JP6732494B2 - Machine tools and their control devices - Google Patents

Machine tools and their control devices Download PDF

Info

Publication number
JP6732494B2
JP6732494B2 JP2016068701A JP2016068701A JP6732494B2 JP 6732494 B2 JP6732494 B2 JP 6732494B2 JP 2016068701 A JP2016068701 A JP 2016068701A JP 2016068701 A JP2016068701 A JP 2016068701A JP 6732494 B2 JP6732494 B2 JP 6732494B2
Authority
JP
Japan
Prior art keywords
cutting
work
cutting tool
feed direction
backward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016068701A
Other languages
Japanese (ja)
Other versions
JP2017177284A (en
Inventor
野口 賢次
賢次 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2016068701A priority Critical patent/JP6732494B2/en
Publication of JP2017177284A publication Critical patent/JP2017177284A/en
Application granted granted Critical
Publication of JP6732494B2 publication Critical patent/JP6732494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、切削加工時にワークから生じてくる切削屑を順次分断しながらワークを振動切削加工する工作機械とその制御装置に関する。 The present invention relates to a machine tool that vibrates and cuts a work while sequentially cutting cutting chips generated from the work during cutting, and a control device therefor.

従来、ワークを切削加工する切削工具と、該切削工具とワークとを相対的に回転させる回転手段と、前記切削工具とワークとを所定の加工送り方向に送り動作させる送り手段と、前記切削工具とワークとを相対的に往復振動させる振動手段とを備え、前記切削工具とワークとを前記加工送り方向に沿った往復振動を伴って送り動作させて、前記ワークの振動切削加工を行うように前記送り手段と前記振動手段とを連係させている工作機械が知られている(例えば、特許文献1参照。)。
また、前記切削工具とワークとを、前記加工送り方向に交差する方向に沿って振動させることによって被切削面に凹部を形成する振動切削装置が知られている(例えば、特許文献2参照。)。
Conventionally, a cutting tool for cutting a work, a rotating means for relatively rotating the cutting tool and the work, a feeding means for feeding the cutting tool and the work in a predetermined machining feed direction, and the cutting tool And a vibrating means for relatively reciprocally vibrating the work, the cutting tool and the work are fed with reciprocating vibration along the machining feed direction to perform vibration cutting of the work. A machine tool in which the feeding means and the vibrating means are linked is known (for example, refer to Patent Document 1).
Further, there is known a vibration cutting device that forms a recess on a surface to be cut by vibrating the cutting tool and the work along a direction intersecting the machining feed direction (see, for example, Patent Document 2). ..

特開2006−312223号公報(段落0052乃至段落0057、図6、図7参照)Japanese Patent Laid-Open No. 2006-313223 (paragraphs 0052 to 0057, see FIGS. 6 and 7) 特開2006−110673号公報(段落0037乃至段落0039、図9参照)JP-A-2006-110673 (paragraphs 0037 to 0039, see FIG. 9)

上述した特許文献1に示されるような工作機械は、回転するワークに対して切削工具が、往復振動しながら移動するため、ワークの周面は正弦曲線状の切削軌跡によって切削される。
往動の切削軌跡に対して復動の切削軌跡が徐々に近づくと、加工送り方向の未切削部分が増加し、復動の切削軌跡に対して往動の切削軌跡が徐々に離れると、加工送り方向に切削が進行する。
切削工具の先端は所定の径を有するため、ワークの周面は切削工具により、断面視で円弧状に抜かれた形状で切削される。
加工送り方向に切削が進行するに従って、往動の切削軌跡と復動の切削軌跡の間には、既切削部分の端縁と進行する切削部分の端縁との間の切削残りが凸状に突出して被切削面に残る。
前記切削残りの高さは、復動の切削軌跡に対して往動の切削軌跡が徐々に離れることによって徐々に高くなり、往動の切削軌跡に対して復動の切削軌跡が徐々に近づくことによって徐々に低くなる。
前記振動切削加工においては、この凸状の切削残りの存在は避けられず、前記切削残りの最大の高さによって、切削加工後のワークの真円度を低下させる場合があるという課題があった。
In the machine tool as disclosed in Patent Document 1 described above, the cutting tool moves while reciprocally oscillating with respect to the rotating work, so that the peripheral surface of the work is cut by a sinusoidal cutting locus.
When the backward cutting locus gradually approaches the forward cutting locus, the uncut portion in the machining feed direction increases, and when the forward cutting locus gradually separates from the backward cutting locus, machining Cutting progresses in the feed direction.
Since the tip of the cutting tool has a predetermined diameter, the peripheral surface of the work is cut by the cutting tool in an arcuate shape in cross section.
As the cutting progresses in the machining feed direction, the cutting residue between the edge of the already cut part and the edge of the advancing cutting part becomes convex between the forward cutting trajectory and the backward cutting trajectory. It protrudes and remains on the surface to be cut.
The height of the residual cutting is gradually increased as the forward cutting locus is gradually separated from the backward cutting locus, and the backward cutting locus is gradually approaching the forward cutting locus. Gradually lowers.
In the vibration cutting process, the presence of this convex cutting residue is unavoidable, and there is a problem that the roundness of the workpiece after cutting may be reduced depending on the maximum height of the cutting residue. ..

そこで、本発明は、前述したような従来技術の課題を解決するものであって、すなわち、本発明の目的は、ワークに対して切削工具を相対的に振動させながら加工送り方向に切削加工する振動切削加工手段を継続しながら、切削軌跡の両側にある加工面の凸部を除去し、ワークの真円度や加工精度を向上させる工作機械とその制御装置を提供することである。 Therefore, the present invention is to solve the above-mentioned problems of the prior art, that is, the object of the present invention is to perform cutting in the machining feed direction while vibrating the cutting tool relative to the workpiece. (EN) A machine tool and a control device for the machine tool, in which the convex portions of the machining surface on both sides of the cutting trajectory are removed while continuing the vibration machining means to improve the roundness and machining accuracy of the work.

本請求項1に係る発明は、ワークを切削加工する切削工具と、該切削工具とワークとを相対的に回転させる回転手段と、前記切削工具と前記ワークとを所定の加工送り方向に相対的に送り動作させる送り手段と、前記切削工具とワークとを相対的に往復振動させる振動手段とを備え前記ワークの振動切削加工を行う工作機械であって、前記振動手段が、前記切削工具と前記ワークとを相対的に回転させつつ、前記ワークに対する前記加工送り方向と交差する方向への往復振動による切削工具の切り込み量を前記加工送り方向に沿った往復振動において前進移動する往動と後退移動する復動との変曲部分に向かって増加させるように、前記送り手段および前記回転手段と連係し、前記加工送り方向に沿った往復振動の主軸位相および振幅が、前記加工送り方向に沿った往復振動において前進移動する往動の切削軌跡と後退移動する復動の切削軌跡とを交差させるように設定されていることにより、前述した課題を解決するものである。 The invention according to claim 1 is a cutting tool for cutting a work, a rotating means for relatively rotating the cutting tool and the work, and the cutting tool and the work in a predetermined machining feed direction. a feeding means for the feeding operation is, and a vibrating means for relatively reciprocating movement and the cutting tool and the workpiece, a machine tool that performs vibration cutting of the workpiece, the vibration means, said cutting tool While rotating the workpiece relative to each other , the cutting amount of the cutting tool due to the reciprocating vibration in the direction intersecting the machining feed direction with respect to the workpiece is moved forward and backward by the reciprocating vibration along the machining feed direction. In cooperation with the feeding means and the rotating means so as to increase toward the inflection portion with the moving back and forth, the main axis phase and amplitude of the reciprocating vibration along the machining feed direction are along the machining feed direction. In addition , the above-mentioned problem is solved by setting the forward-moving cutting locus that moves forward and the backward-moving cutting trajectory that moves backward in the reciprocating vibration .

本請求項2に係る発明は、ワークを切削加工する切削工具と、該切削工具とワークとを相対的に回転させる回転手段と、前記切削工具と前記ワークとを所定の加工送り方向に相対的に送り動作させる送り手段と、前記切削工具とワークとを相対的に往復振動させる振動手段とを備え前記ワークの振動切削加工を行う工作機械であって、前記振動手段が、前記切削工具と前記ワークとを相対的に回転させつつ、前記ワークに対する前記加工送り方向と交差する方向への往復振動による切削工具の切り込み量を前記加工送り方向に沿った往復振動において前進移動する往動と後退移動する復動との変曲部分に向かって増加させるとともに、前記振動切削加工において前記加工送り方向に沿った往復振動において前進移動する往動の切削軌跡と後退移動する復動の切削軌跡との間の距離が等しくなる主軸位相の間で、前記加工送り方向交差する方向に沿って振動させるように前記送り手段および前記回転手段と連係していることにより、前述した課題を解決するものである。 In the invention according to claim 2, a cutting tool for cutting a work, a rotating means for relatively rotating the cutting tool and the work, and the cutting tool and the work relative to each other in a predetermined machining feed direction. a feeding means for the feeding operation is, and a vibrating means for relatively reciprocating movement and the cutting tool and the workpiece, a machine tool that performs vibration cutting of the workpiece, the vibration means, said cutting tool While rotating the workpiece relative to each other , the cutting amount of the cutting tool due to the reciprocating vibration in the direction intersecting the machining feed direction with respect to the workpiece is moved forward and backward by the reciprocating vibration along the machining feed direction. While increasing toward the inflection portion with the moving backward movement, in the vibration cutting process , the forward moving cutting trajectory and the backward moving backward moving trajectory in the reciprocating vibration along the machining feed direction between the main shaft phase in which distance is equal to between, so as to vibrate along a direction intersecting the processing-feed direction, by which in conjunction with said feeding means and said rotating means, intended to solve the problems described above Is.

