JP6731543B2 - 電気的なエネルギー蓄積器を放電させる方法 - Google Patents

電気的なエネルギー蓄積器を放電させる方法 Download PDF

Info

Publication number
JP6731543B2
JP6731543B2 JP2019511978A JP2019511978A JP6731543B2 JP 6731543 B2 JP6731543 B2 JP 6731543B2 JP 2019511978 A JP2019511978 A JP 2019511978A JP 2019511978 A JP2019511978 A JP 2019511978A JP 6731543 B2 JP6731543 B2 JP 6731543B2
Authority
JP
Japan
Prior art keywords
thyristor
electrical conductor
energy store
current
electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019511978A
Other languages
English (en)
Other versions
JP2019527018A (ja
Inventor
ドルン,イェルク
シュミット,ダニエル
シュレンマー,フランク
ヴァーレ,マルクス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2019527018A publication Critical patent/JP2019527018A/ja
Application granted granted Critical
Publication of JP6731543B2 publication Critical patent/JP6731543B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • H03K17/08148Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/72Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region
    • H03K17/722Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region with galvanic isolation between the control circuit and the output circuit
    • H03K17/723Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region with galvanic isolation between the control circuit and the output circuit using transformer coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Description

本発明は、電気的なエネルギー蓄積器を放電させる方法に関する。電気的なエネルギー蓄積器(例えば、電気コンデンサ)には、大きなエネルギー量を蓄積することができる。故障発生時に、これらの大きなエネルギー量を制御することは困難である。というのは、故障発生時に、エネルギーが抑制されないで突然に放出され、その結果、他のエネルギー形態に変化し得るからである。その際に、電気的なエネルギー蓄積器に接続されている電子回路または電子構成要素(例えば、パワー半導体)は、しばしば、これらの放出されるエネルギー量を受け入れて抑制することができない。これによって、故障発生時に、例えば爆発によって、電子回路の完全破壊がもたらされる。更に、電子回路の破壊時には、隣接した設備機器において二次故障が起こり得る。このような二次故障の原因は、例えば、アーク、大きな磁気的な電流力、または上述の爆発に起因した強い汚染にある。
特許文献1から、モジュール型マルチレベルコンバータのサブモジュールのための短絡電流解放装置が知られている。この短絡電流解放装置では、電気コンデンサにサイリスタが並列接続されている。それは、故障発生時に、電気コンデンサの放電電流をサイリスタによって制御してバイパスさせ、電気コンデンサに接続されている電子回路を保護するためである。この公知の短絡電流解放装置は、電子的な評価回路を有しており、この評価回路は、故障の存在を認識し、故障の存在時にはサイリスタのゲート端子にゲート電流を供給し、それによってサイリスタをターンオンさせる(点弧する)。この評価回路を実現するためには付加的な電子構成要素が必要不可欠であり、この電子構成要素は、故障を認識してサイリスタにゲート電流を供給するために、ある程度の時間を必要とする。更に、その評価回路は、保護要素、即ち短絡解放装置の確実性を低下させる。
国際特許出願公開第2013/044961号明細書
本発明の課題は、付加的な評価回路が必要でない、電気的なエネルギー蓄積器を放電させる方法および装置を提供することにある。
この課題は、本発明によれば、独立請求項に記載の方法および装置によって解決される。方法および装置の有利な実施形態は、従属請求項に記載されている。
第1の電気導体および第2の電気導体により電子回路に接続されている電気的なエネルギー蓄積器を放電させる方法であって、エネルギー蓄積器を放電させるためのサイリスタが設けられている方法を開示する。この方法において、
・電子回路において発生した故障に基づいて(特に、電子回路において発生した短絡に基づいて)、エネルギー蓄積器の放電電流が、エネルギー蓄積器から第1の電気導体を介して電子回路へ流れ始め、第2の電気導体を介してエネルギー蓄積器へ戻り、
・その(増大する)放電電流に基づいて、第1の電気導体および第2の電気導体の周りに、時間的に変化する磁界が生成され、その時間的に変化する磁界がサイリスタの半導体材料を貫通し、
・その時間的に変化する磁界によって、サイリスタの半導体材料内に電流(渦電流)が誘導(印加)され、
・(もっぱら)この誘導された電流によって、サイリスタがターンオンされる(それによって、エネルギー蓄積器の放電電流が、ターンオンされたサイリスタを通して流れ、それによって電子回路がバイパスされる)。
従って、ターンオンされたサイリスタは、エネルギー蓄積器の放電電流(エネルギー蓄積器の放電電流の少なくとも一部)を引き受け、即ち、ターンオンされたサイリスタがエネルギー蓄積器の放電電流をバイパスさせる。エネルギー蓄積器は、例えば、コンデンサ形式のエネルギー蓄積器、例えば蓄電器、電池または蓄電池であってよい。誘導された電流は、サイリスタ内においてゲート電流または点弧電流として作用することができる。ゲート電流は、サイリスタのゲート半導体構造を通して流れてサイリスタをターンオンさせる電流である。点弧電流は、サイリスタ内でサイリスタのゲート半導体構造の外側に流れてサイリスタをターンオンさせる電流である。
換言するならば、誘導された電流(渦電流)によってサイリスタがターンオンされる。それによって、エネルギー蓄積器の放電電流が、電子回路を迂回して、ターンオンしたサイリスタを通して流れる。サイリスタは、空間的に第1の電気導体および/または第2の電気導体に隣接して配置されているとよい。
