JP6730569B2 - Plate reactor - Google Patents

Plate reactor Download PDF

Info

Publication number
JP6730569B2
JP6730569B2 JP2016029292A JP2016029292A JP6730569B2 JP 6730569 B2 JP6730569 B2 JP 6730569B2 JP 2016029292 A JP2016029292 A JP 2016029292A JP 2016029292 A JP2016029292 A JP 2016029292A JP 6730569 B2 JP6730569 B2 JP 6730569B2
Authority
JP
Japan
Prior art keywords
plate
reactor
catalyst
solid catalyst
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016029292A
Other languages
Japanese (ja)
Other versions
JP2017144403A (en
Inventor
福田 貴史
貴史 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016029292A priority Critical patent/JP6730569B2/en
Publication of JP2017144403A publication Critical patent/JP2017144403A/en
Application granted granted Critical
Publication of JP6730569B2 publication Critical patent/JP6730569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、固体触媒を用いた気相反応または液相反応または気液混合反応に用いるプレート型反応器に関し、特に、大きな圧力損失を回避するために好適なプレート型反応器に関する。 The present invention relates to a plate reactor used for a gas phase reaction, a liquid phase reaction, or a gas-liquid mixed reaction using a solid catalyst, and more particularly to a plate reactor suitable for avoiding a large pressure loss.

従来固体触媒を用いて気相反応または液相反応をさせる流通式触媒反応器として、粉末もしくはそれ以上の大きさに成形された固体触媒が流路に充填された充填層型反応器が知られている(例えば、非特許文献1参照)。一般に固体触媒は粒子サイズが小さいほど量あたりの反応流体の転化率が高まるが、しかしながら、充填層型反応器では、粉末のような細かな固体触媒を流路に充填すると反応流体の通り道が狭まり結果として大きな圧力損失を生じさせてしまい、さらに、反応により析出を伴う場合(例えば、メタンあるいは天然ガス等の改質では炭素析出を伴う場合がある)には反応の進行に伴い析出によってさらに通り道が狭まり圧力損失が漸次増大する。それだからといって、粒子サイズの大きな固体触媒を充填させた充填層型反応器を用いて大きな圧力損失を回避しようとすると、粒子サイズが大きいので量あたりの反応流体の転化率が逆に低下してしまう。
上記充填層型反応器の圧力損失を改善するものとして、プレートにより流路空間を確保したプレート型反応器(特許文献1〜3参照)も従来から知られている。特許文献1、2では、固体触媒を流路壁面に塗布していた。また、塗布に代わるものとして、特許文献3では、流路プレートの表面に微小溝からなる流路を形成し、触媒プレートの表面には、流路プレートの流路領域を全て覆う円柱形状の凹部を形成し粉末状触媒を圧縮固定化して該凹部を埋め、流路プレートと触媒プレートを互いに密着させて流路となる反応空間を構成していた。
Conventionally known as a flow-type catalytic reactor for carrying out a gas phase reaction or a liquid phase reaction using a solid catalyst is a packed bed reactor in which a solid catalyst formed into a powder or a larger size is filled in a channel. (See, for example, Non-Patent Document 1). In general, the smaller the particle size of a solid catalyst, the higher the conversion rate of the reaction fluid per unit volume.However, in a packed bed reactor, when a fine solid catalyst such as powder is filled in the channel, the passage of the reaction fluid becomes narrower. As a result, a large pressure loss is caused, and further, when the reaction involves precipitation (for example, in the case of reforming methane or natural gas, it may be accompanied by carbon precipitation), the precipitation further passes along with the progress of the reaction. Becomes narrower and the pressure loss gradually increases. Even so, when trying to avoid a large pressure loss by using a packed bed reactor packed with a solid catalyst having a large particle size, the conversion rate of the reaction fluid per unit amount decreases because the particle size is large. ..
As a means for improving the pressure loss of the packed bed reactor, a plate reactor (see Patent Documents 1 to 3) in which a flow passage space is secured by a plate has been conventionally known. In Patent Documents 1 and 2, the solid catalyst is applied to the wall surface of the flow path. Further, as an alternative to coating, in Patent Document 3, a flow path formed of minute grooves is formed on the surface of the flow path plate, and a cylindrical concave portion that covers the entire flow path region of the flow path plate is formed on the surface of the catalyst plate. And the powdery catalyst was compressed and fixed to fill the recesses, and the flow path plate and the catalyst plate were brought into close contact with each other to form a reaction space serving as a flow path.

