JP6733080B1 - Symmetrical streamline spherical tube shape impeller wind turbine - Google Patents

Symmetrical streamline spherical tube shape impeller wind turbine Download PDF

Info

Publication number
JP6733080B1
JP6733080B1 JP2020003354A JP2020003354A JP6733080B1 JP 6733080 B1 JP6733080 B1 JP 6733080B1 JP 2020003354 A JP2020003354 A JP 2020003354A JP 2020003354 A JP2020003354 A JP 2020003354A JP 6733080 B1 JP6733080 B1 JP 6733080B1
Authority
JP
Japan
Prior art keywords
blade
wind
symmetrical
blades
wind turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2020003354A
Other languages
Japanese (ja)
Other versions
JP2021110301A (en
Inventor
明久 松園
明久 松園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020003354A priority Critical patent/JP6733080B1/en
Application granted granted Critical
Publication of JP6733080B1 publication Critical patent/JP6733080B1/en
Publication of JP2021110301A publication Critical patent/JP2021110301A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

【課題】世界的にCOP25やESG投資が叫ばれ、これからの電気自動車時代の為にも昼夜、天候に関係なく完全にクリーンな電気エネルギーを身近に確保出来ることが重要で、その為には大型では主流の風力発電をもっと身近に使いやすく手軽にし、住宅街や日陰でも静かに発電でき、小型軽量安価なものから多様な用途に対応でき且つ、発電性能の良いことが求められる。【解決手段】流体力学の循環の概念から、対称ジューコフスキー翼の優れた特徴に加え、激変する風向速や弱風から台風迄可動出来るよう従来翼の長尺方向の面積構造を見直し、流体特性が優れた鳥の羽根の概念から構成要素を小さく、はばたけるようにした、対称流線球面チューブ形状羽根により、抗力を抑えて強風に強くし、且つ表裏2面の迎角と、羽根周りの曲面により揚抗比を増加させる構造。【選択図】図1[Problem] Investment in COP25 and ESG has been exclaimed all over the world, and it is important for the future era of electric vehicles to be able to secure completely clean electric energy around the day and night, regardless of the weather. Therefore, it is required that the mainstream wind power generation be more accessible and convenient, can generate power quietly even in a residential area or in the shade, and can be used in a variety of applications, from small, lightweight and inexpensive, and have good power generation performance. SOLUTION: From the concept of circulation of fluid dynamics, in addition to the excellent features of the symmetrical Zhukovsky blade, the longitudinal area structure of the conventional blade is reviewed so that it can move from drastically changing wind speed and weak wind to typhoon, and fluid characteristics The symmetric streamline spherical tube-shaped blade, which has small components and is designed to spread from the concept of the excellent bird's blade, suppresses drag and strengthens against strong winds, and the angle of attack of the two front and back surfaces and the curved surface around the blade The structure that increases the lift-drag ratio. [Selection diagram] Figure 1

Description

本発明は流体力学の循環理論等の概念より、弱風から暴風域で且つ、風向きが激変反転する厳しい運用環境でも効率良い風力発電を目的に、多様なサイズとデザイン形状の風車を可能とする翼を構成する、羽根の技術に関するものである。
The present invention enables wind turbines of various sizes and design shapes for the purpose of efficient wind power generation in a severe operating environment in which the wind direction changes drastically due to the concept of the circulation theory of fluid dynamics and the like. The present invention relates to the technology of blades that make up blades.

風力発電は昼夜、天候に関わらず風さえあれば発電できるが、ビル風、ベランダ風など市街地では風向速が激変する為、出力が不安定等から敬遠されており、風向き反転対応が不要で、軽風域(1.6〜3.3m/秒:気象庁風力)から台風等迄の全風域で発電出来る性能と耐久性を備えた風力発電技術が求められている。 Wind power can be generated by day and night regardless of the weather, as long as there is wind, but the wind speed changes drastically in urban areas such as building wind and veranda, so the output is shunned due to unstable output, etc. There is a demand for wind power generation technology that has the performance and durability to generate power in all wind regions from light wind regions (1.6 to 3.3 m/sec: JMA wind power) to typhoons.

そこで、風車の羽根の軽量化を図り、これに伴い、大きな遠心力や風圧に対する安全性の向上を図ろうとする公知の特許(特許文献1:本書類添付図8)、請求項2では「前記回転軸方向とほぼ直角に固定され、上下方向に対向する支持部材相互間に、前記羽根が取り付けられている」とあるが、本発明の羽根は、前縁先端の取り付け金具兼振幅バネ構造で全く異なる。
また請求項10では「羽根と前記垂直軸との間に羽根の捩れを防止するための係止手段を設けた」とあるが、本発明の羽根は、強風時の大きな抗力を受ければ、アーム翼への取り付け金具兼振幅バネ(107)により羽根全体が撓って緩やかに且つ、羽根をはばたかせ(203)、振幅運動もエネルギーとして活用する全く逆の構造で異なる。
また請求項22では「飛行機の翼状の断面を有する羽根であって、該羽根の揚力発生方向の反対側が切り欠かれている」と、請求項4では、「被覆部材に絞り込むように内包された羽根固定用芯とを備える」あり、るが、本発明の羽根は対称流線球面チューブ形状で全く異なる。
Therefore, a known patent (Patent Document 1: FIG. 8 attached to this document) that aims to reduce the weight of the blades of a wind turbine and to improve the safety against a large centrifugal force and wind pressure, in accordance with this, claims 2 The blades are fixed between the support members that are fixed substantially at right angles to the rotation axis direction and that face each other in the vertical direction." Totally different.
Further, in claim 10, "the locking means for preventing the blade from being twisted is provided between the blade and the vertical axis". However, the blade of the present invention has an arm if it receives a large drag force in a strong wind. The entire blade is flexed gently by the blade mounting metal fitting/amplitude spring (107), and the blade is flapping (203) and the amplitude motion is also utilized as energy.
Further, in claim 22, "a blade having a wing-shaped cross section of an airplane, and a side opposite to a direction in which the lift is generated of the blade is cut away", and in claim 4, "a cover member is included so as to be narrowed down. However, the blade of the present invention is completely different in the shape of a symmetrical streamline spherical tube.

全体構成の類似例として「風車において、回転軸に加わる撓み現象を低減させ、スムーズな回転を実現する」公知の特許(特許文献2:本書類添付図9)、請求項1では「前記回転羽根は、回転軸に対しその回転軌跡が円錐の壁面に沿った形状に回転すべく、所定角度傾斜して取付けられる」とあるが本発明の羽根は円錐面でなく円筒面で、請求項3では「前記回転羽根の傾斜角度が水平面に対し30〜80°の傾斜角度に設定されて」とあるが本発明の羽根は傾斜角度が無く回転面に並行で異なり、請求項4では「 前記回転羽根が上部側で幅狭で、下部側に向けて幅広となる略台形状に形成されている」とあるが本発明の羽根は傾斜角度が無く、請求項5では「回転羽根をその周囲に多段に配置した」とあるが、本発明は対称流線球面チューブ形状羽根(図1)と羽根基本形状が全く異なり、縦軸型風車は、ツリー・アーム翼式縦軸型風力発電装置(図5)と、スパイラル・アーム翼式縦軸型風力発電装置(図6)も、全体構造も全く異なる。 As a similar example of the overall configuration, in a well-known patent (Patent Document 2: FIG. 9 attached to this document) that "reduces a bending phenomenon applied to a rotating shaft in a wind turbine to realize smooth rotation," in claim 1, "the rotating blade Is attached at a predetermined angle so that the rotation locus of the blade rotates along the wall surface of the cone with respect to the rotation axis." The blade of the present invention is not a conical surface but a cylindrical surface. Although "the inclination angle of the rotary blade is set to an inclination angle of 30 to 80 with respect to the horizontal plane", the blade of the present invention has no inclination angle and is different in parallel to the rotating surface. Is formed in a substantially trapezoidal shape that is narrower on the upper side and wider toward the lower side." However, the blade of the present invention has no inclination angle. The present invention is completely different from the symmetrical streamline spherical tube-shaped blade (FIG. 1) in basic blade shape, and the vertical axis type wind turbine is a tree-arm blade type vertical axis type wind turbine generator (FIG. 5). ) And the spiral arm wing type vertical axis wind turbine generator (Fig. 6) are completely different in overall structure.