この方法では、(エネルギー蓄積器の増大する放電電流に基づいて生じる)時間的に変化する磁界が、直接的に、サイリスタをターンオンする(即ち、サイリスタを点弧する)ために利用される。そのために、更なる構成要素も、更なる評価回路も、全く必要でない。それによって、この方法は、非常に簡単に安価かつ確実に実現することができる。更に、サイリスタのターンオン時の時間遅れが回避される。(付加的な電子的構成要素が存在する評価回路は、もちろん、このような遅れを必然的に伴う。)従って、このサイリスタは、付加的な評価回路内での付加的な検出用もしくは点弧用の電子装置に基づく付加的なスイッチング遅れ時間なしに自己点弧するサイリスタである(この場合、サイリスタの点弧遅れ時間は変化しないままである。サイリスタの点弧遅れ時間は、一般に、数μs、典型的には1〜3μsである。)。付加的な構成要素および付加的な評価回路が存在しないことに基づいて、付加的な電気的損失も発生しない。特に、(例えば、モジュール型マルチレベルコンバータの場合のように)非常に多くの電気的なエネルギー蓄積器が存在しているパワーエレクトロニクス設備の場合には、それによって電気的損失を、言うに値するほど低減することができる。それによって、設備のエネルギー効率を改善することができる。上述の方法の場合、サイリスタの漏れ電流によって、僅かの電気的損失しか発生しない。この漏れ電流は一般に非常に僅かである。
従って、上述の方法は、付加的な電子構成要素の回避もしくは付加的な電子評価回路の回避に基づいて、大きなコスト節減および故障率(FIT値、FIT=failure in time)の低減を可能にする。存在しない構成要素は故障することはないので、故障発生の確率は、明らかに低減される。
本方法は、磁界の時間的変化が閾値を上回った際に、誘導される電流によってサイリスタがターンオンされるように、経過することができる。この閾値は、第1の電気導体および/または第2の電気導体に対するサイリスタの空間的な配置の選択によって、著しく影響を及ぼされる。サイリスタのターンオンのために十分に強い磁界の時間的変化を発生させるためには、例えば、サイリスタと第1の電気導体または第2の電気導体との間の間隔が大きければ大きいほど、放電電流の時間的変化が一層大きくなければならない。換言するならば、本方法は、放電電流の時間的変化が閾値を上回った際に、誘導される電流によってサイリスタがターンオンされるように、経過することができる。
本方法は、電子回路が、1つのハーフブリッジ回路内に配置されている少なくとも2つの(オン・オフ制御可能な)電子スイッチ素子を有するように、構成することができる(ハーフブリッジ回路は、エネルギー蓄積器に並列接続されている)。この種の電子回路は、例えば、モジュール型マルチレベルコンバータのいわゆるハーフブリッジサブモジュール内に含まれている。
本方法は、電子回路が、前記2つの電子スイッチ素子と、2つの(オン・オフ制御可能な)他の電子スイッチ素子とを有するように、構成することもでき、この場合に、2つの電子スイッチ素子および2つの他の電子スイッチ素子は、1つのフルブリッジ回路に配置されている。このような電子回路は、例えば、モジュール型マルチレベルコンバータのいわゆるフルブリッジサブモジュール内に含まれている。
更に、電子回路と、第1の電気導体と第2の電気導体とにより前記電子回路に接続されている電気的なエネルギー蓄積器と、(故障発生時に)そのエネルギー蓄積器を放電させるためのサイリスタとを有し、前記サイリスタが、次のように、第1の電気導体および/または第2の電気導体に対して空間的に隣接して配置されている、装置を開示する。即ち、 少なくとも1つの電気導体(例えば、第1の電気導体および/または第2の電気導体)を通して流れる前記エネルギー蓄積器の放電電流に基づいて発生して、前記サイリスタの半導体材料を貫通する、時間的に変化する磁界に基づいて、(その磁界の時間的変化が閾値を上回る際に)前記サイリスタの半導体材料内に前記サイリスタをターンオンさせる電流(渦電流)が誘導(印加)されるように、第1の電気導体および/または第2の電気導体に対して空間的に隣接して配置されている。その場合に、エネルギー蓄積器は、例えばコンデンサ形式のエネルギー蓄積器、例えば蓄電器、電池または蓄電池であってよい。誘導される電流は、サイリスタ内においてゲート電流または点弧電流として作用し得る。この装置は、先に方法との関連で述べたのと同じ利点を有する。
本装置は、サイリスタが、第1の電気導体と第2の電気導体との間の中間空間内に配置されているように構成することもできる。この装置の場合に、サイリスタは、第1の電気導体の磁界によっても第2の電気導体の磁界によっても、格別に良好に貫通される。
本装置は、サイリスタのアノードが第1の電気導体に(導電)接続されており、サイリスタのカソードが第2の電気導体に(導電)接続されているように構成することもできる。換言するならば、サイリスタが第1の電気導体と第2の電気導体との間に直接に接続されていてよい。その場合に、2つの接触部位(アノードと第1の電気導体との間の第1の接触部位と、カソードと第2の電気導体との間の第2の接触部位)のみが必要である。
本装置は、サイリスタが、第1の電気導体と第2の電気導体との間に機械的に固定されているように構成することもできる。(第1の電気導体、サイリスタおよび第2の電気導体は保持枠を構成する)。その機械的な固定によって、有利に、第1の電気導体とサイリスタとの間(より厳密に言えば、第1の電気導体とサイリスタのアノードとの間)の良好な電気的接触と、第2の電気導体とサイリスタとの間(より厳密に言えば、第2の電気導体とサイリスタのカソードとの間)の良好な電気的接触とが保証される。
本装置は、サイリスタがディスクセル容器を有するように構成することもできる。ディスクセル容器を有するこの種のサイリスタは、有利に、格別に簡単に第1の電気導体と第2の電気導体との間に機械的に固定することができる。
本装置は、第1の電気導体および/または第2の電気導体が、それぞれ電流レールとして形成されているように構成することもできる。この種の電流レールにより、一方ではエネルギー蓄積器の大きな放電電流も安全に導くことができ、他方では(機械的に安定な)電流レールによりサイリスタを確実に機械的に固定することができる。
本装置は、第1の電気導体および/または第2の電気導体が、それぞれ1つの平らな外面を有し、サイリスタの半導体材料がディスク(ウェハ)を形成し、該ディスクが平らな外面の少なくとも一方に平行に配置されているように構成することもできる。(その場合、特に、第1の電気導体が第1の平らな外面を有し、第2の電気導体が第2の平らな外面を有し、第1の平らな外面が第2の平らな外面に平行に配置されており、サイリスタの半導体材料がディスク(ウェハ)を形成し、該ディスクが第1の平らな外面および第2の平らな外面に対して平行に配置されている。)この種の装置は、有利に、第1の電気導体と第2の電気導体との間の僅かな間隔を可能にする。それによって、第1の電気導体と第2の電気導体との間に、格別に強い磁界を発生させることができる。更に、この種の装置において、時間的に変化する磁界が、サイリスタの半導体材料を格別に良好に貫通するので、サイリスタの半導体材料内に、(例えばゲート電流として作用する)電流が確実に誘導される。
本装置は、サイリスタがエネルギー蓄積器に低インダクタンスで結合されているように構成することもできる(その場合に、エネルギー蓄積器とサイリスタとの間の電気的な接続が、エネルギー蓄積器と電子回路との間の電気的な接続よりも小さい電気的なインダクタンスを有する。)。その場合に、サイリスタのターンオン後に、エネルギー蓄積器の放電電流がサイリスタを通して流れ、電子回路を通しては流れない(または、非常にわずかな範囲でしか流れない)。
本装置は、サイリスタがエネルギー蓄積器に並列接続されているように構成することもできる。これは、サイリスタを格別に密接してエネルギー蓄積器に配置することを可能にし、それによって、エネルギー蓄積器とサイリスタとの間において、格別に低インダクタンスの電気的接続が可能である。
本装置は、電子回路が、1つのハーフブリッジ回路内に配置された少なくとも2つの(オン・オフ制御可能な)電子スイッチ素子を有するように、構成することもできる(その場合に、ハーフブリッジ回路は、エネルギー蓄積器に並列接続されている)。この種の電子回路は、例えば、モジュール型マルチレベルコンバータのいわゆるハーフブリッジサブモジュール内に含まれている。
