbon dioxide. As the reaction pressure, the space velocity (GHSV) of the raw material gas with respect to the catalyst molded body of the present invention is in the range of 350 hr −1 to 7000 hr −1 at a pressure of normal pressure to 10 atm. Although there is no restriction | limiting in a fixed bed, a moving bed, and a fluidized bed as a form of reaction, A fixed bed is preferable.

本発明において触媒の破損とは、炭素原子数4以上のモノオレフィンから共役ジオレフィンを製造する反応を触媒の存在下長期反応させることで、触媒そのものの機械的強度が低下し、充填時の触媒の形状から欠片状、さらには粉状にまで形状が変化または劣化し崩れる(破損する)現象であり、原因としては、コーク状物質の生成による触媒内部からの破損、および/または再生処理による燃焼熱または急激な燃焼ガスの膨張による破損などが考えられる。触媒の破損により、破損した触媒片が反応器内に蓄積し圧力損失の増大、反応器内に局所的に蓄積した触媒による望ましくない反応、および後段の精製系への混入等のトラブルに繋がる点が懸念される。 In the present invention, the failure of the catalyst means that the reaction of producing a conjugated diolefin from a monoolefin having 4 or more carbon atoms is allowed to react for a long time in the presence of the catalyst, so that the mechanical strength of the catalyst itself is lowered and the catalyst at the time of filling is reduced. This is a phenomenon in which the shape changes, deteriorates and breaks down (breaks) from the shape of the catalyst to the shape of fragments, and is caused by damage from the inside of the catalyst due to the formation of coke-like substances and / or combustion due to regeneration treatment Damage due to heat or rapid expansion of combustion gas is considered. Damaged catalyst pieces accumulate in the reactor due to damage to the catalyst, leading to increased pressure loss, undesirable reactions due to locally accumulated catalyst in the reactor, and problems such as contamination in the subsequent purification system. Is concerned.

本発明において機械的強度とは、前述の磨損度および硬度、その他特許文献3などにある充填粉化率など、触媒一個または複数個に対する何らかの物理的または機械的負荷による強度評価により得られる、測定結果の総称とする。 In the present invention, the mechanical strength is a measurement obtained by strength evaluation by some physical or mechanical load on one or a plurality of catalysts, such as the above-mentioned degree of wear and hardness, and the packing powder rate described in Patent Document 3, etc. It is a general term for the results.

本発明においてコーク状物質とは、共役ジオレフィンを製造する反応において、反応原料または目的生成物または反応副生成物の少なくともいずれかにより生じるものであり、その化学的組成や生成メカニズムの詳細は不明であるが、触媒表面、イナート物質、反応管内や後工程設備内に析出または付着することによって、特に工業プラントにおいては反応ガスの流通の阻害、反応管の閉塞やそれらに伴う反応のシャットダウン等さまざまなトラブルを引き起こす原因物質であるものとする。さらに、前記トラブルを回避する目的で、工業プラントでは一般的に閉塞が生じる前に反応を停止し、反応管や後工程設備等の閉塞箇所の昇温等によりコーク状物質を燃焼除去する再生処理を行う。また、コーク状物質の生成メカニズムとしては、たとえば以下が想定される。すなわち、モリブデンを含む複合金属酸化物触媒の使用の際には昇華し反応器内に析出したモリブデン化合物を起点とした各種オレフィン類の重合および高沸点化合物の凝縮によるもの、触媒および反応器内の異常酸塩基点やラジカル生成点を起点とした各種オレフィン類の重合および高沸点化合物の凝縮によるもの、共役ジオレフィンおよびその他オレフィン化合物によるディールスアルダー反応による高沸点化合物の生成および反応器内で局所的に温度が低い点における凝縮によるものなどが挙げられ、前記以外にも種々のメカニズムが知られている。 In the present invention, the coke-like substance is generated by at least one of a reaction raw material, a target product or a reaction by-product in a reaction for producing a conjugated diolefin, and details of its chemical composition and generation mechanism are unknown. However, by depositing or adhering to the catalyst surface, inert substances, reaction tubes and post-process equipment, various factors such as obstructing the reaction gas flow, blocking the reaction tubes, and shutting down the reactions associated with them, especially in industrial plants. Shall be the causative substance that causes trouble. Furthermore, for the purpose of avoiding the above-mentioned trouble, industrial plants generally stop the reaction before clogging occurs, and regenerate the coke-like substances by burning and removing them by raising the temperature of the clogged parts such as reaction tubes and post-processing equipment. I do. Moreover, as a production | generation mechanism of a coke-like substance, the following is assumed, for example. That is, when using a composite metal oxide catalyst containing molybdenum, it is caused by polymerization of various olefins and condensation of high-boiling compounds starting from a molybdenum compound that sublimates and precipitates in the reactor, and in the catalyst and reactor. Production of high-boiling compounds by the polymerization of various olefins and condensation of high-boiling compounds starting from abnormal acid-base points and radical formation points, and production of high-boiling compounds by Diels-Alder reaction with conjugated diolefins and other olefinic compounds, and local in the reactor In addition to the above, there are those caused by condensation at a low temperature, and various other mechanisms are known.