本発明の図5のツリー・アームと外形が少し似ている例として「垂直な回転シャフトに取付けられたサボニウスロータ及びダリウスロータの組合せからなる」公知の特許(特許文献3:本書類添付図10)の請求項1では「回転シャフトに設けられたサボニウスロータ及びダリウスロータの組合せ」とあるが、異なる構造のツリー・アームに対称流線球面チューブ形状羽根アーム(100)が取り付けられ、駆動する羽根の位置もそれぞれ可変で、揚抗比も高く機動性も良いので、サボニウスロータも無く機能も全体構造も全く異なる。 As an example of the present invention, which is slightly similar to the tree arm of FIG. 5 in outer shape, a known patent "consisting of a combination of a Savonius rotor and a Darrieus rotor mounted on a vertical rotating shaft" (Patent Document 3: FIG. 10 attached to this document). ), there is a "combination of a Savonius rotor and a Darrieus rotor mounted on a rotating shaft", but a blade having a symmetrical streamline spherical tube-shaped blade arm (100) attached to a tree arm having a different structure is used. Since the position of each is also variable, the lift-drag ratio is high and the maneuverability is good, there is no Savonius rotor and the function and overall structure are completely different.

また回転翼を捩じった類似例として、課題で「始動用の電動機を必要とせずに風のみの力で始動できる」とするために、解決手段で「 回転軸1側に取り付ける羽根3の上下各取り付け位置が回転軸の回転方向に沿って捩じれ、ずれている」と、公知の特許(特許文献4:本書類添付図11)の請求項1では「垂直に設けた回転軸と、この回転軸に取り付けた複数枚の縦向きの羽根とを有するダリウス型風車装置であって、前記羽根の前記回転軸側への上下各端部の取付位置が前記 回転軸の回転方向に沿って捩じれ、ずれていることを特徴とするダリウス型」とあるが、本発明のスパイラル・アーム翼式縦軸型風力発電装置(図6)は、中心軸がずれた構造の、スパイラル・アーム翼に、対称流線球面チューブ形状羽根アーム(100)を取り付け、3次元的な羽根の位置もそれぞれ可変で、揚抗比も高く機動性も良く、機能も全体構造も異なる。
Further, as a similar example in which the rotor blades are twisted, in order to solve the problem that "it can be started only by the force of the wind without the need for an electric motor for starting", the solution means "the blade 3 attached to the rotary shaft 1 side. The upper and lower mounting positions are twisted and displaced along the rotation direction of the rotary shaft." in claim 1 of the publicly known patent (Patent Document 4: FIG. 11 attached to this document), "a vertically installed rotary shaft, A Darrieus-type wind turbine device having a plurality of vertically oriented blades attached to a rotating shaft, wherein the upper and lower end portions of the blade on the rotating shaft side are twisted in a rotational direction of the rotating shaft. The vertical axis type wind turbine generator of the spiral arm blade type according to the present invention (FIG. 6) has a structure in which the central axis is offset, The symmetric streamline spherical tube shaped blade arm (100) is attached, and the three-dimensional blade positions can be changed, the lift-drag ratio is high, the maneuverability is good, and the function and the whole structure are different.

特開2005-36649 垂直軸型風力発電装置 (本書類添付図8)Japanese Patent Laid-Open No. 2005-36649 Vertical axis wind turbine generator (Figure 8 attached to this document) 特開2006-57492 風車及び風力発電装置 (本書類添付図9)JP 2006-57492 A wind turbine and a wind turbine generator (Fig. 9 attached to this document) 特開2009-47030 風力発電装置 (本書類添付図10)JP 2009-47030 Wind power generator (Fig. 10 attached to this document) 特開平10-110666 ダリウス型風車装置 (本書類添付図11)Japanese Patent Laid-Open No. 10-110666 Darius type wind turbine device (Fig. 11 attached to this document)

「飯塚尚彦発行「基礎流体力学」2010年4月8日産業図書株式会社出版P59〜75、P86、P120〜135他"Basic fluid dynamics" published by Naohiko Iizuka April 8, 2010 Sangyo Tosho Co., Ltd. P59-75, P86, P120-135, etc. 「東 大 ・先 端 研 河 内 啓 二 氏 資料 揚 力と抗 力 」 https://ci.nii.ac.jp/els/contentscinii_20180626173144.pdf"The University of Tokyo, Kenji Kawachi, Dr. Keiji Kawauchi, Lifting and Drag" https://ci.nii.ac.jp/els/contentscinii_20180626173144.pdf

世界は、COP25やESG投資(環境、社会、ガバナンス等配慮)等が叫ばれ、LNG(液化天然ガス)発電すらも疑問視され、損害保険会社が風力発電の稼働率を保証する等、環境重視社会となり、市場が急拡大している電気自動車時代の為にも昼夜、天候に関係なく完全にクリーンな電気エネルギーを身近に確保出来ることが急務である。その為には、大型では主流の風力発電をもっと馴染みやすく手軽で身近なものとする為、不安定な弱風域から、暴風、台風等でも暴走回転を抑えて発電でき、住宅街や日陰、北面側でも静かに発電でき、高層ビル、マンション等、都市部でも簡単に設置できる小型軽量安価なものから、用途に応じて中型化や大型化も可能な翼構造で、更に商用電力への系統連系可能な機能と耐久性があれば、国土強靭化にも役立つ。
In the world, COP25 and ESG investment (consideration of environment, society, governance, etc.) were screamed, and even LNG (liquefied natural gas) power generation was questioned, and a non-life insurance company guaranteed the operating rate of wind power generation, etc. It is an urgent task to be able to secure completely clean electric energy at any time of the day or night, regardless of the weather, even in the era of society where the electric vehicle is rapidly expanding. For that purpose, in order to make the mainstream wind power generation more familiar and easy and familiar in a large size, it is possible to generate power by suppressing runaway rotation even in storms, typhoons, etc. from unstable weak wind areas, in residential areas and shade, It can generate power quietly on the north side, and can be installed easily in urban areas such as high-rise buildings and condominiums. It is a small, lightweight, and inexpensive wing structure that can be made middle-sized or large depending on the application, and it can be used for commercial power. If there is a function and durability that can be connected, it will help strengthen the national land.

先に、以下説明図における3桁の符号番号の付与ルールを述べると、頭1桁目は図面番号で下2桁がその図面内で出現する追番だが、共通部位番号は他の図面で再度現れる事もある。 First, the rule of assigning a three-digit code number in the following explanatory diagram will be described. The first digit is the drawing number and the last two digits are the serial numbers appearing in the drawing, but the common part number is again used in other drawings. It may appear.

流体力学の2次元翼理論では翼まわりの循環によって揚力の発生を説明し、その翼形状はローラン級数の写像関数によって5種類に分類され、一般ジューコフスキー翼形が最も利用され有名である。(非特許文献1)
しかし、風向速が激変反転する厳しい運用環境でも発電性能の良い風力発電用風車を構成する複数枚の翼と、更にこれを構成する羽根に関し、風車の風向角度と翼の迎角度制御を不要化し、更に強風にも強く全体の風車形状や大きさの自由度を高めることが、多様な要求に合わせ普及のための重要な要素となる。
In the two-dimensional airfoil theory of fluid dynamics, the generation of lift is explained by the circulation around the airfoil, and its airfoil shape is classified into 5 types by the mapping function of the Laurent series, and the general Zhukovsky airfoil is the most popular and famous. (Non-patent document 1)
However, regarding the multiple blades that make up the wind turbine for wind power generation with good power generation performance even in a severe operating environment where the wind direction changes drastically and the blades that make up this blade, the wind direction angle of the wind turbine and the attack angle of the blade are not required to be controlled. In addition, it is also strong against strong winds, and increasing the degree of freedom in the overall shape and size of the wind turbine is an important factor for its widespread use, meeting various requirements .

そこで、3次元空間全方向の風向や、弱風から台風等、激変する自然環境に対応容易な翼を選択すれば、前縁が対称流線形状で、後縁を翼弦線相当の中心線(201)で、上下対象に半分ずつの後縁角(202)を持った、対称ジューコフスキー翼形の優れた表裏両面の受風機能をベースに、従来の風車の翼の概念では不変だった長尺方向に伸ばすことのみで連続的な広平面構造による巨大化を見直し、新たな概念として小型分散化により風の抗力爆発を抑えて強風に強くし、逆に立体的な曲面積を分散して増やして揚力を増加させ揚抗比を向上、また流体特性が進化した鳥類の羽根の概念に近づけて構成要素を小さくし羽ばたかせ、全体の風車形状の自由度を向上させることを発案した。 Therefore, if you choose a wing that is easy to cope with drastic changes in the natural environment, such as wind directions in all directions in three-dimensional space and weak winds to typhoons, the leading edge has a symmetrical streamline shape and the trailing edge has a center line equivalent to the chord line. In (201), based on the excellent front and back side wind receiving function of the symmetrical Zhukovsky airfoil, which has a trailing edge angle (202) of half each for upper and lower objects, it was unchanged in the concept of conventional wind turbine blades. We reviewed the enormous growth due to the continuous wide plane structure only by extending it in the long direction, and as a new concept, we made it smaller and dispersed to suppress the drag explosion of the wind and strengthen it against strong winds, conversely dispersing the three-dimensional curved area. It was proposed to increase the degree of freedom of the overall wind turbine shape by increasing the lift force to increase the lift-to-drag ratio, and to make the components smaller and flapping closer to the concept of bird feathers whose fluid characteristics have evolved.