本装置は、電子回路が、前記2つの電子スイッチ素子と、2つの他の(オン・オフ制御可能な)スイッチ素子とを有するように、構成することもでき、その場合に、2つの電子スイッチ素子および2つの他のスイッチ素子は、1つのフルブリッジ回路内に配置されている。この種の電子回路は、例えばモジュール型マルチレベルコンバータのいわゆるフルブリッジサブモジュール内に含まれている。
上述の変形態様の1つによる装置を有するモジュール型マルチレベルコンバータの1つのモジュールを開示する。
更に、多数のこの種のモジュールを有するモジュール型マルチレベルコンバータを開示する。
上述の方法および上述の装置は同じもしくは同様の利点を有する。
以下において、本発明を実施例に基づいて更に詳細に説明する。同じ符号は、同じ要素または同じ作用をする要素を指す。
図1は多数のモジュールを有する電力変換装置の実施例を示す図である。 図2は1つのモジュールの実施例を示す図である。 図3は1つのモジュールの他の実施例を示す図である。 図4は高電圧直流送電設備の実施例を示す図である。 図5は無効電力補償装置の実施例を示す図である。 図6は1つのサイリスタを有するモジュールの実施例を示す図である。 図7は1つのサイリスタを有するモジュールの他の実施例を示す図である。 図8は実装されたサイリスタの実施例を示す平面図である。 図9は実装されたサイリスタの実施例を示す側面図である。 図10は磁界内のサイリスタの半導体材料を例示する図である。 図11は方法経過を例示する図である。
図1には、電力変換装置1が、モジュール型マルチレベルコンバータ1(modular multilevel converter,MMC)の形で示されている。このマルチレベルコンバータ1は、第1の交流電圧端子5、第2の交流電圧端子7および第3の交流電圧端子9を有する。第1の交流電圧端子5は、第1の相モジュールアーム11と、第2の相モジュールアーム13とに、電気的に接続されている。第1の相モジュールアーム11および第2の相モジュールアーム13は、電力変換装置1の第1の相モジュール15を構成する。第1の交流電圧端子5と反対の方を向いている相モジュールアーム11の端部は、第1の直流電圧端子16に電気的に接続されている。第1の交流電圧端子5と反対の方を向いている第2の相モジュールアーム13の端部は、第2の直流電圧端子17に電気的に接続されている。第1の直流電圧端子16は正の直流電圧端子であり、第2の直流電圧端子17は負の直流電圧端子である。
第2の交流電圧端子7は、第3の相モジュールアーム18の一端と、第4の相モジュールアーム21の一端とに、電気的に接続されている。第3の相モジュールアーム18と、第4の相モジュールアーム21とは、第2の相モジュール24を構成している。第3の交流電圧端子9は、第5の相モジュールアーム27の一端と、第6の相モジュールアーム29の一端とに、電気的に接続されている。第5の相モジュールアーム27と、第6の相モジュールアーム29とは、第3の相モジュール31を構成している。
第2の交流電圧端子7と反対の方を向いている第3の相モジュールアーム18の端部と、第3の交流電圧端子9と反対の方を向いている第5の相モジュールアーム27の端部とは、第1の直流電圧端子16に電気的に接続されている。第2の交流電圧端子7と反対の方を向いている第4の相モジュールアーム21の端部と、第3の交流電圧端子9と反対の方を向いている第6の相モジュールアーム29の端部とは、第2の直流電圧端子17に電気的に接続されている。
各相モジュールアームは、複数のモジュール1_1,1_2,1_3,1_4,…,1_1n;2_1,…,2_n;…など)を有し、これらのモジュールは(それらのガルバニック電流接続により)電気的に直列接続されている。このようなモジュールは、サブモジュールとも呼ばれる。図1の実施例においては、それぞれの相モジュールアームがn個のモジュールを有する。それらのガルバニック電流接続により電気的に直列接続されているモジュールの個数は非常にさまざまであってよく、少なくとも3個のモジュールが直列接続されているとよい。しかし、例えば、50、100またはそれよりも多数のモジュールを電気的に直列接続することができる。本実施例においては、n=36である。従って、第1の相モジュールアーム11は、36個のモジュール1_1,1_2,1_3,…,1_36を有する。他の相モジュールアーム13,18,21,27および29も同様に構成されている。
図1の左の範囲に、モジュール1_1〜6_nのための制御装置35が示されている。この中央の制御装置35から、光情報が光学的な通信リンクを介して(例えば、光ファイバケーブルを介して)個々のモジュールへ伝送される。その制御装置と1つのモジュールとの間の情報伝送が、象徴的に、それぞれ1つの線37によって示されている。その情報伝送の方向は、線37の矢印によって象徴的に表されている。これは、モジュール1_1,1_4および4_5の例で示されている。その他のモジュールへは、同じような方法で、情報が送信され、または、これらのモジュールによって情報が受信される。例えば、制御装置35は、個々のモジュールに、それぞれ1つの、各モジュールが供給すべき出力電圧の高さに対する目標値を送信する。
図2には、1つのモジュール201の構造が例示されている。このモジュールは、例えば、第1の相モジュールアーム11のモジュール1_1であってよい(または、図1に示されている他のモジュールの1つであってもよい)。そのモジュールはハーフブリッジモジュール201として構成されている。モジュール201は、第1の逆並列接続されたダイオード204を備えた第1のオン・オフ制御可能な電子スイッチ素子202(オン・オフ制御可能なスイッチ素子202)を有する。更に、モジュール201は、第2の逆並列接続されたダイオード208を備えた第2のオン・オフ制御可能な電子スイッチ素子206(オン・オフ制御可能なスイッチ素子206)と、コンデンサ210の形での電気的なエネルギー蓄積器210とを有する。第1の電子スイッチ素子202および第2の電子スイッチ素子206は、それぞれIGBT(絶縁ゲート型バイポーラトランジスタ)として構成されている。第1の電子スイッチ素子202は、第2の電子スイッチ素子206に電気的に直列接続されている。両電子スイッチ素子202および206の間の接続点に、第1のガルバニックモジュール接続部212が配置されている。その接続点とは反対側にある第2の電子スイッチ素子206の端子には、第2のガルバニックモジュール接続部215が配置されている。更に、第2のモジュール端子215は、エネルギー蓄積器210の第1の端子に接続されている。エネルギー蓄積器210の第2の端子は、前記接続点と反対側にある第1のスイッチ素子202の端子に電気的に接続されている。
従って、エネルギー蓄積器210は、第1のスイッチ素子202と第2のスイッチ素子206とからなる直列回路に対して電気的に並列に接続されている。第1のスイッチ素子202と第2のスイッチ素子206とを適切に駆動制御することによって、次のことを、即ち、第1のガルバニックモジュール接続部212と第2のガルバニックモジュール接続部215との間において、エネルギー蓄積器210の電圧が出力され、または全く電圧が出力されない(即ち、零電圧が出力される)ことを、達成することができる。従って、個々の相モジュールアームの複数のモジュールの協働によって、その都度所望される電力変換装置の出力電圧を発生させることができる。