本発明の触媒は以下に示すように、少なくとも反応開始前において一定の磨損度、さらには一定の硬度を有することが好ましい。従来、当業者において用いられていた機械的強度の評価方法として、後述する磨損度が挙げられるが、これは触媒充填時の衝撃に対する破損の程度を示す物性値であり、機械的強度の評価方法として次に示す課題が挙げられる。すなわち、磨損度評価では触媒に加えられる機械的負荷が低いため、後述するように磨損度が良好な触媒でも長期反応により破損が見られることがあった。これに対して、引張圧縮試験機は硬度評価において、本発明の課題に対して好適に高い機械的負荷を加えることができ、後述するように長期反応による触媒の破損との相関を有意に確認できる点で、従来の機械的強度の評価である磨損度評価よりも厳しくかつ好適な物性評価方法である。 As shown below, the catalyst of the present invention preferably has a certain degree of abrasion and a certain hardness at least before the start of the reaction. Conventionally, as a mechanical strength evaluation method used by those skilled in the art, the degree of abrasion described later can be mentioned. This is a physical property value indicating the degree of breakage against impact at the time of catalyst filling, and is a method for evaluating mechanical strength. The following problems are listed. In other words, since the mechanical load applied to the catalyst is low in the evaluation of the degree of wear, even a catalyst with a good degree of wear as described later may be damaged by a long-term reaction. On the other hand, the tensile and compression tester can apply a high mechanical load suitably for the problem of the present invention in the hardness evaluation, and significantly confirms the correlation with the damage of the catalyst due to the long-term reaction as described later. This is a physical property evaluation method that is stricter and more suitable than the conventional evaluation of mechanical wear, which is an evaluation of mechanical strength.

磨損度は、成形時に添加した各種強度向上剤やバインダーの種類や量、またはそれらの組み合わせや、触媒組成の原子比や各結晶相の相形態およびそれらの割合、更に調合工程や乾燥工程で形成される触媒活性成分の二次粒子の直径、幾何学的構造、および凝集形態等さまざまな調製工程で影響を受けるが、その数値としては2重量%以下が好ましい。 The degree of abrasion is determined by the type and amount of various strength improvers and binders added during molding, or combinations thereof, the atomic ratio of the catalyst composition, the phase form and ratio of each crystal phase, and the formulation process and drying process. The particle size is influenced by various preparation steps such as the diameter, geometric structure, and aggregated form of secondary particles of the catalytically active component to be used, and the value is preferably 2% by weight or less.

以下、実施例により本発明を更に詳細に説明するが、本発明はその趣旨を超えない限り、以下の実施例に限定されるものではない。なお、以下において、%は特に断りがない限りmol%を意味する。また、以下においてn−ブテン転化率、ブタジエン収率、TOSの定義とは、以下の通りである。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the meaning is exceeded. In the following,% means mol% unless otherwise specified. In the following, the definitions of n-butene conversion, butadiene yield, and TOS are as follows.

n−ブテン転化率(モル%)
=(反応したn−ブテンのモル数/供給したn−ブテンのモル数)×100
ブタジエン収率(モル%)
=(生成したブタジエンのモル数/供給したn−ブテンのモル数)×100
TOS=混合ガス流通時間(時間)
n-butene conversion (mol%)
= (Number of moles of reacted n-butene / number of moles of supplied n-butene) × 100
Butadiene yield (mol%)
= (Number of moles of butadiene produced / number of moles of supplied n-butene) × 100
TOS = Mixed gas circulation time (hours)