その結果、従来形の翼では長尺方向に相当する、本発明図、図1の対称流線球面チューブ形状羽根の斜視図のZ軸方向値(109)と、従来翼では翼厚に相当する、羽根の厚さ(106)でもあるY軸(108)方向値を類似させ、且つX軸方向に流線形状の長い楕円球形状(103)を、本発明羽根の前縁(101)としてX軸上の始点に置き、
Y軸方向の羽根厚(106)相当のパイプ状中空円筒物をX軸増加方向(110)に向かって長く、上下対称のフラット法面(105)へと徐々に薄く絞って後縁(102)でパイプを絞って終端させて、後縁側が歯磨きチューブのような形状となる後縁角(202)により、翼弦線相当の中心線(201)から見た、上下対称フラット法面迎角部(105)が形成され、下向き風圧(204)又は上向き風圧(205)受ければ、前縁(101)方向に大きな上面揚力(206)や下面揚力(207)が得られる。
As a result, the conventional blade corresponds to the longitudinal direction, which corresponds to the Z-axis direction value (109) in the perspective view of the symmetrical streamline spherical tube-shaped blade of the present invention and FIG. 1 corresponding to the longitudinal direction, and the blade thickness of the conventional blade. , The thickness of the blade (106) is similar to the Y-axis (108) direction value, and the elliptical spherical shape (103) having a long streamline shape in the X-axis direction is used as the leading edge (101) of the blade of the present invention. Put it at the starting point on the axis,
A pipe-shaped hollow cylinder corresponding to the blade thickness (106) in the Y-axis direction is elongated in the X-axis increasing direction (110) and is gradually narrowed down to a vertically symmetrical flat slope (105) and the trailing edge (102). By squeezing the pipe to terminate it, the trailing edge side has a shape like a toothpaste tube (202), so that the vertical symmetrical flat slope elevation angle portion seen from the center line (201) corresponding to the chord line When (105) is formed and receives the downward wind pressure (204) or the upward wind pressure (205), large upper surface lift (206) and lower surface lift (207) are obtained in the front edge (101) direction.

更に強風時等で上下対称フラット法面迎角部(105)に正面から大きな抗力を受ければ、風車を構成するアームへの取り付け金具兼振幅バネ(107)により羽根全体が風下に撓って傾き、緩やかに羽根を、はばたかせ振幅(203)させることで、風下に傾き迎角度が生れ、最適角度では最大約100倍の揚力を得る事が出来、揚力も増加する。また羽根の中央から後縁に向かって、Y軸表裏両面からZ軸両側面の対称チューブ状球面部(104)の曲面で360度全周方向(111)に広い受風範囲がある為に、新たな揚力を得やすい構造と、同時に過大な風圧を分散して逃がす風抜効果により揚力が得られ、逆に従来型の長尺方向に長く広い受風面が無く抗力は小さいため、揚抗比の高い基本羽根構造を有した対称流線球面チューブ形状羽根式の風車が形成される。 Furthermore, when a strong drag is applied to the vertically symmetrical flat slope elevation angle section (105) from the front due to strong wind, etc., the entire blade bends to the leeward side and tilts due to the fitting metal and the amplitude spring (107) to the arm constituting the wind turbine. By gently flapping the blades and causing the amplitude (203), a tilt attack angle is generated in the leeward direction, and at the optimum angle, a lift of up to about 100 times can be obtained and the lift is also increased. Further, from the center of the blade toward the trailing edge, there is a wide wind receiving range in the 360-degree all-round direction (111) due to the curved surface of the symmetrical spherical spherical surface part (104) from the Y-axis front and back surfaces to the Z-axis both side surfaces. Lifting force is obtained due to the structure that makes it easy to obtain new lift force and at the same time the wind venting effect that disperses and releases excessive wind pressure, and on the contrary, the drag force is small because there is no long and wide wind receiving surface in the conventional long direction and the drag force is small. A symmetric streamline spherical tube-shaped vane type wind turbine having a high ratio basic vane structure is formed.

そして、この本発明図1の対称流線球面チューブ形状羽根の表裏両面に対する受風特性を生かし、必要に応じて複数枚、前縁方向に大きな合成揚力が得られ、Y軸増減方向が風向きで表裏両面から受風できるよう、翼として構成する各種アーム上の回転方向に前縁方向を揃えて並べることにより、表裏の広範な受風特性で急激な風向速変化と迎角制御不要な風車を構成することができる。
And, taking advantage of the wind-receiving characteristics of the front and back surfaces of the symmetrical streamline spherical tube-shaped blade of FIG. 1 of the present invention, a plurality of sheets, a large combined lift force in the leading edge direction can be obtained if necessary, and the Y-axis increasing/decreasing direction is the wind direction. By aligning the front edge direction with the rotation direction on each arm that constitutes a wing so that wind can be received from both the front and back sides, a wind turbine that does not require a sudden change in wind direction speed and angle of attack control with a wide range of front and back wind characteristics. Can be configured.

本発明の効果を試算すると、従来翼1枚の面積(仮に長尺方向10、平均翼弦長2)で3翼を、本発明図1の対称流線球面チューブ形状羽根(羽根厚直径0.7、翼弦線相当長2)8羽根×3アーム翼で代替すれば、各々の抗力は個々表面積の総和として概算され、
抗力(Drag)削減効果=従来翼(10×2×3=60d60Lでもある
÷ 本羽根式翼(0.7(正面面積)×2×8×3=33.6d=Lでもある)=1.79
しかも、本発明図1の対称流線球面チューブ形状羽根によるアーム翼は、各羽根の左右の立体部
(羽根間の隙間は抗力とはなりえない)からも揚力(Lift)を得られるため、
揚力寄与面効果=0.7×2(左右2面)×1(翼弦線長の約半分)×8×3=33.6L
+本羽根式翼面(33.6L)=67.2L

従って結論として、抗力削減効果により風圧に約1.79倍強く
揚力寄与面効果は1.12(67.2L/60L)だが、更に風向き急反転時の新効果も有す
According to a trial calculation of the effect of the present invention, three blades with the area of one conventional blade (tentatively, lengthwise direction 10 and average chord length 2) are used, and the symmetrical streamline spherical tube-shaped blade (blade thickness diameter 0. 7, equivalent chord line 2) If replaced with 8 blades x 3 arm blades, each drag is estimated as the sum of individual surface areas,
Drag (Drag) reduction effect=conventional wing (10×2×3= 60d = 60L )
÷ Main blade type blade (0.7 (front area) × 2 × 8 × 3 = 33.6d = L is also available ) = 1.79
Moreover, since the arm blades of the present invention in FIG. 1 with symmetrical streamline spherical tube-shaped blades can obtain lift force from the left and right three-dimensional portions of each blade (the gap between the blades cannot be a drag force),
Lifting Contribution Surface Effect = 0.7 x 2 (two surfaces on the left and right) x 1 (about half of the chord line length) x 8 x 3 = 33.6L
+ Main blade type blade surface (33.6L) = 67.2L

Therefore, as a conclusion, due to the drag reduction effect, the wind pressure is about 1.79 times stronger ,
The lift contribution surface effect is 1.12 (67.2L/60L), but there is also a new effect when the wind direction suddenly reverses .