本請求項3に係る発明は、請求項1または請求項2に記載された工作機械の構成に加えて、前記変曲部分が、前記振動切削加工の前記加工送り方向に沿った往復振動において前進移動する往動の切削軌跡及び後退移動する復動切削軌跡交差あって、前記振動手段が、前記ワークに対する前記加工送り方向と交差する方向への切削工具の切り込み量を前記交差点で最大となるように、前記送り手段および前記回転手段と連係していることにより、前述した課題をさらに解決するものである。 According to a third aspect of the present invention, in addition to the configuration of the machine tool according to the first or second aspect , the inflection portion advances in reciprocating vibration along the machining feed direction of the vibration cutting process. a cross point of the moving cutting trajectory and backward cutting trajectory backward movement of forward, the vibration means, the cutting amount of the cutting tool in a direction intersecting the processing-feed direction relative to the workpiece at the intersection The above-mentioned problems are further solved by linking the feeding means and the rotating means so as to maximize the distance .

本請求項4に係る発明は、ワークを切削加工する切削工具と、該切削工具とワークとを相対的に回転させる回転手段と、前記切削工具と前記ワークとを所定の加工送り方向に相対的に送り動作させる送り手段と、前記切削工具とワークとを相対的に往復振動させる振動手段とを備え、前記送り手段と前記振動手段と前記回転手段とを連係させて前記ワークの振動切削加工を行う工作機械の制御装置であって、前記回転手段によって前記切削工具と前記ワークとを相対的に回転させつつ、前記振動手段によって、前記ワークに対する前記加工送り方向と交差する方向への切削工具の切り込み量を前記加工送り方向に沿った前記往復振動において前進移動する往動と後退移動する復動との変曲部分に向かって増加させるように、前記加工送り方向に交差する方向に沿って振動させる構成とされ、前記加工送り方向に沿った往復振動の主軸位相および振幅が、前記加工送り方向に沿った往復振動において前進移動する往動切削軌跡と後退移動する復動切削軌跡とを交差されるように設定されていることにより、前述した課題を解決するものである。 The invention according to claim 4 is such that a cutting tool for cutting a work, a rotating means for relatively rotating the cutting tool and the work, and the cutting tool and the work relative to each other in a predetermined machining feed direction. And a vibrating means for relatively reciprocally vibrating the cutting tool and the work. The vibrating cutting of the work is performed by coordinating the feed means, the vibrating means and the rotating means. A control device for a machine tool that performs the relative rotation of the cutting tool and the work by the rotating means, while the rotating means of the cutting tool in a direction intersecting with the machining feed direction for the work by the vibrating means. In the reciprocating vibration along the machining feed direction, vibration is performed along a direction intersecting the machining feed direction so as to increase toward the inflection portion of the forward movement that moves forward and the backward movement that moves backward. is configured to, the main shaft phase and amplitude of the reciprocating vibration along the processing-feed direction, and a backward movement of the cutting trajectory moves backward with the cutting trajectory of the forward movement of the forward movement in reciprocal vibration along the processing-feed direction The above-mentioned problems are solved by the setting to intersect .

本請求項5に係る発明は、ワークを切削加工する切削工具と、該切削工具とワークとを相対的に回転させる回転手段と、前記切削工具と前記ワークとを所定の加工送り方向に相対的に送り動作させる送り手段と、前記切削工具とワークとを相対的に往復振動させる振動手段とを備え、前記送り手段と前記振動手段と前記回転手段とを連係させて前記ワークの振動切削加工を行う工作機械の制御装置であって、前記回転手段によって前記切削工具と前記ワークとを相対的に回転させつつ、前記振動手段によって、前記ワークに対する前記加工送り方向と交差する方向への切削工具の切り込み量を前記加工送り方向に沿った前記往復振動において前進移動する往動と後退移動する復動との変曲部分に向かって増加させるように、前記加工送り方向に交差する方向に沿って振動させる構成とされ、前記振動手段が、前記ワークに対する前記加工送り方向と交差する方向への往復振動による切削工具の切り込み量を前記加工送り方向に沿った往復振動において前進移動する往動と後退移動する復動との変曲部分に向かって増加させるとともに、前記振動切削加工において前記加工送り方向に沿った往復振動において前進移動する往動の切削軌跡と後退移動する復動の切削軌跡との間の距離が等しくなる主軸位相の間で、前記加工送り方向交差する方向に沿って振動させるように前記送り手段および前記回転手段と連係していることにより、前述した課題を解決するものである。 The invention according to claim 5 is such that a cutting tool for cutting a work, a rotating means for relatively rotating the cutting tool and the work, and the cutting tool and the work relative to each other in a predetermined machining feed direction. And a vibrating means for relatively reciprocally vibrating the cutting tool and the work. The vibrating cutting of the work is performed by coordinating the feed means, the vibrating means and the rotating means. A control device for a machine tool that performs the relative rotation of the cutting tool and the work by the rotating means, while the rotating means of the cutting tool in a direction intersecting with the machining feed direction for the work by the vibrating means. In the reciprocating vibration along the machining feed direction, vibration is performed along a direction intersecting the machining feed direction so as to increase toward the inflection portion of the forward movement that moves forward and the backward movement that moves backward. And the vibrating means moves the cutting amount of the cutting tool forward and backward by the reciprocating vibration along the machining feed direction by the reciprocating vibration in a direction intersecting the machining feed direction with respect to the workpiece. Between the forward-moving cutting locus and the backward-moving backward- moving cutting locus that move forward in the reciprocating vibration along the machining feed direction in the vibration cutting process while increasing toward the inflection portion with the backward moving. between the distance equals the spindle phase, so as to vibrate along a direction intersecting the processing-feed direction, by which in conjunction with said feeding means and said rotating means, intended to solve the aforementioned problems is there.

本発明の工作機械は、振動手段によって切削屑を分断しながら切削加工することができるばかりでなく、以下のような特有の効果を奏することができる。 The machine tool of the present invention can not only perform cutting while cutting off cutting chips by vibrating means, but can also exert the following unique effects.

本請求項1に係る発明の工作機械によれば、加工送り方向に切削が進行するに従って、往復振動において前進移動する往動と後退移動する復動との変曲部分に向かった切削工具のワークへの切り込み量の増加と、往動の切削軌跡と復動の切削軌跡の間に凸状に突出する切削残りの突出高さの増加とが相補的に作用し、ワークの加工精度や真円度を低下させるような被切削面の切削残りの発生を抑制することができる。
また、切削工具とワークとの加工送り方向に交差する方向に沿った振動によって切削軌跡上に形成される凹部によって、潤滑油等を保持してワーク外周面上の摺動性を向上させることが可能となる。
さらに、加工送り方向に沿った往復振動の主軸位相および振幅が、加工送り方向に沿った往復振動において前進移動する往動の切削軌跡と後退移動する復動の切削軌跡とを交差させるように設定されていることにより、振動切削加工によって生じる切削屑を、振動切削加工の往復振動において前進移動する往動の切削軌跡と後退移動する復動の切削軌跡とが交差する部分で分断することができる。
According to the machine tool of the invention according to claim 1, as the cutting progresses in the machining feed direction, the work of the cutting tool heads toward the inflection portion of the forward movement that moves forward and the backward movement that moves backward in reciprocating vibration . The increase in the amount of cutting into the cutting path and the increase in the protrusion height of the cutting residue that protrudes in a convex shape between the forward and backward cutting trajectories act in a complementary manner to improve the machining accuracy and roundness of the workpiece. It is possible to suppress the occurrence of cutting residue on the surface to be cut that reduces the degree of cutting.
Further, the recess formed on the cutting trajectory by the vibration of the cutting tool and the work along the direction intersecting the machining feed direction can hold the lubricating oil or the like to improve the slidability on the outer peripheral surface of the work. It will be possible.
Further, the spindle phase and amplitude of the reciprocating vibration along the machining feed direction are set so as to intersect the forward cutting trajectories that move forward and the backward cutting trajectories that move backward in the reciprocating vibration along the machining feed direction. By doing so, it is possible to divide the cutting chips generated by the vibration cutting process at the portion where the forward-moving cutting trajectory that moves forward and the backward-moving cutting trajectory that moves backward in the reciprocating vibration of the vibration cutting process intersect. ..

本請求項2に係る発明の工作機械によれば、加工送り方向に切削が進行するに従って、往復振動において前進移動する往動と後退移動する復動との変曲部分に向かった切削工具のワークへの切り込み量の増加と、往動の切削軌跡と復動の切削軌跡の間に凸状に突出する切削残りの突出高さの増加とが相補的に作用し、ワークの加工精度や真円度を低下させるような被切削面の切削残りの発生を抑制することができる。
また、切削工具とワークとの加工送り方向に交差する方向に沿った振動によって切削軌跡上に形成される凹部によって、潤滑油等を保持してワーク外周面上の摺動性を向上させることが可能となる。
さらに、振動手段が、振動切削加工において加工送り方向に沿った往復振動において前進移動する往動の切削軌跡と後退移動する復動の切削軌跡との間の距離が等しくなる主軸位相、すなわち、主軸の回転角度位置の間で、加工送り方向と交差する方向に沿って振動させるように、送り手段および回転手段と連係しているため、往復振動において前進移動する往動と後退移動する復動との変曲部分に向かった切削工具のワークへの切り込み量の増加と、互いに近接または離反する往動の切削軌跡と復動の切削軌跡の間に凸状に突出する切削残りの突出高さの増加との相補的な作用が効率良く行われ、切削加工後のワークの被切削面の凹凸の発生が抑制されてワークの真円度を向上することができる。
According to the machine tool of the invention according to claim 2, as the cutting progresses in the machining feed direction, the work of the cutting tool heads toward the inflection portion of the forward movement that moves forward and the backward movement that moves backward in reciprocating vibration. The increase in the amount of cutting into the cutting path and the increase in the protrusion height of the cutting residue that protrudes in a convex shape between the forward and backward cutting trajectories act in a complementary manner to improve the machining accuracy and roundness of the workpiece. It is possible to suppress the occurrence of cutting residue on the surface to be cut that reduces the degree of cutting.
Further, the recess formed on the cutting trajectory by the vibration of the cutting tool and the work along the direction intersecting the machining feed direction can hold the lubricating oil or the like to improve the slidability on the outer peripheral surface of the work. It will be possible.
Further, the vibrating means has a main spindle phase in which the distance between the forward cutting trajectory and the backward cutting trajectory that moves forward in the reciprocating vibration along the machining feed direction in the vibration cutting process is equal to the spindle phase, that is, the spindle axis. Between the rotation angle positions of the above, since it is linked to the feeding means and the rotating means so as to vibrate along the direction intersecting with the machining feed direction, there is a forward movement that moves forward and a backward movement that moves backward in reciprocating vibration. Of the cutting tool toward the inflection part of the cutting tool, and the protruding height of the cutting residue that protrudes in a convex shape between the forward and backward cutting trajectories that approach or separate from each other. The effect complementary to the increase is efficiently performed, and the occurrence of irregularities on the surface to be cut of the work after cutting is suppressed, and the roundness of the work can be improved.

