JP6729936B2 - Multi-motion attachment for construction machinery - Google Patents

Multi-motion attachment for construction machinery Download PDF

Info

Publication number
JP6729936B2
JP6729936B2 JP2016253314A JP2016253314A JP6729936B2 JP 6729936 B2 JP6729936 B2 JP 6729936B2 JP 2016253314 A JP2016253314 A JP 2016253314A JP 2016253314 A JP2016253314 A JP 2016253314A JP 6729936 B2 JP6729936 B2 JP 6729936B2
Authority
JP
Japan
Prior art keywords
hydraulic
valve
pressure side
switching valve
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016253314A
Other languages
Japanese (ja)
Other versions
JP2018105442A (en
Inventor
田口 裕一
裕一 田口
Original Assignee
株式会社田口クリエイト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社田口クリエイト filed Critical 株式会社田口クリエイト
Priority to JP2016253314A priority Critical patent/JP6729936B2/en
Publication of JP2018105442A publication Critical patent/JP2018105442A/en
Application granted granted Critical
Publication of JP6729936B2 publication Critical patent/JP6729936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)
  • Crushing And Grinding (AREA)

Description

本発明は、2つのアクチュエータの一方である油圧直動シリンダが作動端に達した後、前記アクチュエータの他方である油圧回転モータ又は油圧直動シリンダが作動し始める建設機械の複合動作型アタッチメントに関する。 The present invention relates to a combined operation type attachment of a construction machine, in which a hydraulic linear motion cylinder, which is one of the two actuators, reaches a working end, and then a hydraulic rotary motor or a hydraulic linear motion cylinder, which is the other of the actuators, starts to operate.

2つのアクチュエータの一方である油圧直動シリンダが作動端に達した後、前記アクチュエータの他方である油圧回転モータ又は油圧直動シリンダが作動し始める建設機械の複合動作型アタッチメントは、2つのアクチュエータで異なる2動作をさせることができる。例えば特許文献1は、一方が油圧直動シリンダ、他方が油圧回転モータであり、破砕爪を全開するために油圧直動シリンダのロッドが縮みきると、油圧回転モータに油が流れ始めて本体が旋回する破砕アタッチメントを開示する(特許文献1・[請求項1]ほか)。特許文献1が開示する複合動作型アタッチメントは、破砕爪の開閉と本体の旋回とを連続的に実現し、簡単かつ良好な操作性を提供する効果を得ている(特許文献1・[発明の効果]) After the hydraulic linear motion cylinder that is one of the two actuators reaches the working end , the hydraulic rotary motor or hydraulic linear motion cylinder that is the other of the actuators starts to operate. Two different operations can be performed. For example, in Patent Document 1, one is a hydraulic direct-acting cylinder and the other is a hydraulic rotary motor, and when the rod of the hydraulic direct-acting cylinder is fully contracted to fully open the crush claw, oil starts to flow to the hydraulic rotary motor and the main body turns. A crushing attachment is disclosed (Patent Document 1, [Claim 1], etc.). The combined operation type attachment disclosed in Patent Document 1 achieves continuous opening and closing of the crushing claw and rotation of the main body, and has an effect of providing easy and good operability (Patent Document 1 effect])

特開2000-027239号公報JP 2000-027239

特許文献1が開示する複合動作型アタッチメントは、配管の分岐部分で逆流防止を考慮しつつ、すべて油圧作動の切換バルブ等を用いて油圧回路を構成したことで、油圧回転モータへ油を送り込む分岐配管が限定され、前記分岐は移管に油を送り込むタイミングが特定されていた。このため、例えば破砕爪を閉じて本体を回転させたり、本体の回転方向を逆にできない問題があった。そこで、建設機械の複合動作型アタッチメントにおいて、アクチュエータの一方である油圧直動シリンダからアクチュエータの他方である油圧回転モータ又は油圧直動シリンダに切り換えるタイミングを増やすと共に、アクチュエータの他方である油圧回転モータ又は油圧直動シリンダの作動に制限を課さずに済む構成を検討した。 The combined operation type attachment disclosed in Patent Document 1 is a branch that feeds oil to a hydraulic rotary motor by configuring a hydraulic circuit using switching valves that are all hydraulically actuated while considering backflow prevention at the branching portion of the pipe. The piping was limited, and the branch specified the timing of sending oil to the transfer. For this reason, for example, there is a problem in that the crushing claw is closed and the main body is rotated, and the rotation direction of the main body cannot be reversed. Therefore, in the combined operation type attachment of the construction machine, while increasing the timing of switching from the hydraulic direct acting cylinder which is one of the actuators to the hydraulic rotary motor or the hydraulic direct acting cylinder which is the other of the actuators , the hydraulic rotary motor which is the other of the actuators or We examined a configuration that does not impose any restrictions on the operation of the hydraulic linear cylinder .

検討の結果、2つのアクチュエータの一方である油圧直動シリンダが作動端に達した後、前記アクチュエータの他方である油圧回転モータ又は油圧直動シリンダが作動し始める建設機械の複合動作型アタッチメントであって、ブリッジ回路が、アクチュエータの一方に繋がる2本の主配管に跨がって設けられ、アクチュエータの他方に繋がる2本の分岐配管が、前記ブリッジ回路の高圧側及び低圧側に接続され、電磁切換バルブが、前記2本の分岐配管それぞれの油の流通又は遮断を切り換えられるように設けられ、油圧発電モータが、前記電磁切換バルブからブリッジ回路寄りで前記2本の分岐配管を繋ぐ迂回配管に設けられ、バルブ制御部が、前記油圧発電モータが回す発電機から直接給電され、電磁切換バルブと操作線により繋がれて構成される建設機械の複合動作型アタッチメントを開発した。 As a result of the study, it is a combined operation type attachment of a construction machine in which a hydraulic rotary motor or a hydraulic direct drive cylinder which is the other of the actuators starts to operate after the hydraulic direct drive cylinder which is one of the two actuators reaches an operating end. A bridge circuit is provided across two main pipes connected to one of the actuators, and two branch pipes connected to the other of the actuators are connected to the high-voltage side and the low-voltage side of the bridge circuit, respectively. A switching valve is provided so as to switch the circulation or cutoff of oil in each of the two branch pipes, and a hydraulic power generation motor is provided as a bypass pipe connecting the two branch pipes near the bridge circuit from the electromagnetic switching valve. A multi-action attachment of a construction machine has been developed, in which a valve control unit is provided, which is directly fed from a generator rotated by the hydraulic power generation motor and is connected to an electromagnetic switching valve by an operation line.

えばアクチュエータの一方が油圧直動シリンダ、アクチュエータの他方が油圧回転モータである組み合わせが典型的で、一対の掴み爪を回転する本体に設けた掴みアタッチメントや、一対の破砕爪を回転する本体に設けた破砕アタッチメントを構成できる。また、アクチュエータの一方に作動端があればよいので、アクチュエータの一方及び他方が共に油圧直動シリンダである組み合わせとしてもよい。 For example if one hydraulic linear cylinder actuator, a combination other actuator is a hydraulic rotary motor is typically an attachment or gripping provided in the main body to rotate the pair of gripping claws, the body that rotates the pair of crushing claw The provided crushing attachment can be configured. Further, since it suffices that one of the actuators has an actuating end, one and the other of the actuators may both be hydraulic direct-acting cylinders.