更に、この対称流線球面チューブ形状羽根(100)間相互の隙間の曲面は短いが、風が抜けやすい構造として均等に置かれているため、大きな抗力を分散して強風に強く、翼大型化時の巨大な風圧抗力が抑えられ、同時に曲面部の対気速度が増し且つ、迎角になれば揚力も得られる構造から、強風に強く弱風でも効率良く、並べ方を変えれば、渦巻き形状(図4)、樹木形状(図5)、スパイラル形状(図6)等々、様々なデザイン翼が構成でき、多様な用途や設置場所に応じた種々風車の創作が可能となる。 Further, although the curved surfaces of the gaps between the symmetrical streamline spherical tube-shaped blades (100) are short, they are evenly placed so that the wind can easily escape. Due to the structure that the enormous wind pressure drag at the time is suppressed, at the same time the airspeed of the curved surface increases and the lift can be obtained at the angle of attack, it is strong against strong winds and efficient even in weak winds. Various design blades can be configured such as Fig. 4), tree shape (Fig. 5), spiral shape (Fig. 6), etc., and various wind turbines can be created according to various uses and installation locations.

また量産製造等への効果として、風車の最小構成単位の対称流線球面チューブ形状羽根(100)の円錐球面体は骨組みが不要な中空構造等で簡単で非常に軽い翼が作れ、設計、製造、検査、管理、運送、組立て、保守点検等が容易で、また途中で必要に応じて数を増減でき大型化も可能となる。
更にまた、既存風車の翼へ本チューブ形状羽根を後付けすることで、発電能力向上も期待できる。
In addition, as an effect on mass production, etc., the conical spherical body of the symmetric streamline spherical tube-shaped blade (100), which is the smallest constituent unit of a wind turbine, has a hollow structure that does not require a skeleton, so that a simple and extremely light blade can be made, designed and manufactured. In addition, inspection, management, transportation, assembly, maintenance and inspection are easy, and the number can be increased or decreased according to need during the process, and the size can be increased.
Furthermore, by retrofitting this tube-shaped blade to the blade of an existing wind turbine, improvement in power generation capacity can be expected.

実際の性能効果として、図7(従来翼横軸型風車VS.対称流線球面チューブ形状羽根&渦巻きアーム翼形横軸風車の性能比較結果)は、従来型風車と本発明羽根の横軸型風力発電装置(図4)に試作適用した出力性能線(701)と、従来型横軸風車の出力性能線(702)を実環境下で比較評価した結果で、横軸に風速、縦軸に出力データを自動ログ収集しエクセルで集計して最小二乗法(直線)でプロットした結果、4羽根×3渦巻きアーム翼でも従来翼型並みの初期性能値を得たことから、羽根の枚数等増やせば、更に性能向上が図れる。
As an actual performance effect, Fig. 7 (performance comparison result of conventional blade horizontal axis type wind turbine VS. symmetrical streamline spherical tube shaped blade & spiral arm blade type horizontal axis wind turbine) shows the horizontal axis type of the conventional blade and the blade of the present invention. The output performance line (701) trial-applied to the wind power generator (Fig. 4) and the output performance line (702) of the conventional horizontal axis wind turbine were compared and evaluated in an actual environment. The horizontal axis represents the wind speed and the vertical axis represents the vertical axis. The output data was automatically logged, tabulated by Excel, and plotted by the method of least squares (straight line). As a result, even with 4 blades x 3 spiral arm blades, the initial performance value was the same as that of the conventional blade type. If so, the performance can be further improved.

対称流線球面チューブ形状羽根の斜視図である。FIG. 6 is a perspective view of a symmetrical streamlined spherical tube shaped blade. 対称流線球面チューブ形状型羽根のZ軸俯瞰図である。It is a Z-axis bird's-eye view of a symmetrical streamline spherical tube-shaped blade. 対称流線球面チューブ形状型羽根のY軸俯瞰図である。It is a Y-axis bird's-eye view of a symmetrical streamline spherical tube-shaped blade. 渦巻きアーム翼式横軸型風力発電装置の斜視図である。It is a perspective view of a spiral arm blade type horizontal axis wind turbine generator. ツリー・アーム翼式縦軸型風力発電装置の斜視図である。It is a perspective view of a tree arm wing type vertical axis type wind turbine generator. スパイラル・アーム翼式縦軸型風力発電装置の斜視図である。It is a perspective view of a spiral arm wing type vertical axis wind turbine generator. 従来翼横軸型風車VS.本発明の対称流線球面チューブ形状羽根&渦巻きアーム翼形横軸風車の性能比較結果である。FIG. 4 is a performance comparison result of a conventional blade horizontal axis wind turbine VS. Symmetrical streamlined spherical tube shaped blade & spiral arm blade horizontal shaft wind turbine of the present invention. 特許文献1に係る羽根の斜視図である。It is a perspective view of the blade|wing which concerns on patent document 1. 特許文献2に係る羽根の斜視図である。FIG. 11 is a perspective view of a blade according to Patent Document 2. 特許文献3に係る羽根の斜視図である。FIG. 16 is a perspective view of a blade according to Patent Document 3. 特許文献4に係る羽根の斜視図である。FIG. 16 is a perspective view of a blade according to Patent Document 4.

本発明の対称流線球面チューブ形状羽根を基本構造物として、風車形状が武骨で美観を損ねないよう、曲面構造を多用して人に馴染みやすく、家庭や事業所、山間部に限らず、道の駅を「電気の駅」にパワーアップして電力の地産地消化モデルや、特に災害時等でも電気自動車や携帯端末等に充電でき、人が集える発電大木のモニュメント等、様々な利用形態も考え、夫々の実施形態を以下記述する。
With the symmetrical streamline spherical tube-shaped blade of the present invention as the basic structure, the windmill shape is easy to use without sacrificing aesthetics, and the curved structure is often used to make it familiar to people, and it is not limited to homes, businesses, and mountain areas. Various usage patterns such as a model to digest locally produced electricity by powering up a roadside station to an "electric station", and a monument to a large power generation tree where people can gather to charge electric vehicles and mobile terminals, especially in times of disaster. In consideration of the above, each embodiment will be described below.

風向速が激変反転する厳しい運用環境でも発電性能の良い風力発電用風車を構成する複数枚の翼と、これを構成する羽根に関し、風車の風向ヨー制御と翼の迎角度制御を不要化し、更に強風にも強く全体の風車形状や大きさの自由度を高められる、対称ジューコフスキー翼形の優れた表裏両面の風向き対応機能をベースに具現化。 Regarding the multiple blades that make up the wind turbine for wind power generation with good power generation performance even in a severe operating environment where the wind direction changes drastically and the blades that make up this blade, there is no need for wind direction yaw control and blade attack angle control . Furthermore, it is embodied on the basis of the excellent front and back wind direction correspondence function of the symmetrical Zhukovsky wing shape that is highly resistant to strong winds and can increase the flexibility of the overall windmill shape and size.

まず請求項1で述べた、基本概念となる対称流線球面チューブ形状羽根(100)を実現するため、これまでの従来翼では長尺方向に相当する、本発明翼図1の対称流線球面チューブ形状羽根の斜視図のZ軸方向値と、羽根の厚さ(106)を類似させた流線形状の長い楕円球形状を、羽根の前縁としてX軸上の始点に置き、Y軸方向の楕円筒上下の幅の羽根厚をX軸増加方向に向かって長く、徐々に薄く絞って後縁で終端させた後縁角により、翼弦線相当の中心線(201)から見た、上下対称フラット法面迎角部(105)となり、下向き風圧(204)又は上向き風圧(205)受ければ、大きな駆動揚力(206、207)が得られる構造を形成。 First, in order to realize the symmetrical streamline spherical tube-shaped blade (100), which is the basic concept described in claim 1, the conventional blade up to now corresponds to the longitudinal direction, and the present invention blade has the symmetrical streamline spherical surface in FIG. A Z-axis direction value of the perspective view of the tube-shaped blade and a streamline-shaped long ellipsoidal sphere similar to the blade thickness (106) are placed at the starting point on the X-axis as the leading edge of the blade, and the Y-axis direction is set. The blade thickness of the upper and lower widths of the elliptic cylinder becomes longer in the X-axis increasing direction, and is gradually narrowed down to a trailing edge to make a trailing edge angle. It becomes a symmetrical flat slope angle of attack (105), and if it receives downward wind pressure (204) or upward wind pressure (205), it will form a structure that can obtain a large driving lift (206, 207).