実施例1
(触媒1の調製)
ヘプタモリブデン酸アンモニウム800重量部を80℃に加温した純水3000重量部に完全溶解させた(母液1)。次に、硝酸セシウム11重量部を純水124mlに溶解させて、母液1に加えた。次に、硝酸第二鉄275重量部、硝酸コバルト769重量部及び硝酸ニッケル110重量部を60℃に加温した純水612mlに溶解させ、母液1に加えた。続いて硝酸ビスマス165重量部を60℃に加温した純水175mlに硝酸(60重量%)42重量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(平均粒径:63.2μm、仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:1.7:1.8:7.0:1.0:0.15)に対して5重量%分の結晶性セルロース(平均粒径:89.3μm)および3重量%分のワラストナイト(平均繊維径:12μm、平均繊維長:250μm)を添加し、十分混合した後、転動造粒法にてバインダーとして33重量%グリセリン溶液を予備焼成粉体に対して33重量%用い、不活性の担体(アルミナ)に、担持率が50重量%となるように球状に担持成形した。こうして得られた球状成形品を、500℃、5時間の条件で焼成し、本発明の触媒1を得た。触媒1の磨損度は0.13重量%、硬度は2.7kgf(26.5N)であった。
Example 1
(Preparation of catalyst 1)
800 parts by weight of ammonium heptamolybdate was completely dissolved in 3000 parts by weight of pure water heated to 80 ° C. (Mother solution 1). Next, 11 parts by weight of cesium nitrate was dissolved in 124 ml of pure water and added to the mother liquor 1. Next, 275 parts by weight of ferric nitrate, 769 parts by weight of cobalt nitrate and 110 parts by weight of nickel nitrate were dissolved in 612 ml of pure water heated to 60 ° C. and added to the mother liquor 1. Subsequently, 165 parts by weight of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 42 parts by weight of nitric acid (60% by weight) to 175 ml of pure water heated to 60 ° C. and added to the mother liquor 1. This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-fired at 440 ° C. for 5 hours. The pre-fired powder thus obtained (average particle size: 63.2 μm, the atomic ratio calculated from the charged raw materials is Mo: Bi: Fe: Co: Ni: Cs = 12: 1.7: 1.8: 7. 0: 1.0: 0.15) 5% by weight of crystalline cellulose (average particle size: 89.3 μm) and 3% by weight of wollastonite (average fiber diameter: 12 μm, average fiber length: 250 μm) is added and mixed well, and then 33% by weight glycerin solution is used as a binder in the rolling granulation method, and 33% by weight of the pre-fired powder is used. The support was molded into a spherical shape so as to be 50% by weight. The spherical molded product thus obtained was calcined at 500 ° C. for 5 hours to obtain the catalyst 1 of the present invention. Catalyst 1 had a friability of 0.13% by weight and a hardness of 2.7 kgf (26.5 N).

実施例2
(触媒2の調製)
実施例1で得られた予備焼成粉体に対して、5重量%分の結晶性セルロースを全く添加しなかった以外は、触媒1と同じ条件で触媒を調製し、本発明の触媒2を得た。触媒2の磨損度は0.42重量%、硬度は7.2kgf(70.6N)であった。
Example 2
(Preparation of catalyst 2)
A catalyst was prepared under the same conditions as catalyst 1 except that 5% by weight of crystalline cellulose was not added to the pre-fired powder obtained in Example 1 to obtain catalyst 2 of the present invention. It was. Catalyst 2 had a friability of 0.42% by weight and a hardness of 7.2 kgf (70.6 N).

実施例3
(触媒3の調製)
実施例1で得られた予備焼成粉体に対して5重量%分の結晶性セルロース(平均粒径:89.3μm)および3重量%分のワラストナイト(平均繊維径:40μm、平均繊維長:600μm)を添加した以外は、触媒1と同じ条件で触媒を調製し、本発明の触媒3を得た。触媒3の磨損度は0.22重量%、硬度は3.1kgf(30.4N)であった。
Example 3
(Preparation of catalyst 3)
5% by weight of crystalline cellulose (average particle size: 89.3 μm) and 3% by weight of wollastonite (average fiber diameter: 40 μm, average fiber length) with respect to the pre-fired powder obtained in Example 1 The catalyst 3 of the present invention was obtained under the same conditions as for the catalyst 1 except that 600 μm) was added. The degree of abrasion of the catalyst 3 was 0.22% by weight, and the hardness was 3.1 kgf (30.4 N).

実施例4
(触媒4の調製)
実施例1で得られた予備焼成粉体に対して5重量%分の結晶性セルロース(平均粒径:89.3μm)および3重量%分のワラストナイト(平均繊維径:12μm、平均繊維長:156μm)を添加した以外は、触媒1と同じ条件で触媒を調製し、本発明の触媒4を得た。触媒4の磨損度は0.53重量%、硬度は2.7kgf(26.5N)であった。
Example 4
(Preparation of catalyst 4)
5% by weight of crystalline cellulose (average particle size: 89.3 μm) and 3% by weight of wollastonite (average fiber diameter: 12 μm, average fiber length) with respect to the pre-fired powder obtained in Example 1 The catalyst 4 of the present invention was obtained under the same conditions as for the catalyst 1 except that 156 μm) was added. Catalyst 4 had a friability of 0.53% by weight and a hardness of 2.7 kgf (26.5 N).

実施例5
(触媒5の調製)
実施例1で得られた予備焼成粉体に対して5重量%分の結晶性セルロース(平均粒径:89.3μm)および3重量%分のワラストナイト(平均繊維径:2μm、平均繊維長:5μm)を添加した以外は、触媒1と同じ条件で触媒を調製し、本発明の触媒5を得た。触媒5の磨損度は0.07重量%、硬度は2.5kgf(24.5N)であった。
Example 5
(Preparation of catalyst 5)
5% by weight of crystalline cellulose (average particle size: 89.3 μm) and 3% by weight of wollastonite (average fiber diameter: 2 μm, average fiber length) with respect to the pre-fired powder obtained in Example 1 The catalyst 5 of the present invention was obtained under the same conditions as for the catalyst 1, except that 5 μm) was added. The degree of abrasion of the catalyst 5 was 0.07% by weight, and the hardness was 2.5 kgf (24.5 N).