本請求項3に係る発明の工作機械によれば、請求項1または請求項2に係る発明が奏する効果に加え、変曲部分が、振動切削加工の前記加工送り方向に沿った往復振動において前進移動する往動の切削軌跡及び後退移動する復動切削軌跡が交差する位置、すなわち、交差点であって、振動手段が、ワークに対する加工送り方向と交差する方向への切削工具の切り込み量を交差点で最大となるように、送り手段および回転手段と連係しているため、交差点間で最大の高さとなる切削残りの突出を効率良く抑制することができる。 According to the machine tool of the invention of claim 3, in addition to the effect of the invention of claim 1 or 2 , the inflection portion advances in reciprocating vibration along the machining feed direction of the vibration cutting process. position cutting trajectory and backward cutting trajectory backward movement of moving forward intersect, i.e., a crossing, vibration means, crossing the cutting amount of the cutting tool in a direction intersecting the processing-feed direction relative to the workpiece Since it is linked to the feeding means and the rotating means so as to be the maximum, it is possible to efficiently suppress the protrusion of the cutting residue having the maximum height between the intersections.

本請求項4に係る発明の工作機械の制御装置によれば、加工送り方向に切削が進行するに従って、往復振動において前進移動する往動と後退移動する復動との変曲部分に向かった切削工具のワークへの切り込み量の増加と、往動の切削軌跡と復動の切削軌跡の間に凸状に突出する切削残りの突出高さの増加とが相補的に作用し、ワークの加工精度や真円度を低下させるような被切削面の切削残りの発生を抑制することができる。
また、切削工具とワークとの加工送り方向に交差する方向に沿った振動によって切削軌跡上に形成される凹部によって、潤滑油等を保持してワーク外周面上の摺動性を向上させることが可能となる。
さらに、加工送り方向に沿った往復振動の主軸位相および振幅が、加工送り方向に沿った往復振動において前進移動する往動の切削軌跡と後退移動する復動の切削軌跡とを交差させるように設定されていることにより、振動切削加工によって生じる切削屑を、振動切削加工の往復振動において前進移動する往動の切削軌跡と後退移動する復動の切削軌跡とが交差する部分で分断することができる。
According to the control device for a machine tool of the invention according to claim 4, as the cutting progresses in the machining feed direction, the cutting toward the inflection portion of the forward movement that moves forward and the backward movement that moves backward in the reciprocating vibration is performed. Machining accuracy of the workpiece is increased by the increase of the cutting depth of the tool into the work and the increase of the protrusion height of the cutting residue protruding in a convex shape between the forward and backward cutting trajectories. It is possible to suppress the occurrence of cutting residue on the surface to be cut that lowers the roundness and the roundness.
Further, the recess formed on the cutting trajectory by the vibration of the cutting tool and the work along the direction intersecting the machining feed direction can hold the lubricating oil or the like to improve the slidability on the outer peripheral surface of the work. It will be possible.
Further, the spindle phase and amplitude of the reciprocating vibration along the machining feed direction are set so as to intersect the forward cutting trajectories that move forward and the backward cutting trajectories that move backward in the reciprocating vibration along the machining feed direction. By doing so, it is possible to divide the cutting chips generated by the vibration cutting process at the portion where the forward-moving cutting trajectory that moves forward and the backward-moving cutting trajectory that moves backward in the reciprocating vibration of the vibration cutting process intersect. ..

本請求項5に係る発明の工作機械の制御装置によれば、加工送り方向に切削が進行するに従って、往復振動において前進移動する往動と後退移動する復動との変曲部分に向かった切削工具のワークへの切り込み量の増加と、往動の切削軌跡と復動の切削軌跡の間に凸状に突出する切削残りの突出高さの増加とが相補的に作用し、ワークの加工精度や真円度を低下させるような被切削面の切削残りの発生を抑制することができる。
また、切削工具とワークとの加工送り方向に交差する方向に沿った振動によって切削軌跡上に形成される凹部によって、潤滑油等を保持してワーク外周面上の摺動性を向上させることが可能となる。
さらに、振動手段が、振動切削加工において加工送り方向に沿った往復振動において前進移動する往動の切削軌跡と後退移動する復動の切削軌跡との間の距離が等しくなる主軸位相、すなわち、主軸の回転角度位置の間で、加工送り方向交差する方向に沿って振動させるように送り手段および回転手段と連係しているため、往復振動において前進移動する往動と後退移動する復動との変曲部分に向かった切削工具のワークへの切り込み量の増加と、互いに近接または離反する往動の切削軌跡と復動の切削軌跡の間に凸状に突出する切削残りの突出高さの増加との相補的な作用が効率良く行われ、切削加工後のワークの被切削面の凹凸の発生が抑制されてワークの真円度を向上することができる。
According to the control device for a machine tool of the invention according to claim 5, as the cutting progresses in the machining feed direction, the cutting toward the inflection portion of the forward movement that moves forward and the backward movement that moves backward in the reciprocating vibration is performed. and increase depth of cut of the tool of the workpiece and acts complementary with the increase in cutting the remaining projection height of protruding in a convex shape between the cutting trajectory and backward cutting trajectory of the forward movement, machining accuracy of the workpiece It is possible to suppress the occurrence of cutting residue on the surface to be cut that lowers the roundness and the roundness.
Further, the recess formed on the cutting trajectory by the vibration of the cutting tool and the work along the direction intersecting the machining feed direction can hold the lubricating oil or the like to improve the slidability on the outer peripheral surface of the work. It will be possible.
Further, the vibrating means has a main spindle phase in which the distance between the forward cutting trajectory and the backward cutting trajectory that moves forward in the reciprocating vibration along the machining feed direction in the vibration cutting process is equal to the spindle phase, that is, the spindle axis. Between the rotation angle positions of the above, since it is linked to the feeding means and the rotating means so as to vibrate along the direction intersecting with the machining feed direction , there is a forward movement that moves forward and a backward movement that moves backward in reciprocating vibration. Of the cutting tool toward the inflection part of the cutting tool, and the protruding height of the cutting residue that protrudes in a convex shape between the forward and backward cutting trajectories that approach or separate from each other. The effect complementary to the increase is efficiently performed, and the occurrence of irregularities on the surface to be cut of the work after cutting is suppressed, and the roundness of the work can be improved.

本発明の第1実施例である工作機械の概略を示す図。The figure which shows the outline of the machine tool which is 1st Example of this invention. 本発明の第1実施例の切削工具とワークとの関係を示す概略図。Schematic which shows the relationship between the cutting tool of 1st Example of this invention, and a workpiece|work. 本発明の第1実施例の切削工具のZ軸方向の往復振動および位置を示す図。The figure which shows the reciprocating vibration of a Z-axis direction of a cutting tool of 1st Example of this invention, and a position. 本発明の第1実施例の主軸n回転目、n+1回転目、n+2回転目の関係を示す図。The figure which shows the relationship of the spindle nth rotation of a 1st Example of this invention, the n+1th rotation, and the n+2nd rotation. 本発明の第1実施例の1回転1.5振動で振動切削加工手段を実行することによって得られる切削軌跡を示す図。The figure which shows the cutting locus|trajectory obtained by performing a vibration cutting process means with 1 rotation 1.5 vibration of 1st Example of this invention. (A)図5の6A−6Aにおけるワーク外周面の断面図、(B)図5の6B−6Bにおけるワーク外周面の断面図。5A is a cross-sectional view of the work outer peripheral surface taken along line 6A-6A in FIG. 5, and FIG. 6B is a cross-sectional view of the work outer peripheral surface taken along line 6B-6B in FIG. (A)図5の7における切削軌跡の交差点を拡大した図、(B)図5の7における切削軌跡とその交差点の深度との関係を示す図。5A is an enlarged view of the intersection of the cutting trajectories in 7 of FIG. 5, and FIG. 6B is a diagram showing the relationship between the cutting trajectories in 7 of FIG. 5 and the depth of the intersection.

本発明は、ワークを切削加工する切削工具と、この切削工具とワークとを相対的に回転させる回転手段と、切削工具と前記ワークとを所定の加工送り方向に相対的に送り動作させる送り手段と、切削工具とワークとを相対的に往復振動させる振動手段とを備えワークの振動切削加工を行う工作機械であって、振動手段が、切削工具とワークとを相対的に回転させつつ、ワークに対する加工送り方向と交差する方向への往復振動による切削工具の切り込み量を加工送り方向に沿った往復振動において前進移動する往動と後退移動する復動との変曲部分に向かって増加させるように、送り手段および回転手段と連係し、加工送り方向に沿った往復振動の主軸位相および振幅が、加工送り方向に沿った往復振動において前進移動する往動の切削軌跡と後退移動する復動の切削軌跡とを交差させるように設定され、ワークに対して切削工具を相対的に振動させながら加工送り方向に切削加工する振動切削加工手段を継続しながら、切削軌跡の両側にある加工面の凸部を除去し、ワークの真円度や加工精度を向上させるものであれば、その具体的な実施態様は、如何なるものであっても構わない。 The present invention relates to a cutting tool for cutting a work, a rotating means for relatively rotating the cutting tool and the work, and a feeding means for relatively moving the cutting tool and the work in a predetermined machining feed direction. When, and a vibrating means for relatively reciprocating movement of the cutting tool and the workpiece, a machine tool that performs vibration cutting machining of the workpiece, vibrations means, while relatively rotating the cutting tool and the workpiece, Increasing the cutting depth of the cutting tool due to the reciprocating vibration in the direction intersecting the machining feed direction with respect to the workpiece toward the inflection part of the forward movement that moves forward and the backward movement that moves backward in the reciprocating vibration along the machining feed direction . As described above, the spindle phase and the amplitude of the reciprocating vibration in the machining feed direction are linked to the feed means and the rotating means, and the forward cutting path and the reciprocating return movement in the reciprocating vibration in the machining feed direction It is set so that it intersects with the cutting trajectory of, and while continuing the vibrating cutting means that performs cutting in the machining feed direction while vibrating the cutting tool relative to the workpiece, Any specific embodiment may be used as long as it removes the convex portion and improves the roundness and the processing accuracy of the work.

図1は、本発明の第1実施例である制御装置180を備えた工作機械100の概略を示す図である。
工作機械100は、回転手段としての主軸110と、刃物台としての切削工具台130Aとを備えている。
主軸110の先端には、ワーク保持手段としてのチャック120が設けられている。
チャック120を介して主軸110にワークWが保持される。
主軸110は、主軸モータの動力によって回転駆動されるように主軸台110Aに支持されている。
FIG. 1 is a diagram showing an outline of a machine tool 100 including a control device 180 which is a first embodiment of the present invention.
The machine tool 100 includes a spindle 110 as a rotating means and a cutting tool stand 130A as a tool rest.
A chuck 120 as a work holding means is provided at the tip of the main shaft 110.
The work W is held on the spindle 110 via the chuck 120.
The spindle 110 is supported by a headstock 110A so as to be rotationally driven by the power of the spindle motor.

主軸台110Aは、工作機械100のベッド側に、Z軸方向送り機構160によって主軸110の軸線方向となるZ軸方向に移動自在に搭載されている。
主軸110は、主軸台110Aを介してZ軸方向送り機構160によって、Z軸方向に移動する。
Z軸方向送り機構160は、主軸110をZ軸方向に移動させる主軸移動機構を構成している。
The headstock 110A is mounted on the bed side of the machine tool 100 by a Z-axis feed mechanism 160 so as to be movable in the Z-axis direction, which is the axial direction of the spindle 110.
The spindle 110 is moved in the Z-axis direction by the Z-axis feed mechanism 160 via the headstock 110A.
The Z-axis feed mechanism 160 constitutes a spindle moving mechanism that moves the spindle 110 in the Z-axis direction.

Z軸方向送り機構160は、ベッド等のZ軸方向送り機構160の固定側と一体的なベース161と、ベース161に設けられたZ軸方向に延びるZ軸方向ガイドレール162とを備えている。
Z軸方向ガイドレール162に、Z軸方向ガイド164を介してZ軸方向送りテーブル163がスライド自在に支持されている。
Z軸方向送りテーブル163側にリニアサーボモータ165の可動子165aが設けられ、ベース161側にリニアサーボモータ165の固定子165bが設けられている。
The Z-axis direction feed mechanism 160 includes a base 161 that is integral with the fixed side of the Z-axis direction feed mechanism 160 such as a bed, and a Z-axis direction guide rail 162 provided on the base 161 and extending in the Z-axis direction. ..
A Z-axis feed table 163 is slidably supported on the Z-axis guide rail 162 via a Z-axis guide 164.
A mover 165a of the linear servo motor 165 is provided on the Z-axis direction feed table 163 side, and a stator 165b of the linear servo motor 165 is provided on the base 161 side.

Z軸方向送りテーブル163に主軸台110Aが搭載され、リニアサーボモータ165の駆動によってZ軸方向送りテーブル163が、Z軸方向に移動駆動される。
Z軸方向送りテーブル163の移動によって主軸台110AがZ軸方向に移動し、主軸110のZ軸方向への移動が行われる。
The headstock 110A is mounted on the Z-axis direction feed table 163, and the Z-axis direction feed table 163 is moved and driven in the Z-axis direction by driving the linear servomotor 165.
The headstock 110A moves in the Z-axis direction by the movement of the Z-axis direction feed table 163, and the spindle 110 moves in the Z-axis direction.

切削工具台130Aには、ワークWを切削加工するバイト等の切削工具130が装着されている。
切削工具台130Aは、工作機械100のベッド側に、X軸方向送り機構150及び図示しないY軸方向送り機構によって、Z軸方向に直交するX軸方向と、Z軸方向及びX軸方向に直交するY軸方向とに移動自在に設けられている。
X軸方向送り機構150とY軸方向送り機構とによって、切削工具台130Aを主軸110に対してX軸方向及びY軸方向に移動させる刃物台移動機構が構成されている。
A cutting tool 130 such as a cutting tool for cutting the work W is mounted on the cutting tool base 130A.
The cutting tool base 130A is orthogonal to the X-axis direction and the Z-axis direction on the bed side of the machine tool 100 by the X-axis direction feed mechanism 150 and the Y-axis direction feed mechanism (not shown). It is provided so as to be movable in the Y-axis direction.
The X-axis direction feed mechanism 150 and the Y-axis direction feed mechanism constitute a tool rest moving mechanism that moves the cutting tool rest 130A in the X-axis direction and the Y-axis direction with respect to the spindle 110.

X軸方向送り機構150は、X軸方向送り機構150の固定側と一体的なベース151と、ベース151に設けられたX軸方向に延びるX軸方向ガイドレール152とを備えている。
X軸方向ガイドレール152に、X軸方向ガイド154を介してX軸方向送りテーブル153がスライド自在に支持されている。
The X-axis direction feed mechanism 150 includes a base 151 that is integral with the fixed side of the X-axis direction feed mechanism 150, and an X-axis direction guide rail 152 provided on the base 151 and extending in the X-axis direction.
An X-axis direction feed table 153 is slidably supported by an X-axis direction guide rail 152 via an X-axis direction guide 154.

X軸方向送りテーブル153側にリニアサーボモータ155の可動子155aが設けられ、ベース151側にリニアサーボモータ155の固定子155bが設けられている。
リニアサーボモータ155の駆動によってX軸方向送りテーブル153が、X軸方向に移動駆動される。
なお、Y軸方向送り機構は、X軸方向送り機構150をY軸方向に配置したものであり、X軸方向送り機構150と同様の構造であるため、図示及び構造についての詳細な説明は割愛する。
A mover 155a of the linear servo motor 155 is provided on the X-axis direction feed table 153 side, and a stator 155b of the linear servo motor 155 is provided on the base 151 side.
By driving the linear servo motor 155, the X-axis direction feed table 153 is moved and driven in the X-axis direction.
The Y-axis direction feed mechanism has the X-axis direction feed mechanism 150 arranged in the Y-axis direction, and has the same structure as the X-axis direction feed mechanism 150. Therefore, detailed description of the drawings and the structure is omitted. To do.

図1においては、Y軸方向送り機構を介してX軸方向送り機構150をベッド側に搭載し、X軸方向送りテーブル153に切削工具台130Aが搭載されている。
切削工具台130Aは、X軸方向送りテーブル153の移動駆動によってX軸方向に移動し、Y軸方向送り機構が、Y軸方向に対して、X軸方向送り機構150と同様の動作をすることによって、Y軸方向に移動する。
In FIG. 1, the X-axis direction feed mechanism 150 is mounted on the bed side via the Y-axis direction feed mechanism, and the cutting tool table 130A is mounted on the X-axis direction feed table 153.
The cutting tool base 130A moves in the X-axis direction by the movement drive of the X-axis direction feed table 153, and the Y-axis direction feed mechanism performs the same operation as the X-axis direction feed mechanism 150 in the Y-axis direction. Moves in the Y-axis direction.

なお、Y軸方向送り機構を、X軸方向送り機構150を介してベッド側に搭載し、Y軸方向送り機構側に切削工具台130Aを搭載してもよく、Y軸方向送り機構とX軸方向送り機構150とによって切削工具台130AをX軸方向及びY軸方向に移動させる構造は従来公知であるため、詳細な説明及び図示は割愛する。 The Y-axis direction feed mechanism may be mounted on the bed side via the X-axis direction feed mechanism 150, and the cutting tool base 130A may be mounted on the Y-axis direction feed mechanism side. Since a structure for moving the cutting tool base 130A in the X-axis direction and the Y-axis direction by the direction feed mechanism 150 is conventionally known, its detailed description and illustration are omitted.

刃物台移動機構(X軸方向送り機構150とY軸方向送り機構)と主軸移動機構(Z軸方向送り機構160)とが協動し、X軸方向送り機構150とY軸方向送り機構によるX軸方向とY軸方向への切削工具台130Aの移動と、Z軸方向送り機構160による主軸台110A(主軸110)のZ軸方向への移動によって、切削工具台130Aに装着されている切削工具130は、ワークWに対して相対的に任意の加工送り方向に送られる。 The tool post moving mechanism (X-axis direction feed mechanism 150 and Y-axis direction feed mechanism) and the main-axis moving mechanism (Z-axis direction feed mechanism 160) cooperate to make X by the X-axis direction feed mechanism 150 and the Y-axis direction feed mechanism. The cutting tool mounted on the cutting tool base 130A by moving the cutting tool base 130A in the axial direction and the Y-axis direction and moving the headstock 110A (main shaft 110) in the Z-axis direction by the Z-axis direction feed mechanism 160. 130 is sent relative to the work W in an arbitrary machining feed direction.

主軸移動機構と刃物台移動機構とから構成される送り手段により、切削工具130を、ワークWに対して相対的に任意の加工送り方向に送ることによって、図2に示すように、ワークWは、切削工具130により任意の形状に切削加工される。 By feeding the cutting tool 130 in an arbitrary machining feed direction relative to the work W by the feeding means composed of the spindle moving mechanism and the tool rest moving mechanism, as shown in FIG. The cutting tool 130 cuts into an arbitrary shape.

なお、本実施形態においては、主軸台110Aと切削工具台130Aの両方を移動するように構成しているが、主軸台110Aを工作機械100のベッド側に移動しないように固定し、刃物台移動機構を、切削工具台130AをX軸方向、Y軸方向、Z軸方向に移動させるように構成してもよい。
この場合、送り手段が、切削工具台130AをX軸方向、Y軸方向、Z軸方向に移動させる刃物台移動機構から構成され、固定的に位置決めされて回転駆動される主軸110に対して、切削工具台130Aを移動させることによって、切削工具130をワークWに対して加工送り動作させることができる。
In the present embodiment, both the headstock 110A and the cutting tool base 130A are configured to move, but the headstock 110A is fixed so as not to move to the bed side of the machine tool 100, and the tool rest movement is performed. The mechanism may be configured to move the cutting tool base 130A in the X-axis direction, the Y-axis direction, and the Z-axis direction.
In this case, the feeding means is composed of a tool rest moving mechanism that moves the cutting tool base 130A in the X axis direction, the Y axis direction, and the Z axis direction, and is fixedly positioned with respect to the main spindle 110 that is rotationally driven. By moving the cutting tool base 130A, the cutting tool 130 can be processed and fed to the work W.

また、切削工具台130Aを工作機械100のベッド側に移動しないように固定し、主軸移動機構を、主軸台110AをX軸方向、Y軸方向、Z軸方向に移動させるように構成してもよい。
この場合、送り手段が、主軸台110AをX軸方向、Y軸方向、Z軸方向に移動させる主軸台移動機構から構成され、固定的に位置決めされる切削工具台130Aに対して、主軸台110Aを移動させることによって、切削工具130をワークWに対して加工送り動作させることができる。
また、本実施例では、切削工具130に対してワークWを回転させる構成としたが、ワークWに対して切削工具130を回転させる構成としてもよい。
Further, the cutting tool base 130A is fixed so as not to move to the bed side of the machine tool 100, and the spindle moving mechanism is configured to move the spindle stock 110A in the X-axis direction, the Y-axis direction, and the Z-axis direction. Good.
In this case, the feed means is composed of a headstock moving mechanism for moving the headstock 110A in the X-axis direction, the Y-axis direction, and the Z-axis direction, and the headstock 110A is fixed relative to the cutting tool stand 130A which is fixedly positioned. By moving the cutting tool 130, the cutting tool 130 can be processed and fed to the work W.
Further, in the present embodiment, the work W is rotated with respect to the cutting tool 130, but the cutting tool 130 may be rotated with respect to the work W.

主軸110の回転、Z軸方向送り機構160、X軸方向送り機構150、Y軸方向送り機構は、制御装置180が有する制御部181(切削制御手段)によって駆動制御される。
制御部181は、各送り機構を振動手段として、各々対応する移動方向に沿って往復振動させながら、主軸台110A又は切削工具台130Aを各々の方向に移動させるように制御している。
The rotation of the main shaft 110, the Z-axis direction feed mechanism 160, the X-axis direction feed mechanism 150, and the Y-axis direction feed mechanism are drive-controlled by a control unit 181 (cutting control means) included in the control device 180.
The control unit 181 controls each feed mechanism as a vibrating unit to reciprocally vibrate along the corresponding movement direction and to move the headstock 110A or the cutting tool base 130A in each direction.

各送り機構は、制御部181の制御により、図3に示すように、主軸110又は切削工具台130Aを、1回の往復振動において、加工送り方向に所定の前進量だけ前進移動(以下、往動という。)してから所定の後退量だけ後退移動(以下、復動という。)し、その差の進行量だけ各移動方向に移動させ、協動してワークWに対して切削工具130を加工送り方向に送る。 Under the control of the control unit 181, each feed mechanism moves the spindle 110 or the cutting tool base 130A forward by a predetermined forward amount in the machining feed direction in one reciprocating vibration (hereinafter referred to as forward movement ). After that , the cutting tool 130 is moved backward in a predetermined backward movement amount (hereinafter referred to as backward movement ), and is moved in each movement direction by the amount of the difference, and the cutting tool 130 is cooperated with the work W in cooperation. Send in the processing feed direction.

工作機械100は、Z軸方向送り機構160、X軸方向送り機構150、Y軸方向送り機構により、切削工具130が加工送り方向に沿った往復振動しながら、主軸1回転分、すなわち、主軸位相0°から360°まで変化したときの進行量の合計を送り量として、加工送り方向に送られることによって、ワークWの加工を行う。 The machine tool 100 uses the Z-axis direction feed mechanism 160, the X-axis direction feed mechanism 150, and the Y-axis direction feed mechanism to cause the cutting tool 130 to reciprocally vibrate along the machining feed direction, while the spindle rotates one revolution, that is, the spindle phase. The workpiece W is machined by being fed in the machining feed direction with the total amount of progress when changing from 0° to 360° as the feed amount.

ワークWが回転した状態で、主軸台110A(主軸110)又は切削工具台130A(切削工具130)が、往復振動しながら移動し、切削工具130によって、ワークWを所定の形状に振動切削加工を実行する場合、ワーク外周面は、図4に示すように、正弦曲線状に切削される。
図4では、ワーク外周面の状態を分かり易く説明するため、縦軸を加工送り方向におけるワークWに対する切削工具130の位置、横軸をワークWの1回転、すなわち、主軸位相0°から360°とし、ワーク外周面を周方向に沿って展開したワーク外周面の切削工具130による切削軌跡を示している。
なお、正弦曲線状の波形の谷を通過する仮想線(1点鎖線)において、主軸位相0°から360°まで変化したときの切削工具130の位置の変化量が、送り量を示す。
図4に示されるように、ワークWの1回転当たりのワークWに対する切削工具130(主軸台110A(主軸110)又は切削工具台130A)の振動数Nが、3.5回(振動数N=3.5)を例に説明する。
In the state where the work W is rotated, the headstock 110A (spindle 110) or the cutting tool base 130A (cutting tool 130) moves while reciprocally vibrating, and the work W is vibrated and cut into a predetermined shape by the cutting tool 130. When executing, the outer peripheral surface of the work is cut into a sinusoidal shape as shown in FIG.
In FIG. 4, in order to easily understand the state of the outer peripheral surface of the work, the vertical axis represents the position of the cutting tool 130 with respect to the work W in the machining feed direction, and the horizontal axis represents one rotation of the work W, that is, the spindle phase 0° to 360°. In addition, the cutting locus of the cutting tool 130 on the outer peripheral surface of the work, which is obtained by expanding the outer peripheral surface of the work along the circumferential direction, is shown.
It should be noted that the amount of change in the position of the cutting tool 130 when the spindle phase changes from 0° to 360° on an imaginary line (one-dot chain line) that passes through the valley of the sinusoidal waveform indicates the feed amount.
As shown in FIG. 4, the frequency N of the cutting tool 130 (spindle head 110A (spindle 110) or cutting tool stand 130A) with respect to the work W per one rotation of the work W is 3.5 times (frequency N= 3.5) will be described as an example.

この場合、n+1回転目(nは1以上の整数)の切削工具130により切削されるワーク外周面形状の位相の谷の最低点(切削工具130によって加工送り方向に最も切削された点となる点線波形グラフの山の頂点)の位置が、n回転目の切削工具130により切削された形状の位相の谷の最低点(実線波形グラフの山の頂点)の位置に対して、主軸位相方向(グラフの横軸方向)でずれる。 In this case, the lowest point of the valley of the phase of the work outer peripheral surface shape to be cut by the cutting tool 130 at the (n+1)th rotation (n is an integer of 1 or more) (the dotted line that is the point most cut by the cutting tool 130 in the machining feed direction). The position of the peak of the waveform graph is the main axis phase direction (graph) in relation to the position of the lowest point of the valley of the phase of the shape cut by the cutting tool 130 at the nth rotation (the peak of the peak of the solid waveform graph). The horizontal axis of).

これにより、切削工具130の往動時の切削加工部分と、復動時の切削加工部分とが一部重複し、ワーク外周面のn+1回転目の切削部分に、n回転目に切削済みの部分が含まれ、振動切削中に加工送り方向において切削工具130がワークWを切削しない空振り動作が生じる。
振動切削加工を実行する時にワークWから生じる切削屑は、空振り動作によって順次分断される。
工作機械100は、切削工具130の加工送り方向に沿った往復振動によって切削屑を分断しながら、ワークWの切削加工を円滑に行うことができる。
As a result, a part of the cutting tool 130 when the cutting tool moves forward and a part of the cutting tool when returning part overlaps with each other, and the part that has been cut at the nth rotation is the cutting part at the (n+1)th rotation of the workpiece outer peripheral surface. Therefore, the idling motion in which the cutting tool 130 does not cut the workpiece W occurs in the machining feed direction during the vibration cutting.
The cutting chips generated from the work W when the vibration cutting process is performed are sequentially divided by the idling operation.
The machine tool 100 can smoothly cut the work W while dividing the cutting chips by the reciprocating vibration of the cutting tool 130 along the machining feed direction.

切削工具130の往復振動によって切削屑を順次分断する場合、ワーク外周面のn+1回転目の切削部分に、n回転目に切削済みの部分が含まれていればよい。
言い換えると、ワーク外周面のn+1回転目(nは1以上の整数)における復動時の切削工具130の切削軌跡が、ワーク外周面のn回転目における切削工具130の切削軌跡まで到達すればよい。
図4に示されるように、n+1回転目とn回転目のワークWにおける切削工具130により切削される形状の位相が一致(同位相)とならなければよく、必ずしも180°反転させる必要はない。
When cutting chips are sequentially divided by the reciprocating vibration of the cutting tool 130, it is sufficient that the cutting portion at the (n+1)th rotation of the work outer peripheral surface includes the portion that has been cut at the nth rotation.
In other words, the cutting trajectory of the cutting tool 130 at the time of the n+1th rotation (n is an integer of 1 or more) of the work outer peripheral surface at the time of the backward movement should reach the cutting trajectory of the cutting tool 130 at the nth rotation of the workpiece outer peripheral surface. ..
As shown in FIG. 4, the phases of the shapes cut by the cutting tool 130 on the work W at the (n+1)th rotation and the work at the nth rotation do not have to be the same (same phase), and it is not always necessary to invert by 180°.

例えば、振動数Nは、1.1や1.25、2.6、3.75等とすることができる。
ワークWの1回転で1回より少ない振動(0<振動数N<1.0)を行うように設定することもできる。
この場合、1振動に対して1回転以上主軸110が回転する。
For example, the frequency N can be 1.1, 1.25, 2.6, 3.75, or the like.
It is also possible to set such that one rotation of the work W causes less than one vibration (0<frequency N<1.0).
In this case, the main shaft 110 rotates for one rotation or more for one vibration.

工作機械100において、制御部181による動作指令は、所定の指令時間単位毎で行われる。
主軸台110A(主軸110)又は切削工具台130A(切削工具130)の往復振動は、指令時間単位に基づく所定の周波数で動作が可能となる。
例えば、制御部181によって1秒間に250回の指令を送ることが可能な工作機械100の場合、制御部181による動作指令は、1÷250=4(ms)周期(指令時間単位毎)で行われる。
In the machine tool 100, the operation command from the control unit 181 is issued for each predetermined command time unit.
The reciprocating vibration of the headstock 110A (spindle 110) or the cutting tool base 130A (cutting tool 130) can be operated at a predetermined frequency based on the command time unit.
For example, in the case of the machine tool 100 capable of sending a command 250 times per second by the control unit 181, the operation command by the control unit 181 is performed in 1÷250=4 (ms) cycle (each command time unit). Be seen.

図5は、ワークWの1回転当たりのワークWに対する切削工具130(主軸台110A又は切削工具台130A)の振動数Nを、1.5回(振動数N=1.5)とした場合に、図4と同様に、ワーク外周面を周方向に沿って展開した切削工具130による切削軌跡を示し、各々の線が各切削回となるワークWの一回転毎の切削軌跡を表している。 FIG. 5 shows a case where the vibration frequency N of the cutting tool 130 (spindle head 110A or cutting tool base 130A) relative to the work W per one rotation of the work W is 1.5 times (frequency N=1.5). Similarly to FIG. 4, the cutting locus by the cutting tool 130 in which the outer peripheral surface of the work is developed along the circumferential direction is shown, and each line represents the cutting locus for each revolution of the work W that becomes each cutting cycle.

切削工具130の往動時の切削加工部分と、復動時の切削加工部分とが一部重複し、ワーク外周面のn+1回転目の切削部分に、n回転目に切削済みの部分が含まれるため、正弦曲線状の切削軌跡は、ワークの回転毎に往動の切削軌跡と復動の切削軌跡との近接および離反が繰り返される。 The cutting processed portion of the cutting tool 130 during forward movement partially overlaps with the cutting processed portion during return movement, and the cutting portion at the (n+1)th rotation of the workpiece outer peripheral surface includes the portion that has been cut at the nth rotation. Therefore, in the sinusoidal cutting locus, the approaching and leaving of the forward cutting locus and the backward moving cutting locus are repeated every rotation of the work.

往復振動の往動時における切削軌跡と復動時における切削軌跡とが交差する交差点CRは、振動切削加工が加工送り方向に進むに伴って同一の主軸位相の位置に生成される。往動の切削軌跡に対して復動の切削軌跡が徐々に近づくと、加工送り方向の未切削部分が増加し、復動の切削軌跡に対して往動の切削軌跡が徐々に離れると、加工送り方向に切削が進行する。 An intersection CR at which the cutting locus during the forward movement of the reciprocating vibration and the cutting locus during the backward movement intersect with each other is generated at a position of the same main spindle phase as the vibration cutting progresses in the machining feed direction. When the backward cutting locus gradually approaches the forward cutting locus, the uncut portion in the machining feed direction increases, and when the forward cutting locus gradually separates from the backward cutting locus, machining Cutting progresses in the feed direction.

切削工具130の先端は所定の径を有するため、図6に示されるように、ワークWの周面は切削工具130により、断面視で切削工具13の先端形状である円弧状に切削される。加工送り方向に切削加工が進行するに従って、互いに近接または離反する往動の切削軌跡と復動の切削軌跡の間には、既切削部分の端縁と進行する切削加工によって切削される部分の端縁との間の切削残りが凸状に突出して被切削面に残る。 Since the tip of the cutting tool 130 having a predetermined diameter, as shown in FIG. 6, the circumferential surface of the workpiece W is a cutting tool 130, is cut in an arc shape is the tip shape of the cutting tool 13 0 in sectional view .. Accordance cutting in the processing-feed direction proceeds, between the cutting path and the backward movement of the cutting trajectory of the forward movement close to or away from each other, the portion to be cut by cutting work progresses edge already cutting portion The cutting residue between the edge and the edge protrudes and remains on the surface to be cut.

前記切削残りの高さは、復動の切削軌跡に対して往動の切削軌跡が徐々に離れることによって徐々に高くなり、往動の切削軌跡に対して復動の切削軌跡が徐々に近づくことによって徐々に低くなるため、n回転目の切削軌跡とn+1回転目の切削軌跡における互いに離反する部分に凸状に突出する切削残りが残る。 The height of the residual cutting is gradually increased as the forward cutting locus is gradually separated from the backward cutting locus, and the backward cutting locus is gradually approaching the forward cutting locus. As a result, the cutting locus is gradually lowered, and therefore, a cutting residue protruding in a convex shape remains in the portions of the cutting locus of the n-th rotation and the cutting locus of the (n+1)-th rotation that are separated from each other.

n回転目とn+1回転目の各切削軌跡における往復振動の往動の切削軌跡と復動の切削軌跡との変曲部分(例えば、図5の領域X)に対応する主軸位相において切削残りの高さが最大となり、n回転目の切削軌跡とn+1回転目の切削軌跡が互いに近接するに従って切削残りの高さが低くなる。本実施形態においては、主軸位相方向で隣接する往復振動の往動の切削軌跡と復動の切削軌跡が交差する位置、すなわち、交差点CRの間で、往動時の切削加工部分と、復動時の切削加工部分との重複が発生するため、切削残りの高さは交差点CRに対応する主軸位相の位置で最大となる。 n-th rotation and the n + 1 inflection portion between the cutting path and the backward movement of the cutting trajectory of the forward movement of the reciprocating movement of each cutting locus of revolution (e.g., a region X in FIG. 5) cutting the remaining high in the spindle phase corresponding to Is the maximum, and as the cutting locus of the n-th rotation and the cutting locus of the (n+1)-th rotation get closer to each other, the height of the uncut portion decreases. In the present embodiment, between the position where the forward cutting locus of the reciprocating vibration and the backward cutting locus of the reciprocating vibration that are adjacent to each other in the main shaft phase direction intersect, that is, between the intersection point CR , Since the overlap with the cut processing portion at that time occurs, the height of the remaining cutting becomes maximum at the position of the spindle phase corresponding to the intersection CR.

制御装置180の制御部181は、各送り機構(Z軸方向送り機構160、X軸方向送り機構150、Y軸方向送り機構)からなる前記振動手段により、加工送り方向に沿った往復振動に加え、ワークWの径方向に沿った加工送り方向に交差する方向に切削工具130を振動させるように設定されている。 The control unit 181 of the control device 180 applies reciprocal vibration along the machining feed direction by the vibrating means including each feed mechanism (Z-axis direction feed mechanism 160, X-axis direction feed mechanism 150, Y-axis direction feed mechanism). , The cutting tool 130 is set to vibrate in a direction intersecting the machining feed direction along the radial direction of the workpiece W.

本実施形態においては、主軸110の回転毎の各切削軌跡間の加工送り方向の往復振動の往動の切削軌跡と復動の切削軌跡との間の距離が等しくなる位置(例えば、の6B−6Bに対応する主軸位相位置と、加工送り方向の往復振動の往動と復動の変曲部分に対応する主軸位相位置とを変曲点(例えば、図5に示す点P)とし、ワークWに対する加工送り方向に交差する方向への切削の切り込み量が、加工送り方向の往復振動の往動と復動との変曲部分に向かって増加し、交差点CRに対応する主軸位相位置でワークWに対する切削の切り込み量が最大となるように、加工送り方向に交差する方向への往復振動が行われる。 In the present embodiment, the position where the distance between the forward and backward trajectories of the reciprocating vibration in the machining feed direction between the respective cutting trajectories for each rotation of the spindle 110 is equal (for example, in FIG. 5 ). and position of the main shaft phase corresponding to 6B-6B), the inflection point and the position of the main shaft phase corresponding to the forward movement and inflection portion backward of the reciprocating movement of the machining feed direction (e.g., a point illustrated in Figure 5 P ) , the cutting depth of the workpiece W in the direction intersecting the machining feed direction increases toward the inflection portion of the forward and backward movements of the reciprocating vibration in the machining feed direction, and the spindle corresponding to the intersection CR as cutting amount of the cutting with respect to the workpiece W at the position of the phase is maximum, reciprocal vibration in the direction intersecting the processing-feed direction is performed.

例えば、加工送り方向に交差する方向への往復振動は、本実施形態においては、加工送り方向への往復振動の往動から復動へまたは復動から往動へ変曲する(例えば、図5に示す点Q)を挟んで隣接する両交差点CRに対応する主軸位相位置でワークWに対する切削の切り込み量が最大となるように、上記両交差点CR間において、ワークWに対する切削の切り込み量を一定(最大量)に維持することができる
また、加工送り方向への往復振動の往動から復動へまたは復動から往動へ変曲する点に対応する主軸位相位置が加工送り方向に交差する方向への往復振動の往動から復動へまたは復動から往動へ変曲する点となるように、上記両交差点CR間で加工送り方向に交差する方向に往復振動させることもできる。
なお加工送り方向への往復振動の往動から復動へまたは復動から往動へ変曲する点に対応する主軸位相位置でワークWに対する切削の切り込み量が最大となるように、加工送り方向に交差する方向に往復振動させることもできる。
For example, reciprocating vibrations to the direction intersecting the processing-feed direction, in the present embodiment, the point of inflection to the forward backward to or from backward from the forward movement of the reciprocating vibration of the machining feed direction (e.g., Fig. as cutting amount of the cutting with respect to the workpiece W becomes the maximum point Q) shown in 5 position of the corresponding main shaft phase in both intersection CR adjacent sandwiching, between the both intersections CR, the depth of cut of the cutting to the workpiece W Can be maintained constant (maximum amount) .
Further, the forward movement of the reciprocal vibration in the direction where the position of the main shaft phase corresponding to the point of inflection to the forward backward to or from backward from the forward movement of the reciprocating vibration of the machining feed direction intersects the machining feed direction It is also possible to reciprocally oscillate in a direction intersecting the machining feed direction between the two intersections CR so that the point is an inflection point in the backward movement or in the forward movement .
The machining feed is adjusted so that the cutting depth of the workpiece W is maximized at the position of the spindle phase corresponding to the point where the reciprocating vibration in the machining feed direction changes from forward to backward or from backward to forward. It is also possible to reciprocally vibrate in a direction intersecting the directions.

加工送り方向への往復振動の往動と復動との変曲部分に向かった切削工具130のワークへの切り込み量(加工送り方向に交差する方向への切り込み量)の増加と、切削残りの突出高さの増加とが相補的に作用するため、図6(A),(B)に示されるように、切り込み深さ位置Soと切削残りの高さとの差が最も小さくなる6B−6Bの位置での切削残りの高さ位置Sbと、切削残りの高さ位置Sa1が最大となっていた6A−6Aの位置での切削残りの高さ位置Sa2とが概ね一致し、切削の切り込み深さ位置Soが最深位置Sa3まで下げられ、ワークWの加工精度や真円度を低下させるような被切削面の切削残りの発生が抑制され、切削加工後のワークの被切削面の凹凸の発生が抑制されてワークの真円度を向上することができる。 Increasing the amount of cutting of the cutting tool 130 toward the inflection part of the forward and backward movements of the reciprocating vibration in the machining feed direction (the amount of cutting in the direction intersecting the machining feed direction) and the cutting residue Since the increase in the protruding height acts in a complementary manner, as shown in FIGS. 6(A) and 6(B), the difference between the cutting depth position So and the height of the uncut portion of 6B-6B becomes the smallest. The height position Sb of the uncut portion at the position and the height position Sa2 of the uncut portion at the position 6A-6A where the remaining height position Sa1 of the cutting portion was the maximum are substantially equal to each other, and the cutting depth of the cutting is The position So is lowered to the deepest position Sa3, the generation of uncut residue on the surface to be cut that reduces the processing accuracy and roundness of the work W is suppressed, and the unevenness on the surface to be cut of the work after cutting is generated. The roundness of the work can be improved by suppressing the roundness.

振動手段によって切削工具130はワークWに対する切り込み量が、加工送り方向の往復振動の往動の切削軌跡と復動の切削軌跡との変曲部分に向かって増加するため、ワークWの被切削面に、図7(A)、(B)に示すような、交差点CRを含む凹部Wdが切削形成される。凹部Wdによって、潤滑油を貯留してワーク外周面の潤滑性等を確保することができ、例えばワーク外周面上の摺動性を保つことができる。
なお、本実施形態では、加工送り方向に交差する方向への振動を、往動時と復動時の両方において実行するように設定しているが、往動時のみもしくは復動時のみに実行するように設定することもできる。
なお、加工送り方向への振動切削加工が、異なる位相であり、互に近接又は離反する往動と複動とを繰り返すものであれば、必ずしも交差しないものであっても良い。
Due to the vibrating means, the cutting tool 130 increases the depth of cut into the work W toward the inflection portion between the forward cutting trajectory and the backward cutting trajectory of the reciprocating vibration in the machining feed direction. A recess Wd including the intersection CR is cut and formed as shown in FIGS. 7(A) and 7(B). By the recessed portion Wd, lubricating oil can be stored to secure the lubricity of the outer peripheral surface of the work, and for example, the slidability on the outer peripheral surface of the work can be maintained.
In this embodiment, the vibration in the direction intersecting the machining feed direction is set to be executed in both the forward movement and the backward movement, but it is executed only in the forward movement or only in the backward movement. It can also be set to do so.
The vibration cutting in the machining feed direction may have different phases, and may not necessarily intersect as long as the forward movement and the double movement that approach or separate from each other are repeated.

100 ・・・ 工作機械
110 ・・・ 主軸(回転手段)
110A・・・ 主軸台
120 ・・・ チャック(ワーク保持手段)
130 ・・・ 切削工具
130A・・・ 切削工具台(刃物台)
150 ・・・ X軸方向送り機構(刃物台移動機構、送り手段、振動手段)
151 ・・・ ベース
152 ・・・ X軸方向ガイドレール
153 ・・・ X軸方向送りテーブル
154 ・・・ X軸方向ガイド
155 ・・・ リニアサーボモータ
155a・・・ 可動子
155b・・・ 固定子
160 ・・・ Z軸方向送り機構(主軸移動機構、送り手段、振動手段)
161 ・・・ ベース
162 ・・・ Z軸方向ガイドレール
163 ・・・ Z軸方向送りテーブル
164 ・・・ Z軸方向ガイド
165 ・・・ リニアサーボモータ
165a・・・ 可動子
165b・・・ 固定子
180 ・・・ 制御装置
181 ・・・ 制御部(切削制御手段)
W ・・・ ワーク
Wd・・・ 凹部
CR・・・ 切削軌跡上の交差点
So・・・ 従来の切削軌跡の切り込み深さ位置(従来の凹部の最深位置)
Sa1・・ 従来の交差点の両側にある切削残りの高さ位置
Sa2・・ 図5の6A−6Aの位置での切削残りの高さ位置(=Sb)
Sa3・・ 凹部の最深位置
Sb・・・ 図5の6B−6Bの位置での切削残り高さ位置
100 ・・・ Machine tool 110 ・・・ Spindle (rotating means)
110A... Headstock 120... Chuck (workpiece holding means)
130... Cutting tool 130A... Cutting tool stand (turret)
150 ・・・ X-axis direction feed mechanism (tool post moving mechanism, feed means, vibrating means)
151 ・・・ Base 152 ・・・ X axis direction guide rail 153 ・・・ X axis direction feed table 154 ・・・ X axis direction guide 155 ・・・ Linear servo motor 155a ・・・ Mover 155b ・・・ Stator 160 Z-direction feed mechanism (spindle moving mechanism, feeding means, vibrating means)
161 ... Base 162 ... Z-axis direction guide rail 163 ... Z-axis direction feed table 164 ... Z-axis direction guide 165 ... Linear servo motor 165a ... Mover 165b ... Stator 180... Control device 181... Control unit (cutting control means)
W... Work Wd... Recessed portion CR... Intersection on cutting locus So... Cutting depth position of conventional cutting locus (conventional deepest position of recessed portion)
Sa1... Height positions of cutting residuals on both sides of a conventional intersection Sa2... Height positions of cutting residuals at positions 6A-6A in FIG. 5 (=Sb)
Sa3... The deepest position of the recess Sb... The remaining cutting height position at the position 6B-6B in FIG.

Claims (5)

ワークを切削加工する切削工具と、該切削工具とワークとを相対的に回転させる回転手段と、前記切削工具と前記ワークとを所定の加工送り方向に相対的に送り動作させる送り手段と、前記切削工具とワークとを相対的に往復振動させる振動手段とを備え前記ワークの振動切削加工を行う工作機械であって、
前記振動手段が、前記切削工具と前記ワークとを相対的に回転させつつ、前記ワークに対する前記加工送り方向と交差する方向への往復振動による切削工具の切り込み量を前記加工送り方向に沿った往復振動において前進移動する往動と後退移動する復動との変曲部分に向かって増加させるように、前記送り手段および前記回転手段と連係し、
前記加工送り方向に沿った往復振動の主軸位相および振幅が、前記加工送り方向に沿った往復振動において前進移動する往動の切削軌跡と後退移動する復動の切削軌跡とを交差させるように設定されていることを特徴とする工作機械。
A cutting tool for cutting a work, a rotating means for relatively rotating the cutting tool and the work, a feeding means for relatively feeding the cutting tool and the work in a predetermined machining feed direction, and a vibrating means for relatively reciprocating movement of the cutting tool and the workpiece, a machine tool that performs vibration cutting of the workpiece,
The vibrating means reciprocates the cutting amount of the cutting tool due to reciprocating vibration in a direction intersecting the machining feed direction with respect to the work while rotating the cutting tool and the work relative to each other along the machining feed direction. In order to increase toward the inflection portion of the forward movement that moves forward and the backward movement that moves backward in vibration , the feeding means and the rotating means are linked,
The main axis phase and the amplitude of the reciprocating vibration along the machining feed direction are set so as to intersect the forward cutting trajectory that moves forward and the backward cutting trajectory that moves backward in the reciprocating vibration along the machining feed direction. A machine tool characterized by being used .
ワークを切削加工する切削工具と、該切削工具とワークとを相対的に回転させる回転手段と、前記切削工具と前記ワークとを所定の加工送り方向に相対的に送り動作させる送り手段と、前記切削工具とワークとを相対的に往復振動させる振動手段とを備え前記ワークの振動切削加工を行う工作機械であって、
前記振動手段が、前記切削工具と前記ワークとを相対的に回転させつつ、前記ワークに対する前記加工送り方向と交差する方向への往復振動による切削工具の切り込み量を前記加工送り方向に沿った往復振動において前進移動する往動と後退移動する復動との変曲部分に向かって増加させるとともに、前記振動切削加工において前記加工送り方向に沿った往復振動において前進移動する往動の切削軌跡と後退移動する復動の切削軌跡との間の距離が等しくなる主軸位相の間で、前記加工送り方向交差する方向に沿って振動させるように前記送り手段および前記回転手段と連係していることを特徴とする工作機械。
A cutting tool for cutting a work, a rotating means for relatively rotating the cutting tool and the work, a feeding means for relatively feeding the cutting tool and the work in a predetermined machining feed direction, and a vibrating means for relatively reciprocating movement of the cutting tool and the workpiece, a machine tool that performs vibration cutting of the workpiece,
The vibrating means reciprocates the cutting amount of the cutting tool due to reciprocating vibration in a direction intersecting the machining feed direction with respect to the work while rotating the cutting tool and the work relative to each other along the machining feed direction. with increasing toward the inflection portion between backward to backward move forward moving forward in the vibration, retract the cutting trajectory of forward movement to move forward in a reciprocating vibration along the processing-feed direction in the vibration cutting between the distance becomes equal to the main shaft phase between the backward movement of the cutting trajectory moves, so as to vibrate along a direction intersecting the processing-feed direction, that in conjunction with the feed means and the rotating means A machine tool characterized by.
前記変曲部分が、前記振動切削加工の前記加工送り方向に沿った往復振動において前進移動する往動の切削軌跡及び後退移動する復動切削軌跡交差あって、
前記振動手段が、前記ワークに対する前記加工送り方向と交差する方向への切削工具の切り込み量を前記交差点で最大となるように、前記送り手段および前記回転手段と連係していることを特徴とする請求項1または請求項2に記載の工作機械。
The inflection portion, a crossing point of the backward movement of the cutting trajectory the cutting trajectory and backward movement of the forward movement moves forward in the reciprocal vibration along the processing-feed direction of the vibration cutting,
The vibrating means is linked with the feeding means and the rotating means so that the cutting amount of the cutting tool in the direction intersecting the machining feed direction with respect to the workpiece becomes maximum at the intersection. The machine tool according to claim 1 or 2.
ワークを切削加工する切削工具と、該切削工具とワークとを相対的に回転させる回転手段と、前記切削工具と前記ワークとを所定の加工送り方向に相対的に送り動作させる送り手段と、前記切削工具とワークとを相対的に往復振動させる振動手段とを備え、前記送り手段と前記振動手段と前記回転手段とを連係させて前記ワークの振動切削加工を行う工作機械の制御装置であって、
前記回転手段によって前記切削工具と前記ワークとを相対的に回転させつつ、前記振動手段によって、前記ワークに対する前記加工送り方向と交差する方向への切削工具の切り込み量を前記加工送り方向に沿った前記往復振動において前進移動する往動と後退移動する復動との変曲部分に向かって増加させるように、前記加工送り方向に交差する方向に沿って振動させる構成とされ、
前記加工送り方向に沿った往復振動の主軸位相および振幅が、前記加工送り方向に沿った往復振動において前進移動する往動切削軌跡と後退移動する復動切削軌跡とを交差されるように設定されていることを特徴とする工作機械の制御装置。
A cutting tool for cutting a work, a rotating means for relatively rotating the cutting tool and the work, a feeding means for relatively feeding the cutting tool and the work in a predetermined machining feed direction, A control device for a machine tool, comprising: a vibrating means for relatively reciprocally vibrating a cutting tool and a work, and vibrating and cutting the work by linking the feed means, the vibrating means, and the rotating means. ,
While the relative rotation of the cutting tool and the work by the rotating means, by the vibrating means, the cutting amount of the cutting tool in the direction intersecting the processing feed direction with respect to the work along the processing feed direction. In the reciprocating vibration , it is configured to vibrate along a direction intersecting the machining feed direction so as to increase toward the inflection portion of the forward movement that moves forward and the backward movement that moves backward.
As the main shaft phase and amplitude of the reciprocating vibration along the processing-feed direction, are crossed and backward cutting trajectory forward and backward movement and the cutting trajectory of the moving forward in the reciprocal vibration along the processing-feed direction Machine tool control device characterized by being set .
ワークを切削加工する切削工具と、該切削工具とワークとを相対的に回転させる回転手段と、前記切削工具と前記ワークとを所定の加工送り方向に相対的に送り動作させる送り手段と、前記切削工具とワークとを相対的に往復振動させる振動手段とを備え、前記送り手段と前記振動手段と前記回転手段とを連係させて前記ワークの振動切削加工を行う工作機械の制御装置であって、
前記回転手段によって前記切削工具と前記ワークとを相対的に回転させつつ、前記振動手段によって、前記ワークに対する前記加工送り方向と交差する方向への切削工具の切り込み量を前記加工送り方向に沿った前記往復振動において前進移動する往動と後退移動する復動との変曲部分に向かって増加させるように、前記加工送り方向に交差する方向に沿って振動させる構成とされ、
前記振動手段が、前記ワークに対する前記加工送り方向と交差する方向への往復振動による切削工具の切り込み量を前記加工送り方向に沿った往復振動において前進移動する往動と後退移動する復動との変曲部分に向かって増加させるとともに、前記振動切削加工において前記加工送り方向に沿った往復振動において前進移動する往動の切削軌跡と後退移動する復動の切削軌跡との間の距離が等しくなる主軸位相の間で、前記加工送り方向交差する方向に沿って振動させるように前記送り手段および前記回転手段と連係していることを特徴とする工作機械の制御装置。
A cutting tool for cutting a work, a rotating means for relatively rotating the cutting tool and the work, a feeding means for relatively feeding the cutting tool and the work in a predetermined machining feed direction, A control device for a machine tool, comprising: a vibrating means for relatively reciprocally vibrating a cutting tool and a work, and vibrating and cutting the work by linking the feed means, the vibrating means, and the rotating means. ,
While the relative rotation of the cutting tool and the work by the rotating means, by the vibrating means, the cutting amount of the cutting tool in the direction intersecting the processing feed direction with respect to the work along the processing feed direction. In the reciprocating vibration , it is configured to vibrate along a direction intersecting the machining feed direction so as to increase toward the inflection portion of the forward movement that moves forward and the backward movement that moves backward.
The vibrating means includes a forward movement that moves forward and a backward movement that moves backward in the reciprocating vibration along the machining feed direction with respect to the cutting amount of the cutting tool due to the reciprocating vibration in a direction intersecting the machining feed direction with respect to the work . While increasing toward the inflection portion, the distance between the forward cutting trajectory and the backward cutting trajectory that moves forward in the reciprocating vibration along the machining feed direction in the vibration cutting process becomes equal. between the main shaft phase, said to oscillate along a direction intersecting the processing-feed direction, the control device of the machine tool, characterized in that in conjunction with the feed means and the rotating means.
JP2016068701A 2016-03-30 2016-03-30 Machine tools and their control devices Active JP6732494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016068701A JP6732494B2 (en) 2016-03-30 2016-03-30 Machine tools and their control devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016068701A JP6732494B2 (en) 2016-03-30 2016-03-30 Machine tools and their control devices

Publications (2)

Publication Number Publication Date
JP2017177284A JP2017177284A (en) 2017-10-05
JP6732494B2 true JP6732494B2 (en) 2020-07-29

Family

ID=60008013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016068701A Active JP6732494B2 (en) 2016-03-30 2016-03-30 Machine tools and their control devices

Country Status (1)

Country Link
JP (1) JP6732494B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6980536B2 (en) * 2018-01-10 2021-12-15 シチズン時計株式会社 Cutting equipment and its control method
JP6708690B2 (en) * 2018-04-05 2020-06-10 ファナック株式会社 Display device
JP7195110B2 (en) * 2018-10-26 2022-12-23 シチズン時計株式会社 Machine tools and controllers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049578A (en) * 1973-09-04 1975-05-02
JP2005007560A (en) * 2003-06-23 2005-01-13 Canon Inc Working method and working device for inner surface of cylinder
JP2006110673A (en) * 2004-10-14 2006-04-27 Seiko Epson Corp Cutting method, cut product, and accessory
JP2006312223A (en) * 2005-05-09 2006-11-16 Toyota Motor Corp Cutting apparatus and method
WO2012135691A2 (en) * 2011-03-31 2012-10-04 Purdue Research Foundation Method of producing textured surfaces

Also Published As

Publication number Publication date
JP2017177284A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP7304315B2 (en) Machine tools and controllers for these machine tools
JP6470085B2 (en) Machine tool and control device for this machine tool
JP6416217B2 (en) Machine tool control device and machine tool equipped with the control device
JP6297711B2 (en) Machine tool and control device for this machine tool
CN106715011B (en) machine tool and control device for the machine tool
CN110475637B (en) Control device for machine tool, and machine tool
JP6727190B2 (en) Machine tool and control device for this machine tool
JP7161349B2 (en) Machine tool controls and machine tools
JP6289766B2 (en) Machine tool control device, machine tool
JP7264643B2 (en) Machine tool controls and machine tools
JP6732494B2 (en) Machine tools and their control devices
EP3696635B1 (en) Machine tool
JP6994838B2 (en) Machine tool controls and machine tools
JP7214568B2 (en) Machine tools and controllers for these machine tools
JP6621696B2 (en) Machine tool and control device thereof
JP6517062B2 (en) Machine tool and control device for the machine tool
JP6517060B2 (en) Machine tool and control device for the machine tool
JP6517061B2 (en) Machine tool and control device for the machine tool
EP3696634B1 (en) Machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200708

R150 Certificate of patent or registration of utility model

Ref document number: 6732494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250