また強風等の大きな抗力を受ければ、アーム翼への取り付け金具兼振幅バネ(107)により羽根全体が風下に撓って緩やかに羽根を振幅させ、はばたかせる(203)ことにより、上下対称フラット法面迎角部が風下に傾き、更に揚力を増やし、また羽根の中央から後縁に向かって、Y軸からZ軸表裏両側と両反対側面の対称チューブ状球面部(104)の曲面で広く、360度全周面(111)に広い受風範囲を有し揚力を得やすい構造と、過大な風圧を分散して逃がす風抜構造の曲面部により、揚抗比の高い基本羽根構造となる、対称流線球面チューブ形状羽根を実現。 Also, if a large drag force such as a strong wind is applied, the entire blade is bent downwind by the attachment metal fitting and the amplitude spring (107) to the arm blade to gently swing the blade and spread it (203). The angle of attack of the surface inclines toward the leeward, further increases the lift, and widens from the center of the blade toward the trailing edge with the curved surface of the symmetric tubular spherical surface portion (104) on both the front and back sides of the Y axis and opposite sides of the Z axis, The basic blade structure with a high lift-to-drag ratio is created by the structure that has a wide wind receiving range on the entire 360-degree circumference surface (111) and is easy to obtain lift, and the curved surface part of the wind vent structure that disperses and releases excessive wind pressure. Realized symmetrical streamline spherical tube shaped blade.

なお材質は軽くて丈夫で安価な素材で沢山あり、羽根の後縁は、楕円球形状(103)サイズの中空の円筒管をフラットに潰した広がり幅(301)で、羽根全体は軽く、高速回転時の遠心力で取り付けアームが撓まない構造でもある。
また説明において、各XXアームに羽根を取り付ければ、XXアーム翼と称す。
There are many light, durable, and inexpensive materials, and the trailing edge of the blade is a wide width (301) obtained by flatly crushing an oval spherical (103) size hollow cylindrical tube. It also has a structure in which the mounting arm does not bend due to centrifugal force during rotation.
In the description, if a blade is attached to each XX arm, it is referred to as an XX arm wing .

次に、請求項2で述べた、図4の2次元渦巻きアーム翼式横軸型風力発電装置に適用する為に、翼として構成する取付けアーム3本上に、前縁方向に最大の合成揚力の駆動力が得られ易いよう、逆風でも変化しない回転方向(408)に向け、且つ同じ円盤状の回転掃過面(408)と全てのチューブ形状羽根(100)の後縁(102)が平行になるよう、羽根の取り付け振幅バネ(107)で必要とする回転駆動力に応じて複数枚のチューブ形状羽根を接続することにより、横軸型風力の風車部は、風向き(404、405)の対称フラット法面迎角部(105)への風圧力により、風向き対応回転部(409)で風の来る方向に風車の向きが自律的に制御されて更に効率よく受風できる状態となり、渦巻きアーム翼(401)が回転方向(408)に加速回転し、流線球面チューブ形状羽根の表裏の広範な受風特性で、急激な風向速変化と迎角制御と反転ヨー追尾制御も不要となる、横軸型風力発電装置(400)を構成する。 Next, in order to apply to the two-dimensional spiral arm blade type horizontal axis wind turbine generator of FIG. 4 described in claim 2, the maximum combined lift force in the front edge direction is provided on the three mounting arms configured as blades. In order to easily obtain the driving force of the same, the direction of rotation (408) that does not change even when headwind is directed, and the same disk-shaped rotary sweep surface (408) is parallel to the trailing edges (102) of all tube-shaped blades (100). By connecting a plurality of tube-shaped blades in accordance with the rotational driving force required by the blade mounting amplitude spring (107), the wind turbine part of the horizontal axis type wind power is oriented in the wind direction (404, 405). By the wind pressure on the symmetric flat slope angle-of-attack part (105), the direction of the wind turbine is autonomously controlled by the wind direction corresponding rotation part (409) in the direction in which the wind comes, so that the wind can be more efficiently received. The blade (401) is accelerated and rotated in the rotation direction (408), and due to a wide range of wind receiving characteristics on the front and back of the streamlined spherical tube shaped blade, abrupt wind direction change, attack angle control, and reverse yaw tracking control are also unnecessary. A horizontal axis type wind turbine generator (400) is configured.

また、一般の横軸型風車は風向きが合えば全羽根が受風位置に来るので揚力トルクは大きいが、風向きが頻繁に変化し、突然の逆風に対しては風向きが合うまで停止することもある。しかし、本横軸型風力発電装置(400)では、チューブ形状羽根(100)間、相互の隙間の曲面で風が抜けやすい構造として均等に置かれているため、大きな抗力を分散して強風に強く、翼の巨大な風圧抗力が抑えられ、同時に曲面部の対気速度が増し且つ、迎角ともなり揚力も得られる構造から、大型翼にした場合の相矛盾する問題点を解決でき且つ、並べ方を変えれば様々な形態の翼が構成でき、多様な設置場所に対応した風車の実現が可能と成る。
Also, in a general horizontal axis wind turbine, all the blades come to the wind receiving position if the wind direction is correct, so the lift torque is large, but the wind direction changes frequently and it may stop until the wind direction matches sudden wind headwinds. is there. However, in this horizontal axis type wind turbine generator (400), the tube-shaped blades (100) are evenly placed as a structure where the wind easily escapes due to the curved surfaces of the mutual gaps, so that a large drag is dispersed and strong wind is generated. Strong, the huge wind pressure drag of the wing is suppressed, at the same time the airspeed of the curved surface part is increased, and also the angle of attack and the lift can be obtained, so the contradictory problems in the case of a large wing can be solved, and By changing the arrangement, various types of blades can be constructed, and it is possible to realize wind turbines that can be installed in various locations.

縦軸型風車は風向きが無指向性で優れているが、翼面積の半分は常に風下の反対位置にあるため、2倍以上の総受風面積が必要で、従来の一般翼では、対強風対策も2倍以上必要となる。しかし、前記効果試算の通り、本発明図1の対称流線球面チューブ形状羽根は表裏面で揚力効果が得られ、且つ抗力も減る為、以下実施例3、4の効果は大きい。 The vertical axis type wind turbine is excellent in non-directional wind direction, but since half of the blade area is always at the opposite position to the lee side, the total wind receiving area of more than twice is required. Countermeasures need to be doubled or more. However, according to the above-described effect trial calculation, the symmetrical streamline spherical tube-shaped blade of FIG. 1 of the present invention has a lift effect on the front and back surfaces and a reduced drag force.

請求項3で述べた、自然景観に配慮した、図5のツリー・アーム翼式縦軸型風力発電装置を実現するために、構成する取付けツリー・アーム4本(502)上に、前縁方向に最大の合成揚力の駆動力(208)が得られ易いよう、回転方向(506)に合わせ、且つ、この多重円筒状の回転掃過面(506)と、取り付ける全てのチューブ形状羽根の後縁(102)が平行になるよう、取り付け振幅バネ(107)で必要な回転駆動力に応じて複数枚、取り付けることにより、風向き位置に対応した 対称流線球面チューブ形状羽根の上下対称フラット法面迎角部(105)表裏面で受風でき、取付けアーム翼(502)が回転方向(506)に回転し、風向き制御や迎角制御も不要な機能的特徴を持つ風車が実現できる。 In order to realize the tree-arm wing type vertical axis type wind turbine generator of FIG. 5 in consideration of the natural landscape as described in claim 3, the mounting tree arms (502) to be configured have a leading edge direction. In order to easily obtain the maximum combined lift driving force (208), the multi-cylindrical rotary sweep surface (506) and the trailing edges of all the attached tube-shaped blades are aligned with the rotational direction (506). By installing a plurality of springs according to the rotational driving force required by the mounting amplitude springs (107) so that (102) are parallel to each other, the vertical symmetrical flat slopes of the symmetrical streamline spherical tube-shaped blades corresponding to the wind direction position A wind turbine having functional features that can receive wind from the front and back surfaces of the corner portion (105), rotates the mounting arm blade (502) in the rotation direction (506), and does not require wind direction control or attack angle control can be realized.

更に、この風車全体の過酷な稼働環境での動作安定化構造として、重い多極コアレス発電機(504)を縦軸風車全体の中心に置き、太めの支柱(503)で支え、ツリー・アーム翼の上部をハブ(507)で、中央部を4本のハブ兼高速回転安定化スタビライザー(508)で、下部をハブ&回転ベアリング(505)で支えることにより、高速回転時の振動抑止と強風対策が図られている。
Further, as a structure for stabilizing the operation of the entire wind turbine in a harsh operating environment, a heavy multi-pole coreless generator (504) is placed at the center of the vertical shaft wind turbine, and is supported by a thick strut (503) to support the tree arm blades. The upper part is supported by the hub (507), the central part is supported by four hubs and high-speed rotation stabilizers (508), and the lower part is supported by the hub and rotating bearings (505) to suppress vibration during high-speed rotation and prevent strong wind. Is being pursued.