実施例6
(触媒6の調製)
実施例1で得られた予備焼成粉体に対して5重量%分の結晶性セルロース(平均粒径:89.3μm)および3重量%分のワラストナイト(平均繊維径:2μm、平均繊維長:8μm)を添加した以外は、触媒1と同じ条件で触媒を調製し、本発明の触媒6を得た。触媒6の磨損度は0.19重量%、硬度は2.7kgf(26.5N)であった。
Example 6
(Preparation of catalyst 6)
5% by weight of crystalline cellulose (average particle size: 89.3 μm) and 3% by weight of wollastonite (average fiber diameter: 2 μm, average fiber length) with respect to the pre-fired powder obtained in Example 1 The catalyst 6 of the present invention was obtained under the same conditions as for the catalyst 1, except that 8 μm) was added. The abrasion loss of the catalyst 6 was 0.19% by weight, and the hardness was 2.7 kgf (26.5 N).

実施例7
(触媒7の調製)
実施例1で得られた予備焼成粉体に対して5重量%分の結晶性セルロース(平均粒径:89.3μm)および3重量%分のワラストナイト(平均繊維径:50μm、平均繊維長:840μm)を添加した以外は、触媒1と同じ条件で触媒を調製し、本発明の触媒7を得た。触媒7の磨損度は0.27重量%、硬度は2.5kgf(24.5N)であった。
Example 7
(Preparation of catalyst 7)
5% by weight of crystalline cellulose (average particle diameter: 89.3 μm) and 3% by weight of wollastonite (average fiber diameter: 50 μm, average fiber length) with respect to the pre-fired powder obtained in Example 1 The catalyst 7 of the present invention was obtained under the same conditions as the catalyst 1 except that 840 μm) was added. The degree of abrasion of the catalyst 7 was 0.27% by weight, and the hardness was 2.5 kgf (24.5 N).

実施例8
(触媒8の調製)
実施例1で得られた予備焼成粉体に対して5重量%分の結晶性セルロース(平均粒径:89.3μm)および3重量%分のワラストナイト(平均繊維径:50μm、平均繊維長:620μm)を添加した以外は、触媒1と同じ条件で触媒を調製し、本発明の触媒8を得た。触媒8の磨損度は0.32重量%、硬度は2.7kgf(26.5N)であった。
Example 8
(Preparation of catalyst 8)
5% by weight of crystalline cellulose (average particle diameter: 89.3 μm) and 3% by weight of wollastonite (average fiber diameter: 50 μm, average fiber length) with respect to the pre-fired powder obtained in Example 1 The catalyst 8 of the present invention was obtained under the same conditions as in the catalyst 1 except that 620 μm) was added. The abrasion loss of the catalyst 8 was 0.32% by weight, and the hardness was 2.7 kgf (26.5 N).

実施例9
(触媒9の調製)
実施例1で得られた予備焼成粉体に対して5重量%分の結晶性セルロース(平均粒径:89.3μm)および3重量%分のワラストナイト(平均繊維径:50μm、平均繊維長:240μm)を添加した以外は、触媒1と同じ条件で触媒を調製し、本発明の触媒9を得た。触媒9の磨損度は0.28重量%、硬度は2.7kgf(26.5N)であった。
Example 9
(Preparation of catalyst 9)
5% by weight of crystalline cellulose (average particle diameter: 89.3 μm) and 3% by weight of wollastonite (average fiber diameter: 50 μm, average fiber length) with respect to the pre-fired powder obtained in Example 1 The catalyst 9 of the present invention was obtained under the same conditions as for the catalyst 1 except that 240 μm) was added. The degree of wear of the catalyst 9 was 0.28% by weight, and the hardness was 2.7 kgf (26.5 N).

比較例1
(触媒10の調製)
実施例1で得られた予備焼成粉体に対して5重量%分の結晶性セルロース(平均粒径:89.3μm)を添加し、十分混合した後、転動造粒法にてバインダーとして33重量%グリセリン溶液を予備焼成粉体に対して40重量%用いた以外は、触媒1と同じ条件で触媒を調製し、比較用の触媒10を得た。触媒10の磨損度は0.31重量%、硬度は1.6kgf(15.7N)であった。
Comparative Example 1
(Preparation of catalyst 10)
5% by weight of crystalline cellulose (average particle size: 89.3 μm) was added to the pre-fired powder obtained in Example 1 and mixed well, and then 33 as a binder by rolling granulation. A catalyst 10 for comparison was obtained by preparing a catalyst under the same conditions as in the catalyst 1 except that 40% by weight of the glycerin solution by weight was used with respect to the pre-fired powder. The abrasion loss of the catalyst 10 was 0.31% by weight, and the hardness was 1.6 kgf (15.7 N).