図3には、モジュール型マルチレベルコンバータ1の1つのモジュール301の他の実施例が示されている。このモジュール301は、例えばモジュール1_2であってよい(または図1に示されている他のモジュールの1つであってもよい。図2から既知の第1のスイッチ素子202、第2のスイッチ素子206、第1のダイオード204、第2のダイオード208およびエネルギー蓄積器210のはかに、図3に示されているモジュール301は、逆並列接続された第3のダイオード304を備えた第3のオンおよびオフ制御可能な電子スイッチ素子302と、逆並列接続された第4のダイオード308を備えた第4のオン・オフ制御可能な電子スイッチ素子306とを有する。第3のオン・オフ制御可能なスイッチ素子302および第4のオン・オフ制御可能なスイッチ素子306は、それぞれ、IGBTとして構成されている。図2の回路と違って、第2のガルバニックモジュール接続部315が、第2のスイッチ素子206に電気的に接続されずに、第3のスイッチ素子302と第4のスイッチ素子306とからなる電気的な直列回路の中間点に、電気的に接続されている
図3のモジュール301は、いわゆるフルブリッジモジュール301である。このフルブリッジモジュール301は、4つのスイッチ素子を相応に駆動制御する場合に、第1のガルバニックモジュール接続部212と第2のガルバニックモジュール接続部315との間において、エネルギー蓄積器210の正の電圧、またはエネルギー蓄積器210の負の電圧、または値零の電圧(零電圧)のどれか一つを選択的に出力することができるという特徴を有する。従って、フルブリッジモジュール301により、出力電圧の極性を逆にすることができる。電力変換装置1は、ハーフブリッジモジュール201のみを有するか、フルブリッジモジュール301のみを有するか、ハーフブリッジモジュール201およびフルブリッジモジュール301の両方を有するか、そのいずれであってもよい。第1のガルバニックモジュール接続部212および第2のガルバニックモジュール接続部215,315を介して、電力変換装置の大きな電流が流れる。
図4は、高電圧直流送電設備401の実施例を概略的に示している。この高電圧直流送電設備401は、図1に示されているような電力変換装置1を2つ有する。両電力変換装置1は、直流側で高電圧直流接続部405を介して電気的に互いに接続されている。電力変換装置1の正側の両直流電圧端子16は、第1の高電圧直流線405aにより、電気的に互いに接続されている。両電力変換装置1の負側の両直流電圧端子17は、第2の高電圧直流線405bにより、電気的に互いに接続されている。この種の高電圧直流送電設備401により、電気エネルギーを長距離に亘って伝送することができる。高電圧直流接続部405は相応の距離を有する。
図5は、無効電力補償装置501として用いられる電力変換装置501の実施例を示している。この電力変換装置501は、単に3つの相モジュールアーム11,18,27を有するだけであり、相モジュールアーム11,18,27は、その電力変換装置の3つの相モジュール505,507,509を構成している。相モジュール505,507,509の個数は、電力変換装置501が接続されている交流電圧系統511の相数に対応する。
3つの相モジュールアーム11,18,27は、互いに三角結線されている。(3つの相モジュール505,507,509は、他の実施例において、三角結線の代わりに星形結線にて接続してもよい。その場合には、3つの相モジュールアームの中性点とは反対側の端部は、それぞれ、3相交流電圧系統511の相線路515,517,519に電気的に接続される。)電力変換装置501は交流電圧系統に無効電力を供給し、または無効電力を交流電圧系統から取り出すことができる。
図6は、電気エネルギー蓄積器210を備えた装置602を示す。エネルギー蓄積器210は、この実施例では、電気コンデンサ210であり、より厳密に言えば、単極の電気コンデンサ(正側コンデンサ端子(+)および負側コンデンサ端子(−)を有する)である。しかし、エネルギー蓄積器210は、他の実施例においては、異なるタイプのコンデンサ、電池または蓄電池であってよい。装置602は、例えばモジュール1_2であってよい(または、図1に示された他のモジュールであってもよい)。装置602は、図2に示されたモジュール201の基本的な構成を示す。
電気エネルギー蓄積器210は、第1の電気導体606(第1の電気接続部606)および第2の電気導体608(第2の電気接続部608)により、電子回路612(パワーエレクトロニクス回路612)に接続されている。第1の電気導体606は正側の電気導体であり、第2の電気導体608は負側の電気導体である。
電子回路612は、第1の電子スイッチ素子202と、第2の電子スイッチ素子206と、第1の逆並列接続されたダイオード204と、第2の逆並列接続されたダイオード208とを有し、これらは図2から既知である。更に、装置602は、電気エネルギー蓄積器210に並列接続されているサイリスタ616を有する。サイリスタのアノード620(アノード端子620)は、第1の電気導体606に電気的に接続されている。サイリスタのカソード622(カソード端子622)は、第2の電気導体608に電気的に接続されている。サイリスタのゲート624(ゲート端子624)は、この実施例では、無接続である。換言するならば、このゲート624はオープン状態にあり、即ち、他の構成要素とは接続されていない。サイリスタ616は、故障発生時に、電気エネルギー蓄積器210の放電電流630を導く保護用サイリスタ616である。サイリスタ616は、故障発生時に、電子回路612のバイパス路となって、電気エネルギー蓄積器210の放電電流630を通し、それにより、電気エネルギー蓄積器210の(一般に非常に大きい)放電電流から電子回路612を保護する。このようなサイリスタは、クローバーサイリスタ(Crowbar−Thyristor)とも呼ばれる。その放電電流630は、短絡状の放電電流630または短絡電流630とも呼ぶ。
装置602においては、故障発生時に、次の処理過程が進行する。出発点として、電気エネルギー蓄積器210が充電されているものとする。サイリスタ616はオフ状態にあり(点弧されていなく)、即ち、サイリスタ616は電流の流れを阻止している。その後に、電子回路612において、故障が発生する。例えば、(望ましくないことであるが)第1の電子スイッチ素子202と第2の電子スイッチ素子206とが同時に導電状態になる(第1の電子スイッチ素子202と第2のスイッチ素子206とにより形成されているハーフブリッジ内でいわゆるブリッジ短絡が発生する)。それによって電気エネルギー蓄積器210が短絡され、放電電流630が突然流れ始める。
放電電流630は、先ずエネルギー蓄積器210から出発し、第1の電気導体606を介して電子回路612へ流れる。そこでは、放電電流630は、第1の電子スイッチ素子202および第2の電子スイッチ素子206を介して流れる。その後、放電電流630は、第2の電気導体608を介してエネルギー蓄積器210へ戻る。その際に、第1の電気導体606における放電電流と、第2の電気導体608における放電電流とは、いずれの場合にも反対の方向を有する。放電電流630は、第1の電気導体と、第2の電気導体と、電子回路612とにおいて発生する浮遊容量およびオーム抵抗だけによって制限される。従って、放電電流630は比較的急速に増大する。
(増大する)放電電流630に基づいて、第1の電気導体606の周りに、時間的に変化する磁界が発生する。放電電流630に基づいて、第2の電気導体608の周りにも、時間的に変化する磁界が発生する。これらの両磁界は重なり合い、両磁界はサイリスタ616、従ってサイリスタ616の半導体材料を貫通する。即ち、そのサイリスタは、空間的に、第1の電気導体および第2の電気導体に隣接して配置されている。(サイリスタ616は、サイリスタ616を貫通する磁界を妨げないか、または少ししか妨げない耐磁性材料からなる外側容器を有する。)
時間的に変化する磁界によって、サイリスタの半導体材料中に、電流、例えば渦電流が誘導される。この電流は、ゲート電流(内部ゲート電流)または点弧電流として作用し、サイリスタ616のターンオン(即ち、サイリスタ616の点弧)を生じさせる。サイリスタ616のターンオンに基づいて、今や、放電電流630が、もはや電子回路612を介しないで、サイリスタ616を介して流れる。より厳密に言えば、今や、放電電流630は、エネルギー蓄積器210から第1の電気導体606の一部を介してサイリスタのアノード620へ流れ、そしてサイリスタのカソード622から第2の電気導体608を介してエネルギー蓄積器210へ戻る。放電電流630はサイリスタ616を介して流れる。その理由は、サイリスタ616がエネルギー蓄積器210に電気的に低インダクタンスで接続されているからである。即ち、サイリスタ616とエネルギー蓄積器210との間の電気的な接続は、エネルギー蓄積器210を電子回路612に接続する第1の電気導体606および第2の電気導体608よりも少ない電気誘導性を有する。
従って、サイリスタ616は誘導電流(渦電流)によってターンオンされる。この場合に、ゲート624は無接続の状態にある。ゲート624は、サイリスタから引き出す必要が全くない。サイリスタは、特に、磁界の時間的変化が或る閾値を上回ったときに初めて、誘導電流(ゲート電流)によってターンオンされる。その際に、サイリスタの半導体材料の所定位置での磁界の時間的変化が極めて重要である。サイリスタの半導体材料では、第1の電気導体606および/または第2の電気導体608の非常に近くにサイリスタを配置するならば、磁界の格別に大きな時間的変化を実現することができる。磁界の大きな時間的変化は、第1の電気導体606と第2の電気導体608との間の間隔を小さくして、第1の電気導体606と第2の電気導体608との間の中間空間635にサイリスタ616を配置することによっても実現することができる。換言するならば、(第1の電気導体606および/または第2の電気導体608における)放電電流の時間的変化が或る閾値を上回ったとき、誘導される電流(ゲート電流または点弧電流)によってサイリスタがターンオンされる。この閾値は、例えば5〜50kA/μsの値である。
サイリスタ616を通して流れる放電電流630によって、サイリスタ616は、熱的に過負荷となり、それによって破壊される。従って、サイリスタは、故障発生時に、電子回路612を放電電流630から保護するための犠牲要素としての働きをする。それ故、故障の発生後に(即ち、サイリスタ616を介する放電電流630の放出後に)、サイリスタ616は交換されなければならない。特に、サイリスタ616は、いわゆるコンダクトオンフェイル(Conduct-on-fail)特性を有する。即ち、故障発生時に(また、過負荷による破壊時にも)、サイリスタ616は、導電性を有したままであり、従って、放電電流630を減衰まで導くことができる。コンダクトオンフェイル特性を有するこのようなサイリスタは、商業的に入手可能である。
無接続の(または、それどころかサイリスタから引き出すことすら全くされていない)ゲートの代替として、ゲート624が、零に等しくない一定のインピーダンスによって終端されていてもよい。しかし、他の選択肢として、ゲートに、次の駆動制御ユニットが接続されていてもよい。即ち、放電のない故障時に(つまり、エネルギー蓄積器210の放電もしくはエネルギー蓄積器の短絡状の放電電流630を伴わない故障の際に)、サイリスタのゲート624にゲート電流を供給する駆動制御ユニットである。この種の放電のない故障は、例えばエネルギー蓄積器210の過充電であり得る。このことは、確かに、直接的には短絡状の放電電流630をもたらさないが、しかし、それでもやはり防止されなければならない。
図7には、装置702の他の実施例が示されている。装置702は、例えばモジュール1_2であってよい(または図1に示されている他のモジュールの1つであってもよい)。装置702は、図3に示されているモジュール301の基本構成を有する。
装置702は、図6の装置602とは、装置702が電子回路612とは異なる電子回路712を有することだけが異なる。電子回路712は、付加的に、第3の逆並列接続されたダイオード304を備えた第3の電子スイッチ素子302と、第4の逆並列接続されたダイオード308を備えた第4の電子スイッチ素子306とを有する。第1の電子スイッチ素子202と、第2のスイッチ素子206と、第3のスイッチ素子302と、第4のスイッチ素子306とは、フルブリッジ回路に接続されている。電子回路712では、例えば、第3の電子スイッチ素子302と第4の電子スイッチ素子306とが同時に導電させられる故障が発生し得る。第3のスイッチ素子302と第4のスイッチ素子306とによって、エネルギー蓄積器210が電気的に短絡され、放電電流630がエネルギー蓄積器210から電子回路712へ流れ始める。このプロセスの更なる経過は、図6との関連で説明したプロセスに対応する。
図8には、第1の電気導体606と第2の電気導体608との間のサイリスタ616の装置802が示されている。第1の電気導体606および第2の電気導体608は、ここでは第1の電流レール606および第2の電流レール608として構成されている。第1の電流レール606および第2の電流レール608は、それぞれ扁平な外形を有する。図8の左側部分には、電子回路612がブロック612として示されている。図8の右側部分には、エネルギー蓄積器210が概略的にブロック210として示されている。電子回路612の代わりに、電子回路712も使用することができる。
第1の電気導体606(第1の電流レール606)は、エネルギー蓄積器210を電子回路612に接続する。第2の電気導体608(第2の電流レール608)は、エネルギー蓄積器210を電子回路612に接続する。第1の電気導体606と第2の電気導体608との間に、サイリスタ616が機械的に固定されている。従って、サイリスタ616は、第1の電気導体606と第2の電気導体608との間の中間空間635内にある。サイリスタ616のアノード620は第1の電気導体606に接しており、サイリスタ616のカソード622は第2の電気導体608に接している。その固定は、締め付け装置806により実現されている。この締め付け装置806は、本実施例では、それぞれ1つのナットにより、第1の電気導体606、サイリスタ616および第2の電気導体608を固定する2つのボルトを有する。第1の電気導体606、サイリスタ616および第2の電気導体608は、保持枠を構成している。この保持枠もしくは機械的な固定部は、第1の電気導体606とサイリスタ616との間の良好な電気接触と、第2の電気導体608とサイリスタ616との間の良好な電気接触とを生じさせる。更に、本装置は、固定部もしくは保持枠に基づいて機械的に非常に安定であるので、本装置は、大きな放電電流に基づいて作用する電流力を確実に吸収することができる。
サイリスタ616の構造高さが、第1の電気導体606と第2の電気導体608との間の間隔にほぼ対応することを良好に認識することができる。アノード620およびカソード622は、それぞれサイリスタ616の締め付け面を成している。磁束密度Bの磁力線は、サイリスタ616の締め付け面に平行に経過する(図8には示されていない;図10参照)。電界(E場)は、磁束密度Bの場に垂直であるが、図示されていない。例えば、非常に急峻に0から約20kAに増大する放電電流630により、サイリスタ616はターンオンすることができ、即ち、約20kAよりも大きい最大値を有し、非常に短い時間(1μs〜2μs以下)でその最大値に増大する放電電流は、サイリスタ616のターンオンをもたらす。
サイリスタ616は、図8の実施例において、ディスクセルの形を有する。サイリスタ616はディスクセル容器を有する。換言するならば、サイリスタはディスク状の構造を有し、底面がカソード、上面がアノードをなしている。このようなディスクセル状のサイリスタを用いて、特に機械的に安定な保持枠を実現することができる。図8の表示は、更に、サイリスタのゲート624が無接続であることを示している。図8の表示と違って、ゲート624は、サイリスタ616の容器810から引き出すことすらする必要がない。その理由は、そのゲートが無接続であるからである。
図9は、図8による装置802を側面図で示す。ここでは、ディスクセル状のサイリスタ616の周囲が破線により示されている。
図10は、図8の表示と同様に、装置802を平面図で示す。しかし、図10では、締め付け装置806、サイリスタ616の容器、アノードと第1の電気導体との間の電気的な接続部、カソードと第2の電気導体との間の電気的な接続部が省略されている。サイリスタ616の半導体材料1006だけが示されている。この半導体材料1006は、1つのディスク1006(ディスク状の半導体材料1006、半導体材料ディスク1006)をなしている。ディスク1006は断面図で示されている。側面図においては、ディスク1006は、図9においてサイリスタの周囲が有するのと同様の円形輪郭を有する。半導体材料1006は、図を見やすくする理由から過度に厚く示されている。この半導体材料1006における重要な半導体構造(特に、シリコン構造)は、非常に薄い、例えば数百μmの厚みしかない場合が多い。
更に、第1の電気導体606と第2の電気導体608との間の中間空間635内に形成された磁界1010の磁力線(磁束密度Bの磁力線1010)が示されている。磁界の磁力線1010は、図平面から出てきて観察者の方を向いている。観察者は、いわば、前方から磁力線先端に目を向けている。第1の電気導体606および第2の電気導体608は板状であるので、第1の電気導体606と第2の電気導体608との間の中間空間635内では、平行な磁力線1010が形成される。磁力線1010は、サイリスタの半導体材料1006を貫通する。時間的に変化する磁界1010に基づいて、半導体材料1006内で電圧1016が誘起され、その電圧は、サイリスタの半導体材料1006内に、電流1018(渦電流1018)の流れを生じさせる。電圧1016および電流1018は、ここでは概略的にのみ示している。誘導電流1018は、サイリスタのゲート電流1018またはサイリスタの点弧電流として作用し、サイリスタ616をターンオンさせる(即ち、電流1018はサイリスタ616を点弧する)。
第1の電気導体606は、第1の平らな外面1024を有する。第2の電気導体608は、第2の平らな外面1026を有する。第1の平らな外面1024および第2の平らな外面1026は、互いに平行に配置されている。サイリスタ616のディスク状の半導体材料1006は、第1の外面1024に対して平行に配置され、また同様に第2の外面1026に対して平行に配置されている。半導体材料1006のこの配置は、装置802のコンパクトで機械的に安定な構造を可能にする。更に、(それによって可能な、第1の電気導体606と第2の電気導体608との間の僅かな間隔によって)半導体材料1006の位置における磁界の大きな時間的変化が生じる。
換言するならば、ディスク1006(サイリスタのシリコンウェハ1006)は、導電材料である。ディスクが時間的に変化する磁界1010により貫通されるや否や、ディスクの面内に電流1018(特に、渦電流)が生成される。この電流は、サイリスタ616が点弧すること、即ちターンオンされることをもたらす。流れる短絡状の放電電流630が大きくなればなるほど、それによって生成される磁束密度Bがますます大きくなる。
図11は、もう一度、エネルギー蓄積器210を放電させる方法をフローチャートにより示す。この方法の出発点においては、エネルギー蓄積器が充電されており、サイリスタがターンオフ状態(阻止状態)にある。
方法ステップ1102:
電子回路612における故障発生後に、エネルギー蓄積器210の放電電流が流れ始める。放電電流630がエネルギー蓄積器210から第1の電気導体606を介して電子回路612へ流れ、第2の電気導体608を介してエネルギー蓄積器210へ戻る。
方法ステップ1104:
増大する放電電流630に基づいて、第1の電気導体606および/または第2の電気導体608の周りに時間的に変化する磁界1010が発生し、半導体材料1006が磁界1010によって貫通される。
方法ステップ1106:
時間的に変化する磁界1010によって、サイリスタ616の半導体材料1006において電流が誘導される。電流1018がサイリスタのゲート電流または点弧電流として作用する。
方法ステップ1108
誘導された電流1018によってサイリスタ616がターンオンする。それに従って、エネルギー蓄積器210の放電電流630が、サイリスタ616を通して流れ、それによって電子回路612をバイパスする。
方法ステップ1110:
エネルギー蓄積器210の放電の増大にともなって放電電流630が減衰する。
サイリスタに結合される磁界(より詳しく言うならば、サイリスタに結合される磁束密度B)が、サイリスタ全体を貫通し、サイリスタの薄い半導体構造/半導体材料内に誘導電流(渦電流)を発生させる方法および装置について説明した。この電流は、磁界の時間的変化(dB/dt)の閾値以上において、半導体材料内でゲート電流(または点弧電流)を流し、それによって(外部の電子評価回路からの外部ゲート電流を必要とすることなしに)サイリスタをターンオンさせるのに十分である。従って、ゲートの外部制御は必要でなく、サイリスタが損傷していないかぎり、故障認識/短絡認識がサイリスタに内在して機能する。これは大きな利点である。なぜならば、評価回路の機能検査が、大容量のエネルギー蓄積器の場合、現実面では困難で高価であるからである。特に、本装置および本方法は、低い故障率(FIT−Rate)を有し、この故障率はサイリスタの故障率にほぼ相当する。この故障率は、サイリスタの場合、非常に低い。
上述の装置および上述の方法においては、エネルギー蓄積器の短絡状の放電電流630が、サイリスタの遅れのない点弧のために利用され、そのために、結果として時間遅れをもたらしたであろう検出回路もしくは評価回路が必要とされることはない。1つのサイリスタのみによる技術的実現は、極めて簡単で安価である。サイリスタの点弧時には、当該サイリスタは、(エネルギー蓄積器の制圧すべきエネルギーの大きさに応じて)破壊され、場合によっては後でのメンテナンス時に交換されなければならない。そのサイリスタに対しては、比較的簡単なダイオードディスクセル容器が使用される。というのは、ゲート端子624を必要とせず、従って容器から引き出す必要もないからである。
上述の装置および上述の方法においては、言うに値するほどの熱損失は発生せず、このことは、通常運転時にも導通損失またはスイッチング損失を発生する保護要素に比べて、エネルギー効率を明らかに改善する。それによって、多数の上述の装置を有する設備(例えば、高電圧直流送電設備)の電気的損失が僅かに保たれ、これによって著しいコスト節減がもたらされる。
電気的なエネルギー蓄積器を、特に短絡時に安全かつ確実に放電させることができる、装置および方法を説明した。有利なことに、そのために1つのサイリスタ以外に、更なる構成要素を必要としない。このことは、エネルギー蓄積器の放電電流からの電子回路の極めて簡単かつ確実な保護を可能にする。
1 電力変換装置(マルチレベルコンバータ)
1_1〜6_n モジュール
202 第1のスイッチ素子
206 第2のスイッチ素子
210 電気的なエネルギー蓄積器
302 第3のスイッチ素子
306 第4のスイッチ素子
606 第1の電気導体
608 第2の電気導体
602 装置
612 電子回路
616 サイリスタ
620 アノード
622 カソード
630 放電電流
702 装置
712 電子回路
810 ディスクセル容器
1006 サイリスタの半導体材料
1010 時間的に変化する磁界
1018 誘導電流