特表2014−505578号公報Special table 2014-505578 gazette 特開2003−245562号公報JP, 2003-245562, A 特開2007−160227号公報JP, 2007-160227, A

M.V.Twigg, J.T.Richardson, “Fundamentals and Applications of Structured Ceramic Foam Catalysts”; Ind.Eng.Chem.Res.,46,4166-4177 (2007)M.V.Twigg, J.T.Richardson, “Fundamentals and Applications of Structured Ceramic Foam Catalysts”; Ind.Eng.Chem.Res.,46,4166-4177 (2007)

本発明は従来のプレート型反応器の改良を図るものであって、例えば特許文献1、2の流路壁面に固体触媒を塗布するタイプのものでは、塗布層の厚みだけ流路空間を狭めることにより圧力損失が大きくなり、反応により析出を伴う場合には析出によりさらに流路空間が漸次狭まり圧力損失が増大し、また、うすい塗布層では剥がれが生じやすいなどの問題があった。特許文献3の円柱形状凹部に粉末状触媒を圧縮固化して埋める方式では、このような問題は生じないが、触媒プレートの円柱形状凹部に埋めた触媒面の大部分は微小溝に対向していないのでこの対向していない部分の触媒は無駄となるという問題があり、また、流路プレートの微小溝で画定された流路壁面には触媒が存在せず反応に寄与することができないので効率的でないという問題があった。
本発明の解決すべき課題は、上記従来のプレート型反応器における問題点を解決した新規なプレート型反応器を提供することにある。
The present invention is intended to improve the conventional plate-type reactor. For example, in the types of Patent Documents 1 and 2 in which the solid catalyst is applied to the flow path wall surface, the flow path space is narrowed by the thickness of the coating layer. Causes a large pressure loss, and when precipitation is accompanied by a reaction, the flow path space is gradually narrowed due to the precipitation to increase the pressure loss, and there is a problem that peeling easily occurs in the thin coating layer. In the method of compressing and solidifying the powdery catalyst in the cylindrical recess of Patent Document 3, such a problem does not occur, but most of the catalyst surface in the cylindrical recess of the catalyst plate faces the minute groove. Since there is no catalyst, there is a problem that the catalyst in this non-opposing portion is wasted, and since the catalyst does not exist on the wall surface of the flow channel defined by the minute grooves of the flow channel plate, it cannot contribute to the reaction. There was a problem that it was not the target.
The problem to be solved by the present invention is to provide a novel plate reactor which solves the problems in the above conventional plate reactor.

上記問題点を解決するために、本発明は、スリットを有するガスケットを2枚のプレートで挟むようにサンドイッチ構造にすることで流路を形成し、前記2枚のプレートのいずれか一方または両方に前記スリットに連通する少なくとも1つの流体入口及び少なくとも1つの流体出口を設けたプレート型反応器であって、前記流路に面する前記プレートの壁面に溝部を設け、この溝部のみに固体触媒を埋設固定したことを特徴とする。
また、本発明は、上記プレート型反応器において、前記ガスケットの前記スリットの壁面に設けた凹部に固体触媒を埋設固定したことを特徴とする。
また、本発明は、上記プレート型反応器において、前記溝部または凹部の底部に固体触媒埋設量調整用の上げ底を固定したことを特徴とする。
また、本発明は、上記プレート型反応器を製造するための製造方法であって、前記固体触媒は、粉末状触媒を固定液により埋設固定したことを特徴とする。
In order to solve the above-mentioned problems, the present invention forms a flow path by sandwiching a gasket having a slit between two plates to form a flow path, and to one or both of the two plates. and at least one fluid inlet and a plate-type reactor provided with at least one fluid outlet communicating with the slit, a groove on the wall surface of the plate facing the flow path is provided, embedded in a solid catalyst only to the groove It is characterized by being fixed.
Further, the present invention is characterized in that, in the plate reactor, a solid catalyst is embedded and fixed in a recess provided in a wall surface of the slit of the gasket.
Further, the present invention is characterized in that, in the above-mentioned plate reactor, a raised bottom for adjusting the solid catalyst burying amount is fixed to the bottom of the groove or the recess.
Further, the present invention is a manufacturing method for manufacturing the plate-type reactor, the solid catalysts are characterized in that the powder catalyst was embedded and fixed by fixing solution.

本発明では、流路を形成するためのスリットを有するガスケットを2枚のプレートで挟むようにサンドイッチ構造にして、2枚のプレートの流路に面する壁面に設けた溝部に固体触媒を埋設固定したので、従来の充填式や塗布式に比べて流路を狭めることがないので圧力損失が増加することがなく、また、2枚のプレートの流路に面する壁面に溝部を設けて固体触媒を埋設固定し、流路に面しない壁面には埋設しないので、固体触媒の使用量が節約できる。
さらに、ガスケットのスリットの壁面に設けた凹部に固体触媒を埋設固定すれば、プレートの溝部に埋設固定した固体触媒とあわせて、流路を画定する4つの壁面全てに固体触媒が埋設固定されているので反応効率が向上する。
さらに、前記固体触媒の埋設固定は、圧縮成形や、固定液を用いて簡便に固定することができる。
According to the present invention, a gasket having a slit for forming a flow path is sandwiched between two plates to form a sandwich structure, and a solid catalyst is embedded and fixed in a groove provided on a wall surface of the two plates facing the flow path. Since the flow path is not narrowed as compared with the conventional filling type and coating type, pressure loss does not increase, and a groove portion is provided on the wall surface facing the flow paths of the two plates to form a solid catalyst. Since it is embedded and fixed and is not embedded on the wall surface that does not face the flow path, the amount of solid catalyst used can be saved.
Furthermore, if the solid catalyst is embedded and fixed in the concave portion provided on the wall surface of the gasket slit, the solid catalyst is embedded and fixed in all four wall surfaces that define the flow path together with the solid catalyst embedded and fixed in the groove portion of the plate. As a result, the reaction efficiency is improved.
Furthermore, the embedded fixation of the solid catalyst can be easily fixed by compression molding or using a fixative.

図1は、本発明のプレート型反応器の全体斜視図。FIG. 1 is an overall perspective view of the plate reactor of the present invention. 図2は、本発明のプレート型反応器の分解組み立て図。FIG. 2 is an exploded view of the plate reactor of the present invention. 図3は、本発明のプレート型反応器の断面図。FIG. 3 is a cross-sectional view of the plate reactor of the present invention. 図4は、従来の充填層型反応器と本発明のプレート型反応器の圧力損失を比較した図。FIG. 4 is a diagram comparing the pressure loss between the conventional packed bed reactor and the plate reactor of the present invention. 図5は、従来の充填層型反応器の圧力損失の経時変化を示した図である。FIG. 5: is the figure which showed the time-dependent change of the pressure loss of the conventional packed bed reactor. 図6は、本発明のプレート型反応器と従来の充填層型反応器を用いたメタン改質の例で、メタン転化率の比較を示した図である。FIG. 6 is a diagram showing a comparison of methane conversion rates in an example of methane reforming using a plate reactor of the present invention and a conventional packed bed reactor. 図7は、本発明のプレート型反応器において、ガスケットの壁面にも凹所を設けてプレートの溝部と合わせて4つの壁面に固体触媒を埋設固定した例である。FIG. 7 shows an example in which in the plate reactor of the present invention, a recess is also provided on the wall surface of the gasket, and the solid catalyst is embedded and fixed on the four wall surfaces together with the groove portion of the plate. 図8は、本発明のプレート型反応器において、触媒埋設用溝を随所に設けて異なる固体触媒を設けた例を示す。FIG. 8 shows an example in which different solid catalysts are provided by providing catalyst burying grooves everywhere in the plate reactor of the present invention. 図9は、本発明のプレート型反応器において、反応流体の出口及び入口を複数箇所も受けた例を示す。FIG. 9 shows an example in which the outlet and the inlet of the reaction fluid are received at a plurality of points in the plate reactor of the present invention. 図10は、本発明のプレート型反応器において、上げ底の設置例を示す。FIG. 10 shows an example of installation of a raised bottom in the plate reactor of the present invention.

本発明では、スリットを有するガスケットを2枚のプレートで挟むようにサンドイッチ構造にすることで流路を形成し、前記2枚のプレートのいずれか一方または両方に前記スリットに連通する少なくとも1つの流体入口及び少なくとも1つの流体出口を設けたプレート型反応器であって、前記流路に面する前記プレートの壁面に溝部を設け、この溝部のみに埋設固定したことを特徴とする。さらにガスケットのスリットの壁面に設けた凹部に固体触媒を埋設固定すれば、流路を画定する4つの壁面全てに固体触媒が埋設固定されて反応効率の向上が図れる。なお、プレート、ガスケット等のプレート型反応器を構成する部品の材質に制限はない。また、流路が形成されていればスリットの形状に制限はない。
固体触媒の埋設固定は、粉末状触媒を圧縮成形や、固定液を用いて簡便な方法で固定することができる。
本発明のプレート型反応器は、気相反応にも液相反応にも気液混合反応にも用いることができ、例えばメタン改質や、天然ガス改質などに利用するのに好適である。
In the present invention, a flow path is formed by forming a gasket having a slit between two plates to form a sandwich structure, and at least one fluid communicating with the slit is provided in one or both of the two plates. a inlet and a plate-type reactor provided with at least one fluid outlet, a groove provided on the wall surface of the plate facing the flow path, characterized in that embedded fixed only to the grooves. Further, if the solid catalyst is embedded and fixed in the concave portion provided on the wall surface of the slit of the gasket, the solid catalyst is embedded and fixed in all of the four wall surfaces that define the flow path, so that the reaction efficiency can be improved. In addition, there is no limitation on the material of the components that compose the plate reactor such as the plate and the gasket. Further, the shape of the slit is not limited as long as the flow path is formed.
For embedding and fixing the solid catalyst, the powdery catalyst can be fixed by compression molding or a simple method using a fixing solution.
The plate reactor of the present invention can be used for both gas phase reaction, liquid phase reaction and gas-liquid mixed reaction, and is suitable for use in, for example, methane reforming, natural gas reforming and the like.

図1〜3に、本発明のプレート型反応器の一実施例を示す。図1は本発明のプレート型反応器の全体斜視図、図2は分解組み立て図、図3は断面図(中央の図がプレートの長手方向に沿った垂直断面図、右図がプレートの横手方向に沿った垂直断面図、上図がプレート面に平行な断面図)である。ガスケットに流路を形成するためのスリットが設けられており、ガスケットの上下から2枚のプレートでサンドイッチ構造に固定すればスリット部分が流路として形成され、図示の例では、下側のプレートに前記流路に連通する入口が設けられ、上側のプレートに流路に連通する出口が設けてある。また、2枚のプレートの流路に面する壁面には溝部が設けられており、溝部には固体触媒を埋設固定した触媒部が図示されている。固体触媒を埋設固定するには、粉末状触媒を圧縮成形して固定しても良いし、固定液(例えば硝酸アルミニウム溶液等)で埋設固定してもよい。
このように、2枚のプレートの流路に面する壁面に設けられた溝部に固体触媒が埋設固定されているので、触媒が流路を狭めることがなく圧力損失が小さく、また、塗布型のように塗布した触媒が剥がれ落ちることもない。
1 to 3 show an embodiment of the plate reactor of the present invention. FIG. 1 is an overall perspective view of the plate reactor of the present invention, FIG. 2 is an exploded assembly view, and FIG. 3 is a cross-sectional view (the central view is a vertical cross-sectional view along the longitudinal direction of the plate, the right view is the lateral direction of the plate). Is a vertical cross-sectional view taken along the above, and the above is a cross-sectional view parallel to the plate surface). The gasket is provided with a slit for forming a flow path, and if two plates are fixed from above and below the gasket in a sandwich structure, the slit portion is formed as a flow path. In the illustrated example, the lower plate is An inlet communicating with the flow passage is provided, and an upper plate is provided with an outlet communicating with the flow passage. Further, a groove portion is provided on the wall surface of the two plates facing the flow path, and a catalyst portion in which a solid catalyst is embedded and fixed is shown in the groove portion. In order to embed and fix the solid catalyst, the powdery catalyst may be fixed by compression molding, or may be embedding and fixed with a fixing solution (for example, an aluminum nitrate solution).
In this way, since the solid catalyst is embedded and fixed in the groove portion provided on the wall surface of the two plates facing the flow path, the catalyst does not narrow the flow path, the pressure loss is small, and the coating type The applied catalyst does not peel off.

図4は、横軸に実流量[mL/min]、縦軸に圧力損失[kPa]をとり、従来の充填層型反応器と本発明のプレート型反応器を用いて圧力損失を比較測定した結果と理論値とを示したものであり、比較のために、流量、温度、触媒量、触媒サイズを両者で統一し、不活性ガスを流通した。充填層型反応器は内径4.35mmのSUS管に固体触媒(Ni/ゼオライト触媒、粒径300μm以下)0.78gを充填させた反応器を使用した。本発明のプレート型反応器では反応流体が通過する流路を高さ0.4mmとした(流路の水力相当直径は0.73mmである)ものを使用した。充填層型反応器では、プレート型反応器よりも大きな圧力損失が測定(図中+印参照)された。一方、プレート型反応器では、流路断面の水力相当直径とハーゲン-ポアズイユ式(圧力損失の計算式)から計算された圧力損失(図中の実線参照)と同等の圧力損失が測定(図中○印参照)された。これにより本発明を用いることで、固定層の流通式触媒反応装置において、課題となる大きな圧力損失を回避する効果が得られた。なお、図4は、不活性ガス流通なので触媒に析出は生じない。図4から、本発明のプレート型反応器では、充填層型反応器で生じる大きな圧力損失を回避できることがわかる。
図5は、横軸に時間[min]、縦軸に圧力損失[kPa]をとり、固体触媒を用いた従来の充填層型反応器における圧力損失の経時変化を示したものである。内径4.35mmのSUS管に固体触媒(Ni/ゼオライト触媒、粒径300μm以下)0.78gを充填させた充填層型反応器を用いたメタン改質の結果である。反応流体の流量をCH4/CO2/He=20sccm/40sccm/100sccmとし、反応温度を500℃として実施した。このときの反応器内の実流量は約444mL/minである。図から炭素析出由来の圧力損失の増加がみられた。一方、本発明のプレート型反応器では圧力損失は検出限界以下で、圧力損失の増加も見られなかった。
図6は、横軸に温度[℃]、縦軸にCH転化率をとり、従来の充填層型反応器(×印参照)と、本発明のプレート型反応器I(片方のプレートに触媒部形成、*印参照)、本発明のプレート型反応器II(両方のプレートに触媒部形成、●印参照)を用いて、反応流体の流量をCH4/CO2/He=10sccm/20sccm/50sccmとし、反応器毎のメタン転化率を比較したものである。充填層型反応器は内径4.35mmのSUS管に固体触媒(粒径300μm〜1000μm)0.78gを充填させた反応器を使用した。本発明のプレート型反応器Iは、プレート下面の触媒部(幅4mm×長さ80mm×深さ3mm)に固体触媒を0.78g設置し、反応流体が通過する流路は高さ2.2mmとした(流路の水力相当直径は2.84mmである)ものを使用し、本発明のプレート型反応器IIは、プレート下面と上面の触媒部(幅4mm×長さ80mm×深さ3mm)に固体触媒を0.78gずつ設置し、反応流体が通過する流路は高さ2.7mmとした(流路の水力相当直径は3.22mmである)ものを使用した。図6からは、反応条件では充填層型反応器のメタン転化率が最も高く、本発明のプレート型反応器Iのメタン転化率が最も低かった。本発明のプレート型反応器IIは、流路壁面を多く使用することでプレート型反応器Iの2倍量の固体触媒を使用でき、メタン転化率が向上された。
In FIG. 4, the horizontal axis represents the actual flow rate [mL/min] and the vertical axis represents the pressure loss [kPa], and the pressure loss was comparatively measured using the conventional packed bed reactor and the plate reactor of the present invention. The results and theoretical values are shown. For comparison, the flow rate, temperature, catalyst amount, and catalyst size were standardized for both, and an inert gas was passed. The packed bed reactor used was a reactor in which 0.78 g of a solid catalyst (Ni/zeolite catalyst, particle size of 300 μm or less) was packed in a SUS tube having an inner diameter of 4.35 mm. In the plate-type reactor of the present invention, a flow passage through which the reaction fluid passes has a height of 0.4 mm (the hydraulic equivalent diameter of the flow passage is 0.73 mm). In the packed bed reactor, a larger pressure loss was measured (see + mark in the figure) than in the plate reactor. On the other hand, in the plate reactor, a pressure loss equivalent to the hydraulic equivalent diameter of the channel cross section and the pressure loss calculated by the Hagen-Poiseuille formula (pressure loss calculation formula) (see the solid line in the figure) was measured (in the figure). (See ○ mark). As a result, by using the present invention, the effect of avoiding a large pressure loss, which is a problem, was obtained in the fixed bed flow type catalytic reactor. In addition, in FIG. 4, since the inert gas flows, no deposition occurs on the catalyst. From FIG. 4, it can be seen that the plate reactor of the present invention can avoid the large pressure loss that occurs in the packed bed reactor.
FIG. 5 shows the time-dependent change in pressure loss in a conventional packed bed reactor using a solid catalyst, with the horizontal axis representing time [min] and the vertical axis representing pressure loss [kPa]. This is a result of methane reforming using a packed bed reactor in which 0.78 g of a solid catalyst (Ni/zeolite catalyst, particle size of 300 μm or less) was packed in an SUS tube having an inner diameter of 4.35 mm. The flow rate of the reaction fluid was CH 4 /CO 2 /He=20 sccm/40 sccm/100 sccm, and the reaction temperature was 500° C. The actual flow rate in the reactor at this time is about 444 mL/min. From the figure, an increase in pressure loss due to carbon deposition was observed. On the other hand, in the plate reactor of the present invention, the pressure loss was below the detection limit, and no increase in pressure loss was observed.
In FIG. 6, the horizontal axis represents temperature [° C.] and the vertical axis represents CH 4 conversion. The conventional packed bed reactor (see x) and the plate reactor I of the present invention (catalyst on one plate were used). Part formation, see * mark), using the plate reactor II of the present invention (catalyst part formation on both plates, see mark), the flow rate of the reaction fluid is CH 4 /CO 2 /He=10 sccm/20 sccm/ It is set to 50 sccm and the methane conversion rate of each reactor is compared. The packed bed reactor used was a SUS tube having an inner diameter of 4.35 mm filled with 0.78 g of a solid catalyst (particle size 300 μm to 1000 μm). In the plate reactor I of the present invention, 0.78 g of the solid catalyst is installed in the catalyst portion (width 4 mm x length 80 mm x depth 3 mm) on the lower surface of the plate, and the flow path through which the reaction fluid passes is 2.2 mm in height. (The hydraulic equivalent diameter of the flow path is 2.84 mm) was used, and the plate type reactor II of the present invention has a catalyst part (width 4 mm x length 80 mm x depth 3 mm) on the lower surface and upper surface of the plate. 0.78 g of a solid catalyst was installed in each of which the height of the flow passage through which the reaction fluid passed was 2.7 mm (the hydraulic equivalent diameter of the flow passage was 3.22 mm). From FIG. 6, under the reaction conditions, the packed bed reactor had the highest methane conversion, and the plate reactor I of the present invention had the lowest methane conversion. The plate-type reactor II of the present invention can use twice as much solid catalyst as the plate-type reactor I by using many wall surfaces of the flow path, and the methane conversion rate is improved.

(本発明の変形例1)
図7は、本発明のプレート型反応器の変形例1を示したもので、図に示すとおりガスケットの流路壁面にも凹部を設け、凹部内に固体触媒を埋設固定した点に特徴を有するものであり、他の構成は図1〜3の例と同じである。この変形例1では、プレートに設けた溝部に埋設固定した固体触媒と合わせれば、流路を画定する4つの壁面全てに固体触媒が埋設固定されるのでさらに、触媒の反応効率が向上する。
(Modification 1 of the present invention)
FIG. 7 shows a modified example 1 of the plate reactor of the present invention, which is characterized in that a recess is also provided on the wall surface of the gasket as shown in the figure, and the solid catalyst is embedded and fixed in the recess. The other configurations are the same as those in the examples of FIGS. In this modified example 1, when combined with the solid catalyst embedded and fixed in the groove provided in the plate, the solid catalyst is embedded and fixed on all four wall surfaces that define the flow path, so that the reaction efficiency of the catalyst is further improved.

(本発明の変形例2)
図8は、本発明のプレート型反応器の変形例2を示したもので、触媒部用溝を随所に設けた例であり、また、異なる種類の固体触媒を使用した例をしめす。この変形例2のように、固体触媒を埋設する溝あるいは凹所は流路壁面の一部(複数箇所を含む)あるいは全部に設けることができ、使用する固体触媒についても一種類に限定されるものではない。
(Modification 2 of the present invention)
FIG. 8 shows a modified example 2 of the plate reactor of the present invention, which is an example in which grooves for the catalyst portion are provided everywhere, and an example in which different kinds of solid catalysts are used is shown. As in the second modification, the groove or the recess for burying the solid catalyst can be provided in a part (including a plurality of places) or the whole of the wall surface of the flow channel, and the solid catalyst to be used is also limited to one kind. Not a thing.

(本発明の変形例3)
図9は、本発明のプレート型反応器の変形例3を示したもので、入口、出口を複数設けた例を示す。図1〜3、図7、8に示した本発明のプレート型反応器の例では入口、出口は各1個ずつしか設けていなかったが、これに限定されることなく、図9に示すように複数設けることもできる。
(Modification 3 of the present invention)
FIG. 9 shows a third modification of the plate reactor of the present invention, showing an example in which a plurality of inlets and outlets are provided. In the example of the plate reactor of the present invention shown in FIGS. 1 to 3, 7 and 8, only one inlet and one outlet were provided, but the present invention is not limited to this, and as shown in FIG. It is also possible to provide a plurality of them.

(本発明の変形例4)
図10は、本発明のプレート型反応器の変形例4を示したもので、溝底部に固体触媒使用量調整用の上げ底を設置した例を示す。図では上げ底にSUS製上げ底を示しているが材料はSUS製に限定されるものではない。
(Variation 4 of the present invention)
FIG. 10 shows a modified example 4 of the plate reactor of the present invention, and shows an example in which a raised bottom for adjusting the amount of solid catalyst used is installed at the bottom of the groove. In the figure, the raised bottom is made of SUS, but the material is not limited to SUS.

本発明のプレート型反応器は気相反応にも液相反応にも気液混合反応に対しても使用することができる。 The plate reactor of the present invention can be used for gas phase reactions, liquid phase reactions, and gas-liquid mixed reactions.

Claims (4)

スリットを有するガスケットを2枚のプレートで挟むようにサンドイッチ構造にすることで流路を形成し、前記2枚のプレートのいずれか一方または両方に前記スリットに連通する少なくとも1つの流体入口及び少なくとも1つの流体出口を設けたプレート型反応器であって、
前記流路に面する前記プレートの壁面に溝部を設け、この溝部のみに固体触媒を埋設固定したことを特徴とするプレート型反応器。
A gasket having a slit is sandwiched between two plates to form a flow path, and at least one fluid inlet communicating with the slit and at least one of the two plates are provided. A plate type reactor provided with two fluid outlets,
A groove in the wall of the plate facing the flow path provided, the plate-type reactor, characterized in that the solid catalyst is embedded and fixed in the groove only.
前記ガスケットの前記スリットの壁面に設けた凹部に固体触媒を埋設固定したことを特徴とする請求項1記載のプレート型反応器。 The plate-type reactor according to claim 1, wherein a solid catalyst is embedded and fixed in a recess provided in the wall surface of the slit of the gasket. 前記溝部または凹部の底部に固体触媒埋設量調整用の上げ底を固定したことを特徴とする請求項1または2記載のプレート型反応器。 The plate-type reactor according to claim 1 or 2, wherein a raised bottom for adjusting the solid catalyst burying amount is fixed to the bottom of the groove or the recess. 請求項1〜3のいずれかに記載のプレート型反応器を製造するための製造方法であって、
前記固体触媒は、粉末状触媒を固定液を用いて埋設固定したことを特徴とする製造方法。
A manufacturing method for manufacturing the plate reactor according to claim 1,
The solid catalysts can manufacturing method is characterized in that a powdery powder-form catalyst was embedded and fixed with a fixative.
JP2016029292A 2016-02-18 2016-02-18 Plate reactor Active JP6730569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016029292A JP6730569B2 (en) 2016-02-18 2016-02-18 Plate reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016029292A JP6730569B2 (en) 2016-02-18 2016-02-18 Plate reactor

Publications (2)

Publication Number Publication Date
JP2017144403A JP2017144403A (en) 2017-08-24
JP6730569B2 true JP6730569B2 (en) 2020-07-29

Family

ID=59680546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016029292A Active JP6730569B2 (en) 2016-02-18 2016-02-18 Plate reactor

Country Status (1)

Country Link
JP (1) JP6730569B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7215731B2 (en) * 2018-04-11 2023-01-31 国立研究開発法人産業技術総合研究所 stacked reactor
JP2019188365A (en) * 2018-04-27 2019-10-31 国立研究開発法人産業技術総合研究所 Laminate type reactor
JP7319737B2 (en) * 2018-04-27 2023-08-02 国立研究開発法人産業技術総合研究所 stacked reactor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10317451A1 (en) * 2003-04-16 2004-11-18 Degussa Ag Reactor for heterogeneously catalyzed reactions
JP2006263692A (en) * 2005-03-22 2006-10-05 Minoru Seki Method for reforming surface of micro-fluid device
JP2007160227A (en) * 2005-12-14 2007-06-28 Mitsubishi Gas Chem Co Inc Catalytic reactor and reacting method
JP4705503B2 (en) * 2006-03-31 2011-06-22 株式会社神戸製鋼所 Methanol steam reforming catalyst and method for producing the same
JP5013513B2 (en) * 2007-02-08 2012-08-29 国立大学法人東京工業大学 MICRO REACTOR, MANUFACTURING METHOD THEREOF, INTEGRATED MICRO REACTION MODULE, AND METHOD FOR PURIFYING ORGANIC AREAS

Also Published As

Publication number Publication date
JP2017144403A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
JP6730569B2 (en) Plate reactor
US20170007978A1 (en) Process for making styrene using microchannel process technology
US9101890B2 (en) Support for use in microchannel processing
AU2010237097B2 (en) A flow module
JP5066643B2 (en) Gas separator
JP6304250B2 (en) Reactor
EP3415231A1 (en) Reaction device
JP2008537904A5 (en)
MX2007008996A (en) Catalytic reactor.
EP2249954A1 (en) Catalytic reactor
Jiwanuruk et al. Effect of flow arrangement on micro membrane reforming for H2 production from methane
JP5024674B2 (en) Hydrogen separator
JP7319737B2 (en) stacked reactor
Huang et al. Density functional study of methanol decomposition on clean and O or OH adsorbed PdZn (111)
JP7215731B2 (en) stacked reactor
JP2019188365A (en) Laminate type reactor
JP7442791B2 (en) catalytic reactor
JP2007160227A (en) Catalytic reactor and reacting method
Piermartini et al. Microreactor approaches for liquid fuel production from bioderived syngas− 5 m3/h prototype development for HTHP water gas shift
JP2012189245A (en) Heat storage device
WO2023132105A1 (en) Heat exchange structure
WO2014119442A1 (en) Reactor
CN111727334B (en) Control valve
JP2023164193A (en) reforming reactor
US20150354908A1 (en) Engineered packing for heat exchange and systems and methods for constructing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200611

R150 Certificate of patent or registration of utility model

Ref document number: 6730569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250