比較例2
(触媒11の調製)
実施例1で得られた予備焼成粉体に対して5重量%分の結晶性セルロース(平均粒径:89.3μm)および3重量%分のタルク(平均粒径:57μm)を添加し、十分混合した後、転動造粒法にてバインダーとして33重量%グリセリン溶液を予備焼成粉体に対して40重量%用いた以外は、触媒1と同じ条件で触媒を調製し、比較用の触媒11を得た。触媒11の磨損度は0.20重量%、硬度は1.4kgf(13.7N)であった。
Comparative Example 2
(Preparation of catalyst 11)
5% by weight of crystalline cellulose (average particle size: 89.3 μm) and 3% by weight of talc (average particle size: 57 μm) were added to the pre-fired powder obtained in Example 1, and sufficient After mixing, a catalyst was prepared under the same conditions as in Catalyst 1 except that 40% by weight of a 33% by weight glycerin solution was used as a binder in the rolling granulation method with respect to the pre-fired powder. Got. The degree of abrasion of the catalyst 11 was 0.20% by weight, and the hardness was 1.4 kgf (13.7 N).

比較例3
(触媒12の調製)
実施例1で得られた予備焼成粉体に対して、5重量%分の結晶性セルロースを全く添加しなかった、かつ3重量%分のタルク(平均粒径:57μm)を添加した以外は、触媒1と同じ条件で触媒を調製し、比較用の触媒12を得た。触媒12の磨損度は0.24重量%、硬度は1.9kgf(18.6N)であった。
Comparative Example 3
(Preparation of catalyst 12)
Except that 5% by weight of crystalline cellulose was not added at all to the pre-fired powder obtained in Example 1, and 3% by weight of talc (average particle diameter: 57 μm) was added, A catalyst was prepared under the same conditions as catalyst 1, and a comparative catalyst 12 was obtained. The degree of wear of the catalyst 12 was 0.24% by weight, and the hardness was 1.9 kgf (18.6 N).

比較例4
(触媒13の調製)
実施例1で得られた予備焼成粉体に対して助剤を全く添加しなかった以外は、触媒1と同じ条件で触媒を調製し、比較用の触媒13を得た。触媒13の磨損度は0.48重量%、硬度は2.3kgf(22.5N)であった。
Comparative Example 4
(Preparation of catalyst 13)
A catalyst was prepared under the same conditions as in Catalyst 1 except that no auxiliary agent was added to the pre-fired powder obtained in Example 1, and a comparative catalyst 13 was obtained. The degree of wear of the catalyst 13 was 0.48% by weight, and the hardness was 2.3 kgf (22.5 N).

試験例1
(コーク析出反応)
実施例2で得られた触媒2を以下の方法により反応評価した。触媒53mlをステンレス鋼反応管に充填し、ガス体積比率が1−ブテン:酸素:窒素:水蒸気=1:1:7:1の混合ガスを用い、常圧下、GHSV1200hr−1の条件で、1−ブテン転化率=80.0±1.0%を保持できるよう反応浴温度を変化させてTOS300時間まで反応し、コーク状物質を触媒上に析出させた。反応管出口で、コンデンサーにより液成分とガス成分を分離し、ガス成分中の各成分を各々水素炎イオン化検出器と熱伝導検出器が装着されたガスクロマトグラフで定量分析した。ガスクロマトグラフにより得られた各データはファクター補正し、1−ブテン転化率およびブタジエン選択率を算出した。TOS280時間におけるブタジエン選択率は87.8%であった。
Test example 1
(Coke precipitation reaction)
The reaction of the catalyst 2 obtained in Example 2 was evaluated by the following method. A stainless steel reaction tube was charged with 53 ml of a catalyst, and a gas mixture with a gas volume ratio of 1-butene: oxygen: nitrogen: water vapor = 1: 1: 7: 1 was used under the conditions of GHSV 1200 hr −1 under normal pressure. The reaction bath temperature was changed so that the butene conversion ratio = 80.0 ± 1.0% was maintained, and the reaction was continued for up to 300 hours of TOS to deposit a coke-like substance on the catalyst. At the outlet of the reaction tube, a liquid component and a gas component were separated by a condenser, and each component in the gas component was quantitatively analyzed by a gas chromatograph equipped with a flame ionization detector and a heat conduction detector. Each data obtained by gas chromatograph was factor corrected, and 1-butene conversion and butadiene selectivity were calculated. Butadiene selectivity at TOS 280 hours was 87.8%.

(コーク燃焼反応)
コーク析出反応の後、触媒上に析出したコーク状物質を燃焼させる目的で、反応浴温度を400℃としてガス体積比率が酸素:窒素=1:3の混合ガスを用い、常圧下、空間速度400hr−1でTOS10時間程度、コーク状物質を燃焼させた。コーク析出反応と同様の定量分析を行い、反応管出口ガス中のCOおよびCOの生成量がゼロになった時点でコーク状物質の燃焼が完了したと判断した。
(Coke combustion reaction)
For the purpose of burning the coke-like substance deposited on the catalyst after the coke deposition reaction, a reaction bath temperature is set to 400 ° C., a mixed gas having a gas volume ratio of oxygen: nitrogen = 1: 3, and a space velocity of 400 hr under normal pressure. The coke-like substance was burned at -1 for about 10 hours of TOS. The same quantitative analysis as in the coke precipitation reaction was performed, and it was determined that the combustion of the coke-like substance was completed when the amount of CO 2 and CO produced in the reaction tube outlet gas became zero.

(破損率評価)
コーク燃焼反応の後、反応管より反応後の触媒を抜出し、3.35mmの篩にて分級した。篩の下に落ちた欠片状および粉状にまで破損した触媒を触媒片として秤量し、以下式により算出した触媒2の長期試験による破損率は、0.13重量%であった。
破損率(重量%)
= 触媒片の重量(g)/コーク析出反応前の充填触媒重量(g)×100
(Damage rate evaluation)
After the coke combustion reaction, the catalyst after the reaction was extracted from the reaction tube and classified with a 3.35 mm sieve. The broken piece and powdered catalyst that fell under the sieve were weighed as catalyst pieces, and the failure rate of the catalyst 2 calculated by the following equation was 0.13 wt%.
Damage rate (% by weight)
= Weight of catalyst piece (g) / weight of packed catalyst before coke deposition reaction (g) x 100

比較試験例1
試験例1において、評価する触媒を比較例1により得られた触媒10とした以外は、同じ反応条件で長期試験による破損率の評価を行った。触媒10の破損率は、1.55重量%であった。TOS280時間におけるブタジエン選択率は87.1%であった。
Comparative Test Example 1
In Test Example 1, the damage rate was evaluated by a long-term test under the same reaction conditions except that the catalyst to be evaluated was the catalyst 10 obtained in Comparative Example 1. The failure rate of the catalyst 10 was 1.55% by weight. Butadiene selectivity at TOS 280 hours was 87.1%.

比較試験例2
試験例1において、評価する触媒を比較例3により得られた触媒12とした以外は、同じ反応条件で長期試験による破損率の評価を行った。触媒12の破損率は、1.86重量%であった。TOS280時間におけるブタジエン選択率は86.6%であった。
Comparative test example 2
In Test Example 1, the damage rate was evaluated by a long-term test under the same reaction conditions except that the catalyst to be evaluated was the catalyst 12 obtained in Comparative Example 3. The failure rate of the catalyst 12 was 1.86% by weight. Butadiene selectivity at TOS 280 hours was 86.6%.

比較試験例3
試験例1において、評価する触媒を比較例4により得られた触媒13とした以外は、同じ反応条件で長期試験による破損率の評価を行った。触媒13の破損率は、1.16重量%であった。TOS280時間におけるブタジエン選択率は87.4%であった。
Comparative test example 3
In Test Example 1, the damage rate was evaluated by a long-term test under the same reaction conditions except that the catalyst to be evaluated was the catalyst 13 obtained in Comparative Example 4. The failure rate of the catalyst 13 was 1.16% by weight. Butadiene selectivity at TOS 280 hours was 87.4%.

表1に実施例、比較例、試験例、および比較試験例による磨損度、硬度、および破損率の結果を示す。表1より明らかなように、本発明による、鉱物繊維状無機助剤の添加により硬度が向上し、有機助剤を添加しないことによりさらに顕著に触媒の硬度を向上できることが分かる。さらに硬度が向上した触媒では、長期反応による破損率を有意に抑制できており、本発明の触媒が反応の長期安定性を改善できることを示唆している。触媒10では磨損度は良好にもかかわらず、長期反応による触媒の破損が見られた。また、触媒2と触媒10の比較より、硬度評価は、長期反応による触媒の破損との相関を有意に付けられる点で、磨損度評価よりも厳しくかつ好適な反応の長期安定性に対する物性評価方法であると結論付けられる。すなわち当業者においても公知ではなかったが、長期反応による破損と相関のある物性評価方法として、従来の機械的強度の評価方法である磨損度ではなく、硬度が好適であることが本発明により明らかになった。 Table 1 shows the results of the degree of wear, hardness, and breakage rate in Examples, Comparative Examples, Test Examples, and Comparative Test Examples. As is apparent from Table 1, it can be seen that the hardness is improved by the addition of the mineral fibrous inorganic auxiliary according to the present invention, and the hardness of the catalyst can be further remarkably improved by not adding the organic auxiliary. Furthermore, in the catalyst with improved hardness, the damage rate due to the long-term reaction can be significantly suppressed, suggesting that the catalyst of the present invention can improve the long-term stability of the reaction. In the catalyst 10, although the degree of abrasion was good, the catalyst was damaged due to a long-term reaction. In addition, the comparison between the catalyst 2 and the catalyst 10 shows that the hardness evaluation can be significantly correlated with the damage of the catalyst due to the long-term reaction. It is concluded that That is, although not known to those skilled in the art, it is apparent from the present invention that hardness is suitable as a physical property evaluation method correlated with damage due to long-term reaction, not the degree of abrasion, which is a conventional mechanical strength evaluation method. Became.

Claims (9)

炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素反応により共役ジオレフィンを製造するための触媒であって、複合金属酸化物と鉱物繊維状無機助剤を成形することを特徴とする共役ジオレフィン製造用成形触媒。 A catalyst for producing a conjugated diolefin from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen by catalytic oxidative dehydrogenation, and molding a composite metal oxide and a mineral fibrous inorganic auxiliary A shaped catalyst for producing conjugated diolefins. 下記式(A)の条件を満たすことを特徴とする、請求項1に記載の共役ジオレフィン製造用成形触媒、
0.1≦R(=La/Dc)≦12 (A)
(式中、Laは鉱物繊維状無機助剤の平均繊維長であり、Dcは予備焼成工程により得られる予備焼成粉体の平均粒径である。)。
The molded catalyst for conjugated diolefin production according to claim 1, characterized in that the condition of the following formula (A) is satisfied:
0.1 ≦ R (= La / Dc) ≦ 12 (A)
(In the formula, La is the average fiber length of the mineral fibrous inorganic auxiliary, and Dc is the average particle diameter of the pre-baked powder obtained by the pre-baking step).
有機助剤を含有しない、請求項1または請求項2に記載の共役ジオレフィン製造用成形触媒。 The shaping | molding catalyst for conjugated diolefin manufacture of Claim 1 or Claim 2 which does not contain an organic adjuvant. 複合金属酸化物が、下記組成式(D)を満たす、請求項1から請求項3のいずれか1項に記載の共役ジオレフィン製造用成形触媒、
Mo12BiFeCoNi・・・・(D)
(式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロビウム、アンチモン、タングステン、鉛、亜鉛、セリウム、タリウムから選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f及びgは各々モリブデン12に対するビスマス、鉄、コバルト、ニッケル、X、Y及びZの原子比を示し、0.3<a<3.5、0.6<b<3.4、5<c<8、0<d<3、0<e<0.5、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である。)。
The molded catalyst for conjugated diolefin production according to any one of claims 1 to 3, wherein the composite metal oxide satisfies the following composition formula (D):
Mo 12 Bi a Fe b Co c Ni d X e Y f Z g O h ···· (D)
(In the formula, X represents at least one element of an alkali metal selected from lithium, sodium, potassium, rubidium, and cesium, and Y represents at least one element of an alkaline earth metal selected from magnesium, calcium, strontium, and barium. Z represents at least one element selected from lanthanum, cerium, praseodymium, neodymium, samarium, eurobium, antimony, tungsten, lead, zinc, cerium, thallium, and a, b, c, d, e, f and g represent atomic ratios of bismuth, iron, cobalt, nickel, X, Y and Z, respectively, with respect to molybdenum 12, and 0.3 <a <3.5, 0.6 <b <3.4, 5 <c <8, 0 <d <3, 0 <e <0.5, 0 ≦ f ≦ 4.0, 0 ≦ g ≦ 2.0, and h satisfies the oxidation state of other elements. Is a numerical value to be.).
炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素反応により共役ジオレフィンを製造するための触媒であって、複合金属酸化物と鉱物繊維状無機助剤を担体に担持したことを特徴とする、請求項1から請求項4のいずれか1項に記載の共役ジオレフィン製造用担持成形触媒。 A catalyst for producing a conjugated diolefin from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen by catalytic oxidative dehydrogenation, comprising a composite metal oxide and a mineral fibrous inorganic auxiliary as a support The supported molded catalyst for producing conjugated diolefin according to any one of claims 1 to 4, which is supported. 下記工程を含むことを特徴とする、請求項1〜5のいずれか一項に記載の共役ジオレフィン製造用触媒の製造方法:
工程(A1):複合金属酸化物の各金属を含有する化合物を含む混合溶液またはスラリーを20℃以上90℃以下の条件化で調製し、該混合溶液または該スラリーを乾燥して乾燥体を得る工程、
工程(A2):工程(A1)で得られた乾燥体を予備焼成し、予備焼成粉体を得る工程、
工程(A3):工程(A2)で得られた予備焼成粉体と鉱物繊維状無機助剤を成形し、成形体を得る工程、
工程(A4):工程(A3)で得られた成形体を本焼成し、共役ジオレフィン製造用触媒を得る工程。
The manufacturing method of the catalyst for conjugated diolefin manufacturing as described in any one of Claims 1-5 characterized by including the following process:
Step (A1): A mixed solution or slurry containing a compound containing each metal of the composite metal oxide is prepared under conditions of 20 ° C. or higher and 90 ° C. or lower, and the mixed solution or the slurry is dried to obtain a dried product. Process,
Step (A2): a step of pre-baking the dried body obtained in step (A1) to obtain a pre-baked powder,
Step (A3): a step of molding the pre-fired powder obtained in Step (A2) and the mineral fibrous inorganic auxiliary to obtain a molded body,
Step (A4): A step of subjecting the molded body obtained in the step (A3) to main firing to obtain a conjugated diolefin production catalyst.
予備焼成の温度が200℃以上600℃以下であり、本焼成温度が200℃以上600℃以下である、請求項6に記載の共役ジオレフィン製造用成形触媒の製造方法。 The manufacturing method of the shaping | molding catalyst for conjugated diolefin manufacture of Claim 6 whose temperature of preliminary calcination is 200 degreeC or more and 600 degrees C or less and whose main calcination temperature is 200 degreeC or more and 600 degrees C or less. 担体に複合金属酸化物と鉱物繊維状無機助剤をバインダーとともにコーティングする成形工程を有し、かつ触媒活性成分の担持率が20重量%以上80重量%以下であり、触媒の平均粒径が3.0mm以上10.0mm以下である、請求項6または請求項7に記載の共役ジオレフィン製造用担持成形触媒の製造方法。 The carrier has a molding step of coating a composite metal oxide and a mineral fibrous inorganic auxiliary together with a binder, the loading ratio of the catalytically active component is 20% by weight or more and 80% by weight or less, and the average particle size of the catalyst is 3 The method for producing a supported molded catalyst for producing a conjugated diolefin according to claim 6 or 7, wherein the catalyst is 0.0 mm or more and 10.0 mm or less. 全製造工程において、有機助剤を使用しない、請求項6から請求項8のいずれか1項に記載の成形触媒の製造方法。 The manufacturing method of the shaping | molding catalyst of any one of Claim 6 to 8 which does not use an organic adjuvant in all the manufacturing processes.
JP2016205848A 2015-10-23 2016-10-20 Catalyst for producing conjugated diolefin and method for producing the same Pending JP2017080738A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015209038 2015-10-23
JP2015209038 2015-10-23

Publications (1)

Publication Number Publication Date
JP2017080738A true JP2017080738A (en) 2017-05-18

Family

ID=58714445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016205848A Pending JP2017080738A (en) 2015-10-23 2016-10-20 Catalyst for producing conjugated diolefin and method for producing the same

Country Status (1)

Country Link
JP (1) JP2017080738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018199127A (en) * 2017-05-29 2018-12-20 日本化薬株式会社 Catalyst for manufacturing conjugated diolefin, and manufacturing method therefor
WO2022190962A1 (en) * 2021-03-09 2022-09-15 千代田化工建設株式会社 Butadiene production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018199127A (en) * 2017-05-29 2018-12-20 日本化薬株式会社 Catalyst for manufacturing conjugated diolefin, and manufacturing method therefor
JP7061422B2 (en) 2017-05-29 2022-04-28 日本化薬株式会社 Catalyst for producing conjugated diolefin and its production method
WO2022190962A1 (en) * 2021-03-09 2022-09-15 千代田化工建設株式会社 Butadiene production method

Similar Documents

Publication Publication Date Title
JP6559039B2 (en) Conjugated diolefin production catalyst and production method thereof
JP7209578B2 (en) Catalyst and its manufacturing method
JP2017080738A (en) Catalyst for producing conjugated diolefin and method for producing the same
JP6564847B2 (en) Conjugated diolefin production catalyst and production method thereof
JP6731927B2 (en) Catalyst for producing conjugated diolefin and method for producing the same
JP7061422B2 (en) Catalyst for producing conjugated diolefin and its production method
JP2017080739A (en) Catalyst for producing conjugated diolefin and method for producing the same
WO2017146024A1 (en) Method for producing conjugated diolefin
JP6779911B2 (en) Regeneration method of catalyst for butadiene production
WO2017146025A1 (en) Method for producing conjugated diolefin
JP7191482B2 (en) Catalyst and its manufacturing method
JP6734178B2 (en) Catalyst for selectively reducing purification system inhibitor and method for producing the same
JP6534217B2 (en) Method of regenerating catalyst for conjugated diolefin production
JP6534216B2 (en) Method of regenerating catalyst for conjugated diolefin production
JP2018140951A (en) Manufacturing method of conjugated diolefin
JP2018140952A (en) Manufacturing method of conjugated diolefin