Claims (16)

  1. 第1の電気導体(606)および第2の電気導体(608)により電子回路(612)に接続されている電気的なエネルギー蓄積器(210)を放電させる方法であって、前記エネルギー蓄積器(210)を放電させるためのサイリスタ(616)が設けられている方法において、
    前記電子回路(612)において発生した故障に基づいて、前記エネルギー蓄積器(210)の放電電流(630)が、前記エネルギー蓄積器(210)から前記第1の電気導体(606)を介して前記電子回路(612)へ流れ始め、前記第2の電気導体(608)を介して前記エネルギー蓄積器(210)へ戻り、
    前記放電電流(630)に基づいて、前記第1の電気導体(606)および前記第2の電気導体(608)の周りに、時間的に変化する磁界(1010)が生成され、前記時間的に変化する磁界(1010)が前記サイリスタ(616)の半導体材料(1006)を貫通し、
    前記時間的に変化する磁界(1010)によって、前記サイリスタの半導体材料(1006)内に電流(1018)が誘導され、
    その誘導された電流(1018)によって前記サイリスタ(616)がターンオンされる、方法。
  2. 前記電子回路(612)が、1つのハーフブリッジ回路内に配置されている少なくとも2つの電子スイッチ素子(202,206)を有することを特徴とする請求項1記載の方法。
  3. 前記電子回路(712)が、前記2つの電子スイッチ素子(202,206)と、2つの他の電子スイッチ素子(302,306)とを有し、前記2つの電子スイッチ素子(202,206)と、前記2つの他の電子スイッチ素子(302,306)とが、1つのフルブリッジ回路に配置されていることを特徴とする請求項記載の方法。
  4. 電子回路(612)と、電気的なエネルギー蓄積器(210)と、そのエネルギー蓄積器(210)を放電させるためのサイリスタ(616)とを備え、前記エネルギー蓄積器(210)が、第1の電気導体(606)と第2の電気導体(608)とにより前記電子回路(612)に接続されている、装置(602)において、
    前記サイリスタ(616)が、次のように、即ち、
    前記第1の電気導体(606)および前記第2の電気導体(608)の少なくとも一方を通して流れる前記エネルギー蓄積器(210)の放電電流(630)に基づいて発生し
    て、前記サイリスタ(616)の半導体材料(1006)を貫通する、時間的に変化する磁界(1010)に基づいて、前記サイリスタの前記半導体材料(1006)内に前記サイリスタをターンオンさせる電流(1018)が誘導されるように、
    前記第1の電気導体(606)および前記第2の電気導体(608)の少なくとも一方に対して空間的に隣接して配置されていることを特徴とする、装置(602)。
  5. 前記サイリスタ(616)が、前記第1の電気導体(606)と前記第2の電気導体(608)との間の中間空間(635)内に配置されていることを特徴とする請求項4記載の装置。
  6. 前記サイリスタのアノード(620)が前記第1の電気導体(606)に接続されており、前記サイリスタのカソード(622)が前記第2の電気導体(608)に接続されていることを特徴とする請求項4または5記載の装置。
  7. 前記サイリスタ(616)が、前記第1の電気導体(606)と前記第2の電気導体(608)との間に機械的に固定されていることを特徴とする請求項4から6のいずれか1項に記載の装置。
  8. 前記サイリスタ(616)が、ディスクセル容器(810)を有することを特徴とする請求項4から7のいずれか1項に記載の装置。
  9. 前記第1の電気導体(606)および前記第2の電気導体(608)の少なくとも一方が、それぞれ電流レールとして形成されていることを特徴とする請求項4から8のいずれか1項に記載の装置。
  10. 前記第1の電気導体(606)および前記第2の電気導体(608)の少なくとも一方が、それぞれ平らな外面を有し、サイリスタの半導体材料がディスク(1006)を形成し、前記ディスク(1006)が平らな外面(1024,1026)の少なくとも一方に平行に配置されていることを特徴とする請求項4から9のいずれか1項に記載の装置。
  11. 前記サイリスタ(616)が、前記エネルギー蓄積器(210)に低インダクタンスで接続されていることを特徴とする請求項4から10のいずれか1項に記載の装置。
  12. 前記サイリスタ(616)が、前記エネルギー蓄積器(210)に並列接続されていることを特徴とする請求項4から11のいずれか1項に記載の装置。
  13. 前記電子回路(612)が、1つのハーフブリッジ回路内に配置された少なくとも2つの電子スイッチ素子(202,206)を有することを特徴とする請求項4から12のいずれか1項に記載の装置。
  14. 前記電子回路が、2つの電子スイッチ素子(202,206)と2つの他のスイッチ素子(302,306)とを有し、前記2つの電子スイッチ素子(202,206)と前記2つの他のスイッチ素子(302,306)が、1つのフルブリッジ回路内に配置されていることを特徴とする請求項4から13のいずれか1項に記載の装置。
  15. 請求項4から14のいずれか1項に記載の装置(602,702)を有するモジュール型マルチレベルコンバータ(1)のモジュール(1_1,1_2,…,6_n)。
  16. 請求項15記載モジュール(1_1,1_2,…,6_n)を多数有するモジュール型マルチレベルコンバータ(1)。
JP2019511978A 2016-09-05 2016-09-05 電気的なエネルギー蓄積器を放電させる方法 Active JP6731543B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/070832 WO2018041370A1 (de) 2016-09-05 2016-09-05 Verfahren zum entladen eines elektrischen energiespeichers

Publications (2)

Publication Number Publication Date
JP2019527018A JP2019527018A (ja) 2019-09-19
JP6731543B2 true JP6731543B2 (ja) 2020-07-29

Family

ID=56926162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019511978A Active JP6731543B2 (ja) 2016-09-05 2016-09-05 電気的なエネルギー蓄積器を放電させる方法

Country Status (8)

Country Link
US (1) US10461663B2 (ja)
EP (1) EP3485565B1 (ja)
JP (1) JP6731543B2 (ja)
KR (1) KR102269017B1 (ja)
CN (1) CN109661768B (ja)
ES (1) ES2812876T3 (ja)
PL (1) PL3485565T3 (ja)
WO (1) WO2018041370A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017125132A1 (de) * 2016-01-19 2017-07-27 Siemens Aktiengesellschaft Multilevelumrichter
WO2018041357A1 (de) * 2016-09-01 2018-03-08 Siemens Aktiengesellschaft Umrichteranordung sowie verfahren zu deren betrieb
DE102018211900A1 (de) * 2018-07-17 2020-01-23 Siemens Aktiengesellschaft Halbleiteranordnung, Schaltmodul mit der Halbleiteranordnung und modularer Mehrstufenumrichter mit dem Schaltmodul
EP3621189B1 (en) * 2018-09-06 2021-04-21 ABB Power Grids Switzerland AG Modular dc crowbar
WO2020173566A1 (en) 2019-02-28 2020-09-03 Abb Schweiz Ag Converter cell with crowbar
EP3931958A1 (en) * 2019-02-28 2022-01-05 ABB Power Grids Switzerland AG Converter cell with crowbar
EP4014308A1 (en) * 2019-08-13 2022-06-22 Vestas Wind Systems A/S Intelligent discharge control for modular multilevel converter
EP3783783A1 (de) * 2019-08-23 2021-02-24 Siemens Energy Global GmbH & Co. KG Anordnung zum regeln eines leistungsflusses in einem wechselspannungsnetz und verfahren zum schutz der anordnung
EP4040659A1 (en) * 2021-02-09 2022-08-10 General Electric Technology GmbH Electrical assembly
WO2023155979A1 (de) * 2022-02-16 2023-08-24 Siemens Energy Global GmbH & Co. KG Modul eines modularen multilevelstromrichters

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221871B2 (ja) * 1971-11-29 1977-06-14
EP1427107B1 (fr) * 2002-12-04 2011-09-14 STMicroelectronics S.A. Commutateur de type SCR commande en HF
JP2006332304A (ja) * 2005-05-26 2006-12-07 Matsushita Electric Works Ltd 半導体リレー装置
DE102005040543A1 (de) 2005-08-26 2007-03-01 Siemens Ag Stromrichterschaltung mit verteilten Energiespeichern
US7602157B2 (en) * 2005-12-28 2009-10-13 Flyback Energy, Inc. Supply architecture for inductive loads
EP2748906B1 (de) * 2011-09-29 2018-11-14 Siemens Aktiengesellschaft Kurzschlussstromentlastung für submodul eines modularen mehrstufenumrichters (mmc)
CN102694458A (zh) * 2012-05-29 2012-09-26 北京金自天正智能控制股份有限公司 一种交直交变流器的快速放电保护电路
DE102014200108A1 (de) * 2014-01-08 2015-07-09 Siemens Aktiengesellschaft Umrichter zwischen Gleichspannung und Wechselspannung zur Anwendung in der Hochspannungs-Gleichstrom-Übertragung und Verfahren zur Spannungsumrichtung
US10186952B2 (en) * 2014-03-05 2019-01-22 Mitsubishi Electric Corporation Power conversion device
WO2016188589A1 (de) * 2015-05-28 2016-12-01 Siemens Aktiengesellschaft Spannungsgeführtes stromrichtermodul
WO2017125132A1 (de) * 2016-01-19 2017-07-27 Siemens Aktiengesellschaft Multilevelumrichter
WO2017137088A1 (en) * 2016-02-12 2017-08-17 Abb Schweiz Ag Converter module for hvdc power station
KR102600766B1 (ko) * 2016-09-22 2023-11-13 엘에스일렉트릭(주) 모듈형 멀티레벨 컨버터
DE102017123348A1 (de) * 2017-10-09 2019-04-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Wechselrichter für ein Elektroauto
DE102017219499A1 (de) * 2017-11-02 2019-05-02 Siemens Aktiengesellschaft Elektrische Anordnung mit Teilmodulen sowie Teilmodule als solche

Also Published As

Publication number Publication date
KR102269017B1 (ko) 2021-06-25
CN109661768B (zh) 2021-02-05
US20190199237A1 (en) 2019-06-27
PL3485565T3 (pl) 2020-11-16
KR20190041530A (ko) 2019-04-22
WO2018041370A1 (de) 2018-03-08
US10461663B2 (en) 2019-10-29
JP2019527018A (ja) 2019-09-19
EP3485565A1 (de) 2019-05-22
ES2812876T3 (es) 2021-03-18
EP3485565B1 (de) 2020-05-27
CN109661768A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
JP6731543B2 (ja) 電気的なエネルギー蓄積器を放電させる方法
JP5047312B2 (ja) 電力変換器の損傷制限のための方法およびその方法に用いられる装置
US8390968B2 (en) Apparatus for protection of converter modules
RU2683956C1 (ru) Преобразовательное устройство и способ его защиты от короткого замыкания
US10763742B2 (en) Control of voltage source converters
DK2678926T3 (en) Submodule A MODULAR MULTI-STEP CONVERTER
KR101453631B1 (ko) 고전압용 컨버터
CA2620100A1 (en) Inverter circuit with distributed energy stores
WO2013044961A1 (de) Kurzschlussstromentlastung für submodul eines modularen mehrstufenumrichters (mmc)
RU2577540C2 (ru) Переключающие устройства для dc-сетей с электронным управлением
JP2013169088A (ja) 電力変換装置、直流変電所、直流送電システム及び電力変換装置の制御方法
EP3424137B1 (en) Fault protection for voltage source converters
Dijkhuizen et al. Fault tolerant operation of power converter with cascaded cells
CN113258809A (zh) 使故障转换器子模块短路的方法和支持该方法的功率转换器
US11095231B2 (en) Multilevel power converter
CN104813578A (zh) 具有电流浪涌限制器的子模块
EP3355456A1 (en) A protection arrangement for an mmc-hvdc sub-module
CN218868124U (zh) 具有支撑结构的功率转换器装置
EP3621189B1 (en) Modular dc crowbar
KR102334153B1 (ko) 전기 단락 디바이스
EP4165764A1 (en) A cell comprising a crowbar branch with a resistive element
EP4256683A1 (en) Converter arrangement and method for operating a converter arrangement

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200706

R150 Certificate of patent or registration of utility model

Ref document number: 6731543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250