特許文献1にも見られるように、アクチュエータの他方が油圧回転モータや単動の油圧直動シリンダである場合、電磁切換バルブは、分岐配管それぞれの油の流通又は遮断を切り換えられるように設けられ、を切り換える2位置切換バルブでもよい。しかし、油圧回転モータの回転方向を切り換えたり、アクチュエータの他方が復動の油圧直動シリンダであったりすれば、電磁切換バルブは、平行管路、切断管路及び交差管路を切り換える3位置切換バルブとする。3位置切換バルブである電磁切換バルブは、複雑な油圧配管を必要とすることなく、容易に管路を3通りに切り換えられる。バルブ制御部は、運転席のバルブ操作部と有線又は無線により接続される構成にするとよい。 As seen in Patent Document 1, when the other of the actuators is a hydraulic rotary motor or a single-acting hydraulic direct-acting cylinder, the electromagnetic switching valve is provided so as to switch the flow or cutoff of oil in each branch pipe. It may be a two-position switching valve that switches between and. However, if the direction of rotation of the hydraulic rotary motor is switched or the other of the actuators is a hydraulic direct-acting cylinder that moves backward, the electromagnetic switching valve will switch the parallel position, the disconnecting line, and the crossing position. Valve. The electromagnetic switching valve, which is a three-position switching valve, can easily switch the pipeline to three ways without requiring complicated hydraulic piping. The valve control unit may be connected to the valve operation unit in the driver's seat by wire or wirelessly.

本発明の複合動作型アタッチメントは、アクチュエータの一方である油圧直動シリンダに繋がる主配管のいずれに高圧が発生しさえすれば、ブリッジ回路を介して分岐配管に油を送ることができる。これは、アクチュエータの一方である油圧直動シリンダからアクチュエータの他方である油圧回転モータ又は油圧直動シリンダに切り換えるタイミングを増やすことを意味する。例えばアクチュエータの一方が油圧直動シリンダ、アクチュエータの他方が油圧回転モータである掴みアタッチメントの場合、前記油圧直動シリンダがロッドを伸張又は縮退させて掴み爪を開いた状態又は閉じた状態にすれば、いずれの状態でも本体を回転できる操作性向上という効果を得る。アクチュエータの他方が油圧直動シリンダである複合動作型アタッチメントも、同様の操作性向上が見込める。 The combined operation type attachment of the present invention can send oil to the branch pipe through the bridge circuit as long as a high pressure is generated in any of the main pipes connected to the hydraulic linear cylinder that is one of the actuators . This means increasing the timing of switching from the hydraulic direct acting cylinder which is one of the actuators to the hydraulic rotary motor or hydraulic direct acting cylinder which is the other of the actuators. For example one hydraulic linear cylinder actuator, when the other actuator is gripping the attachment is a hydraulic rotary motor, if the state of the hydraulic linear cylinder is closed state or open the claws gripping by stretching or degenerated rod In any case, it is possible to obtain the effect of improving the operability of rotating the main body. A similar type of operability can be expected for a combined motion type attachment in which the other of the actuators is a hydraulic direct acting cylinder.

また、本発明の複合動作型アタッチメントは、ブリッジ回路から送り込まれる油で発電した電気により電磁切換バルブを切り換え、アクチュエータの他方である油圧回転モータ又は油圧直動シリンダへの油を制御できる。例えばアクチュエータの一方が油圧直動シリンダ、アクチュエータの他方が油圧回転モータである掴みアタッチメントの場合、前記油圧直動シリンダがロッドを伸張又は縮退させて掴み爪を開いた状態又は閉じた状態にしても、本体の回転又は停止を選択できる操作性向上という効果を得る。アクチュエータの他方が油圧直動シリンダである複合動作型アタッチメントも、同様の操作性向上が見込める。 Further, in the combined operation type attachment of the present invention, the electromagnetic switching valve can be switched by electricity generated by the oil sent from the bridge circuit to control the oil to the hydraulic rotary motor or the hydraulic direct acting cylinder which is the other of the actuators . For example one hydraulic linear cylinder actuator, when the other actuator is gripping the attachment is a hydraulic rotary motor, even in a state where the hydraulic linear cylinder is closed state or open the claws gripping by stretching or degenerated rod , And the effect of improving operability that allows the main body to be rotated or stopped can be obtained. A similar type of operability can be expected for a combined motion type attachment in which the other of the actuators is a hydraulic direct acting cylinder.

アクチュエータの一方である油圧直動シリンダからアクチュエータの他方である油圧回転モータ又は油圧直動シリンダに切り換えるタイミングを増やすことに加え、電磁切換バルブを3位置切換バルブにすると、アクチュエータの他方の作動に制限を課さずに済む。例えばアクチュエータの一方が油圧直動シリンダ、アクチュエータの他方が油圧回転モータである掴みアタッチメントの場合、前記油圧直動シリンダがロッドを伸張又は縮退させて掴み爪を開いた状態又は閉じた状態にしても、本体の回転又は停止を選択できるほか、回転方向も選択できる操作性向上という効果を得る。アクチュエータの他方が油圧直動シリンダである複合動作型アタッチメントも、同様の操作性向上が見込める。 In addition to increasing the timing of switching from the hydraulic direct acting cylinder that is one of the actuators to the hydraulic rotary motor or hydraulic direct acting cylinder that is the other of the actuators, if the electromagnetic switching valve is a three-position switching valve, the operation of the other actuator is limited. Is not required. For example one hydraulic linear cylinder actuator, when the other actuator is gripping the attachment is a hydraulic rotary motor, even in a state where the hydraulic linear cylinder is closed state or open the claws gripping by stretching or degenerated rod It is possible to select whether to rotate or stop the main body, and also to select the rotation direction, thereby improving the operability. A similar type of operability can be expected for a combined motion type attachment in which the other of the actuators is a hydraulic direct acting cylinder.

アクチュエータの一方が油圧直動シリンダ、アクチュエータの他方が油圧回転モータである本発明の複合動作型アタッチメントが構成する油圧回路の一例を表すブロック図である。While hydraulic linear cylinder actuator is a block diagram showing an example of a hydraulic circuit combined operation type attachment to the structure of the present invention other actuator is a hydraulic rotary motor. 本例の複合動作型アタッチメントが構成する油圧回路において、油圧直動シリンダのロッドを伸ばしている状態を表すブロック図である。It is a block diagram showing the state which has extended the rod of the hydraulic direct-acting cylinder in the hydraulic circuit which the compound action type attachment of this example comprises. 本例の複合動作型アタッチメントが構成する油圧回路において、油圧直動シリンダのロッドを伸ばしている際に電磁切換バルブを並列管路に切り換える切換信号を送信した状態を表すブロック図である。FIG. 6 is a block diagram showing a state in which a switching signal for switching an electromagnetic switching valve to a parallel pipeline is transmitted when the rod of the hydraulic direct-acting cylinder is extended in the hydraulic circuit configured by the combined operation type attachment of the present example. 本例の複合動作型アタッチメントが構成する油圧回路において、油圧直動シリンダのロッドが伸張側の作動端に達した状態を表すブロック図である。It is a block diagram showing the state where the rod of the hydraulic direct-acting cylinder reached the working end on the extension side in the hydraulic circuit configured by the combined operation type attachment of the present example. 本例の複合動作型アタッチメントが構成する油圧回路において、油圧直動シリンダのロッドが伸張側の作動端に達した際に電磁切換バルブを並列管路に切り換える切換信号を送信した状態を表すブロック図である。A block diagram showing a state in which a switching signal for switching the electromagnetic switching valve to a parallel pipe is transmitted when the rod of the hydraulic direct-acting cylinder reaches the working end on the extension side in the hydraulic circuit configured by the combined operation type attachment of the present example. Is. 本例の複合動作型アタッチメントが構成する油圧回路において、油圧直動シリンダのロッドが伸張側の作動端に達した際に電磁切換バルブを交差管路に切り換える切換信号を送信した状態を表すブロック図である。A block diagram showing a state in which a switching signal for switching an electromagnetic switching valve to a cross pipe is transmitted when a rod of a hydraulic direct-acting cylinder reaches an operating end on an extension side in a hydraulic circuit configured by a composite operation type attachment of this example. Is. 本例の複合動作型アタッチメントが構成する油圧回路において、油圧直動シリンダのロッドを縮めている状態を表すブロック図である。It is a block diagram showing the state where the rod of the hydraulic direct-acting cylinder is contracted in the hydraulic circuit configured by the combined motion type attachment of the present example. 本例の複合動作型アタッチメントが構成する油圧回路において、油圧直動シリンダのロッドが縮退側の作動端に達した状態を表すブロック図である。FIG. 6 is a block diagram showing a state in which a rod of a hydraulic direct-acting cylinder has reached an operation end on a retracted side in a hydraulic circuit configured by a combined operation type attachment of the present example. 本例の複合動作型アタッチメントが構成する油圧回路において、油圧直動シリンダのロッドが縮退側の作動端に達した際に電磁切換バルブを並列管路に切り換える切換信号を送信した状態を表すブロック図である。A block diagram showing a state in which a switching signal for switching an electromagnetic switching valve to a parallel pipe is transmitted when a rod of a hydraulic direct-acting cylinder reaches an operating end on the retracted side in a hydraulic circuit configured by a composite operation type attachment of this example. Is. アクチュエータの一方及び他方が共に油圧直動シリンダである本発明の複合動作型アタッチメントが構成する油圧回路の一例を表すブロック図である。It is a block diagram showing an example of a hydraulic circuit which a compound operation type attachment of the present invention in which one side and the other side of an actuator are both hydraulic direct acting cylinders.

以下、本発明を実施するための形態について図を参照しながら説明する。本発明の複合動作型アタッチメント1は、例えば一対の破砕爪(図示略)を回転する本体(図示略)に設けた破砕アタッチメントに適用した場合、図1に見られるように構成される(図中一点鎖線枠が複合動作型アタッチメント1)。破砕アタッチメントは、アクチュエータの一方である油圧直動シリンダ2のロッド21を伸ばして破砕爪を閉じ、また前記ロッド21を縮めて破砕爪を開く。本発明を適用した場合、破砕爪を全開又は全閉した状態から更に油を送り続け、電磁切換バルブ35を切り換えてアクチュエータの他方である油圧回転モータ3に油を流すと、本体を回転させる。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings. The composite operation type attachment 1 of the present invention is configured as shown in FIG. 1 when applied to a crushing attachment provided on a rotating body (not shown) with a pair of crushing claws (not shown) (in the figure) The one-dot chain line frame is a compound movement attachment 1). The crushing attachment extends the rod 21 of the hydraulic linear cylinder 2 which is one of the actuators to close the crushing claw, and contracts the rod 21 to open the crushing claw. When the present invention is applied, when the crushing claw is fully opened or fully closed, oil is further continuously fed, and the electromagnetic switching valve 35 is switched to flow oil to the hydraulic rotary motor 3 which is the other of the actuators to rotate the main body.

破砕爪を開閉させる油圧直動シリンダ2は、復動形で、ボトム側主配管23がポンプ(図示略)に接続されて油が送り込まれるとチューブ22からロッド21を突出させて伸ばし、ロッド側主配管24がポンプ(図示略)に接続されて油が送り込まれるとチューブ22にロッド21を収納して縮める。破砕爪の構成により、油圧直動シリンダ2は、2本一組みで用いられる場合もある。この場合、ボトム側主配管23及びロッド側主配管24を枝分かれさせ、2本の油圧直動シリンダ2を並列に作動させる。 The hydraulic direct-acting cylinder 2 that opens and closes the crushing claw is a return type, and when the bottom side main pipe 23 is connected to a pump (not shown) and oil is fed, the rod 21 is extended from the tube 22 to extend, When the main pipe 24 is connected to a pump (not shown) and oil is sent in, the rod 21 is housed in the tube 22 and contracted. Depending on the structure of the crushing claws, the hydraulic direct-acting cylinders 2 may be used in pairs. In this case, the bottom side main pipe 23 and the rod side main pipe 24 are branched so that the two hydraulic direct acting cylinders 2 are operated in parallel.

本発明は、ボトム側主配管23及びロッド側主配管24を跨いでブリッジ回路25を設ける。ブリッジ回路25は、ボトム側主配管23及びロッド側主配管24に流れる油の向きと無関係に、高圧側出力端H及び低圧側入力端Lが定まる油圧回路である。本例のブリッジ回路25は、ボトム側主配管23からボトム側送り配管251及びボトム側戻り配管255を分岐し、またロッド側主配管24からロッド側送り配管253及びロッド側戻り配管257を分岐して、前記ボトム側送り配管251及びロッド側送り配管253を接続して高圧側出力端Hを構成し、また前記ボトム側戻り配管255及びロッド側戻り配管257を接続して低圧側入力端Lを構成する。 In the present invention, the bridge circuit 25 is provided across the bottom side main pipe 23 and the rod side main pipe 24. The bridge circuit 25 is a hydraulic circuit in which the high-pressure side output end H and the low-pressure side input end L are determined regardless of the direction of the oil flowing through the bottom side main pipe 23 and the rod side main pipe 24. The bridge circuit 25 of this example branches the bottom side main pipe 23 into the bottom side feed pipe 251 and the bottom side return pipe 255, and the rod side main pipe 24 into the rod side feed pipe 253 and the rod side return pipe 257. Then, the bottom side feed pipe 251 and the rod side feed pipe 253 are connected to form a high pressure side output end H, and the bottom side return pipe 255 and the rod side return pipe 257 are connected to form a low pressure side input end L. Constitute.

ボトム側送り配管251は、高圧側出力端Hに油が流れ出す方向に開くチェックバルブであるボトム側送りバルブ252が設けられ、ロッド側送り配管253は、同じく高圧側出力端Hに油が流れ出す方向に開くチェックバルブであるロッド側送りバルブ254が設けられている。また、ボトム側戻り配管255は、低圧側入力端Lから油が流れ込む方向に開くチェックバルブであるボトム側戻りバルブ256が設けられ、ロッド側戻り配管257は、同じく低圧側入力端Lから油が流れ込む方向に開くチェックバルブであるロッド側戻りバルブ258が設けられている。 The bottom side feed pipe 251 is provided with a bottom side feed valve 252 that is a check valve that opens in the direction in which oil flows to the high pressure side output end H, and the rod side feed pipe 253 also has a direction in which oil flows to the high pressure side output end H. A rod side feed valve 254, which is a check valve that opens at the bottom, is provided. In addition, the bottom side return pipe 255 is provided with a bottom side return valve 256 which is a check valve that opens in the direction in which oil flows from the low pressure side input end L, and the rod side return pipe 257 also receives oil from the low pressure side input end L. A rod-side return valve 258, which is a check valve that opens in the flowing direction, is provided.

ブリッジ回路25は、例えば油圧直動シリンダ2のロッド21が伸張側の作動端に達してボトム側主配管23の油圧が高まると、前記油圧によりボトム側送りバルブ252を開き、ボトム側戻りバルブ255を閉じる。ロッド側送りバルブ254及びロッド側戻りバルブ258は、自由である。これにより、ボトム側主配管23に送られる油は、ボトム側送りバルブ252を経て高圧側出力端Hから高圧側上流分岐配管33へ流れ込み、ロッド側送りバルブ254を閉じる。そして、低圧側上流分岐配管34から低圧側入力端Lに流れ込む油は、閉じたボトム側戻りバルブ256を避けてロッド側戻りバルブ258を開き、ロッド側配管24へ戻る。 The bridge circuit 25 opens the bottom side feed valve 252 by the hydraulic pressure and opens the bottom side return valve 255 when, for example, the rod 21 of the hydraulic linear cylinder 2 reaches the working end on the extension side and the hydraulic pressure of the bottom side main pipe 23 increases. Close. The rod side feed valve 254 and the rod side return valve 258 are free. As a result, the oil sent to the bottom side main pipe 23 flows into the high pressure side upstream branch pipe 33 from the high pressure side output end H via the bottom side feed valve 252, and closes the rod side feed valve 254. Then, the oil flowing from the low pressure side upstream branch pipe 34 to the low pressure side input end L avoids the closed bottom side return valve 256, opens the rod side return valve 258, and returns to the rod side pipe 24.

ブリッジ回路は、上述と逆に油圧直動シリンダ2のロッド21が縮退側の作動端に達してロッド側主配管23の油圧が高まると、前記油圧によりロッド側送りバルブ254を開き、ロッド側戻りバルブ258を閉じる。ボトム側送りバルブ252及びボトム側戻りバルブ256は、自由である。これにより、ロッド側主配管24に送られる油は、ロッド側送りバルブ254を経て高圧側出力端Hから高圧側上流分岐配管33へ流れ込み、ボトム側送りバルブ252を閉じる。そして、低圧側上流分岐配管34から低圧側入力端Lに流れ込む油は、閉じたロッド側戻りバルブ258を避けてボトム側戻りバルブ256を開き、ボトム側配管23へ戻る。 Contrary to the above, the bridge circuit opens the rod side feed valve 254 by the hydraulic pressure when the rod 21 of the hydraulic direct acting cylinder 2 reaches the retracted side operation end and the hydraulic pressure of the rod side main pipe 23 increases, and returns to the rod side return. Close valve 258. The bottom feed valve 252 and bottom return valve 256 are free. As a result, the oil sent to the rod-side main pipe 24 flows into the high-pressure upstream branch pipe 33 from the high-pressure side output end H via the rod-side feed valve 254 and closes the bottom-side feed valve 252. Then, the oil flowing from the low pressure side upstream branch pipe 34 to the low pressure side input end L avoids the closed rod side return valve 258, opens the bottom side return valve 256, and returns to the bottom side pipe 23.

本体を回転させる油圧回転モータ3は、高圧側下流分岐配管31及び低圧側下流分岐配管32を、ブリッジ回路25から延びる高圧側上流分岐配管33及び低圧側上流分岐配管35と、電磁切換バルブ35を介して接続する。高圧側下流分岐配管31及び低圧側下流分岐配管32は、本来高圧及び低圧の違いはないが、電磁切換バルブ35の平行管路352により接続される高圧側上流分岐配管33及び低圧側上流分岐配管35に合わせて、便宜上「高圧側」又は「低圧側」と呼んでいる。油圧回転モータ3は、高圧側下流分岐配管31から油が流れ込むと正転(図面上右回転)し、低圧側下流分岐配管32から油が流れ込むと逆転(図面上左回転)する。 The hydraulic rotary motor 3 for rotating the main body includes a high pressure side downstream branch pipe 31 and a low pressure side downstream branch pipe 32, a high pressure side upstream branch pipe 33 and a low pressure side upstream branch pipe 35 extending from the bridge circuit 25, and an electromagnetic switching valve 35. Connect through. The high-pressure side downstream branch pipe 31 and the low-pressure side downstream branch pipe 32 have essentially no difference between high pressure and low pressure, but the high-pressure side upstream branch pipe 33 and the low-pressure side upstream branch pipe connected by the parallel pipe line 352 of the electromagnetic switching valve 35. In accordance with 35, it is referred to as "high pressure side" or "low pressure side" for convenience. The hydraulic rotary motor 3 rotates normally (clockwise in the drawing) when oil flows in from the high pressure side downstream branch pipe 31, and reversely rotates (clockwise in the drawing) when oil flows in from the low pressure side downstream branch pipe 32.

電磁切換バルブ35は、図面上左右中央の切断管路351を挟んで、左側に平行管路352、右側に交差管路353を有する3位置切換バルブである。電磁切換バルブ35は、バルブ制御部11から平行管路切換操作線111を通じて作動信号を受けたソレノイドにより図面上右に移動し、高圧側下流分岐配管31と高圧側上流分岐配管33とを繋ぎ、また低圧側下流分岐配管32と低圧側上流分岐配管35とを繋ぐ。また、電磁切換バルブ35は、バルブ制御部11から交差管路切換操作線112を通じて作動信号を受けたソレノイドにより図面上左に移動し、高圧側下流分岐配管31と低圧側上流分岐配管35とを繋ぎ、また低圧側下流分岐配管32と高圧側上流分岐配管33とを繋ぐ。 The electromagnetic switching valve 35 is a three-position switching valve having a parallel conduit 352 on the left side and a crossing conduit 353 on the right side across a cutting conduit 351 in the left and right center of the drawing. The electromagnetic switching valve 35 is moved to the right in the drawing by a solenoid that receives an operation signal from the valve control unit 11 through the parallel conduit switching operation line 111, and connects the high pressure side downstream branch pipe 31 and the high pressure side upstream branch pipe 33. Further, the low pressure side downstream branch pipe 32 and the low voltage side upstream branch pipe 35 are connected. Further, the electromagnetic switching valve 35 is moved to the left in the drawing by a solenoid that receives an operation signal from the valve control unit 11 through the crossing pipeline switching operation line 112, and connects the high pressure side downstream branch pipe 31 and the low pressure side upstream branch pipe 35. Also, the low-pressure side downstream branch pipe 32 and the high-pressure side upstream branch pipe 33 are connected.

バルブ制御部11は、発電機41から給電されている状態で、バルブ操作部12から操作信号を受けると、前記操作信号に応じて平行管路切換操作線111又は交差管路切換操作線112から電磁切換バルブ35に作動信号を送信する。平行管路切換操作線111又は交差管路切換操作線112は、無線でもよいが、同一の複合動作型アタッチメント1に収納される関係から、確実性を鑑みて有線がよい。これに対して、バルブ操作部12は、通常運転席に設置され、バルブ制御部11と離れていることから、有線での接続が難しいこともあり、本例のように無線での接続が好ましい。 When the valve control unit 11 receives an operation signal from the valve operation unit 12 while being supplied with power from the generator 41, the valve control unit 11 receives the operation signal from the parallel pipe line switching operation line 111 or the crossing pipe line switching operation line 112 according to the operation signal. An operation signal is transmitted to the electromagnetic switching valve 35. The parallel line switching operation line 111 or the crossing line switching operation line 112 may be wireless, but is preferably wired from the viewpoint of reliability because they are housed in the same combined operation type attachment 1. On the other hand, since the valve operating unit 12 is normally installed in the driver's seat and is apart from the valve control unit 11, it may be difficult to connect by wire, and it is preferable to connect wirelessly as in this example. ..

高圧側上流分岐配管33及び低圧側上流分岐配管34を結ぶ迂回配管43は、高圧側上流分岐配管33寄りから絞り抵抗431、シーケンスバルブ432及び油圧発電モータ4を前記記載順に設けている。絞り抵抗431は、迂回配管43に流れ込む油の量を制限し、高圧側上流分岐配管33と高圧側下流分岐配管31又は低圧側下流分岐配管32とが接続した際、油圧発電モータ4へも油を流しつつ、油圧回転モータ3へも適度な油が流れるようにする。シーケンスバルブ432は、高圧側上流分岐配管33に油が流れていないときに迂回配管43を遮断する。 The bypass pipe 43 connecting the high-pressure side upstream branch pipe 33 and the low-pressure side upstream branch pipe 34 is provided with a throttle resistor 431, a sequence valve 432, and a hydraulic power generation motor 4 in the order described above from the high-pressure side upstream branch pipe 33 side. The throttle resistance 431 limits the amount of oil flowing into the bypass pipe 43, and when the high-pressure side upstream branch pipe 33 and the high-pressure side downstream branch pipe 31 or the low-pressure side downstream branch pipe 32 are connected, oil is also fed to the hydraulic power generation motor 4. While allowing the oil to flow, a suitable amount of oil also flows to the hydraulic rotary motor 3. The sequence valve 432 shuts off the bypass pipe 43 when oil is not flowing through the high pressure side upstream branch pipe 33.

油圧発電モータ4は、迂回配管43に油が流れると図面上右回転し、回転軸が接続された発電機41を回して発電させる。発電機41が発電した電気は、給電線42を通じてバルブ制御部11に給電される。バルブ制御部11は、発電機41から給電されている間のみ作動する。このように、油圧発電モータ4は、バルブ制御部11のスイッチとしての役割を有する。これから、バルブ制御部11を作動させて電磁切換バルブ35を動かし、油圧回転モータ3を回転させることができるのは、油圧直動シリンダ2のロッド21が伸張側又は縮退側の作動端に達しても油を供給し続け、油圧発電モータ4を回転させたときのみとなる。 The hydraulic power generation motor 4 rotates to the right in the drawing when oil flows through the bypass pipe 43, and rotates the generator 41 connected to the rotary shaft to generate electric power. The electricity generated by the generator 41 is supplied to the valve control unit 11 through the power supply line 42. The valve control unit 11 operates only while power is being supplied from the generator 41. As described above, the hydraulic power generation motor 4 serves as a switch of the valve control unit 11. From this, it is possible to operate the valve control unit 11 to move the electromagnetic switching valve 35 and rotate the hydraulic rotary motor 3 because the rod 21 of the hydraulic direct-acting cylinder 2 reaches the working end on the extension side or the contraction side. Also continues to supply oil, and only when the hydraulic power generation motor 4 is rotated.

本例の複合動作型アタッチメント1である破砕アタッチメントにおける破砕爪の開閉や本体の回転について説明する(図2〜図9参照)。破砕爪を閉じる場合、図2に見られるように、油圧直動シリンダ2のロッド21を伸ばす。このため、ポンプがボトム側主配管23に接続され、油が供給される。ロッド側主配管24はタンクに繋がれ、油圧直動シリンダ2から排出される油が前記タンクに戻される。ロッド21が延びている間は、油が高圧にならず、ブリッジ回路25から高圧側上流分岐配管23に油が送り出されることはない。これは、発電機41が発電せず、バルブ制御部11が作動しないことを意味する。 The opening and closing of the crushing claw and the rotation of the main body in the crushing attachment which is the combined motion type attachment 1 of this example will be described (see FIGS. 2 to 9). When closing the crushing claw, as shown in FIG. 2, the rod 21 of the hydraulic linear motion cylinder 2 is extended. Therefore, the pump is connected to the bottom side main pipe 23, and the oil is supplied. The rod-side main pipe 24 is connected to a tank, and the oil discharged from the hydraulic direct-acting cylinder 2 is returned to the tank. While the rod 21 extends, the oil does not have a high pressure and is not sent out from the bridge circuit 25 to the high pressure side upstream branch pipe 23. This means that the generator 41 does not generate power and the valve control unit 11 does not operate.

このため、油圧直動シリンダ2のロッド21が延びている途中では、図3に見られるように、バルブ操作部12から操作信号をバルブ制御部11に送信しても、バルブ制御部11が作動せず、電磁切換バルブ35が切り換わることはない。電磁切換バルブ35が切り換わらないので、油圧回転モータ3に接続された高圧側下流分岐配管31及び低圧側下流配管32が両方塞がれて、前記油圧回転モータ3を制動させている。これにより、破砕爪を開閉する間、本体が不用意に回転する虞をなくしている。 Therefore, while the rod 21 of the hydraulic direct-acting cylinder 2 is being extended, as shown in FIG. 3, even if an operation signal is transmitted from the valve operating unit 12 to the valve control unit 11, the valve control unit 11 operates. Without doing so, the electromagnetic switching valve 35 does not switch. Since the electromagnetic switching valve 35 does not switch, both the high-pressure side downstream branch pipe 31 and the low-pressure side downstream pipe 32 connected to the hydraulic rotary motor 3 are closed to brake the hydraulic rotary motor 3. This eliminates the risk that the main body will rotate carelessly while opening and closing the crushing claw.

油圧直動シリンダ2のロッド21が伸張側の作動端に達した後、なおボトム側主配管23に油を送り続けると、油の圧力が上昇し、図4に見られるように、ブリッジ回路25を通じて高圧側上流分岐配管33に油が流れ込み始める。油は、高圧側上流分岐配管33から電磁切換バルブ35により切断された高圧側下流分岐配管31又は低圧側下流分岐配管32に流れ込むことはない。しかし、迂回配管43は、シーケンスバルブ432が開くことにより油が流れ込み、油圧発電モータ4を回転させる。こうして発電機41によりバルブ制御部11に給電が開始されるが、バルブ制御部11からの操作信号を受信しない限り、バルブ制御部11が電磁切換バルブ35を切り換えることはない。 After the rod 21 of the hydraulic direct-acting cylinder 2 reaches the working end on the extension side, if oil is still sent to the bottom side main pipe 23, the pressure of the oil rises, and as shown in FIG. Oil begins to flow into the high pressure side upstream branch pipe 33 through. The oil does not flow from the high pressure side upstream branch pipe 33 into the high pressure side downstream branch pipe 31 or the low pressure side downstream branch pipe 32 which is cut by the electromagnetic switching valve 35. However, in the detour pipe 43, the oil flows in when the sequence valve 432 is opened, and the hydraulic power generation motor 4 is rotated. In this way, power supply to the valve control unit 11 is started by the generator 41, but the valve control unit 11 does not switch the electromagnetic switching valve 35 unless an operation signal from the valve control unit 11 is received.

発電機41がバルブ制御部11に給電している状態でバルブ操作部12を操作すると、電磁切換バルブ35が切り換わる。例えばバルブ操作部12から本体を右回転させる操作信号を発信
すると、図5に見られるように、前記操作信号を受信したバルブ操作部11が平行管路切換操作線111を通じて電磁切換バルブ35へ作動信号を送り、前記電磁切換バルブ35を図面上右に動かす。これにより、平行管路352が高圧側下流分岐配管31と高圧側上流分岐配管33とを、低圧側下流分岐配管32と低圧側上流分岐配管34とを結ぶ。
When the valve operating unit 12 is operated while the generator 41 is supplying power to the valve control unit 11, the electromagnetic switching valve 35 is switched. For example, when an operation signal for rotating the main body to the right is transmitted from the valve operation unit 12, the valve operation unit 11 receiving the operation signal operates the electromagnetic switching valve 35 through the parallel conduit switching operation line 111, as shown in FIG. A signal is sent to move the electromagnetic switching valve 35 to the right in the drawing. Thereby, the parallel pipe line 352 connects the high-pressure side downstream branch pipe 31 and the high-pressure side upstream branch pipe 33 to the low-pressure side downstream branch pipe 32 and the low-pressure side upstream branch pipe 34.

ブリッジ回路25から高圧側上流分岐配管33に流れ込んだ油は、迂回管路43に流れ続けるので、発電機41によるバルブ制御部12への給電は続けられる。そして、ブリッジ回路25から高圧側上流分岐配管33に流れ込んだ油の一部は、高圧側上流分岐配管33に繋がった高圧側下流分岐配管31を通じて油圧回転モータ3に流れ込み、油圧回転モータ3を図面上右回転させる。こうして、油圧回転モータ3により本体が右回転する。油圧回転モータ3は、ボトム側主配管23に油が送られなくなると停止するが、バルブ操作部12が操作信号を発信しなくなっても、電磁切換バルブ35が元に戻って停止する。ボトム側主配管23に油が送られている状態でバルブ操作部12が操作信号を発信しなくなれば、迂回管路43に油が流れ続けるので発電機41はバルブ制御部11に給電し続ける。 The oil flowing from the bridge circuit 25 into the high pressure side upstream branch pipe 33 continues to flow into the bypass pipe line 43, so that the power supply to the valve control unit 12 by the generator 41 is continued. A part of the oil flowing from the bridge circuit 25 into the high-pressure side upstream branch pipe 33 flows into the hydraulic rotary motor 3 through the high-pressure downstream branch pipe 31 connected to the high-pressure upstream branch pipe 33, and the hydraulic rotary motor 3 is shown in the drawing. Rotate right up. In this way, the hydraulic rotary motor 3 rotates the main body to the right. The hydraulic rotary motor 3 stops when oil is no longer sent to the bottom-side main pipe 23, but even when the valve operating unit 12 stops sending an operation signal, the electromagnetic switching valve 35 returns to its original position and stops. If the valve operating unit 12 does not send the operation signal while the oil is being sent to the bottom side main pipe 23, the oil continues to flow to the bypass pipe line 43, so that the generator 41 continues to supply power to the valve control unit 11.

油圧回転モータ3は、図6に見られるように、電磁切換バルブ35を切り換えて、上述と逆に、図面上左回転させることができる。具体的には、バルブ操作部12から操作信号を受信したバルブ制御部11は、交差管路切換え操作線112を通じて電磁切換バルブ35に作動信号を送り、前記電磁切換バルブ35を図面上左に移動させて、交差管路353が高圧側下流分岐配管31と低圧側上流分岐配管34とを、低圧側下流分岐配管32と高圧側上流分岐配管33とを結ぶ。そして、ブリッジ回路25から高圧側上流分岐配管33に流れ込んだ油の一部は、高圧側上流分岐配管33に繋がった低圧側下流分岐配管32を通じて油圧回転モータ3に流れ込み、油圧回転モータ3を図面上左回転させる。 As shown in FIG. 6, the hydraulic rotary motor 3 can switch the electromagnetic switching valve 35 to rotate counterclockwise in the drawing contrary to the above. Specifically, the valve control unit 11 that has received the operation signal from the valve operation unit 12 sends an operation signal to the electromagnetic switching valve 35 through the crossing pipeline switching operation line 112, and moves the electromagnetic switching valve 35 to the left in the drawing. Then, the cross pipe 353 connects the high pressure side downstream branch pipe 31 and the low pressure side upstream branch pipe 34, and connects the low pressure side downstream branch pipe 32 and the high pressure side upstream branch pipe 33. Then, a part of the oil flowing from the bridge circuit 25 into the high-pressure side upstream branch pipe 33 flows into the hydraulic rotary motor 3 through the low-pressure downstream branch pipe 32 connected to the high-pressure upstream branch pipe 33, and the hydraulic rotary motor 3 is shown in the drawing. Rotate up and left.

油圧回転モータ3を図面上左回転させる場合も、油圧回転モータ3は、ボトム側主配管23に油が送られなくなると当然停止する。また、油圧回転モータ3は、バルブ操作部12が操作信号を発信しなくなっても、電磁切換バルブ35が元に戻って停止する。ボトム側主配管23に油が送られている状態でバルブ操作部12が操作信号を発信しなくなれば、迂回管路43に油が流れ続けるので発電機41はバルブ制御部11に給電し続ける。しかし、バルブ操作部12から操作信号が発信されないので、バルブ制御部11が電磁切換バルブ35を切り換えることはない。 Even when the hydraulic rotary motor 3 is rotated counterclockwise in the drawing, the hydraulic rotary motor 3 naturally stops when oil is no longer sent to the bottom side main pipe 23. Further, in the hydraulic rotary motor 3, the electromagnetic switching valve 35 returns to the original state and stops even if the valve operating unit 12 does not transmit the operation signal. If the valve operating unit 12 does not send the operation signal while the oil is being sent to the bottom side main pipe 23, the oil continues to flow to the bypass pipe line 43, so that the generator 41 continues to supply power to the valve control unit 11. However, since the operation signal is not transmitted from the valve operation unit 12, the valve control unit 11 does not switch the electromagnetic switching valve 35.

破砕爪を開く場合、図7に見られるように、油圧直動シリンダ2のロッド21を縮める。このため、ポンプがロッド側主配管24に接続され、油が供給される。ボトム側主配管23はタンクに繋がれ、油圧直動シリンダ2から排出される油が前記タンクに戻される。ロッド21が縮んでいる間は、油が高圧にならず、ブリッジ回路25から高圧側上流分岐配管23に油が送り出されることはない。これは、発電機41が発電せず、バルブ制御部11が作動しないことを意味する。このため、仮にバルブ操作部12から操作信号を発信しても、バルブ制御部11が電磁切換バルブ35を切り換えることはなく、油圧回転モータ3も当然回転しない。 When opening the crushing claw, as shown in FIG. 7, the rod 21 of the hydraulic linear motion cylinder 2 is contracted. Therefore, the pump is connected to the rod-side main pipe 24 and oil is supplied. The bottom side main pipe 23 is connected to a tank, and the oil discharged from the hydraulic direct-acting cylinder 2 is returned to the tank. While the rod 21 is contracted, the oil does not have a high pressure, and the oil is not sent from the bridge circuit 25 to the high pressure side upstream branch pipe 23. This means that the generator 41 does not generate power and the valve control unit 11 does not operate. Therefore, even if an operation signal is transmitted from the valve operating unit 12, the valve control unit 11 does not switch the electromagnetic switching valve 35, and the hydraulic rotary motor 3 naturally does not rotate.

油圧直動シリンダ2のロッド21が縮退側の作動端に達した後、なおロッド側主配管24に油を送り続けると、油の圧力が上昇し、図8に見られるように、ブリッジ回路25を通じて高圧側上流分岐配管33に油が流れ込み始める。油は、高圧側上流分岐配管33から電磁切換バルブ35により切断された高圧側下流分岐配管31又は低圧側下流分岐配管32に流れ込むことはない。しかし、迂回配管43は、シーケンスバルブ432が開くことにより油が流れ込み、油圧発電モータ4を回転させる。こうして発電機41によりバルブ制御部11に給電が開始されるが、バルブ制御部11からの操作信号を受信しない限り、バルブ制御部11が電磁切換バルブ35を切り換えることはない。 If the oil is continuously fed to the rod side main pipe 24 after the rod 21 of the hydraulic direct-acting cylinder 2 reaches the retracted working end, the oil pressure rises, and as shown in FIG. Oil begins to flow into the high pressure side upstream branch pipe 33 through. Oil does not flow from the high-pressure side upstream branch pipe 33 into the high-pressure side downstream branch pipe 31 or the low-pressure side downstream branch pipe 32 which is cut by the electromagnetic switching valve 35. However, in the detour pipe 43, the oil flows in when the sequence valve 432 is opened, and the hydraulic power generation motor 4 is rotated. In this way, power supply to the valve control unit 11 is started by the generator 41, but the valve control unit 11 does not switch the electromagnetic switching valve 35 unless an operation signal from the valve control unit 11 is received.

発電機41がバルブ制御部11に給電している状態でバルブ操作部12を操作すると、電磁切
換バルブ35が切り換わる。例えばバルブ操作部12から本体を右回転させる操作信号を発信すると、図9に見られるように、前記操作信号を受信したバルブ操作部11が平行管路切換操作線111を通じて電磁切換バルブ35へ作動信号を送り、前記電磁切換バルブ35を図面上右に動かす。これにより、平行管路352が高圧側下流分岐配管31と高圧側上流分岐配管33とを、低圧側下流分岐配管32と低圧側上流分岐配管34とを結ぶ。
When the valve operating unit 12 is operated while the generator 41 is supplying power to the valve control unit 11, the electromagnetic switching valve 35 is switched. For example, when an operation signal for rotating the main body to the right is transmitted from the valve operation unit 12, the valve operation unit 11 receiving the operation signal operates the electromagnetic switching valve 35 through the parallel conduit switching operation line 111, as shown in FIG. A signal is sent to move the electromagnetic switching valve 35 to the right in the drawing. Thereby, the parallel pipe line 352 connects the high-pressure side downstream branch pipe 31 and the high-pressure side upstream branch pipe 33 to the low-pressure side downstream branch pipe 32 and the low-pressure side upstream branch pipe 34.

ブリッジ回路25から高圧側上流分岐配管33に流れ込んだ油は、迂回管路43に流れ続けるので、発電機41によるバルブ制御部12への給電は続けられる。そして、ブリッジ回路25から高圧側上流分岐配管33に流れ込んだ油の一部は、高圧側上流分岐配管33に繋がった高圧側下流分岐配管31を通じて油圧回転モータ3に流れ込み、油圧回転モータ3を図面上右回転させる。こうして、油圧回転モータ3により本体が右回転する。油圧回転モータ3は、ロッド側主配管24に油が送られなくなると停止するが、バルブ操作部12が操作信号を発信しなくなっても、電磁切換バルブ35が元に戻って停止する。ロッド側主配管24に油が送られている状態でバルブ操作部12が操作信号を発信しなくなれば、迂回管路43に油が流れ続けるので発電機41はバルブ制御部11に給電し続ける。 The oil flowing from the bridge circuit 25 into the high pressure side upstream branch pipe 33 continues to flow into the bypass pipe line 43, so that the power supply to the valve control unit 12 by the generator 41 is continued. A part of the oil flowing from the bridge circuit 25 into the high-pressure side upstream branch pipe 33 flows into the hydraulic rotary motor 3 through the high-pressure downstream branch pipe 31 connected to the high-pressure upstream branch pipe 33, and the hydraulic rotary motor 3 is shown in the drawing. Rotate right up. In this way, the hydraulic rotary motor 3 rotates the main body to the right. The hydraulic rotary motor 3 stops when oil is no longer sent to the rod-side main pipe 24, but the electromagnetic switching valve 35 returns to its original position and stops even if the valve operating unit 12 stops transmitting an operation signal. If the valve operating unit 12 does not send the operation signal while the oil is being sent to the rod-side main pipe 24, the oil continues to flow to the bypass pipe line 43, so that the generator 41 continues to supply power to the valve control unit 11.

ロッド側主配管24に油を送って油圧回転モータ3を図面上左回転させる場合は、上述したボトム側主配管23に油を送って油圧回転モータ3を図面上左回転させる場合と同様なので、説明を省略する。これから理解されるように、本発明の複合動作型アタッチメント1である破砕アタッチメントは、破砕爪を開閉させる油圧直動シリンダ2のロッド21が伸張側又は縮退側いずれかの作動端に達した状態で、バルブ操作部12からの操作信号により本体を右回転又は左回転させることができる。そして、油圧直動シリンダ2のロッド21が伸張側又は縮退側いずれかの作動端に達しても、バルブ操作部12を操作しなければ本体が回転することがない。このように、本発明は、複合動作型アタッチメント1の操作性を向上させる。 When oil is sent to the rod side main pipe 24 to rotate the hydraulic rotary motor 3 to the left in the drawing, it is the same as when oil is sent to the bottom side main pipe 23 to rotate the hydraulic rotary motor 3 to the left in the drawing. The description is omitted. As will be understood from the following, the crushing attachment, which is the combined operation type attachment 1 of the present invention, has a state in which the rod 21 of the hydraulic linear cylinder 2 for opening and closing the crushing claw reaches the working end on either the extension side or the retracted side. The main body can be rotated clockwise or counterclockwise according to an operation signal from the valve operation unit 12. Even if the rod 21 of the hydraulic direct-acting cylinder 2 reaches the operating end on either the extension side or the contraction side, the main body will not rotate unless the valve operating portion 12 is operated. As described above, the present invention improves the operability of the combined movement type attachment 1.

また、本発明は、電磁切換バルブ35を3位置切換バルブとすることにより、アクチュエータの他方として油圧回転モータ3だけでなく、図10に見られるように、チューブ52からロッド51を出没させる復動形の油圧直動シリンダ5を利用することができる。油圧直動シリンダ5のロッド51を伸ばす場合、油圧直動シリンダ2のロッド21が伸張側又は縮退側の作動端に達した後、電磁切換バルブ35を図面上右に移動させ、平行管路352により高圧側下流分岐配管31と高圧側上流分岐配管33とを結ぶ。逆に油圧直動シリンダ5のロッド51を縮める場合、油圧直動シリンダ2のロッド21が伸張側又は縮退側の作動端に達した後、電磁切換バルブ35を図面上左に移動させ、交差管路352により高圧側下流分岐配管31と低圧側上流分岐配管32とを結ぶ。 Further, according to the present invention, by using the electromagnetic switching valve 35 as a three-position switching valve, not only the hydraulic rotary motor 3 as the other of the actuators but also the return movement for retracting the rod 51 from the tube 52 as seen in FIG. Shaped hydraulic direct acting cylinders 5 can be used. When the rod 51 of the hydraulic direct acting cylinder 5 is extended, after the rod 21 of the hydraulic direct acting cylinder 2 reaches the working end on the extension side or the retracting side, the electromagnetic switching valve 35 is moved to the right in the drawing and the parallel conduit 352 The high pressure side downstream branch pipe 31 and the high pressure side upstream branch pipe 33 are connected by. On the contrary, when the rod 51 of the hydraulic direct-acting cylinder 5 is contracted, the electromagnetic switching valve 35 is moved to the left in the drawing after the rod 21 of the hydraulic direct-acting cylinder 2 reaches the working end on the extension side or the contraction side, and the cross pipe A high pressure side downstream branch pipe 31 and a low pressure side upstream branch pipe 32 are connected by a path 352.

1 複合動作型アタッチメント
11 バルブ制御部
12 バルブ操作部
2 油圧直動シリンダ
21 ロッド
22 チューブ
23 ボトム側主配管
24 ロッド側主配管
25 ブリッジ回路
3 油圧回転モータ
31 高圧側下流分岐配管
32 低圧側下流分岐配管
33 高圧側上流分岐配管
34 低圧側上流分岐配管
35 電磁切換バルブ
4 油圧発電モータ
41 発電機
42 給電線
43 迂回配管
5 油圧直動シリンダ
51 ロッド
52 チューブ
H 高圧側出力端
L 低圧側入力端
1 Complex movement type attachment
11 Valve control section
12 Valve operating part 2 Hydraulic direct acting cylinder
21 rod
22 tubes
23 Bottom side main piping
24 Rod side main piping
25 bridge circuit 3 hydraulic rotary motor
31 High-pressure side downstream branch pipe
32 Low pressure side downstream branch pipe
33 High pressure side upstream branch pipe
34 Low pressure side upstream branch piping
35 Electromagnetic switching valve 4 Hydraulic generator motor
41 generator
42 feeder
43 Detour piping 5 Hydraulic direct acting cylinder
51 rod
52 Tube H High-voltage side output end L Low-voltage side input end

Claims (2)

2つのアクチュエータの一方である油圧直動シリンダが作動端に達した後、前記アクチュエータの他方である油圧回転モータ又は油圧直動シリンダが作動し始める建設機械の複合動作型アタッチメントであって、
ブリッジ回路が、アクチュエータの一方に繋がる2本の主配管に跨がって設けられ、
アクチュエータの他方に繋がる2本の分岐配管が、前記ブリッジ回路の高圧側及び低圧側に接続され、
電磁切換バルブが、前記2本の分岐配管それぞれの油の流通又は遮断を切り換えられるように設けられ、
油圧発電モータが、前記電磁切換バルブからブリッジ回路寄りで前記2本の分岐配管を繋ぐ迂回配管に設けられ、
バルブ制御部が、前記油圧発電モータが回す発電機から直接給電され、電磁切換バルブと操作線により繋がれて構成される建設機械の複合動作型アタッチメント。
A combined motion type attachment of a construction machine, in which a hydraulic rotary motor or a hydraulic direct drive cylinder which is the other of the actuators starts to operate after a hydraulic direct drive cylinder which is one of the two actuators reaches an operating end,
A bridge circuit is provided across two main pipes connected to one of the actuators,
Two branch pipes connected to the other of the actuators are connected to the high pressure side and the low pressure side of the bridge circuit,
An electromagnetic switching valve is provided so as to switch the flow or cutoff of oil in each of the two branch pipes,
A hydraulic power generation motor is provided in a bypass pipe connecting the two branch pipes near the bridge circuit from the electromagnetic switching valve,
A combined operation type attachment for a construction machine, in which a valve control unit is directly powered by a generator rotated by the hydraulic power generation motor and is connected to an electromagnetic switching valve by an operation line.
電磁切換バルブは、平行管路、切断管路及び交差管路を切り換える3位置切換バルブである請求項1記載の建設機械の複合動作型アタッチメント。 Electromagnetic switching valve, parallel line, a three-position switching valve for switching the cutting line and cross line according to claim 1 Symbol placement for a construction machine combined operation type attachment.
JP2016253314A 2016-12-27 2016-12-27 Multi-motion attachment for construction machinery Active JP6729936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016253314A JP6729936B2 (en) 2016-12-27 2016-12-27 Multi-motion attachment for construction machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016253314A JP6729936B2 (en) 2016-12-27 2016-12-27 Multi-motion attachment for construction machinery

Publications (2)

Publication Number Publication Date
JP2018105442A JP2018105442A (en) 2018-07-05
JP6729936B2 true JP6729936B2 (en) 2020-07-29

Family

ID=62786971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016253314A Active JP6729936B2 (en) 2016-12-27 2016-12-27 Multi-motion attachment for construction machinery

Country Status (1)

Country Link
JP (1) JP6729936B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029363A (en) * 2018-08-24 2020-02-27 株式会社田口クリエイト Attachment with electromagnet for construction equipment
CN110206776A (en) * 2019-07-16 2019-09-06 郑州宇通重工有限公司 A kind of hydraulic pressure maintaining and self-unloading energy conservation valve group

Also Published As

Publication number Publication date
JP2018105442A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6729936B2 (en) Multi-motion attachment for construction machinery
CN103459857B (en) The fluid pressure drive device of Work machine
JP6040981B2 (en) Flushing circuit for hydraulic cylinder drive circuit
WO2014091685A1 (en) Hydraulic circuit for construction machine
KR101767857B1 (en) Hydraulic system for work vehicle
CN107044144A (en) The fluid pressure drive device of engineering machinery
JP2005003183A (en) Hydraulic circuit of construction machinery
CN104747535A (en) Hydraulic buffering system and engineering machine
US20130068090A1 (en) Hydraulic device for hydraulic cylinders
JP4781708B2 (en) Working vehicle hydraulic system
CN109312858A (en) Device for actuating a parking lock of an automatic transmission and parking lock mechanism for such an automatic transmission
JP5097051B2 (en) Hydraulic control equipment for construction machinery
JP7210553B2 (en) hydraulic circuit
JP4838555B2 (en) Hydraulic circuit, electric control circuit and hydraulic motor cutting device
GB2554682A (en) Hydraulic systems for construction machinery
JP2012067903A (en) Flushing circuit and flushing method for hydraulic cylinder driving circuit
JP2014001858A (en) Flushing circuit for hydraulic cylinder driving circuit
JP5305161B2 (en) Hydraulic control device for attachments in construction machinery
CN110249141A (en) Fluid pressure circuit
CN102535574B (en) Hydraulic control system for scooptram
WO2018051670A1 (en) Pinching device for work machinery, and work machinery provided therewith
CN102654149B (en) Hydraulic control valve
CN104197079A (en) Spring-hydraulic dual redundancy quick-action and servo control electro-hydraulic executor
ES2380141T3 (en) Electrically controllable construction set with a hydraulic connection
CN108138808B (en) Cylinder speed increasing mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200527

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R150 Certificate of patent or registration of utility model

Ref document number: 6729936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250