また請求項4で述べた、もう一つの縦軸風車の実施例として、図6スパイラル・アーム翼式縦軸型風力発電装置を実現する為、回転時のアーム翼の各羽根(100)の立体的な受風位置を少しずつ変えて揚力駆動力を向上させるため、回転軸(604)からスパイラル・アーム翼(601)の中心を先に少しずらし、上部を螺旋アーム翼上部支えハブ兼安定化ホイール(603)に、中央を螺旋アーム翼中央支えハブ兼高速回転安定化スタビライザー(602)に、下部をアーム翼下部支えハブ(606)で支え、必要なアーム翼(601)数に応じ且つ、回転時のバランスも取って接続し、各スパイラル・アーム4本(601)上に、羽根の前縁方向に最大の合成揚力の駆動力が得られ易いよう、回転方向(608)に且つ、多重可変円筒面状(608)に合わせて取り付ける全てのチューブ形状羽根の後縁(102)が平行になるよう、羽根の取り付け振幅バネ(107)で必要な回転駆動力に応じて複数枚、取り付けることにより、風向き位置に対応した対称流線球面チューブ形状羽根(100)の上下対称フラット法面迎角部(105)表裏面で受風でき、スパイラル・アーム翼が回転し、風向き制御や迎角制御も不要な機能的特徴を持つ風車が実現できる。 Further, as another embodiment of the vertical axis wind turbine described in claim 4, in order to realize a spiral arm blade type vertical axis type wind turbine generator, the three-dimensional shape of each blade (100) of the arm blade during rotation is shown. In order to improve the lift driving force by gradually changing the wind-receiving position, the center of the spiral arm wing (601) is slightly displaced from the rotary shaft (604) first, and the upper part also functions as a spiral arm wing upper support hub and stabilization. Depending on the number of arm wings (601) required, the wheel (603) is supported at the center by a spiral arm blade central support hub and a high-speed rotation stabilizing stabilizer (602), and at the bottom by an arm blade lower support hub (606). Balanced during rotation, they are connected to each other, and in each of the four spiral arms (601), in the rotating direction (608) and in order to easily obtain the maximum combined driving force in the leading edge direction of the blades, and multiplex. Attach a plurality of tube-shaped blades according to the rotational driving force required by the blade attachment amplitude springs (107) so that the trailing edges (102) of all the tube-shaped blades attached according to the variable cylindrical surface shape (608) are parallel. This allows the wind to be received by the front and back surfaces of the symmetrical vertical streamlined flat angle of attack (105) of the symmetrical streamline spherical tube-shaped blade (100) corresponding to the wind direction position, and the spiral arm blades rotating to control the wind direction and angle of attack. A wind turbine with unnecessary functional features can be realized.

また図5のツリー・アーム翼式縦軸型風力発電装置と基本的に同じだが、風車を大型化する場合の安定化構造として、重い多極コアレス発電機(605)を縦軸風車全体の中心に据え、太めの支柱(607)で支えることにより、高速回転時の振動抑止と強風対策が図られている。 Also, it is basically the same as the tree-arm blade type vertical axis wind turbine generator of Fig. 5, but as a stabilizing structure when increasing the size of the wind turbine, a heavy multi-pole coreless generator (605) is used as the center of the entire vertical axis wind turbine. It is installed on the base and supported by a thick support (607) to prevent vibration during high-speed rotation and prevent strong wind.

なお、新しい風車開発における各種アーム翼の形状や、対称流線球面チューブ形状羽根の取り付け金具兼振幅バネ(107)の取り付け角度を変化させることにより、更に多様な風向き対応の風車もデザイン出来、3次元CAD等を活用すれば、本出願図面の通り幅広く簡単に試作確認可能である。
In addition, by changing the shapes of various arm blades in the new wind turbine development and the mounting angle of the symmetric streamline spherical tube shaped blade mounting bracket and the amplitude spring (107), it is possible to design even more various wind direction compatible wind turbines. If dimensional CAD or the like is used, it is possible to easily and widely confirm the prototype as shown in the drawings of the present application.

100 対称流線球面チューブ形状羽根
101 前縁
102 後縁
103 楕円球形状
104 上下左右の対称チューブ状曲面部
105 上下対称フラット法面迎角部
106 羽根厚
107 取り付け金具兼振幅バネ
108 Y軸
109 Z軸
110 X軸
111 360度全周に広い受風特性
201 翼弦線相当(中心線)
202 後縁角
203 取り付けバネで羽根全体が撓りはばたく振幅動作
204 下向き風圧
205 上向き風圧
206 上面揚力
207 下面揚力
208 合成駆動力
301 円筒をフラットに潰した広がり幅相当
400 対称流線球面チューブ形状羽根により構成された渦巻きアーム翼式風力発電装置(全3翼12羽根)
401 対称流線球面チューブ形状羽根により構成された渦巻きアーム翼
402 渦巻きアームへの羽根取り付け金具
403 取付けアーム翼3本
404 風の流れ
405 風向き急反転でもヨー反転制御不要
406 ナセル(変速機&発電機)
407 横軸風車回転軸
408 回転方向と回転掃過面(円盤面状)
409 風向き対応回転部
410 丈夫な支柱
500 対称流線球面チューブ形状羽根により構成されたツリー・アーム翼式風力発電装置(全4翼36羽根)
501 対称流線球面チューブ形状羽根により構成されたツリー・アーム翼4本
502 ツリー・アーム(全4本)
503 太めの支柱
504 多極コアレス発電機
505 アーム翼下部支えベアリング
506 回転方向と回転掃過面(多重円筒面状)
507 ツリー・アーム翼上部支えハブ
508 ツリー・アーム翼中央支えハブ兼高速回転安定化スタビライザー(全4本)
600 対称流線球面チューブ形状羽根により構成されたスパイラル・アーム翼式風力発電装置(全4翼48羽根)
601 対称流線球面チューブ形状羽根により構成されたスパイラル・アーム翼4本
602 スパイラル・アーム翼中央支えハブ兼高速回転安定化スタビライザー(全4本)
603 スパイラル・アーム翼上部支えハブ兼安定化ホイール
604 回転軸
605 多極コアレス発電機
606 アーム翼下部支えハブとベアリング
607 太めの支柱
608 回転方向と回転掃過面(多重可変円筒面状)
701 本発明の対称流線球面チューブ形状羽根で構成された渦巻きアーム翼式横軸型風力の出力性能
702 従来翼式横軸型風車での出力性能

100 Symmetrical streamline spherical tube-shaped blade 101 Front edge 102 Trailing edge 103 Elliptical spherical shape 104 Vertically and horizontally symmetrical tubular curved surface section 105 Vertically symmetrical flat slope elevation angle section 106 Blade thickness 107 Mounting bracket and amplitude spring 108 Y-axis 109 Z Shaft 110 X-axis 111 360° wide wind-receiving characteristics 201 Equivalent to chord line (center line)
202 Trailing edge angle 203 Amplitude operation in which the entire blade flaps with a mounting spring 204 Downward wind pressure 205 Upward wind pressure 206 Upper surface lift 207 Lower surface lift 208 Synthetic driving force 301 Equivalent width of flattened cylinder 400 Symmetric streamline spherical tube shaped blade A spiral-arm blade type wind turbine generator (3 blades, 12 blades)
401 Vortex arm blades composed of symmetrical streamline spherical tube-shaped blades 402 Blade mounting fittings for swirl arm 403 Three mounting arm blades 404 Wind flow 405 No yaw reversal control even in sudden wind direction reversal 406 Nacelle (transmission & generator )
407 Horizontal axis wind turbine rotation axis 408 Rotation direction and rotation sweep surface (disk shape)
409 Wind-direction-corresponding rotating part 410 Durable column 500 Tree-arm wing type wind turbine generator composed of symmetrical streamline spherical tube-shaped blades (4 blades 36 blades in total)
501 4 tree arm wings composed of symmetrical streamline spherical tube-shaped blades 502 tree arms (4 in total)
503 Thick column 504 Multi-pole coreless generator 505 Arm lower blade support bearing 506 Rotation direction and rotation sweep surface (multiple cylindrical surface shape)
507 Tree Arm Wing Support Hub
508 Tree arm wing center support hub and high-speed rotation stabilization stabilizer (4 in total)
600 Spiral arm wing type wind turbine generator composed of symmetrical streamline spherical tube-shaped blades (48 blades in all 4 blades)
601 4 spiral arm blades composed of symmetrical streamline spherical tube-shaped blades 602 spiral arm blade central support hub and high-speed rotation stabilizing stabilizer (4 in total)
603 Spiral arm upper wing support hub and stabilizing wheel 604 Rotating shaft 605 Multi-pole coreless generator 606 Lower arm wing support hub and bearing 607 Thick post 608 Rotation direction and rotational sweep surface (multiple variable cylindrical surface)
701 Output performance of spiral arm blade type horizontal axis wind turbine composed of symmetrical streamline spherical tube type blade of the present invention 702 Output performance of conventional blade horizontal axis wind turbine

Claims (4)

風力発電用風車を構成する複数本のアームと、これに取り付ける羽根の構造に関し、前縁に丸みを持ち後縁に向かって上下等しく段々と薄くなっていく翼の形を成す、対称ジューコフスキー翼と呼ばれる翼形状を参考に、本発明の最小基本部位となる、図1の対称流線球面チューブ形状羽根を発明し図2の対称流線球面チューブ形状型羽根のZ軸俯瞰図の、上下対称フラット法面迎角部(105)の上部と下部を挟み、段々と狭くなっていく後縁角(202)を持ち、
従来形の翼では連続した一体の長い受風面を持った長尺方向に相当する、
図1の対称流線球面チューブ形状羽根斜視図の、Z軸(109)方向値を従来型の連続した一体の長い受風面を持った翼と比較して短くし、本発明羽根では羽根厚(106)となるY軸(108)方向値と類似させて対称流線球面チューブ形状羽根の前縁を球円状に近づけ、且つX軸方向に流線形状の長い楕円球形状(103)を羽根の前縁(101)としてX軸上の始点に置き、羽根厚(106)相当の中空パイプ状円筒物をX軸増加方向(110)に向かって長く、徐々に薄くして後縁(102)で パイプを絞って終端させた形状となる後縁角(202)が形成され、翼弦線相当の中心線(201)から見れば、上下対称フラット法面迎角部(105)を形成し、この羽根を間隔を空けてアームに取り付けて、アーム翼を構成することにより、
図2の下向き風圧(204)又は上向き風圧(205)受ければ、前縁(101)方向に大きな上面揚力(206)や下面揚力(207)が得られる構造に加え、
更に強風時等で上下対称フラット法面迎角部(105)に、上下から大きな風圧(204)又は(205)を受ければ、風車を構成するアーム翼への、取り付け金具兼振幅バネ(107)により羽根の後縁(102)が風下に撓って傾き戻り、羽根をはばたかせ振幅(203)させることで、下又は上方向に傾いた時に迎角度が生れ、更に揚力が増して合成駆動力(208)を大きくし、
また図1の羽根の前縁の楕円球形状(103)から、Y軸表裏両面及びZ軸両側面の対称チューブ状曲面部(104)表面の360度全周方向(111)の広い風の流れも、連続した表面の上下対称フラット法面迎角(105)を通り後縁(102)に抜けやすい構造を持ち、同時に、この羽根を複数並べた時の隙間で、過大な風圧を均等に分散して逃がす風抜効果が得られて抗力が減るため、揚抗比が向上し、且つ軽量な基本羽根構造を有すことを特徴とする「対称流線球面チューブ形状羽根式風車」
Regarding the structure of multiple arms that make up a wind turbine for wind power generation and the structure of the blades attached to them, a symmetrical Zhukovsky wing that has a rounded leading edge that gradually becomes thinner toward the trailing edge. 1 is invented, which is the minimum basic part of the present invention , with reference to the blade shape called as, and the Z-axis bird's-eye view of the symmetrical streamline spherical tube-shaped blade of FIG. It has a trailing edge angle (202) that gradually narrows, sandwiching the upper and lower parts of the symmetric flat slope angle of attack (105) ,
The conventional type of wing has a long continuous wind surface, which corresponds to the long direction.
In the perspective view of the symmetrical streamline spherical tube-shaped blade of FIG. 1, the Z-axis (109) direction value is shortened as compared with the conventional blade having a continuous long integrated wind-receiving surface, and the blade thickness of the blade of the present invention is reduced. Similar to the Y-axis (108) direction value that is (106), the leading edge of the symmetrical streamline spherical tube-shaped blade is made close to a spherical shape, and the elliptical spherical shape (103) having a long streamline shape in the X-axis direction is formed. The front edge (101) of the blade is placed at the starting point on the X-axis, and the hollow pipe-shaped cylinder having a blade thickness (106) is elongated in the X-axis increasing direction (110) and gradually thinned to the trailing edge (102). ) Forms a trailing edge angle (202) in which the pipe is squeezed and terminated, and when viewed from the center line (201) corresponding to the chord line, it forms a vertically symmetric flat slope normal angle of attack (105). , By attaching these blades to the arm with a space, and by configuring the arm wing,
If the downward wind pressure (204) or the upward wind pressure (205) of FIG. 2 is received, in addition to the structure in which large upper surface lift (206) and lower surface lift (207) are obtained in the front edge (101) direction,
Furthermore, if a large wind pressure (204) or (205) is applied to the vertically symmetrical flat slope angle of attack (105) from above and below in strong winds, etc., it will be an attachment metal fitting and an amplitude spring (107) to the arm blades constituting the wind turbine. As a result, the trailing edge (102) of the blade bends to the leeward side and tilts back, and by flapping the blade and causing the amplitude (203), when the blade is tilted downward or upward, the angle of attack is generated, and the lift force is further increased and the combined driving force is increased. Increase (208),
Further, from the elliptic spherical shape (103) of the leading edge of the blade in FIG. 1, a wide wind flow in the 360° all-round direction (111) on the surfaces of the symmetrical tubular curved surface portions (104) on both the Y-axis front and back surfaces and the Z-axis both side surfaces. Also has a structure that passes through the vertically symmetrical flat slope elevation angle (105) of the continuous surface and easily escapes to the trailing edge (102), and at the same time, an excessive wind pressure is evenly distributed in the gap when a plurality of these blades are arranged. "Symmetrical streamlined spherical tube-shaped blade type wind turbine" characterized by having a basic blade structure that improves the lift-drag ratio and has a light weight because the wind bleeding effect is released to reduce the drag force.
前記請求項1の「対称流線球面チューブ形状羽根式風車」の基本羽根機能を、図4の渦巻きアーム翼式横軸型風力発電装置で具現化する為に、
翼として構成する取付けアーム(403)の回転方向(408)に、最大の合成揚力の駆動力(208)が得られるよう、取り付ける羽根の前縁方向(101)を合わせ且つ、同じ円盤面状の回転掃過面(408)と、全ての対称流線球面チューブ形状羽根(100)の後縁(102)面が平行になるよう、チューブ形状羽根の取り付け振幅バネ(107)で、必要とする総回転駆動力に応じて複数羽根のチューブ形状羽根を取り付けることにより、
風向き(404又は405)が180度と急反転までしない90度の直角程度まで少し変化する場合は、渦巻きアーム翼(401)への風圧により風向き対応回転部(409)が風の来る、または、行く方向に素早く風車の向きを自律的に動かして更に効率よく受風できる状態となり、継続して一定方向(408)に回転し、
また、風向き(404)が、いきなり逆方向(405)に急反転しても、流線球面チューブ形状羽根の、上下対称フラット法面迎角部(105)の表裏対称の受風特性により、引き続き継続して一定方向(408)に回転するため、従来型横軸型風車で必要だった迎角制御や反転ヨー追尾制御を不要化し、また羽根構造により強風にも強い機能的特徴を有す「対称流線球面チューブ形状羽根式風車」
In order to embody the basic blade function of the "symmetrical streamline spherical tube-shaped blade type wind turbine" of claim 1 in the spiral arm blade type horizontal axis wind turbine generator of FIG.
The leading edge direction (101) of the mounting blades is aligned with the rotation direction (408) of the mounting arm (403) configured as a wing so as to obtain the driving force (208) of the maximum synthetic lift, and the same disk surface shape is used. The tube-shaped vane mounting amplitude springs (107) required the total so that the rotating sweep surface (408) and the trailing edge (102) surface of all symmetrical streamline spherical tube-shaped vanes (100) were parallel. By attaching multiple vane-shaped blades according to the rotational driving force,
When the wind direction (404 or 405) slightly changes to 180 degrees and a right angle of 90 degrees that does not cause a sudden reversal , the wind direction-corresponding rotating portion (409) receives wind due to the wind pressure on the spiral arm blade (401), or The direction of the windmill is swiftly and autonomously moved in the direction in which the wind can go, so that the wind can be more efficiently received, and the windmill continuously rotates in a fixed direction (408)
Further, even if the wind direction (404) suddenly reverses to the opposite direction (405), due to the symmetrical wind-receiving characteristics of the vertical symmetrical flat slope angle of attack (105) of the streamlined spherical tube-shaped blades, it continues to operate. Since it continuously rotates in a fixed direction (408), it eliminates the need for angle of attack control and reverse yaw tracking control, which were required in conventional horizontal axis wind turbines, and its blade structure has a strong functional characteristic against strong winds. Symmetrical streamline spherical tube shape impeller type wind turbine"
前記請求項1の「対称流線球面チューブ形状羽根式風車」の基本羽根機能を、図5のツリー・アーム翼式縦軸型風力発電装置で具現化する為に、
取付けるツリー・アーム(502)の回転方向(506)に最大の合成揚力の駆動力(208)が得られるよう、取り付ける羽根の前縁方向(101)を合わせ且つ、この多重円筒面状の回転掃過面(506)と、取り付ける全てのチューブ形状羽根の後縁(102)面が平行になるよう、チューブ形状羽根の取り付け振幅バネ(107)で、必要とする総回転駆動力に応じて複数羽根、取付けることにより、
風向き面に対応した、図1の対称流線球面チューブ形状羽根の上下対称フラット法面迎角部(105)で受風して、ツリー・アーム翼(502)が回転方向(506)に廻るため、迎角制御が不要で且つ、風を受ける反対面の風下側アーム翼の上下対称フラット法面迎角部(105)でも揚力が得られ、また羽根構造により強風にも強く、同時に樹木に似せたツリー形状により、自然の景観に馴染みやすい概観の縦軸型風力発電装置の機能的特徴を有した「対称流線球面チューブ形状羽根式風車」

In order to embody the basic blade function of the "symmetrical streamline spherical tube-shaped blade type wind turbine" of claim 1 in the tree arm blade type vertical axis type wind turbine generator of FIG.
The leading edge direction (101) of the blades to be mounted is adjusted so that the driving force (208) with the maximum combined lift force is obtained in the rotational direction (506) of the tree arm (502) to be mounted, and the rotary sweep of this multi-cylindrical surface is performed. With the installation amplitude spring (107) of the tube-shaped blade, the plurality of blades are arranged so that the over-surface (506) and the trailing edge (102) surfaces of all the tube-shaped blades to be mounted are parallel. By installing,
Since the tree arm blades (502) rotate in the rotation direction (506) by receiving wind at the vertical symmetrical flat slope elevation angle portion (105) of the symmetrical streamline spherical tube-shaped blade of FIG. 1 corresponding to the wind direction surface. , Angle of attack control is not required, and lift can be obtained even at the vertical symmetrical flat slope angle of attack (105) of the leeward arm wing on the opposite side that receives wind, and due to the blade structure it is strong against strong winds and at the same time resembles a tree. "Symmetrical streamlined spherical tube-shaped impeller type wind turbine" which has the functional characteristics of the vertical axis type wind power generator with an outline that is easy to adapt to the natural landscape

前記請求項1の「対称流線球面チューブ形状羽根式風車」の基本羽根機能を、図6のスパイラル・アーム翼式縦軸型風力発電装置で具現化する為、予め、取付ける複数の各スパイラル・アームの中心位置を、風車の回転軸中心(604)位置からずらして且つ、風車回転時にはバランスするよう上部アーム支えハブ兼ホイール(603)と、中央支えハブ(602)及び、下部アーム支えハブ(606)で支えることで、風車回転時の半径も多様に変化させる構造にした各スパイラル・アーム(601)の、
回転方向(608)に最大の合成揚力の駆動力(208)が得られるよう、取り付ける羽根の前縁方向(101)を合わせ且つ、この円筒状の多重可変円筒面状(608)と、取り付ける全ての図1のチューブ形状羽根の後縁(102)面が平行になるよう、チューブ形状羽根の取り付け振幅バネ(107)で必要とする総回転駆動力に応じて複数羽根、取り付けることにより、
風車回転時に羽根の立体的な受風位置が、より多点化した風向き位置に対応したチューブ形状羽根の上下対称フラット法面迎角部(105)の表裏面で受風できる為、縦軸型風力発電装置の揚力駆動能力向上が図れ、羽根構造により強風にも強く、大型化も可能となる機能的特徴を有した「対称流線球面チューブ形状羽根式風車」

In order to embody the basic blade function of the "symmetrical streamline spherical tube-shaped blade type wind turbine" of claim 1 in the spiral arm blade type vertical axis type wind turbine generator of FIG. The upper arm support hub/wheel (603), the central support hub (602), and the lower arm support hub ( shift the center position of the arm from the rotational shaft center (604) position of the wind turbine and balance when the wind turbine rotates. By supporting it with 606), each spiral arm (601) with a structure that also changes the radius when the wind turbine rotates ,
Align the leading edge direction (101) of the blades to be mounted and obtain the same as this cylindrical multi-variable cylindrical surface (608) so as to obtain the maximum combined driving force (208) in the rotation direction (608). 1 so that the trailing edge (102) surfaces of the tube-shaped blades of FIG. 1 are parallel to each other, by mounting a plurality of blades according to the total rotational driving force required by the mounting amplitude spring (107) of the tube-shaped blades,
Three-dimensional wind receiving position of the blades during windmilling is, since it swept more front and back surfaces of the upper and lower symmetrical flat slopes attack corners of the tube-shaped blade which corresponds to the multi-point of the wind direction position (105), the vertical axis type "Symmetrical streamlined spherical tube-shaped blade-type wind turbine" with functional characteristics that can improve the lift driving capability of the wind power generator, and can withstand strong winds due to the blade structure , and can also be upsized.

JP2020003354A 2020-01-14 2020-01-14 Symmetrical streamline spherical tube shape impeller wind turbine Expired - Fee Related JP6733080B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020003354A JP6733080B1 (en) 2020-01-14 2020-01-14 Symmetrical streamline spherical tube shape impeller wind turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020003354A JP6733080B1 (en) 2020-01-14 2020-01-14 Symmetrical streamline spherical tube shape impeller wind turbine

Publications (2)

Publication Number Publication Date
JP6733080B1 true JP6733080B1 (en) 2020-07-29
JP2021110301A JP2021110301A (en) 2021-08-02

Family

ID=71738496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020003354A Expired - Fee Related JP6733080B1 (en) 2020-01-14 2020-01-14 Symmetrical streamline spherical tube shape impeller wind turbine

Country Status (1)

Country Link
JP (1) JP6733080B1 (en)

Also Published As

Publication number Publication date
JP2021110301A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
US7132760B2 (en) Wind turbine device
US7362004B2 (en) Wind turbine device
US20100322770A1 (en) Turbine blade constructions particular useful in vertical-axis wind turbines
US20090180880A1 (en) Check valve turbine
WO2005010355A1 (en) Vertical-axis wind turbine
US10927817B1 (en) Hybrid vertical/horizontal axis wind turbine for deep-water offshore installations
CN206707918U (en) Waveform trailing edge blade and H type vertical-shaft aerogenerators
CN101008376A (en) Looseleaf friction reducing and rotary-wing wind turbine generator sets
WO2011022836A1 (en) Wind rotor swivel sails
US20120163976A1 (en) Vertical axis turbine blade with adjustable form
US20200132044A1 (en) Wind turbine
CN106640533A (en) Self-adaptive variable-propeller vertical shaft wind generator driving device and wind generator
JP6733080B1 (en) Symmetrical streamline spherical tube shape impeller wind turbine
KR102499973B1 (en) Vertical axis windmills and wind turbines
WO2022149563A1 (en) Wind power generator installable on moving body
CN109322785A (en) The wind wheel apparatus of the coaxial birotor vertical axis windmill of nested type
JP6544702B1 (en) Wing angle autonomous amplitude control type wind turbine
US20160252074A1 (en) Vane assembly for a fluid dynamic machine and propulsion device
KR20020005538A (en) Half Elliptic Tube Shaped Vertical Axis Wind Turbine Blade with Air-foil type Damper
JP2018155128A (en) Vertical axis wind turbine and wind power generator
US20220128032A1 (en) Horizontal-axis turbine for a wind generator, and wind generator comprising said turbine
JP2018053832A (en) Vertical shaft-type spiral turbine
KR20130009937A (en) Power generation system of vertical wind turbine with conning angle change
KR20240049755A (en) Rotating force generating device that can control the direction and pressure without power supply
WO2016030709A1 (en) Modified drag based wind turbine design with sails

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200118

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200118

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200515

R150 Certificate of patent or registration of utility model

Ref document number: 6733080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees