JP6728818B2 - Multi-layer polyurethane coated steel - Google Patents

Multi-layer polyurethane coated steel Download PDF

Info

Publication number
JP6728818B2
JP6728818B2 JP2016054058A JP2016054058A JP6728818B2 JP 6728818 B2 JP6728818 B2 JP 6728818B2 JP 2016054058 A JP2016054058 A JP 2016054058A JP 2016054058 A JP2016054058 A JP 2016054058A JP 6728818 B2 JP6728818 B2 JP 6728818B2
Authority
JP
Japan
Prior art keywords
polyurethane resin
layer
resin layer
steel material
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016054058A
Other languages
Japanese (ja)
Other versions
JP2017165024A (en
Inventor
将人 福田
将人 福田
吉崎 信樹
信樹 吉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016054058A priority Critical patent/JP6728818B2/en
Publication of JP2017165024A publication Critical patent/JP2017165024A/en
Application granted granted Critical
Publication of JP6728818B2 publication Critical patent/JP6728818B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、海洋環境下に使用されるポリウレタン被覆鋼材に関するものである。 TECHNICAL FIELD The present invention relates to a polyurethane-coated steel material used in a marine environment.

厳しい腐食環境である海洋環境において主に使用される、鋼管杭、鋼管矢板、鋼矢板等の鋼材は、厚さが数mmに及ぶポリエチレンやポリウレタン等の有機樹脂で被覆された重防食被覆鋼材として用いられることが多い。この重防食被覆鋼材は優れた防食性能を有し、また比較的安価で製造することが可能であるが、海洋における漂流物や係留物等との衝突により樹脂被覆層が損傷を受け易いという問題がある。 Steel materials such as steel pipe piles, steel pipe sheet piles, and steel sheet piles that are mainly used in the severe corrosive marine environment are heavy-corrosion coated steel materials coated with organic resins such as polyethylene and polyurethane with a thickness of several mm. Often used. This heavy anticorrosion coated steel has excellent anticorrosion performance and can be manufactured at relatively low cost, but the problem that the resin coating layer is easily damaged by collision with drifting objects or moorings in the ocean There is.

特に寒冷地において使用される場合、耐衝撃性が不十分であり、土中や海底に打ち込む等の施工時に割れが生じ防食性が失われるという問題が発生しており、改善が必要であった。樹脂被覆層が損傷して鋼材表面に達する疵が発生すると、その衝突疵を起点に鋼材の腐食が発生し、重防食被覆層による防食性能の著しい低下を引き起こす。 Especially when used in cold regions, the impact resistance is insufficient and there is a problem that cracks occur at the time of construction such as hammering into the soil or the sea bottom and corrosion resistance is lost, so improvement was necessary. .. When the resin coating layer is damaged and a flaw that reaches the surface of the steel material is generated, the steel material is corroded from the collision flaw as a starting point, and the heavy anticorrosion coating layer causes a significant reduction in anticorrosion performance.

耐衝撃性は樹脂の材料物性と密接な関係にある。剛直な樹脂は架橋密度が高いために酸素や水分の透過量が少なく防食性能が高いが、衝撃強度を超える荷重が加わると容易に割れが発生し、鋼面が露出する。対して柔軟な樹脂は衝撃強度を超える荷重が加わっても割れは発生しにくいが、架橋密度が低く、酸素や水分の透過量が多いため防食性能が低い。 Impact resistance is closely related to the physical properties of resin materials. A rigid resin has a high cross-linking density and thus has a small amount of oxygen and moisture permeation and high anticorrosion performance, but cracks easily occur when a load exceeding impact strength is applied, and the steel surface is exposed. On the other hand, a flexible resin does not easily crack even when a load exceeding the impact strength is applied, but has a low crosslink density and a large amount of oxygen and moisture permeation, and thus has a low anticorrosion performance.

これに対し、例えば特許文献1では重防食被覆層の耐衝撃性を向上させるため、保護層として引張強度と伸びが大きいポリウレタン樹脂を被覆した鋼材が開示されている。しかし低温環境ではポリウレタン樹脂の剛性が高くなるため、割れが発生する可能性が高い。 On the other hand, for example, Patent Document 1 discloses a steel material coated with a polyurethane resin having a large tensile strength and a large elongation as a protective layer in order to improve the impact resistance of the heavy anticorrosion coating layer. However, in a low temperature environment, the rigidity of the polyurethane resin becomes high, and thus cracks are likely to occur.

特許文献2ではポリオール成分に剛直な特定のビスフェノール系ジオールと柔軟な特定の飽和脂肪族ジオールを一定比率で含有させることで耐低温衝撃性を持つウレタンエラストマー被覆鋼材が開示されている。しかし耐衝撃性を確保するため、架橋密度が低下し、防食性が低下する。 Patent Document 2 discloses a urethane elastomer-coated steel material having low-temperature impact resistance by containing a rigid specific bisphenol-based diol and a flexible specific saturated aliphatic diol in a polyol component at a constant ratio. However, in order to secure impact resistance, the crosslink density is lowered and the corrosion resistance is lowered.

特開2007−90678号公報JP, 2007-90678, A 特開2005−264171号公報JP, 2005-264171, A

本発明の目的は、高防食性を有し、低温環境においても鋼面の露出を防止するポリウレタン被覆鋼材を得ることである。 An object of the present invention is to obtain a polyurethane-coated steel material having high corrosion resistance and preventing the steel surface from being exposed even in a low temperature environment.

本発明者らは、鋼材に異種ポリウレタン樹脂を積層させることに着目した。ポリウレタン樹脂被覆が2層構造の場合は、上層に剛性の高い硬質ポリウレタン樹脂層(4)を用いることで高い防食性を保持する。さらに鋼材との間に柔軟な軟質ポリウレタン樹脂層(3)を挟むことにより衝撃を緩和し、上層の樹脂層の割れによる鋼面の露出を防ぐことが出来る。図1に上記2層ポリウレタン被覆鋼材の被覆構成断面図を示す。 The present inventors paid attention to laminating different kinds of polyurethane resins on steel materials. When the polyurethane resin coating has a two-layer structure, high corrosion resistance is maintained by using a rigid rigid polyurethane resin layer (4) as an upper layer. Further, by sandwiching the flexible soft polyurethane resin layer (3) between the steel material and the steel material, the impact can be mitigated, and the steel surface can be prevented from being exposed due to cracking of the upper resin layer. FIG. 1 shows a cross-sectional view of the coating structure of the two-layer polyurethane-coated steel material.

本発明者らは鋭意検討の結果、ポリウレタン樹脂被覆が2層構造の場合、ショアD硬度65以下の軟質ポリウレタン樹脂層を鋼材に近い層(下層)に、ショアD硬度75以上の硬質ポリウレタン樹脂層を鋼材から遠い層(上層)に積層することで低温環境においても高い耐衝撃性を有し、鋼材表面まで達する疵を防止することを見出した。下層の軟質ポリウレタン樹脂のショアD硬度が65を超える時は剛性が高くなり、樹脂層の割れが発生する。上層の硬質ポリウレタン樹脂のショアD硬度が75未満の時は耐衝撃性が低く、鋼材表面に達する疵が生じる恐れがある。 As a result of intensive studies, the present inventors have found that when the polyurethane resin coating has a two-layer structure, a soft polyurethane resin layer having a Shore D hardness of 65 or less is a layer close to steel (lower layer) and a hard polyurethane resin layer having a Shore D hardness of 75 or more. It has been found that by stacking in a layer farther from the steel material (upper layer), it has high impact resistance even in a low temperature environment and prevents flaws reaching the surface of the steel material. When the Shore D hardness of the soft polyurethane resin of the lower layer exceeds 65, the rigidity becomes high and cracking of the resin layer occurs. When the Shore D hardness of the upper layer hard polyurethane resin is less than 75, the impact resistance is low and there is a possibility that a flaw reaching the surface of the steel material may occur.

ポリウレタン樹脂被覆が3層構造の場合、鋼材と軟質ポリウレタン樹脂層(3)の間にショアD硬度75以上の硬質ポリウレタン樹脂層(4)を積層することで、最上層の硬質ポリウレタン樹脂層(4)が割れたとしても、鋼材に最も近い下層の硬質ポリウレタン樹脂層(4)が酸素や水分の透過を抑制できることを見出した。図2に中間層に軟質ポリウレタン樹脂層(3)を有する3層ポリウレタン被覆鋼材の被覆構成断面図を示す。 When the polyurethane resin coating has a three-layer structure, by laminating a hard polyurethane resin layer (4) having a Shore D hardness of 75 or more between the steel material and the soft polyurethane resin layer (3), the uppermost hard polyurethane resin layer (4) It was found that the lower hard polyurethane resin layer (4) closest to the steel material can suppress the permeation of oxygen and water even if () is cracked. FIG. 2 shows a cross-sectional view of the coating structure of a three-layer polyurethane-coated steel material having a soft polyurethane resin layer (3) as an intermediate layer.

また別の態様で、ポリウレタン樹脂被覆が3層構造の場合、中間層の硬質ポリウレタン樹脂層(4)の上にショアD硬度65以下の軟質ポリウレタン樹脂層(3)を積層させることで衝撃を緩和させ、中間層の硬質ポリウレタン樹脂層(4)の下にも軟質ポリウレタン樹脂層(3)を積層させることにより、この下層軟質ポリウレタン樹脂層(3)が鋼面への衝撃の伝播を防ぎ、耐衝撃性をさらに向上させることを見出した。図3に中間層に硬質ポリウレタンを有する3層ポリウレタン被覆鋼材の被覆構成断面図を示す。 In another aspect, when the polyurethane resin coating has a three-layer structure, the impact is mitigated by laminating the soft polyurethane resin layer (3) having a Shore D hardness of 65 or less on the intermediate hard polyurethane resin layer (4). By stacking the soft polyurethane resin layer (3) under the intermediate hard polyurethane resin layer (4) as well, the lower soft polyurethane resin layer (3) prevents the propagation of impact to the steel surface, It was found that the impact resistance was further improved. FIG. 3 shows a cross-sectional view of the coating structure of a three-layer polyurethane-coated steel material having hard polyurethane as an intermediate layer.

ポリウレタン樹脂被覆が4層以上の構造である場合は、最上層を除く少なくとも1層が軟質ポリウレタン樹脂層である。最上層は軟質ポリウレタン樹脂層であっても、硬質ポリウレタン層であってもよいが、最上層の下に位置する複数のポリウレタン樹脂層中の少なくとも1層は軟質ポリウレタン樹脂層である。この軟質ポリウレタン樹脂層は、いずれの位置であってもよい。軟質ポリウレタン樹脂層より上に位置する、硬質ポリウレタン樹脂層が衝撃を受けて割れたとしても、軟質ポリマー層がそれより下に位置する層が受ける衝撃を緩和し、鋼面の露出を防ぐことができる。 When the polyurethane resin coating has a structure of four or more layers, at least one layer except the uppermost layer is a soft polyurethane resin layer. The uppermost layer may be a soft polyurethane resin layer or a hard polyurethane layer, but at least one layer of the plurality of polyurethane resin layers located below the uppermost layer is a soft polyurethane resin layer. This soft polyurethane resin layer may be at any position. Even if the hard polyurethane resin layer located above the soft polyurethane resin layer is impacted and cracked, the soft polymer layer can absorb the impact received by the layers located below it and prevent the steel surface from being exposed. it can.

また、耐低温衝撃性と高防食性を両立させるには硬質ポリウレタン樹脂層と軟質ポリウレタン層の膜厚が重要である。
鋭意検討の結果、多層ポリウレタン被覆中の、軟質ポリウレタン樹脂層の合計膜厚に対する硬質ポリウレタン樹脂層の合計膜厚の比が1〜10の範囲であれば剥離を起こさずに高い衝撃強度を発揮することを見出した。膜厚比が1未満の時は、硬質ポリウレタン樹脂層が薄いため衝撃強度が低く、硬質ポリウレタン樹脂層の割れが発生すると同時に防食性が低下する。膜厚比が10を超える場合は、硬質ポリウレタン樹脂層に対して軟質ポリウレタン樹脂層が薄いため、軟質ポリウレタン樹脂層の衝撃緩和効果が低下し、硬質ポリウレタン樹脂層に割れが発生する。
Further, the film thicknesses of the hard polyurethane resin layer and the soft polyurethane layer are important for achieving both low temperature impact resistance and high corrosion resistance.
As a result of intensive studies, if the ratio of the total film thickness of the hard polyurethane resin layer to the total film thickness of the soft polyurethane resin layer in the multilayer polyurethane coating is in the range of 1 to 10, high impact strength is exhibited without peeling. I found that. When the film thickness ratio is less than 1, the hard polyurethane resin layer is thin, so that the impact strength is low, cracking of the hard polyurethane resin layer occurs, and at the same time the corrosion resistance decreases. When the film thickness ratio exceeds 10, the soft polyurethane resin layer is thinner than the hard polyurethane resin layer, so that the impact relaxation effect of the soft polyurethane resin layer is reduced, and cracks occur in the hard polyurethane resin layer.

すなわち本発明は高い防食性を有する硬質ポリウレタン樹脂層と衝撃緩和効果を有する軟質ポリウレタン樹脂層を積層させることで、高防食性を有し、耐低温衝撃性に優れた多層ポリウレタン被覆鋼材である。 That is, the present invention is a multi-layer polyurethane coated steel material having high corrosion resistance and excellent low temperature impact resistance by laminating a hard polyurethane resin layer having high anticorrosion property and a soft polyurethane resin layer having an impact relaxation effect.

以上述べたように、本発明により高防食性かつ低温環境においても鋼面の露出を防止するポリウレタン被覆鋼材を得られる。これにより被覆鋼材の腐食を防ぎ、寒冷地の海洋環境下でも長期に渡って安定した耐久性を維持することが出来る。 As described above, according to the present invention, it is possible to obtain a polyurethane-coated steel material having high corrosion resistance and preventing the steel surface from being exposed even in a low temperature environment. As a result, the corrosion of the coated steel material can be prevented, and stable durability can be maintained for a long period of time even in the marine environment of cold regions.

ポリウレタン樹脂被覆が2層構造であるポリウレタン被覆鋼材の被覆構成断面図である。It is a coating composition sectional view of a polyurethane coating steel material whose polyurethane resin coating is a two-layer structure. 中間層に軟質ポリウレタン樹脂層を有する3層構造のポリウレタン被覆鋼材の被覆構成断面図である。It is a coating composition sectional view of the polyurethane coating steel material of 3 layer structure which has a soft polyurethane resin layer in the middle class. 中間層に硬質ポリウレタン樹脂層を有する3層構造のポリウレタン被覆鋼材の被覆構成断面図である。FIG. 3 is a cross-sectional view of a coating structure of a polyurethane-coated steel material having a three-layer structure having a hard polyurethane resin layer as an intermediate layer.

以下、本発明につき詳細に説明を行なう。本発明のポリオレフィン被覆鋼材の製造方法について、代表例としてポリウレタン被覆鋼管の場合について説明する。 Hereinafter, the present invention will be described in detail. The method for producing a polyolefin-coated steel material according to the present invention will be described using a polyurethane-coated steel pipe as a typical example.

図1は、本発明の一つの実施態様を示す多層ポリウレタン被覆鋼材の被覆構成断面図である。本発明に使用する鋼材としては普通鋼、あるいは高合金鋼などどのような鋼種でも適用可能である。なお、従来重防食被覆が適用されていた鋼管、また、海洋構造物等で使用される鋼管杭、鋼管矢板、鋼矢板等にも適用可能である。 FIG. 1 is a cross-sectional view of a coating structure of a multi-layer polyurethane coated steel material showing one embodiment of the present invention. As the steel material used in the present invention, any steel type such as ordinary steel or high alloy steel can be applied. Note that the present invention can also be applied to steel pipes to which heavy anticorrosion coating has been applied, steel pipe piles, steel pipe sheet piles, and steel sheet piles used in offshore structures.

鋼材表面のスケール、汚染物等を除去する必要があるため、最初にアルカリ脱脂、酸洗、サンドブラスト処理、グリッドブラスト処理、あるいはショットブラスト処理等のいずれかの前処理を施して使用する。 Since it is necessary to remove scales, contaminants, etc. on the surface of the steel material, any pretreatment such as alkali degreasing, pickling, sand blasting, grid blasting, or shot blasting is first performed before use.

鋼材は、プライマー層を形成する前に、下地処理として表面処理を施すとより優れた防食性が得られるため望ましい。表面処理の例としてはクロメート処理、リン酸処理等が挙げられる。 Steel is desirable because it is possible to obtain more excellent corrosion resistance by subjecting the steel material to a surface treatment as a base treatment before forming the primer layer. Examples of the surface treatment include chromate treatment and phosphoric acid treatment.

プライマー層に適用するプライマーは、鋼材表面並びにプライマー層の上層に積層被覆されるポリウレタン樹脂層と密着性が良いものが望ましい。プライマーは、ウレタン系もしくはエポキシ系の有機樹脂プライマーを用いることが好ましく、常温硬化型のものが望ましい。プライマー層の膜厚は10〜100μm程度、好ましくは20〜80μm程度が望ましい。膜厚が10μm未満の場合は密着が不充分になり、100μmを超える場合はプライマー層に溶剤が残存する恐れがある。 The primer applied to the primer layer preferably has good adhesion to the surface of the steel material and the polyurethane resin layer laminated and coated on the upper layer of the primer layer. As the primer, it is preferable to use a urethane-based or epoxy-based organic resin primer, and a room temperature curing type is desirable. The primer layer has a thickness of about 10 to 100 μm, preferably about 20 to 80 μm. If the film thickness is less than 10 μm, the adhesion will be insufficient, and if it exceeds 100 μm, the solvent may remain in the primer layer.

プライマー層の塗装方法としては、刷毛塗り、ローラー塗布等の方式に関わらず用いることが出来、様々な形状の鋼材表面に被覆するため、エアスプレーやエアレススプレー等のスプレー塗布が好ましい。 The primer layer can be applied regardless of the method such as brush coating or roller coating, and it is preferable to use spray coating such as air spray or airless spray to coat the surface of the steel material having various shapes.

次いでプライマー層の上に軟質ポリウレタン樹脂層を被覆する。適用する軟質ポリウレタン樹脂は、主剤であるポリオールと硬化剤であるイソシアネート化合物を主成分とするものである。 Then, a soft polyurethane resin layer is coated on the primer layer. The soft polyurethane resin to be applied has a polyol as a main component and an isocyanate compound as a curing agent as main components.

ポリオールとしては、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリブタジエン系ポリオール、アミン系ポリオール、ひまし油変性ポリオール、エポキシ変性ポリオール等のポリオールの単体あるいは混合物が挙げられる。 Examples of the polyol include polyether-based polyols, polyester-based polyols, polybutadiene-based polyols, amine-based polyols, castor oil-modified polyols, epoxy-modified polyols and other polyols alone or in a mixture.

イソシアネートとしては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、およびこれらの変性誘導体等のイソシアネートの単体あるいは混合物が挙げられる。トリレンジイソシアネート、ジフェニルメタンジイソシアネートが好ましい。 Examples of the isocyanate include tolylene diisocyanate, diphenylmethane diisocyanate, triphenylmethane triisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, and a single or mixture of isocyanates such as modified derivatives thereof. Tolylene diisocyanate and diphenylmethane diisocyanate are preferred.

本発明に用いる軟質ポリウレタン樹脂層はショアD硬度65以下であることを要する。本発明に用いることができるショアD硬度65以下の軟質ポリウレタン樹脂層は、例えばポリオールとしてポリブタジエンポリオールとひまし油変性ポリオールとの混合物を用いることで得られる。 The soft polyurethane resin layer used in the present invention needs to have a Shore D hardness of 65 or less. The soft polyurethane resin layer having a Shore D hardness of 65 or less that can be used in the present invention can be obtained, for example, by using a mixture of a polybutadiene polyol and a castor oil-modified polyol as the polyol.

軟質ポリウレタン樹脂には各種の添加剤を添加することができる。例えば、耐候性や耐摩耗性を付与するため、カーボンブラックや炭酸カルシウム等の顔料を配合しても構わない。その他、特性を付与するために解媒、可塑剤、助剤、増粘剤、酸化防止剤、光安定剤等を含有してもよい。 Various additives can be added to the soft polyurethane resin. For example, pigments such as carbon black and calcium carbonate may be blended in order to impart weather resistance and abrasion resistance. In addition, a desolvent, a plasticizer, an auxiliary agent, a thickener, an antioxidant, a light stabilizer and the like may be contained in order to impart characteristics.

被覆方法としては、様々な形状の鋼材表面に被覆するため、スプレー塗布が好ましい。スプレーはエアスプレーやエアレススプレー等の方式に関わらず用いることができる。軟質ポリウレタン樹脂層の膜厚は0.5〜3mmが好ましい。膜厚が0.5mm未満では衝撃緩和効果が悪化し、3mmを超えると経済的に不利である。 As a coating method, spray coating is preferable because it coats various shapes of steel surfaces. The spray can be used regardless of the method such as air spray or airless spray. The thickness of the soft polyurethane resin layer is preferably 0.5 to 3 mm. When the film thickness is less than 0.5 mm, the impact relaxation effect is deteriorated, and when it exceeds 3 mm, it is economically disadvantageous.

さらに、軟質ポリウレタン樹脂層の上に硬質ポリウレタン樹脂層を被覆する。適用する硬質ポリウレタン樹脂は主剤であるポリオールと硬化剤であるイソシアネート化合物を主成分とするものである。 Further, a hard polyurethane resin layer is coated on the soft polyurethane resin layer. The hard polyurethane resin to be applied contains a polyol as a main component and an isocyanate compound as a curing agent as main components.

ポリオールとしては、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリブタジエン系ポリオール、アミン系ポリオール、ヒマシ油変性ポリオール、エポキシ変性ポリオール等のポリオールの単体あるいは混合物が挙げられる。 Examples of the polyol include polyether-based polyols, polyester-based polyols, polybutadiene-based polyols, amine-based polyols, castor oil-modified polyols, epoxy-modified polyols and other polyols alone or in a mixture.

イソシアネートとしてはトリレンジイソシアネート、ジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、およびこれらの変性誘導体等のイソシアネートの単体あるいは混合物が挙げられる。好ましくはトリレンジイソシアネート、ジフェニルメタンジイソシアネートが望ましい。 Examples of the isocyanate include tolylene diisocyanate, diphenylmethane diisocyanate, triphenylmethane triisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, and single or mixture of isocyanates such as modified derivatives thereof. Tolylene diisocyanate and diphenylmethane diisocyanate are preferable.

本発明に用いる硬質ポリウレタン樹脂層はショアD硬度75以上であることを要する。本発明に用いることができるショアD硬度75以上の硬質ポリウレタン樹脂層は、例えばポリオールとしてひまし油変性ポリオールとアミン系ポリオールを混合して用いることで得られる。 The hard polyurethane resin layer used in the present invention needs to have a Shore D hardness of 75 or more. The hard polyurethane resin layer having a Shore D hardness of 75 or more that can be used in the present invention can be obtained, for example, by mixing a castor oil-modified polyol and an amine-based polyol as the polyol.

硬質ポリウレタン樹脂には各種の添加剤を添加することができる。例えば、耐候性や耐摩耗性を付与するため、カーボンブラックや炭酸カルシウム等の顔料を配合しても構わない。その他、特性を付与するために解媒、可塑剤、助剤、増粘剤、酸化防止剤、光安定剤等を含有してもよい。 Various additives can be added to the rigid polyurethane resin. For example, pigments such as carbon black and calcium carbonate may be blended in order to impart weather resistance and abrasion resistance. In addition, a desolvent, a plasticizer, an auxiliary agent, a thickener, an antioxidant, a light stabilizer and the like may be contained in order to impart characteristics.

被覆方法としては、様々な形状の鋼材表面に被覆するため、スプレー塗布が好ましい。スプレーはエアスプレーやエアレススプレー等の方式に関わらず用いることができる。硬質ポリウレタン樹脂層の膜厚は1〜5mmが好ましい。膜厚が1mm未満では防食性及び耐衝撃性が悪化し、5mmを超えると塗膜全体の内部応力が大きくなるため、寒暖差による剥離が発生する。 As a coating method, spray coating is preferable because it coats various shapes of steel surfaces. The spray can be used regardless of the method such as air spray or airless spray. The thickness of the hard polyurethane resin layer is preferably 1 to 5 mm. When the film thickness is less than 1 mm, the anticorrosion property and impact resistance are deteriorated, and when the film thickness exceeds 5 mm, the internal stress of the entire coating film becomes large, so that peeling due to a temperature difference occurs.

図2に示す中間層に軟質ポリウレタン層を含む3層ポリウレタン被覆の態様においては、予め塗布したプライマー層の上に硬質ポリウレタン樹脂層を被覆し、その上軟質ポリウレタン樹脂層を被覆し、さらにその上に硬質ポリウレタン樹脂層を被覆する。適用する硬質ポリウレタン樹脂、軟質ポリウレタン樹脂の成分は上記硬質、軟質ポリウレタン樹脂と同様であり、ショアD硬度がそれぞれ上記規定の所望の範囲内であれば、異種の硬質、軟質ポリウレタン樹脂を複合して用いてもよい。 In the embodiment of the three-layer polyurethane coating including the soft polyurethane layer in the intermediate layer shown in FIG. A hard polyurethane resin layer is coated on the. The components of the hard polyurethane resin and the soft polyurethane resin to be applied are the same as those of the hard and soft polyurethane resins described above. You may use.

図3に示す中間層に硬質ポリウレタン層を含む3層ポリウレタン被覆の態様においては、予め塗布したプライマー層の上に軟質ポリウレタン樹脂を被覆した後、その上に硬質ポリウレタン樹脂を被覆し、さらにその上に軟質ポリウレタン樹脂層を被覆する。適用する硬質ポリウレタン樹脂、軟質ポリウレタン樹脂の成分は上記硬質、軟質ポリウレタン樹脂と同様であり、ショアD硬度がそれぞれ上記規定の所望の範囲内であれば、異種の硬質、軟質ポリウレタン樹脂を複合して用いてもよい。 In the embodiment of the three-layer polyurethane coating including a hard polyurethane layer in the intermediate layer shown in FIG. 3, a soft polyurethane resin is coated on a primer layer previously applied, and then a hard polyurethane resin is further coated on the primer layer. A soft polyurethane resin layer is coated on. The components of the hard polyurethane resin and the soft polyurethane resin to be applied are the same as those of the above-mentioned hard and soft polyurethane resins, and if the Shore D hardness is within the desired range of the above regulation, respectively, the different hard and soft polyurethane resins are combined. You may use.

被覆層が合計4層以上になる場合も、上記3層ポリウレタン被覆と同様に、予め塗布したプライマー層の上に硬質または軟質ポリウレタン樹脂を鋼材に最も近い下層として被覆した後、下層と異質のポリウレタン樹脂をその上に被覆する。例えば下層が硬質ポリウレタン樹脂であれば軟質ポリウレタン樹脂を、下層が軟質ポリウレタン樹脂であれば硬質ポリウレタン樹脂をその上に被覆することを繰り返し、複数の積層被膜を形成する。適用する硬質ポリウレタン樹脂、軟質ポリウレタン樹脂の成分は上記硬質、軟質ポリウレタン樹脂と同様であり、ショアD硬度がそれぞれ上記規定の所望の範囲内であれば、異種の硬質、軟質ポリウレタン樹脂を複合して用いてもよい。 Even when the total number of coating layers is four or more, similar to the above three-layer polyurethane coating, a hard or soft polyurethane resin is coated as a lower layer closest to the steel material on the primer layer previously applied, and then a polyurethane different from the lower layer is used. The resin is coated thereon. For example, when the lower layer is a hard polyurethane resin, a soft polyurethane resin is coated thereon, and when the lower layer is a soft polyurethane resin, a hard polyurethane resin is coated thereon to form a plurality of laminated coating films. The components of the hard polyurethane resin and the soft polyurethane resin to be applied are the same as those of the above-mentioned hard and soft polyurethane resins, and if the Shore D hardness is within the desired range of the above regulation, respectively, the different hard and soft polyurethane resins are combined. You may use.

これら硬質ポリウレタン樹脂層と軟質ポリウレタン樹脂層の合計総膜厚は5mm以下が好ましい。5mmを超えると寒暖差による樹脂の収縮により、剥離が発生する。また多層ポリウレタン樹脂層の合計総膜厚は、少なくとも1mm以上が好ましい。1mm以下であると、酸素や水分の透過が過大となるため好ましくない。多層ポリウレタン樹脂層の合計総膜厚は、好ましくは、2mm〜4mmである。 The total total film thickness of the hard polyurethane resin layer and the soft polyurethane resin layer is preferably 5 mm or less. If it exceeds 5 mm, peeling occurs due to shrinkage of the resin due to temperature difference. Further, the total total film thickness of the multilayer polyurethane resin layer is preferably at least 1 mm or more. When it is 1 mm or less, the permeation of oxygen and water becomes excessive, which is not preferable. The total total film thickness of the multilayer polyurethane resin layer is preferably 2 mm to 4 mm.

以下、本発明を実施例1においては、図1に示す2層構造のポリウレタン被覆鋼材について、実施例2においては、図2に示す中間層に軟質ポリウレタン樹脂層を含む3層構造のポリウレタン被覆鋼材について、また実施例3においては、図3に示す中間層に軟質ポリウレタン樹脂層を含む3層構造のポリウレタン被覆鋼材について具体的に説明する。表1に用いたポリウレタン樹脂の物性を示す。ポリウレタン樹脂A、BはセフコールBL22(ウレタン技研工業(株)製)をベースに、ポリウレタン樹脂C、D、Eはパーマガード137(第一工業製薬(株)製)をベースに、ポリオール成分中のポリブタジエンポリオール、ひまし油変性ポリオールの量を調整し、ショアD硬度を調整したポリウレタン樹脂を用いた。 Hereinafter, in Example 1, the present invention relates to a polyurethane-coated steel material having a two-layer structure shown in FIG. 1, and in Example 2, a polyurethane-coated steel material having a three-layer structure including a soft polyurethane resin layer as an intermediate layer shown in FIG. In addition, in Example 3, a polyurethane-coated steel material having a three-layer structure including a soft polyurethane resin layer in the intermediate layer shown in FIG. 3 will be specifically described. Table 1 shows the physical properties of the polyurethane resin used. Polyurethane resins A and B are based on Cefcol BL22 (manufactured by Urethane Giken Kogyo Co., Ltd.), and polyurethane resins C, D and E are based on Permaguard 137 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) A polyurethane resin having adjusted Shore D hardness by adjusting the amounts of polybutadiene polyol and castor oil-modified polyol was used.

Figure 0006728818
Figure 0006728818

なお、実施例および比較例によって得られた多層ポリウレタン被覆鋼材サンプルを、下記に従って評価試験を行った。 The multilayer polyurethane-coated steel material samples obtained in the examples and comparative examples were evaluated as follows.

〔樹脂硬度の評価〕
ポリウレタン樹脂のショアD硬度はJIS K7215 タイプDに準拠し、厚さ3mmのポリウレタン樹脂サンプルに対して、常温で測定を行った。
[Evaluation of resin hardness]
The Shore D hardness of the polyurethane resin was measured according to JIS K7215 type D, and the polyurethane resin sample having a thickness of 3 mm was measured at room temperature.

〔耐低温衝撃性の評価〕
ポリウレタン被覆鋼材の耐低温衝撃性は、ASTM G14に準拠し、先端径15.9mm、重量2〜10kgの落錘を用いた−20℃ での落錘衝撃試験で求めた。鋼材表面の露出の有無は目視にて確認した。衝撃強度は以下(1)式より算出した。
m={h+d(A/N ± 1/2)}×W/t…(1)
m:衝撃強度(kgf・m/mm)
:ピンホールが発生しない最大高さ(m)
d:落下高さの増減ピッチ(m)
A:h以上の各インクレメント毎のピンホール発生回数とインクレメント倍数との積の和
N:ピンホール未発生の総回数
W:重錘の質量(kg)
t:ポリウレタン樹脂層の総膜厚(mm)
[Evaluation of low temperature impact resistance]
The low temperature impact resistance of the polyurethane-coated steel material was determined by a falling weight impact test at −20° C. using a falling weight having a tip diameter of 15.9 mm and a weight of 2 to 10 kg in accordance with ASTM G14. Whether or not the surface of the steel material was exposed was visually confirmed. The impact strength was calculated by the following equation (1).
m={h 0 +d(A/N±1/2)}×W/t... (1)
m: Impact strength (kgf·m/mm)
h 0 : Maximum height without pinhole (m)
d: Drop height increase/decrease pitch (m)
A: Sum of products of the number of pinhole occurrences and increment multiples for each increment of h 0 or more N: Total number of pinholes not generated W: Mass of weight (kg)
t: Total thickness of the polyurethane resin layer (mm)

〔防食性能の評価〕
防食性能の評価は陰極剥離試験にて行った。ASTM G8に準拠し、試験材の中央部に直径6mmφの円形の人工欠陥を作成し、鋼材を露出させた。人工欠陥を中心にして直径70mmφのアクリル製の円筒を被覆層上に縦に設置しシール剤で被覆層に固定し、内部を3質量%NaCl水溶液で満たし、セルを作成した。対極に白金を使用して欠陥部の鋼材の電位を−1.5V vs SCEにポテンシオスタットを用いて40℃のオーブン中で30日間電位を保持した。人工欠陥を中心とした4方向(12時、3時、6時、9時方向)で人工欠陥端部からの剥離部の距離を測定し、その平均値を陰極剥離距離とした。
[Evaluation of anticorrosion performance]
The evaluation of anticorrosion performance was performed by a cathode peel test. According to ASTM G8, a circular artificial defect having a diameter of 6 mmφ was created in the center of the test material to expose the steel material. An acrylic cylinder having a diameter of 70 mmφ centering on the artificial defect was vertically installed on the coating layer, fixed to the coating layer with a sealant, and the inside was filled with a 3 mass% NaCl aqueous solution to prepare a cell. The potential of the defective steel material was maintained at -1.5 V vs. SCE using a potentiostat in an oven at 40° C. for 30 days using platinum as a counter electrode. The distance of the peeled portion from the end portion of the artificial defect was measured in four directions (12:00, 3:00, 6:00, and 9:00) around the artificial defect, and the average value was defined as the cathode peel distance.

実施例1
鋼材サンプルとして、6mm×100mm×150mmの熱延鋼板に、グリッドブラスト処理を施したものを用意した。エアレススプレーにて厚さ50μmになるようにウレタン系プライマーを塗布しプライマー層を形成した。次いで表1に示す軟質ポリウレタン樹脂と硬質ポリウレタン樹脂を表2に示す構成になるようにエアレススプレーにてプライマー層の上に積層させ、本発明の実施例1−1〜4の2層ポリウレタン被覆鋼材サンプルを作製した。
Example 1
As a steel material sample, a 6 mm×100 mm×150 mm hot-rolled steel sheet subjected to grid blast treatment was prepared. A urethane-based primer was applied by airless spraying to a thickness of 50 μm to form a primer layer. Next, the soft polyurethane resin and the hard polyurethane resin shown in Table 1 were laminated on the primer layer by airless spraying so as to have the constitution shown in Table 2, and the two-layer polyurethane-coated steel material of Examples 1-1 to 4 of the present invention. A sample was prepared.

比較例1−1、1−2として軟質ポリウレタン樹脂、硬質ポリウレタン樹脂単層の被覆鋼材サンプルを上記実施例と同様の方法で作製した。 As Comparative Examples 1-1 and 1-2, soft polyurethane resin and hard polyurethane resin single-layer coated steel material samples were produced in the same manner as in the above-described examples.

比較例1−3、1−4として、ショアD硬度が本発明範囲外にあるポリウレタン樹脂Cを用いて上記実施例と同様の方法で被覆鋼材サンプルを作製した。 As Comparative Examples 1-3 and 1-4, polyurethane resin C having a Shore D hardness outside the range of the present invention was used to prepare coated steel material samples in the same manner as in the above-described examples.

比較例1−5、1−6として、軟質ポリウレタン樹脂の合計膜厚に対する、硬質ポリウレタン樹脂の合計膜厚比が本発明の範囲外にあるポリウレタン樹脂被覆を用いて上記実施例と同様の方法で被覆鋼材サンプルを作製した。 In Comparative Examples 1-5 and 1-6, a polyurethane resin coating in which the total film thickness ratio of the hard polyurethane resin to the total film thickness of the soft polyurethane resin is outside the range of the present invention was used, and the same method as in the above-mentioned Examples was used. A coated steel material sample was prepared.

表2に本発明の実施例及び比較例の結果を示す。

Figure 0006728818
Table 2 shows the results of Examples and Comparative Examples of the present invention.
Figure 0006728818

実施例1−1〜4は低温衝撃による鋼面の露出なく、かつ陰極剥離も小さく、良好な結果が得られた。一方比較例1−1では割れは発生しなかったが、防食性が低く陰極剥離距離が大きい。比較例1−2では陰極剥離距離は小さいが衝撃による割れが発生した。比較例1−3では軟質ポリウレタン樹脂層の硬度が高く、割れが発生し鋼面が露出した。比較例1−4では上層の硬質ポリウレタン樹脂層が衝撃に耐えきれず、割れが発生し鋼面が露出した。比較例1−5では鋼面の露出は発生しなかったが、防食性を担う硬質ポリウレタン樹脂層が薄いため陰極剥離距離が増大した。比較例1−6では衝撃緩和を担う軟質ポリウレタン樹脂層が薄いため、衝撃を緩和しきれずに割れが発生し鋼面が露出した。 In Examples 1-1 to 4, the steel surface was not exposed due to low temperature impact, and the cathode peeling was small, and good results were obtained. On the other hand, in Comparative Example 1-1, cracking did not occur, but the corrosion resistance was low and the cathode separation distance was large. In Comparative Example 1-2, the cathode separation distance was small, but cracking due to impact occurred. In Comparative Example 1-3, the hardness of the soft polyurethane resin layer was high, cracks occurred, and the steel surface was exposed. In Comparative Example 1-4, the upper hard polyurethane resin layer could not withstand the impact and cracked to expose the steel surface. In Comparative Example 1-5, the steel surface was not exposed, but the hard polyurethane resin layer responsible for anticorrosion was thin, and the cathode separation distance was increased. In Comparative Example 1-6, since the soft polyurethane resin layer responsible for impact relaxation was thin, the impact was not fully relaxed, cracking occurred, and the steel surface was exposed.

実施例2
鋼材サンプルとして、6mm×100mm×150mmの熱延鋼板に、グリッドブラスト処理を施したものを用意した。エアレススプレーにて厚さ50μmになるようにウレタン系プライマーを塗布しプライマー層を形成した。次いで表1に示すポリウレタン樹脂を、鋼材に最も近い下層の硬質ポリウレタン樹脂層、中間層の軟質ポリウレタン樹脂層、最上層の硬質ポリウレタン樹脂層の順で表3に示す構成になるようにエアレススプレーにてプライマー層の上に積層させ、本発明の実施例2−1、2−2の中間層に軟質ポリウレタン樹脂層を有する3層ポリウレタン被覆鋼材サンプルを作製した。
Example 2
As a steel material sample, a 6 mm×100 mm×150 mm hot-rolled steel sheet subjected to grid blast treatment was prepared. A urethane-based primer was applied by airless spraying to a thickness of 50 μm to form a primer layer. Next, the polyurethane resin shown in Table 1 was airless sprayed in the order of the lower hard polyurethane resin layer closest to the steel material, the intermediate soft polyurethane resin layer, and the uppermost hard polyurethane resin layer in the order shown in Table 3. Was laminated on the primer layer to prepare a three-layer polyurethane-coated steel material sample having a soft polyurethane resin layer as the intermediate layer of Examples 2-1 and 2-2 of the present invention.

比較例2−1して、ショアD硬度が本発明の範囲外にある硬質ポリウレタン樹脂を下層に用いて上記実施例と同様の方法で被覆鋼材サンプルを作製した。 In Comparative Example 2-1, a coated steel material sample was prepared by using a hard polyurethane resin having a Shore D hardness outside the range of the present invention as the lower layer and in the same manner as in the above-described example.

比較例2−2〜5として、軟質ポリウレタン樹脂の合計膜厚に対する、硬質ポリウレタン樹脂の合計膜厚比が本発明の範囲外にあるポリウレタン樹脂被覆を用いて上記実施例と同様の方法で被覆鋼材サンプルを作製した。 As Comparative Examples 2 to 2-5, a coated steel material was prepared in the same manner as in the above-described examples using a polyurethane resin coating in which the ratio of the total film thickness of the hard polyurethane resin to the total film thickness of the soft polyurethane resin was outside the scope of the present invention. A sample was prepared.

表3に本発明の実施例及び比較例の結果を示す。

Figure 0006728818
Table 3 shows the results of Examples and Comparative Examples of the present invention.
Figure 0006728818

実施例2−1、2−2は低温衝撃による鋼面の露出なく、かつ陰極剥離も小さく、良好な結果が得られた。一方比較例2−1は硬質ポリウレタン樹脂層が衝撃に耐えきれず、割れが発生し鋼面が露出した。比較例2−2では下層の硬質ポリウレタン樹脂層が薄く、衝撃に耐えきれず割れが発生し鋼面が露出した。比較例2−3、2−4では鋼面の露出は発生しなかったが、防食性を担う硬質ポリウレタン樹脂層が薄いため陰極剥離距離が増大した。比較例2−5では上層の硬質ポリウレタン樹脂層に比して軟質ポリウレタン樹脂層が薄いため、割れが発生し鋼面が露出した。 In Examples 2-1 and 2-2, the steel surface was not exposed due to low temperature impact, and the cathode peeling was small, and good results were obtained. On the other hand, in Comparative Example 2-1, the hard polyurethane resin layer could not withstand the impact, cracked and the steel surface was exposed. In Comparative Example 2-2, the lower hard polyurethane resin layer was thin, could not withstand impact, and cracked to expose the steel surface. In Comparative Examples 2-3 and 2-4, the steel surface was not exposed, but the cathode separation distance was increased because the hard polyurethane resin layer responsible for corrosion resistance was thin. In Comparative Example 2-5, since the soft polyurethane resin layer was thinner than the upper hard polyurethane resin layer, cracking occurred and the steel surface was exposed.

実施例3
鋼材サンプルとして、6mm×100mm×150mmの熱延鋼板に、グリッドブラスト処理を施したものを用意した。エアレススプレーにて厚さ50μmになるようにウレタン系プライマーを塗布しプライマー層を形成した。次いで表1に示すポリウレタン樹脂を、鋼材に最も近い下層の軟質ポリウレタン樹脂、中間層の硬質ポリウレタン樹脂、最上層の軟質ポリウレタン樹脂の順で表4に示す構成になるようにエアレススプレーにてプライマー層の上に積層させ、本発明の実施例3−1、3−2の中間層に硬質ポリウレタン樹脂層を有する3層ポリウレタン被覆鋼材サンプルを作製した。
Example 3
As a steel material sample, a 6 mm×100 mm×150 mm hot-rolled steel sheet subjected to grid blast treatment was prepared. A urethane-based primer was applied by airless spraying to a thickness of 50 μm to form a primer layer. Next, the polyurethane resin shown in Table 1 was applied to the primer layer by airless spraying so that the soft polyurethane resin in the lower layer closest to the steel material, the hard polyurethane resin in the intermediate layer, and the soft polyurethane resin in the uppermost layer were in the order shown in Table 4. And a three-layer polyurethane-coated steel material sample having a hard polyurethane resin layer as the intermediate layer of Examples 3-1 and 3-2 of the present invention was produced.

比較例3−1として、ショアD硬度が本発明の範囲外にある軟質ポリウレタン樹脂を上層に用いて上記実施例と同様の方法で被覆鋼材サンプルを作製した。
比較例3−2〜5として、軟質ポリウレタン樹脂の合計膜厚に対する、硬質ポリウレタン樹脂の合計膜厚比が、発明の範囲外にあるポリウレタン樹脂被覆を用いて上記実施例と同様の方法で被覆鋼材サンプルを作製した。
As Comparative Example 3-1, a coated steel material sample was prepared in the same manner as in the above-mentioned example using a soft polyurethane resin having a Shore D hardness outside the range of the present invention as the upper layer.
In Comparative Examples 3 to 2-5, a coated steel material was prepared in the same manner as in the above-mentioned examples using a polyurethane resin coating in which the total film thickness ratio of the hard polyurethane resin to the total film thickness of the soft polyurethane resin was outside the scope of the invention. A sample was prepared.

表4に本発明の実施例及び比較例の結果を示す。

Figure 0006728818
Table 4 shows the results of Examples and Comparative Examples of the present invention.
Figure 0006728818

実施例3−1、3−2は低温衝撃による鋼面の露出なく、かつ陰極剥離も小さく、良好な結果が得られた。一方比較例3−1は上層の軟質ポリウレタン樹脂層が硬いため、衝撃に耐えきれず割れが発生し鋼面が露出した。比較例3−2〜4では鋼面の露出は発生しなかったが、防食性を担う硬質ポリウレタン樹脂層が薄いため陰極剥離距離が増大した。比較例3−5では硬質ポリウレタン樹脂層に比して上下層の軟質ポリウレタン樹脂層が薄いため、割れが発生し鋼面が露出した。 In Examples 3-1 and 3-2, the steel surface was not exposed due to low temperature impact, and the peeling of the cathode was small, and good results were obtained. On the other hand, in Comparative Example 3-1, since the upper soft polyurethane resin layer was hard, it could not withstand the impact and cracked to expose the steel surface. In Comparative Examples 3 to 2-4, the steel surface was not exposed, but the hard polyurethane resin layer responsible for the anticorrosion property was thin, so that the cathode separation distance increased. In Comparative Example 3-5, since the upper and lower soft polyurethane resin layers were thinner than the hard polyurethane resin layer, cracking occurred and the steel surface was exposed.

1 鋼材
2 プライマー層
3 軟質ポリウレタン樹脂層
4 硬質ポリウレタン樹脂層
1 Steel 2 Primer layer 3 Soft polyurethane resin layer 4 Hard polyurethane resin layer

Claims (2)

鋼材に接してプライマー層を有し、その上に、軟質ポリウレタン樹脂層または硬質ポリウレタン樹脂層から成る鋼材に最も近い層、そしてさらにその上に積層された、前記鋼材に最も近い層とは種類を異にする、軟質ポリウレタン樹脂層または硬質ポリウレタン樹脂層の2種類の層から成るn層(但し、nは整数である)の軟質ポリウレタン樹脂と硬質ポリウレタン樹脂の交互層を有する多層ポリウレタン被覆鋼材であって、
nが2の場合は、鋼材に近い層が軟質ポリウレタン樹脂層であり、その上の硬質ポリウレタン樹脂層の膜厚が2〜5mmであり、
nが3の場合は、鋼材に最も近い層が、軟質ポリウレタン樹脂層または硬質ポリウレタン樹脂層であり、
nが4以上の場合は、最上層を除く少なくとも1層が軟質ポリウレタン樹脂層であり、
前記軟質ポリウレタン樹脂層の硬度がショアD硬度65以下であり、前記硬質ポリウレタン樹脂層の硬度がショアD硬度75以上であり、
前記軟質ポリウレタン樹脂の合計膜厚に対する、前記硬質ポリウレタン樹脂の合計膜厚の比が、1〜10である多層ポリウレタン被覆鋼材。
A primer layer in contact with the steel, thereon, the layer closest to the steel made of soft polyurethane resin layer or a hard polyurethane resin layer, and is further laminated thereon, the kind and the layer closest to the steel A multilayer polyurethane-coated steel material having different n layers (where n is an integer) of alternating layers of a soft polyurethane resin and a hard polyurethane resin , the two layers being different, a soft polyurethane resin layer or a hard polyurethane resin layer . There
When n is 2, the layer close to the steel material is the soft polyurethane resin layer, and the film thickness of the hard polyurethane resin layer thereon is 2 to 5 mm,
When n is 3, the layer closest to the steel material is the soft polyurethane resin layer or the hard polyurethane resin layer,
When n is 4 or more, at least one layer except the uppermost layer is a soft polyurethane resin layer,
The hardness of the soft polyurethane resin layer is 65 or less Shore D hardness, the hardness of the hard polyurethane resin layer is 75 or more Shore D hardness,
A multilayer polyurethane-coated steel material, wherein the ratio of the total film thickness of the hard polyurethane resin to the total film thickness of the soft polyurethane resin is 1 to 10.
前記硬質ポリウレタン樹脂層の硬度が、ショアD硬度75以上80以下である請求項1に記載の多層ポリウレタン被覆鋼材。 The multilayer polyurethane-coated steel material according to claim 1, wherein the hardness of the hard polyurethane resin layer is 75 or more and 80 or less in Shore D hardness.
JP2016054058A 2016-03-17 2016-03-17 Multi-layer polyurethane coated steel Expired - Fee Related JP6728818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016054058A JP6728818B2 (en) 2016-03-17 2016-03-17 Multi-layer polyurethane coated steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016054058A JP6728818B2 (en) 2016-03-17 2016-03-17 Multi-layer polyurethane coated steel

Publications (2)

Publication Number Publication Date
JP2017165024A JP2017165024A (en) 2017-09-21
JP6728818B2 true JP6728818B2 (en) 2020-07-22

Family

ID=59912505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016054058A Expired - Fee Related JP6728818B2 (en) 2016-03-17 2016-03-17 Multi-layer polyurethane coated steel

Country Status (1)

Country Link
JP (1) JP6728818B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11001719B2 (en) 2018-09-14 2021-05-11 Rohr, Inc. Multi-layer coating for a flow surface of an aircraft component
AU2020274387A1 (en) 2019-05-10 2021-12-02 Sika Technology Ag Two-component polyurethane elastomer coating for corrosion and weathering protection
WO2021118259A1 (en) * 2019-12-11 2021-06-17 미쓰이케미칼앤드에스케이씨폴리우레탄 주식회사 Polyurethane laminate and production method thereof
KR102497290B1 (en) * 2019-12-11 2023-02-08 에스케이피유코어 주식회사 Polyurethane laminate and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290530A (en) * 1986-06-11 1987-12-17 日本鋼管株式会社 Coated steel structure
JP2647316B2 (en) * 1992-10-14 1997-08-27 新日本製鐵株式会社 Colored polyurethane coated steel
JP2003314753A (en) * 2002-04-17 2003-11-06 Jfe Engineering Kk Two-layer coated steel pipe for water transportation
JP2007090678A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk Heavy-duty corrosion-inhibitive coated steel stock with impact resistance
DE102010044935A1 (en) * 2010-09-10 2012-03-15 Basf Coatings Gmbh Erosion protection coating compositions

Also Published As

Publication number Publication date
JP2017165024A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
JP6728818B2 (en) Multi-layer polyurethane coated steel
CN105623341B (en) Function and service coating and preparation method thereof
JP4393291B2 (en) Marine steel with excellent corrosion resistance
JP6180956B2 (en) Painted steel with excellent corrosion resistance
GB2165772A (en) Steel article having heavy-duty anticorrosive coating
KR20120085674A (en) Corrosion-resistant steel for ship superstructure
US20050013979A1 (en) Heavy-duty anticorrosive coated steel material with excellent resistance against separation and corrosion
CN106133076A (en) Etch-proof layer system, etch-proof bearing assembly and protection bearing assembly are from the method for corrosion
KR20180007676A (en) Painting steel material and method for producing the same
JP5767670B2 (en) Primer composition and coated steel
JP2007090678A (en) Heavy-duty corrosion-inhibitive coated steel stock with impact resistance
AU2017234095B8 (en) Resin coated steel and manufacturing method therefor
US20080241399A1 (en) Method of coating and coated sheet piling sections
JP2008229998A (en) Heavy corrosion-proof coated steel material
Morales et al. Challenging the Performance Myth of Inorganic Zinc Rich vs Organic Zinc Rich Primers and Activated Zinc Primers
JP4710821B2 (en) Resin coated heavy duty steel
JP6606592B1 (en) Paint for rust surface, coating method for rust surface steel using the same, and painted steel
JP6933861B2 (en) Rust surface paint, coating method for rust surface steel using it, and painted steel
JP2006110753A (en) Resin coated heavy corrosion-proof steel material
KR102461089B1 (en) Metal spray coating method having eccellent corrosion resistance
CN103952070B (en) Solvent-free polymeric type anticorrosive paint and preparation method thereof
JP6633168B1 (en) Paint for galvanized surface, method of coating galvanized steel using it, and painted steel
JP4333420B2 (en) Urethane elastomer coated steel material excellent in low temperature impact resistance and resin composition used therefor
JP5742259B2 (en) Coated steel for marine / river environment and manufacturing method thereof
CN111379777B (en) Method for manufacturing corrosion-resistant self-tapping screw and product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R151 Written notification of patent or utility model registration

Ref document number: 6728818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees