JP6728771B2 - Detection device and program - Google Patents

Detection device and program Download PDF

Info

Publication number
JP6728771B2
JP6728771B2 JP2016038806A JP2016038806A JP6728771B2 JP 6728771 B2 JP6728771 B2 JP 6728771B2 JP 2016038806 A JP2016038806 A JP 2016038806A JP 2016038806 A JP2016038806 A JP 2016038806A JP 6728771 B2 JP6728771 B2 JP 6728771B2
Authority
JP
Japan
Prior art keywords
light emitting
light
unit
emitting unit
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016038806A
Other languages
Japanese (ja)
Other versions
JP2017156498A (en
Inventor
哲朗 太田
哲朗 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2016038806A priority Critical patent/JP6728771B2/en
Publication of JP2017156498A publication Critical patent/JP2017156498A/en
Application granted granted Critical
Publication of JP6728771B2 publication Critical patent/JP6728771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Electrophonic Musical Instruments (AREA)

Description

本発明は、鍵盤楽器の鍵等の複数の移動体の動作を検出する技術に関する。 The present invention relates to a technique for detecting the movement of a plurality of moving bodies such as keys of a keyboard instrument.

鍵盤楽器の鍵等の複数の移動体の移動を光学的に検出する各種の技術が従来から提案されている。例えば特許文献1には、複数の発光部と複数の受光部との組合せに各鍵を対応させ、複数の発光部の各々を順次に発光させたときの各受光部の受光レベルに応じて各鍵の移動を検出する技術が開示されている。 Various techniques for optically detecting movements of a plurality of moving bodies such as keys of a keyboard instrument have been conventionally proposed. For example, in Patent Document 1, each key is made to correspond to a combination of a plurality of light emitting units and a plurality of light receiving units, and each key is made to correspond to a light receiving level of each light receiving unit when each of the plurality of light emitting units sequentially emits light. A technique for detecting movement of a key is disclosed.

特開平9−54584号公報Japanese Patent Laid-Open No. 9-54584

ところで、鍵盤楽器の押鍵の頻度は鍵毎に区々である。特許文献1の技術では、実際には殆ど押鍵されない鍵と頻繁に押鍵される鍵とについて各発光部が共通の条件で駆動される。したがって、複数の鍵の移動を効率的に検出できない(例えば押鍵の頻度が低い鍵について必要以上に高い精度で押鍵を検出している)という問題がある。以上の事情を考慮して、本発明は、複数の移動体の移動を効率的に検出することを目的とする。 By the way, the frequency of key depression of the keyboard instrument is different for each key. In the technique of Patent Document 1, each light emitting unit is driven under a common condition for a key that is actually hardly pressed and a key that is frequently pressed. Therefore, there is a problem that the movement of a plurality of keys cannot be detected efficiently (for example, the key pressing is detected with a higher precision than necessary for a key with a low key pressing frequency). In consideration of the above circumstances, an object of the present invention is to efficiently detect the movement of a plurality of moving bodies.

以上の課題を解決するために、本発明の好適な態様に係る検出装置は、複数の発光部の各々と複数の受光部の各々との相異なる組合せに対応する移動体毎に、発光部の発光時における当該移動体の位置に応じて変動する受光部の受光レベルを示す検出データを生成する動作検出部と、複数の発光部の各々を順次に発光させる発光制御部とを具備し、発光制御部は、複数の発光部のうちの第1発光部を発光させる駆動条件と、第1発光部とは異なる第2発光部を発光させる駆動条件とを相違させる。以上の態様では、第1発光部と第2発光部とを相異なる駆動条件で発光させる。したがって、全部の発光部を共通の駆動条件で発光させる構成と比較して、複数の移動体の移動を効率的に検出することが可能である。 In order to solve the above problems, the detection device according to a preferred embodiment of the present invention, a moving body corresponding to a different combination of each of the plurality of light emitting units and each of the plurality of light receiving units, of the light emitting unit The light emitting unit includes an operation detecting unit that generates detection data indicating a light receiving level of the light receiving unit that varies according to the position of the moving body during light emission, and a light emission control unit that sequentially emits light from each of the plurality of light emitting units. The control unit sets the driving condition for causing the first light emitting unit of the plurality of light emitting units to emit light and the driving condition for causing the second light emitting unit different from the first light emitting unit to emit light. In the above aspect, the first light emitting unit and the second light emitting unit emit light under different driving conditions. Therefore, it is possible to efficiently detect the movements of the plurality of moving bodies, as compared with the configuration in which all the light emitting units emit light under a common drive condition.

本発明の好適な態様において、駆動条件は、発光部の発光の周期であり、発光制御部は、第1発光部と比較して長い周期で第2発光部を発光させる。以上の態様では、第1発光部に対応する移動体について検出の時間分解能を確保しながら、第2発光部に対応する移動体については移動の検出に必要な消費電力を低減することが可能である。 In a preferred aspect of the present invention, the driving condition is a light emission cycle of the light emitting section, and the light emission control section causes the second light emitting section to emit light at a longer cycle than the first light emitting section. In the above aspect, it is possible to reduce the power consumption required to detect the movement of the moving body corresponding to the second light emitting unit while ensuring the time resolution of the detection of the moving body corresponding to the first light emitting unit. is there.

本発明の好適な態様において、発光制御部は、複数の発光部の各々を発光期間における駆動電流の供給で順次に発光させ、第2発光部については発光期間内で駆動電流を一定に維持する一方、第1発光部については発光期間内で駆動電流を複数の電流に変化させる。以上の態様では、第1発光部に対応する移動体の移動を高精度に検出しながら、第2発光部に対応する移動体については移動の検出に必要な消費電力を低減することが可能である。 In a preferred aspect of the present invention, the light emission control unit sequentially causes each of the plurality of light emitting units to emit light by supplying a drive current during the light emitting period, and the second light emitting unit maintains the drive current constant within the light emitting period. On the other hand, for the first light emitting portion, the drive current is changed to a plurality of currents within the light emitting period. In the above aspect, it is possible to detect the movement of the moving body corresponding to the first light emitting unit with high accuracy, and reduce the power consumption required for detecting the movement of the moving body corresponding to the second light emitting unit. is there.

本発明の好適な態様において、複数の移動体のうち移動の頻度が高い移動体は第1発光部に対応し、複数の移動体のうち移動の頻度が低い移動体は第2発光部に対応する。以上の態様では、移動頻度が高い移動体が第1発光部に対応するとともに移動頻度が低い移動体は第2発光部に対応するから、移動頻度が高い移動体の移動を高精度に検出しながら、移動頻度が低い移動体については移動の検出に必要な消費電力を低減することが可能である。 In a preferred aspect of the present invention, a moving body having a high moving frequency among the plurality of moving bodies corresponds to the first light emitting unit, and a moving body having a low moving frequency among the plurality of moving bodies corresponds to the second light emitting unit. To do. In the above aspect, since the moving body having a high moving frequency corresponds to the first light emitting unit and the moving body having a low moving frequency corresponds to the second light emitting unit, the movement of the moving body having a high moving frequency is detected with high accuracy. However, it is possible to reduce the power consumption required for detecting the movement of a moving body having a low movement frequency.

本発明の好適な態様において、移動体は、鍵盤楽器の鍵またはハンマであり、鍵盤楽器の音域のうち第1範囲に属する移動体は第1発光部に対応し、第1範囲の低音側の第2範囲または高音側の第3範囲に属する移動体は第2発光部に対応する。以上の態様では、第1範囲の低音側の第2範囲または高音側の第3範囲の押鍵頻度が第1範囲の押鍵頻度を下回るという傾向のもとで、押鍵頻度が高い鍵の移動を高精度に検出しながら、押鍵頻度が低い鍵については移動の検出に必要な消費電力を低減することが可能である In a preferred aspect of the present invention, the moving body is a key or a hammer of a keyboard instrument, and the moving body belonging to the first range of the musical range of the keyboard instrument corresponds to the first light emitting unit, and is located on the low-frequency side of the first range. The moving body that belongs to the second range or the third range on the treble side corresponds to the second light emitting unit. In the above aspect, the key pressing frequency in the second range on the low tone side of the first range or the key pressing frequency in the third range on the high tone side is lower than the key pressing frequency of the first range. While detecting movements with high accuracy, it is possible to reduce the power consumption required to detect movements for keys that are infrequently pressed.

本発明の好適な態様に係る検出装置は、発光部に対応する移動体に関する移動頻度の指標である頻度指標を複数の発光部の各々について算定し、各発光部の頻度指標に応じて第1発光部と第2発光部とを選定する頻度解析部を具備する。以上の態様では、各発光部の頻度指標に応じて複数の発光部の各々が第1発光部または第2発光部に選定されるから、検出装置の利用対象(例えば鍵盤楽器)において実際に移動する頻度が高い移動体の移動を高精度に検出しながら、移動の頻度が低い移動体については移動の検出に必要な消費電力を低減することが可能である。 A detection device according to a preferred aspect of the present invention calculates a frequency index, which is an index of a movement frequency of a moving body corresponding to a light emitting unit, for each of a plurality of light emitting units, and first calculates a frequency index of each light emitting unit. A frequency analysis unit for selecting the light emitting unit and the second light emitting unit is provided. In the above aspect, since each of the plurality of light emitting units is selected as the first light emitting unit or the second light emitting unit according to the frequency index of each light emitting unit, the light emitting unit actually moves in the usage target (for example, a keyboard musical instrument) of the detection device. It is possible to detect the movement of a moving body that has a high frequency of movement with high accuracy, and reduce the power consumption required for detecting the movement of a moving body that has a low frequency of movement.

本発明の好適な態様において、頻度解析部は、複数の移動体に関する使用履歴を利用して、複数の発光部の各々について頻度指標を算定する。以上の態様では、複数の移動体に関する使用履歴を利用して各発光部の頻度指標が算定される。したがって、実際の使用の傾向を踏まえて第1発光部および第2発光部を選定できるという利点がある。 In a preferred aspect of the present invention, the frequency analysis unit calculates the frequency index for each of the plurality of light emitting units by using the usage history regarding the plurality of moving bodies. In the above aspect, the frequency index of each light emitting unit is calculated by using the usage history of the plurality of moving bodies. Therefore, there is an advantage that the first light emitting portion and the second light emitting portion can be selected in consideration of the tendency of actual use.

本発明の第1実施形態における検出装置の構成図である。It is a block diagram of the detection apparatus in 1st Embodiment of this invention. 検出部の模式図である。It is a schematic diagram of a detection part. 発光制御部の動作の説明図である。It is explanatory drawing of operation|movement of a light emission control part. 発光部および受光部の各組合せと鍵盤楽器の各鍵との関係の説明図である。It is explanatory drawing of the relationship between each combination of a light-emitting part and a light-receiving part, and each key of a keyboard instrument. 発光制御部の動作の説明図である。It is explanatory drawing of operation|movement of a light emission control part. 第2実施形態における検出装置の構成図である。It is a block diagram of the detection apparatus in 2nd Embodiment. 第2実施形態における使用履歴の説明図である。It is explanatory drawing of the use history in 2nd Embodiment. 第2実施形態における頻度解析処理のフローチャートである。It is a flow chart of frequency analysis processing in a 2nd embodiment. 第3実施形態における各発光部の駆動の説明図である。It is explanatory drawing of the drive of each light emitting part in 3rd Embodiment.

<第1実施形態>
図1は、本発明の第1実施形態に係る検出装置100の構成図である。第1実施形態の検出装置100は、鍵盤楽器に使用されて複数の鍵の各々の移動を光学的に検出するセンサである。図1に例示される通り、第1実施形態の検出装置100は、制御装置12と記憶装置14と動作検出部16と音源回路20と放音機器22とを具備する。
<First Embodiment>
FIG. 1 is a configuration diagram of a detection device 100 according to the first embodiment of the present invention. The detection device 100 of the first embodiment is a sensor used in a keyboard instrument to optically detect movement of each of a plurality of keys. As illustrated in FIG. 1, the detection device 100 of the first embodiment includes a control device 12, a storage device 14, an operation detection unit 16, a sound source circuit 20, and a sound emitting device 22.

制御装置12は、例えばCPU(Central Processing Unit)またはFPGA(Field Programmable Gate Array)等の処理回路で実現され、検出装置100の各要素を統括的に制御する。記憶装置14は、制御装置12が実行するプログラムや制御装置12が使用する各種のデータを記憶する。例えば半導体記録媒体や磁気記録媒体等の公知の記録媒体、または複数種の記録媒体の組合せが記憶装置14として使用され得る。 The control device 12 is realized by a processing circuit such as a CPU (Central Processing Unit) or FPGA (Field Programmable Gate Array), and controls each element of the detection device 100 as a whole. The storage device 14 stores a program executed by the control device 12 and various data used by the control device 12. For example, a known recording medium such as a semiconductor recording medium or a magnetic recording medium, or a combination of a plurality of types of recording media can be used as the storage device 14.

動作検出部16は、鍵盤楽器の各鍵の移動(具体的には利用者による押鍵時の各鍵の変位)を検出する要素であり、複数(M個)の発光部E[1]〜E[M]と複数(N個)の受光部R[1]〜R[N]とA/D変換器24とを具備する(M,Nは2以上の自然数)。任意の1個の発光部E[m](m=1〜M)は、例えばLED(Light Emitting Diode)等の発光素子を含んで構成され、駆動電流が供給されることで光(以下「検出光」という)を放射する。任意の1個の受光部R[n](n=1〜N)は、例えばフォトダイオード等の受光素子を含んで構成され、受光レベルに応じた検出信号を生成する。A/D変換器24は、N個の受光部R[1]〜R[N]の各々が生成したアナログの検出信号をデジタルデータ(以下「検出データ」という)Xに変換する。 The motion detection unit 16 is an element that detects the movement of each key of the keyboard instrument (specifically, the displacement of each key when the user presses a key), and the plurality of (M) light emitting units E[1] to It is provided with E[M], a plurality (N) of light receiving portions R[1] to R[N], and an A/D converter 24 (M and N are natural numbers of 2 or more). One arbitrary light emitting unit E[m] (m=1 to M) is configured to include a light emitting element such as an LED (Light Emitting Diode), and is supplied with a drive current to emit light (hereinafter, referred to as “detection”). It emits light. Any one light receiving unit R[n] (n=1 to N) is configured to include a light receiving element such as a photodiode, and generates a detection signal according to the light receiving level. The A/D converter 24 converts the analog detection signal generated by each of the N light receiving units R[1] to R[N] into digital data (hereinafter referred to as “detection data”) X.

M個の発光部E[1]〜E[M]とN個の受光部R[1]〜R[N]とは縦M行×横N列(例えば縦12行×横8列)のセンサマトリクスを構成し、任意の1個の発光部E[m]と任意の1個の受光部R[n]との組合せに対応して検出部D[m,n]が配置される。鍵盤楽器の複数の鍵は相異なる検出部D[m,n]に対応する。なお、図1では、各発光部E[m]と各受光部R[n]との全通りの組合せについて検出部D[m,n]を便宜的に図示したが、実際には検出部D[m,n]が配置されない組合せも存在する。発光部E[m]および受光部R[n]の各組合せ(検出部D[m,n])と各鍵との対応関係については後述する。 The M light emitting portions E[1] to E[M] and the N light receiving portions R[1] to R[N] are sensors of vertical M rows×horizontal N columns (for example, 12 vertical rows×8 horizontal rows). A detection unit D[m,n] is arranged corresponding to a combination of an arbitrary one light emitting unit E[m] and an arbitrary one light receiving unit R[n] in a matrix. A plurality of keys of the keyboard musical instrument correspond to different detecting units D[m,n]. In FIG. 1, the detection unit D[m,n] is illustrated for convenience for all combinations of the light emitting units E[m] and the light receiving units R[n]. There are also combinations in which [m,n] is not placed. The correspondence between each combination of the light emitting portion E[m] and the light receiving portion R[n] (detecting portion D[m,n]) and each key will be described later.

図2は、任意の1個の検出部D[m,n]を例示する模式図である。図2に例示される通り、任意の1個の検出部D[m,n]は、発光経路162と導光体164と導光体166と受光経路168と遮光体32とを具備するセンサヘッドである。発光経路162および受光経路168は、検出光が伝播する経路であり、例えば光ファイバを含んで構成される。発光部E[m]から出射した検出光は、発光経路162を伝播して導光体164に到達し、導光体164の内部での反射により導光体166側に出射する。導光体164から導光体166に入射した検出光は、導光体166の内部での反射により受光経路168に入射し、受光経路168を伝播して受光部R[n]に到達する。遮光体32は、例えば鍵盤楽器の各鍵30の底面に固定された遮光性のシャッタであり、利用者による押鍵に連動して導光体164と導光体166との間に移動する。したがって、各受光部R[n]の受光レベル(検出データX)は、各鍵30の位置に応じて変動する。すなわち、検出データXは、押鍵により変動する各鍵30の位置を表すデータである。 FIG. 2 is a schematic view illustrating an arbitrary one detection unit D[m,n]. As illustrated in FIG. 2, any one detection unit D[m,n] is a sensor head including a light emitting path 162, a light guide 164, a light guide 166, a light receiving path 168, and a light shield 32. Is. The light emitting path 162 and the light receiving path 168 are paths through which the detection light propagates, and are configured to include, for example, an optical fiber. The detection light emitted from the light emitting portion E[m] propagates through the light emitting path 162, reaches the light guide body 164, and is emitted to the light guide body 166 side due to reflection inside the light guide body 164. The detection light that has entered the light guide body 166 from the light guide body 164 enters the light receiving path 168 due to reflection inside the light guide body 166, propagates through the light receiving path 168, and reaches the light receiving unit R[n]. The light shield 32 is, for example, a light-shielding shutter fixed to the bottom surface of each key 30 of the keyboard instrument, and moves between the light guide body 164 and the light guide body 166 in conjunction with the key depression by the user. Therefore, the light receiving level (detection data X) of each light receiving unit R[n] varies depending on the position of each key 30. That is, the detection data X is data that represents the position of each key 30 that fluctuates due to key depression.

動作検出部16の第m行に対応するN個の検出部D[m,1]〜[m,N]の各々の発光経路162には、第m番目の1個の発光部E[m]から出射した検出光が共通に供給され、動作検出部16の第n列に対応するM個の検出部D[1,n]〜D[M,n]の各々の受光経路168を通過した検出光は第n番目の1個の受光部R[n]により受光される。したがって、任意の1個の発光部E[m]の発光時におけるN個の受光部R[1]〜R[N]の各々の受光レベルを検出することで、発光部E[m]と各受光部R[n]との組合せに対応する各鍵30の動作(検出部D[m,n]の状態)を検出することが可能である。なお、例えば特開平9−152871号公報に開示される通り、1個の発光部E[m]から出射した検出光を複数の受光部R[n]で受光する構成や、複数の発光部E[m]から出射した検出光を1個の受光部R[n]で受光する構成も採用され得る。 In the light emission path 162 of each of the N detection units D[m,1] to [m,N] corresponding to the m-th row of the motion detection unit 16, the m-th one light emission unit E[m]. The detection light emitted from the detector is supplied in common and passed through the light receiving path 168 of each of the M detectors D[1,n] to D[M,n] corresponding to the nth row of the motion detector 16. The light is received by the nth light receiving unit R[n]. Therefore, by detecting the light receiving level of each of the N light receiving units R[1] to R[N] at the time of light emission of any one light emitting unit E[m], the light emitting unit E[m] and each light receiving unit E[m] are detected. It is possible to detect the operation of each key 30 (state of the detection unit D[m,n]) corresponding to the combination with the light receiving unit R[n]. Note that, as disclosed in, for example, Japanese Patent Laid-Open No. 9-152871, a configuration in which the detection light emitted from one light emitting unit E[m] is received by a plurality of light receiving units R[n], or a plurality of light emitting units E are used. A configuration in which the detection light emitted from [m] is received by one light receiving unit R[n] can also be adopted.

図1に例示される通り、第1実施形態の制御装置12は、記憶装置14に記憶されたプログラムを実行することで、動作検出部16を制御するための複数の要素(発光制御部42,動作解析部44)として機能する。なお、制御装置12の機能を複数の装置に分散した構成や、制御装置12の機能の一部を専用の電子回路が実現する構成も採用される。 As illustrated in FIG. 1, the control device 12 of the first embodiment executes a program stored in the storage device 14 to execute a plurality of elements for controlling the operation detection unit 16 (the light emission control unit 42, It functions as the operation analysis unit 44). A configuration in which the function of the control device 12 is distributed to a plurality of devices, or a configuration in which a dedicated electronic circuit realizes a part of the function of the control device 12 is also adopted.

発光制御部42は、動作検出部16のM個の発光部E[1]〜E[M]の各々を順次に発光させる。図3は、発光制御部42が任意の1個の発光部E[m]を制御する動作の説明図である。図3に例示される通り、発光制御部42は、所定の周期(以下「検出周期」という)Q毎に発光部E[m]に対して所定の駆動電流Zを供給することで発光部E[m]を発光させる。発光部E[m]が発光する期間(以下「発光期間」という)L[m]内に各受光部R[n]の検出信号をA/D変換する(すなわち発光部E[m]の発光に同期して検出信号をA/D変換する)ことで、A/D変換器24は各鍵30の検出データXを生成する。 The light emission control unit 42 sequentially causes each of the M light emitting units E[1] to E[M] of the operation detection unit 16 to emit light. FIG. 3 is an explanatory diagram of an operation in which the light emission control unit 42 controls one arbitrary light emitting unit E[m]. As illustrated in FIG. 3, the light emission control unit 42 supplies a predetermined drive current Z to the light emitting unit E[m] at every predetermined period (hereinafter referred to as “detection period”) Q to cause the light emitting unit E to emit light. Make [m] emit light. The detection signal of each light receiving unit R[n] is A/D-converted within a period L[m] during which the light emitting unit E[m] emits light (hereinafter referred to as "light emitting period") (that is, light emission of the light emitting unit E[m]). The A/D converter 24 generates the detection data X of each key 30 by A/D converting the detection signal in synchronization with.

図1の動作解析部44は、各鍵30の検出データXの時系列から鍵30の移動(すなわち演奏者による押鍵)を検出するとともに移動速度を特定する。第1実施形態の動作解析部44は、移動を検出した鍵30に対応する楽音の発音と当該鍵30の移動速度に応じた発音強度(ベロシティ)とを指定する演奏データを順次に生成する。動作解析部44が生成した演奏データは音源回路20に順次に供給される。音源回路20は、演奏データで指定される演奏音の音響信号を生成する。音源回路20が生成した音響信号が放音機器22(スピーカやヘッドホン)に供給されることで、演奏データで指定される演奏音が再生される。なお、動作解析部44が順次に生成する演奏データを記憶装置14に記憶する構成や、駆動機構(例えばソレノイド)が演奏データに応じて各鍵30を駆動することで鍵盤楽器の自動演奏を実現することも可能である。また、音源回路20の機能を制御装置12が実現することも可能である。 The operation analysis unit 44 of FIG. 1 detects the movement of the key 30 (that is, the player's key depression) from the time series of the detection data X of each key 30, and specifies the movement speed. The operation analysis unit 44 of the first embodiment sequentially generates performance data that specifies the pronunciation of a musical tone corresponding to the key 30 that has detected movement and the pronunciation intensity (velocity) according to the moving speed of the key 30. The performance data generated by the motion analysis unit 44 is sequentially supplied to the tone generator circuit 20. The tone generator circuit 20 generates an acoustic signal of a performance sound specified by the performance data. By supplying the sound signal generated by the sound source circuit 20 to the sound emitting device 22 (speaker or headphones), the performance sound specified by the performance data is reproduced. It should be noted that the musical performance data sequentially generated by the motion analysis unit 44 is stored in the storage device 14 and the automatic performance of the keyboard instrument is realized by driving each key 30 according to the performance data by a driving mechanism (for example, a solenoid). It is also possible to do so. Further, the control device 12 can realize the function of the tone generator circuit 20.

図4には、発光部E[m]および受光部R[n]の各組合せと鍵盤楽器の各鍵30との関係が例示されている。図4では、動作検出部16が12個(M=12)の発光部E[1]〜E[12]と8個(N=8)の受光部R[1]〜R[8]とを含む場合を便宜的に想定した。発光部E[m]と受光部R[n]との組合せに対応して表記された数値は、鍵30の番号である。鍵盤楽器の最低音高に相当する第1鍵(鍵番号=1)から第88鍵(鍵番号=88)にかけて音高が徐々に上昇するとともに第88鍵が鍵盤楽器の最高音高に相当する。なお、図4における発光部E[m]および受光部R[n]の各組合せと鍵盤楽器の各鍵30との関係は一例である。すなわち、発光部E[m]および受光部R[n]の各組合せと各鍵30との関係は任意であり、実際には多様な関係が採択され得る。 FIG. 4 illustrates the relationship between each combination of the light emitting unit E[m] and the light receiving unit R[n] and each key 30 of the keyboard instrument. In FIG. 4, the motion detector 16 includes twelve (M=12) light emitting units E[1] to E[12] and eight (N=8) light receiving units R[1] to R[8]. For the sake of convenience, the case where it is included is assumed. The numerical value described corresponding to the combination of the light emitting portion E[m] and the light receiving portion R[n] is the number of the key 30. The pitch gradually rises from the 1st key (key number = 1) to the 88th key (key number = 88) corresponding to the lowest pitch of the keyboard instrument, and the 88th key corresponds to the highest pitch of the keyboard instrument. .. The relationship between each combination of the light emitting portion E[m] and the light receiving portion R[n] and each key 30 of the keyboard instrument in FIG. 4 is an example. That is, the relationship between each combination of the light emitting unit E[m] and the light receiving unit R[n] and each key 30 is arbitrary, and various relationships can be actually adopted.

図4に例示される通り、M個の発光部E[1]〜E[M]は、第1発光部EAと第2発光部EBとに区別される。第1発光部EAは、押鍵頻度が高い傾向にある鍵30に対応する発光部E[m]であり、第2発光部EBは、押鍵頻度が低い傾向にある鍵30に対応する発光部E[m]である。例えば、楽曲を構成する複数の音符の時系列や楽曲の演奏音を表す音楽データを既存の多数の楽曲について収集および解析することで鍵30毎の一般的な押鍵頻度(例えば鍵30毎の押鍵回数の度数分布)が集計される。そして、押鍵頻度が高い鍵30に対応する発光部E[m]が第1発光部EAとして選定されるとともに、押鍵頻度が低い鍵30に対応する発光部E[m]が第2発光部EBとして選定される。 As illustrated in FIG. 4, the M light emitting units E[1] to E[M] are classified into a first light emitting unit EA and a second light emitting unit EB. The first light emitting unit EA is a light emitting unit E[m] corresponding to the key 30 having a high key pressing frequency, and the second light emitting unit EB is a light emitting unit corresponding to the key 30 having a low key pressing frequency. This is the section E[m]. For example, by collecting and analyzing music data representing a time series of a plurality of notes constituting a music piece and a performance sound of the music piece for a large number of existing music pieces, a general key pressing frequency for each key 30 (for example, for each key 30) The frequency distribution of the number of key presses) is aggregated. Then, the light emitting portion E[m] corresponding to the key 30 having a high key pressing frequency is selected as the first light emitting portion EA, and the light emitting portion E[m] corresponding to the key 30 having a low key pressing frequency emits the second light. Selected as Department EB.

図4には、鍵盤号(第1鍵〜第88鍵)と押鍵頻度との関係が併記されている。図4に例示される通り、押鍵頻度が低い第1鍵から第15鍵までの計15個の鍵30は、第2発光部EBに選定された発光部E[1]および発光部E[2]の何れかに割当てられ、同様に押鍵頻度が低い第74鍵から第88鍵までの計15個の鍵30は、第2発光部EBに選定された発光部E[11]および発光部E[12]の何れかに割当てられる。他方、押鍵頻度が高い第16鍵から第73鍵までの計58個の鍵30は、第1発光部EAに選定された発光部E[3]から発光部E[10]までの8個の発光部E[m]の何れかに割当てられる。 FIG. 4 also shows the relationship between keyboard numbers (1st to 88th keys) and the frequency of key depression. As illustrated in FIG. 4, a total of fifteen keys 30 from the first key to the fifteenth key, which have a low frequency of key pressing, have a light emitting portion E[1] and a light emitting portion E[ selected as the second light emitting portion EB. 2], and a total of 15 keys 30 from the 74th key to the 88th key which are similarly infrequently pressed are the light emitting portion E[11] and the light emitting portion E[11] selected as the second light emitting portion EB. It is assigned to any of the parts E[12]. On the other hand, a total of 58 keys 30 from the 16th key to the 73rd key, which are frequently pressed, have eight keys from the light emitting portion E[3] to the light emitting portion E[10] selected as the first light emitting portion EA. Is assigned to any one of the light emitting portions E[m].

鍵盤楽器の鍵盤のうち両端部の近傍の鍵30は押鍵頻度が低いという概略的な傾向がある。図4では、鍵盤楽器の音域のうち第16鍵から第73鍵までの範囲W1(第1範囲の例示)の各鍵30の押鍵頻度が、範囲W1の低音側に位置する第1鍵から第15鍵までの範囲W2(第2範囲の例示)の各鍵30の押鍵頻度と、範囲W1の高音側に位置する第74鍵から第88鍵までの範囲W3(第3範囲の例示)の各鍵30の押鍵頻度とを上回る場合が例示されている。以上の前提のもとでは、図4に例示される通り、範囲W1に属する各鍵30は第1発光部EA(E[3]〜E[10])に対応し、低音域の範囲W2および高音域の範囲W3に属する各鍵30は第2発光部EB(E[1],E[2],E[11],E[12])に対応する。 The keys 30 near both ends of the keyboard of the keyboard instrument tend to have a low frequency of key depression. In FIG. 4, the key pressing frequency of each key 30 in the range W1 (example of the first range) from the 16th key to the 73rd key in the range of the keyboard musical instrument is from the first key located on the low tone side of the range W1. The frequency of key depression of each key 30 in the range W2 up to the 15th key (example of the second range) and the range W3 from the 74th key to the 88th key located on the high pitch side of the range W1 (example of the third range) The key pressing frequency of each of the keys 30 is illustrated. Under the above assumptions, as illustrated in FIG. 4, each key 30 belonging to the range W1 corresponds to the first light emitting unit EA (E[3] to E[10]), and the range W2 of the bass range and Each key 30 belonging to the high-pitched range W3 corresponds to the second light emitting section EB (E[1], E[2], E[11], E[12]).

発光制御部42は、M個の発光部E[1]〜E[M]のうちの第1発光部EAを発光させる駆動条件と、第2発光部EBを発光させる駆動条件とを相違させる。第1実施形態では、発光部E[m]を発光させる検出周期Qを、第1発光部EAと第2発光部EBとで相違させる駆動条件として例示する。具体的には、図3に例示される通り、発光制御部42は、第1発光部EAと比較して長い検出周期Qで第2発光部EBを発光させる。すなわち、第2発光部EBが発光する検出周期Qの時間長q2は、第1発光部EAが発光する検出周期Qの時間長q1と比較して長い(q2>q1)。第2発光部EBの検出周期Qの時間長q2を第1発光部EAの検出周期Qの時間長q1の2倍とした構成が図3では例示されている。第1発光部EAの発光の頻度(単位時間毎の発光回数)が第2発光部EBの発光の頻度を上回ると換言することも可能である。 The light-emission control unit 42 differentiates the drive condition for causing the first light-emitting unit EA of the M light-emitting units E[1] to E[M] to emit light and the drive condition for causing the second light-emitting unit EB to emit light. In the first embodiment, the detection cycle Q for causing the light emitting unit E[m] to emit light is exemplified as the driving condition that makes the first light emitting unit EA and the second light emitting unit EB different. Specifically, as illustrated in FIG. 3, the light emission control unit 42 causes the second light emitting unit EB to emit light at a detection cycle Q longer than that of the first light emitting unit EA. That is, the time length q2 of the detection cycle Q in which the second light emitting section EB emits light is longer than the time length q1 of the detection cycle Q in which the first light emitting section EA emits light (q2>q1). FIG. 3 illustrates a configuration in which the time length q2 of the detection cycle Q of the second light emitting portion EB is twice the time length q1 of the detection cycle Q of the first light emitting portion EA. In other words, the frequency of light emission of the first light emitting unit EA (the number of times of light emission per unit time) exceeds the frequency of light emission of the second light emitting unit EB.

図5は、図4に例示した関係のもとで発光制御部42がM個の発光部E[1]〜E[M]の各々を発光させる動作の説明図である。図5に例示される通り、第1発光部EAに選定された各発光部E[m](E[3]〜E[10])は時間長q1の検出周期Q毎に順次に発光する一方、第2発光部EBに選定された各発光部E[m](E[1],E[2],E[11],E[12])は時間長q2の検出周期Q毎に順次に発光する。以上の説明から理解される通り、第1発光部EAに対応する各鍵30については、第2発光部EBに対応する各鍵30と比較して高い時間分解能で動作が検出される。なお、発光期間L[m]の時間長は第1発光部EAと第2発光部EBとで共通する。 FIG. 5 is an explanatory diagram of an operation in which the light emission control unit 42 causes each of the M light emitting units E[1] to E[M] to emit light under the relationship illustrated in FIG. As illustrated in FIG. 5, each of the light emitting parts E[m] (E[3] to E[10]) selected as the first light emitting part EA emits light sequentially at every detection cycle Q of the time length q1. , The respective light emitting portions E[m] (E[1], E[2], E[11], E[12]) selected for the second light emitting portion EB are sequentially arranged at each detection cycle Q of the time length q2. It emits light. As can be understood from the above description, the operation of each key 30 corresponding to the first light emitting unit EA is detected with a higher time resolution than that of each key 30 corresponding to the second light emitting unit EB. The time length of the light emitting period L[m] is common to the first light emitting unit EA and the second light emitting unit EB.

以上に例示した通り、第1実施形態では、第1発光部EAと第2発光部EBとを相異なる駆動条件で発光させる。したがって、M個の発光部E[1]〜E[M]の全部を共通の駆動条件で発光させる構成と比較して、複数の鍵30の移動を効率的に検出することが可能である。 As illustrated above, in the first embodiment, the first light emitting unit EA and the second light emitting unit EB are caused to emit light under different driving conditions. Therefore, it is possible to efficiently detect the movement of the plurality of keys 30 as compared with the configuration in which all the M light emitting units E[1] to E[M] emit light under a common drive condition.

例えば、第1実施形態では、第1発光部EAと比較して長い検出周期Qで第2発光部EBを発光させるから、第1発光部EAに対応する各鍵30の検出について時間分解能を確保しながら、第2発光部EBに対応する各鍵30の検出については消費電力を低減することが可能である。第1実施形態では特に、押鍵頻度が高い鍵30が第1発光部EAに対応し、押鍵頻度が低い鍵30が第2発光部EBに対応するから、押鍵頻度が高い鍵30の移動を高い時間分解能で高精度に検出できる一方、押鍵頻度が低い鍵30については消費電力を低減しながら移動を検出できるという利点がある。 For example, in the first embodiment, since the second light emitting section EB is caused to emit light at the detection cycle Q longer than that of the first light emitting section EA, the time resolution is secured for the detection of each key 30 corresponding to the first light emitting section EA. However, it is possible to reduce power consumption for detecting each key 30 corresponding to the second light emitting unit EB. Particularly in the first embodiment, the key 30 having a high key pressing frequency corresponds to the first light emitting unit EA, and the key 30 having a low key pressing frequency corresponds to the second light emitting unit EB. While the movement can be detected with high time resolution and high accuracy, there is an advantage that the movement of the key 30 having a low key pressing frequency can be detected while reducing the power consumption.

なお、鍵盤楽器において各鍵30に連動して打弦するハンマの動作の検出にも第1実施形態は適用され得る。例えば、図4の例示から理解される通り、範囲W1に属する各ハンマは第1発光部EA(E[3]〜E[10])に対応し、低音域の範囲W2および高音域の範囲W3に属する各ハンマは第2発光部EB(E[1],E[2],E[11],E[12])に対応する。 The first embodiment can also be applied to the detection of the motion of a hammer striking a string in conjunction with each key 30 in a keyboard instrument. For example, as understood from the example of FIG. 4, each hammer belonging to the range W1 corresponds to the first light emitting unit EA (E[3] to E[10]), and has a low range W2 and a high range W3. Each of the hammers belonging to the above corresponds to the second light emitting portion EB (E[1], E[2], E[11], E[12]).

<第2実施形態>
本発明の第2実施形態を説明する。なお、以下に例示する各形態において作用や機能が第1実施形態と同様である要素については、第1実施形態の説明で使用した符号を流用して各々の詳細な説明を適宜に省略する。なお、第1実施形態では、押鍵頻度が高い鍵30を第1発光部EAに対応させたが、第2実施形態では、各鍵30の押鍵頻度とは無関係に発光部E[m]と鍵30とを対応させた構成を想定する。
<Second Embodiment>
A second embodiment of the present invention will be described. Note that, in each of the following exemplary embodiments, the elements having the same operations and functions as those in the first embodiment are given the same reference numerals as those used in the description of the first embodiment, and detailed description thereof will be appropriately omitted. In the first embodiment, the key 30 having a high key pressing frequency is associated with the first light emitting unit EA, but in the second embodiment, the light emitting unit E[m] is irrespective of the key pressing frequency of each key 30. It is assumed that the key and the key 30 are associated with each other.

図6は、第2実施形態における検出装置100の構成図である。図6に例示される通り、第2実施形態における検出装置100の制御装置12は、第1実施形態と同様の要素(発光制御部42,動作解析部44)に加えて頻度解析部46として機能する。頻度解析部46は、動作検出部16のM個の発光部E[1]〜E[M]の各々について頻度指標F[m](F[1]〜F[M])を算定する。任意の1個の発光部E[m]の頻度指標F[m]は、当該発光部E[m]に対応する複数の鍵30に関する押鍵頻度の指標である。 FIG. 6 is a configuration diagram of the detection device 100 according to the second embodiment. As illustrated in FIG. 6, the control device 12 of the detection device 100 in the second embodiment functions as a frequency analysis unit 46 in addition to the same elements (light emission control unit 42, operation analysis unit 44) as those in the first embodiment. To do. The frequency analysis unit 46 calculates the frequency index F[m] (F[1] to F[M]) for each of the M light emitting units E[1] to E[M] of the motion detection unit 16. The frequency index F[m] of any one light emitting unit E[m] is a key pressing frequency index for the plurality of keys 30 corresponding to the light emitting unit E[m].

第2実施形態の頻度解析部46は、鍵盤楽器の過去の押鍵の傾向を記録した使用履歴Hを利用して、M個の発光部E[1]〜E[M]の各々の頻度指標F[m]を算定する。使用履歴Hは、図7に例示される通り、各鍵30が押鍵された回数(以下「押鍵回数」という)Kの記録であり、記憶装置14に不揮発に記憶される。例えば動作解析部44が任意の1個の鍵30の押鍵を検出するたびに、使用履歴Hにおける当該鍵30の押鍵回数Kに1が加算される。例えば過去の所定時間にわたる各鍵30の押鍵回数Kや、鍵盤楽器の最初の使用からの各鍵30の押鍵回数Kが、使用履歴Hに記録される。 The frequency analysis unit 46 of the second embodiment utilizes the usage history H in which the past tendency of key depression of the keyboard instrument is recorded, and the frequency index of each of the M light emitting units E[1] to E[M]. Calculate F[m]. As illustrated in FIG. 7, the usage history H is a record of the number of times each key 30 has been depressed (hereinafter referred to as “the number of times of key depression”) K, and is stored in the storage device 14 in a nonvolatile manner. For example, every time the motion analysis unit 44 detects the pressing of one arbitrary key 30, the key press count K of the key 30 in the usage history H is incremented by one. For example, the number of times K of pressing each key 30 over a predetermined time in the past and the number K of pressing times of each key 30 from the first use of the keyboard instrument are recorded in the usage history H.

図6の頻度解析部46は、M個の発光部E[1]〜E[M]の各々について、当該発光部E[m]に対応する複数の鍵30について使用履歴Hに記録された押鍵回数Kの代表値(例えば平均値や中央値)または合計値を頻度指標F[m]として算定する。例えば、任意の1個の発光部E[m]に第1鍵から第8鍵までの計8個の鍵30が対応する場合、頻度解析部46は、第1鍵から第8鍵までの各鍵30の押鍵回数Kを平均することで頻度指標F[m]を算定する(F[m]=(K1+K2+…+K8)/8)。したがって、発光部E[m]に対応する複数の鍵30の押鍵頻度が高いほど頻度指標F[m]は大きい数値に設定される。 For each of the M light emitting units E[1] to E[M], the frequency analysis unit 46 of FIG. 6 presses the keys 30 corresponding to the light emitting units E[m] recorded in the usage history H. A representative value (for example, an average value or a median value) or a total value of the key count K is calculated as a frequency index F[m]. For example, when a total of eight keys 30 from the first key to the eighth key correspond to one arbitrary light emitting unit E[m], the frequency analyzing unit 46 determines that each of the first to eighth keys The frequency index F[m] is calculated by averaging the number K of times the key 30 is pressed (F[m]=(K1+K2+...+K8)/8). Therefore, the frequency index F[m] is set to a larger numerical value as the frequency of key depression of the plurality of keys 30 corresponding to the light emitting unit E[m] is higher.

頻度解析部46は、各発光部E[m]の頻度指標F[m]に応じてM個の発光部E[1]〜E[M]の各々を第1発光部EAと第2発光部EBとに区分する。具体的には、頻度解析部46は、頻度指標F[m]が所定の閾値FTHを上回る発光部E[m](すなわち押鍵頻度が高い鍵30に対応する発光部E[m])を第1発光部EAに選定し、頻度指標F[m]が閾値FTHを下回る発光部E[m](すなわち押鍵頻度が低い鍵30に対応する発光部E[m])を第2発光部EBに選定する。以上の説明から理解される通り、前述の第1実施形態では、不特定多数の楽曲における押鍵頻度の一般的な傾向に応じて第1発光部EAと第2発光部EBとが事前に選定されるのに対し、第2実施形態では、鍵盤楽器の使用履歴Hに応じて、各発光部E[m]が第1発光部EAおよび第2発光部EBの何れかに動的に選定される。 The frequency analysis unit 46 sets each of the M light emitting units E[1] to E[M] according to the frequency index F[m] of each light emitting unit E[m] to the first light emitting unit EA and the second light emitting unit. Classify as EB. Specifically, the frequency analysis unit 46 sets the light emitting unit E[m] (that is, the light emitting unit E[m] corresponding to the key 30 having a high key pressing frequency) whose frequency index F[m] exceeds a predetermined threshold FTH. The second light emitting unit is selected as the first light emitting unit EA, and the light emitting unit E[m] whose frequency index F[m] is less than the threshold FTH (that is, the light emitting unit E[m] corresponding to the key 30 having a low key pressing frequency) is used. Select EB. As can be understood from the above description, in the above-described first embodiment, the first light emitting unit EA and the second light emitting unit EB are selected in advance in accordance with the general tendency of the frequency of key depressions in an unspecified number of songs. On the other hand, in the second embodiment, each light emitting unit E[m] is dynamically selected as either the first light emitting unit EA or the second light emitting unit EB according to the usage history H of the keyboard instrument. It

発光制御部42による駆動条件が第1発光部EAと第2発光部EBとで相違する点は第1実施形態と同様である。具体的には、発光制御部42は、第1発光部EAと比較して長い検出周期Qで第2発光部EBを発光させる。したがって、第2実施形態においても、第1実施形態と同様に、M個の発光部E[1]〜E[M]の全部を共通の駆動条件で発光させる構成と比較して、複数の鍵30の移動を効率的に検出することが可能である。 The first embodiment is similar to the first embodiment in that the driving condition by the light emission control unit 42 is different between the first light emitting unit EA and the second light emitting unit EB. Specifically, the light emission control unit 42 causes the second light emitting unit EB to emit light at a detection cycle Q longer than that of the first light emitting unit EA. Therefore, also in the second embodiment, as in the first embodiment, a plurality of keys are provided as compared with the configuration in which all the M light emitting units E[1] to E[M] emit light under a common drive condition. It is possible to detect movement of 30 efficiently.

図8は、第2実施形態の頻度解析部46が各鍵30の押鍵頻度に応じて第1発光部EAおよび第2発光部EBを選定する処理(以下「頻度解析処理」という)のフローチャートである。例えば検出装置100の電源の投入または遮断が利用者から指示された直後に図8の頻度解析処理が実行される。 FIG. 8 is a flowchart of a process (hereinafter, referred to as “frequency analysis process”) in which the frequency analysis unit 46 of the second embodiment selects the first light emitting unit EA and the second light emitting unit EB according to the key pressing frequency of each key 30. Is. For example, the frequency analysis process of FIG. 8 is executed immediately after the user instructs to turn on or turn off the power of the detection device 100.

頻度解析処理を開始すると、頻度解析部46は、M個の発光部E[1]〜E[M]の何れか(以下「対象発光部E[m]」という)を選択する(SA1)。頻度解析部46は、対象発光部E[m]に対応する複数の鍵30の各々の押鍵回数Kを使用履歴Hから検索し(SA2)、複数の鍵30の押鍵回数Kから頻度指標F[m]を算定する(SA3)。 When the frequency analysis process is started, the frequency analysis unit 46 selects any of the M light emitting units E[1] to E[M] (hereinafter referred to as "target light emitting unit E[m]") (SA1). The frequency analysis unit 46 searches the usage history H for the number of key presses K of each of the plurality of keys 30 corresponding to the target light-emitting unit E[m] (SA2), and based on the number of key presses K of the plurality of keys 30, the frequency index. Calculate F[m] (SA3).

頻度解析部46は、対象発光部E[m]の頻度指標F[m]が閾値FTHを上回るか否かを判定する(SA4)。頻度指標F[m]が閾値FTHを上回る場合(SA4:YES)、頻度解析部46は、対象発光部E[m]を第1発光部EAに選定する(SA5)。他方、頻度指標F[m]が閾値FTHを下回る場合(SA4:NO)、頻度解析部46は、対象発光部E[m]を第2発光部EBに選定する(SA6)。以上の処理(SA1〜SA6)を順次に反復することで(SA7:NO)、M個の発光部E[1]〜E[M]の各々について頻度指標F[m]が算定される。 The frequency analysis unit 46 determines whether the frequency index F[m] of the target light emitting unit E[m] exceeds the threshold value FTH (SA4). When the frequency index F[m] exceeds the threshold value FTH (SA4: YES), the frequency analysis unit 46 selects the target light emitting unit E[m] as the first light emitting unit EA (SA5). On the other hand, when the frequency index F[m] is less than the threshold value FTH (SA4: NO), the frequency analysis unit 46 selects the target light emitting unit E[m] as the second light emitting unit EB (SA6). The frequency index F[m] is calculated for each of the M light emitting units E[1] to E[M] by sequentially repeating the above processing (SA1 to SA6) (SA7: NO).

以上に説明した通り、第2実施形態では、各発光部E[m]の頻度指標F[m]に応じてM個の発光部E[1]〜E[M]の各々が第1発光部EAまたは第2発光部EBに選定される。したがって、鍵盤楽器において実際に使用される頻度が高い鍵30の移動を高精度に検出できる一方、当該鍵盤楽器にて使用される頻度が低い鍵30については、消費電力を低減しながら移動を検出することが可能である。第2実施形態では特に、各鍵30の押鍵回数Kを記録した使用履歴Hを利用して各発光部E[m]の頻度指標F[m]が算定されるから、個々の鍵盤楽器の利用者の押鍵の傾向を踏まえて第1発光部EAおよび第2発光部EBを選定できるという利点もある。 As described above, in the second embodiment, each of the M light emitting units E[1] to E[M] is the first light emitting unit according to the frequency index F[m] of each light emitting unit E[m]. EA or the second light emitting unit EB. Therefore, the movement of the key 30 that is frequently used in the keyboard instrument can be detected with high accuracy, while the movement of the key 30 that is rarely used in the keyboard instrument can be detected while reducing the power consumption. It is possible to Particularly in the second embodiment, since the frequency index F[m] of each light emitting unit E[m] is calculated by using the usage history H in which the number of key depressions K of each key 30 is recorded, the frequency index F[m] of each keyboard instrument is calculated. There is also an advantage that the first light emitting unit EA and the second light emitting unit EB can be selected in consideration of the tendency of the user to depress the keys.

なお、以上の説明では、鍵30毎の押鍵回数Kを記録した使用履歴Hを頻度指標F[m]の算定に利用したが、各発光部E[m]の頻度指標F[m]を算定する方法は以上の例示に限定されない。例えば、鍵盤楽器の利用者が指定した楽曲の音楽データ(例えば楽曲の音符の時系列や楽曲の演奏音を表すデータ)や記憶装置14に記憶された音楽データを参照して、当該楽曲の演奏時における鍵30毎の押鍵回数Kを集計し、集計結果から各発光部E[m]の頻度指標F[m]を算定することも可能である。また、使用履歴Hを利用者毎に生成および記録し、鍵盤楽器を実際に演奏する利用者毎に、第1発光部EAおよび第2発光部EBの区別を相違させることも可能である。 In the above description, the usage history H, which records the number K of key presses for each key 30, is used to calculate the frequency index F[m], but the frequency index F[m] of each light emitting unit E[m] is used. The calculation method is not limited to the above examples. For example, with reference to music data of a musical composition designated by the user of the keyboard instrument (for example, data representing time series of musical notes of musical composition or performance sound of musical composition) or music data stored in the storage device 14, performance of the musical composition is performed. It is also possible to total the number K of times the key is pressed for each key 30 and calculate the frequency index F[m] of each light emitting unit E[m] from the totaled result. It is also possible to generate and record the usage history H for each user, and to distinguish between the first light emitting unit EA and the second light emitting unit EB for each user who actually plays the keyboard instrument.

<第3実施形態>
第1実施形態および第2実施形態では、第1発光部EAと第2発光部EBとで検出周期Qを相違させた。第3実施形態では、発光期間L[m]内に発光部E[m]に供給される駆動電流Zの態様(具体的には波形)を第1発光部EAと第2発光部EBとで相違させる。なお、発光部E[m]および受光部R[n]の各組合せと各鍵30との対応関係や、各発光部E[m]を第1発光部EAまたは第2発光部EBに選定する条件は、第1実施形態または第2実施形態と同様である。
<Third Embodiment>
In the first and second embodiments, the detection cycle Q is different between the first light emitting unit EA and the second light emitting unit EB. In the third embodiment, the mode (specifically, the waveform) of the drive current Z supplied to the light emitting unit E[m] within the light emitting period L[m] is set to the first light emitting unit EA and the second light emitting unit EB. Make a difference. The correspondence between each combination of the light emitting portion E[m] and the light receiving portion R[n] and each key 30, and each light emitting portion E[m] is selected as the first light emitting portion EA or the second light emitting portion EB. The conditions are the same as in the first or second embodiment.

図9は、第3実施形態において発光制御部42がM個の発光部E[1]〜E[M]の各々を発光させる動作の説明図である。発光制御部42は、M個の発光部E[1]〜E[M]の各々を発光期間L[m]における駆動電流Zの供給で順次に発光させる。第3実施形態の発光制御部42は、図9に例示される通り、第2発光部EBについては発光期間L[m]内で駆動電流Zを所定の電流に維持し、第1発光部EAについては発光期間L[m]内で駆動電流Zを段階的に変化させる。具体的には、第1発光部EAに供給される駆動電流Zは、発光期間L[m]内で電流z1から電流z2に変動する。なお、図9では、電流z2が電流z1を上回る場合を例示したが、電流z2が電流z1を下回る構成も採用される。図9に例示される通り、第2発光部EBの発光期間L[m]は、第1発光部EAの発光期間L[m]と比較して短時間(例えば半分)である。なお、第3実施形態では、検出周期Qは第1発光部EAと第2発光部EBとで共通する。 FIG. 9 is an explanatory diagram of an operation in which the light emission control unit 42 causes each of the M light emitting units E[1] to E[M] to emit light in the third embodiment. The light emission control unit 42 sequentially causes each of the M light emitting units E[1] to E[M] to emit light by supplying the drive current Z in the light emitting period L[m]. As illustrated in FIG. 9, the light emission control unit 42 of the third embodiment maintains the drive current Z at a predetermined current within the light emission period L[m] for the second light emission unit EB, and the first light emission unit EA. For, the drive current Z is changed stepwise within the light emission period L[m]. Specifically, the drive current Z supplied to the first light emitting unit EA changes from the current z1 to the current z2 within the light emitting period L[m]. In addition, although the case where the current z2 exceeds the current z1 is illustrated in FIG. 9, a configuration in which the current z2 is lower than the current z1 is also adopted. As illustrated in FIG. 9, the light emitting period L[m] of the second light emitting unit EB is shorter (for example, half) than the light emitting period L[m] of the first light emitting unit EA. In the third embodiment, the detection cycle Q is common to the first light emitting section EA and the second light emitting section EB.

動作検出部16のA/D変換器24は、発光部E[m]の発光期間L[m]内に各受光部R[n]の検出信号をA/D変換することで鍵30毎の検出データXを生成する。具体的には、第2発光部EBの発光期間L[m]では、受光部R[n]の検出信号に応じた1個の検出データXが受光部R[n]毎に生成される。他方、第1発光部EAの発光期間L[m]では、図9に例示される通り、電流z1の供給時の検出信号に応じた検出データX1と電流z2の供給時の検出信号に応じた検出データX2とがA/D変換器24により受光部R[n]毎に生成される。 The A/D converter 24 of the operation detecting unit 16 performs A/D conversion on the detection signal of each light receiving unit R[n] within the light emitting period L[m] of the light emitting unit E[m] to convert each key 30. The detection data X is generated. Specifically, in the light emission period L[m] of the second light emitting unit EB, one detection data X corresponding to the detection signal of the light receiving unit R[n] is generated for each light receiving unit R[n]. On the other hand, in the light emission period L[m] of the first light emitting unit EA, as illustrated in FIG. 9, the detection data X1 corresponding to the detection signal when the current z1 is supplied and the detection signal when the current z2 is supplied are responded to. The detection data X2 is generated by the A/D converter 24 for each light receiving unit R[n].

第3実施形態の動作解析部44は、第2発光部EBの発光期間L[m]にて生成された検出データXの解析により、当該第2発光部EBに対応する各鍵30の移動を解析する。また、動作解析部44は、第1発光部EAの発光期間L[m]にて生成された検出データX1および検出データX2の何れかを受光部R[n]毎に選択して各鍵30の移動を解析する。ここで、発光部E[m]に供給される電流と、当該電流の供給時に受光部R[n]が生成する検出信号の信号レベルとの関係は、例えば製造誤差や経年劣化に起因して、全部の鍵30が離鍵された状態でも受光部R[n]毎に相違し得る。以上の傾向を考慮して、第3実施形態の動作解析部44は、第1発光部EAの発光期間L[m]において、検出データX1および検出データX2のうち受光部R[n]の受光レベルが飽和しない範囲(例えば受光レベルが所定の閾値を下回る範囲)で大きい方を受光部R[n]毎に選択する。 The operation analysis unit 44 of the third embodiment detects the movement of each key 30 corresponding to the second light emitting unit EB by analyzing the detection data X generated in the light emitting period L[m] of the second light emitting unit EB. To analyze. Further, the operation analysis unit 44 selects either the detection data X1 or the detection data X2 generated in the light emission period L[m] of the first light emitting unit EA for each light receiving unit R[n] and selects each key 30. Analyze the movement of. Here, the relationship between the current supplied to the light emitting unit E[m] and the signal level of the detection signal generated by the light receiving unit R[n] when the current is supplied is due to, for example, manufacturing error or deterioration over time. , Even if all the keys 30 are released, the light receiving units R[n] may differ. In consideration of the above tendency, the operation analysis unit 44 of the third embodiment causes the light receiving unit R[n] of the detection data X1 and the detection data X2 to receive light during the light emitting period L[m] of the first light emitting unit EA. A larger one is selected for each light receiving unit R[n] in a range where the level is not saturated (for example, a range where the light receiving level is below a predetermined threshold).

以上の説明から理解される通り、第1発光部EAについては、発光期間L[m]内で駆動電流Zを変化させることで、発光部E[m]に供給される駆動電流Zと検出信号の信号レベルとの関係の誤差(N個の受光部R[1]〜R[N]の間の相違)が低減される。したがって、第1発光部EAに対応する各鍵30の移動を高精度に検出することが可能である。他方、第2発光部EBについては発光期間L[m]内で駆動電流Zが維持されるから、第2発光部EBについても発光期間L[m]内で駆動電流Zを変動させる構成と比較して消費電力が低減されるという利点がある。また、第2発光部EBについては第1発光部EAの発光期間L[m]と比較して短時間で検出データXを生成できるという利点もある。すなわち、第3実施形態においても複数の鍵30の移動を効率的に検出することが可能である。 As understood from the above description, regarding the first light emitting unit EA, the drive current Z and the detection signal supplied to the light emitting unit E[m] are changed by changing the drive current Z within the light emitting period L[m]. The error in the relation with the signal level of (the difference between the N light receiving units R[1] to R[N]) is reduced. Therefore, the movement of each key 30 corresponding to the first light emitting unit EA can be detected with high accuracy. On the other hand, since the drive current Z of the second light emitting portion EB is maintained within the light emitting period L[m], the second light emitting portion EB is also compared with the configuration in which the drive current Z is changed within the light emitting period L[m]. Therefore, there is an advantage that power consumption is reduced. Further, with respect to the second light emitting section EB, there is also an advantage that the detection data X can be generated in a short time as compared with the light emitting period L[m] of the first light emitting section EA. That is, also in the third embodiment, it is possible to efficiently detect the movement of the plurality of keys 30.

<変形例>
以上の各形態は多様に変形され得る。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様は適宜に併合され得る。
<Modification>
Each of the above forms can be variously modified. Specific modes of modification will be exemplified below. Two or more aspects arbitrarily selected from the following examples can be appropriately merged.

(1)前述の各形態では、各発光部E[m]を第1発光部EAおよび第2発光部EBの何れかに設定したが、M個の発光部E[1]〜E[M]の各々を3以上に区分することも可能である。例えば、各発光部E[m]を第1発光部EA(押鍵頻度:高)と第2発光部EB(押鍵頻度:中)と第3発光部EC(押鍵頻度:低)とに区分し、第1発光部EAと第2発光部EBと第3発光部ECとで駆動条件を相違させた構成が想定される。例えば、第2発光部EBは第1発光部EAと比較して長い検出周期Qで駆動され、第3発光部ECは第2発光部EBと比較して長い検出周期Q(例えば時間長q1の3倍)で駆動される。以上の説明から理解される通り、M個の発光部E[1]〜E[M]は、第1発光部EAおよび第2発光部EB以外も包含し得る。 (1) In each of the above-described embodiments, each light emitting unit E[m] is set to either the first light emitting unit EA or the second light emitting unit EB, but M light emitting units E[1] to E[M] are set. It is also possible to divide each of the above into three or more. For example, each light emitting unit E[m] is divided into a first light emitting unit EA (key pressing frequency: high), a second light emitting unit EB (key pressing frequency: medium), and a third light emitting unit EC (key pressing frequency: low). A configuration is assumed in which the driving conditions are different for the first light emitting unit EA, the second light emitting unit EB, and the third light emitting unit EC. For example, the second light emitting unit EB is driven with a longer detection period Q than the first light emitting unit EA, and the third light emitting unit EC is longer than the second light emitting unit EB in the detection period Q (for example, with the time length q1). 3 times). As can be understood from the above description, the M light emitting units E[1] to E[M] may include other than the first light emitting unit EA and the second light emitting unit EB.

(2)第2実施形態では、各発光部E[m]に対応する複数の鍵30にわたる押鍵回数Kの代表値または合計値を頻度指標F[m]として各発光部E[m]を第1発光部EAと第2発光部EBとに区分したが、押鍵回数K以外の押鍵の履歴(傾向)を加味して各発光部E[m]を第1発光部EAおよび第2発光部EBに区分することも可能である。 (2) In the second embodiment, each light emitting unit E[m] is defined as a frequency index F[m] using the representative value or the total value of the number of key presses K over the plurality of keys 30 corresponding to each light emitting unit E[m]. The light-emitting section E[m] is divided into the first light-emitting section EA and the second light-emitting section EB. It is also possible to divide into the light emitting portion EB.

例えば、動作解析部44により特定された移動速度(例えば過去の平均値)Vが押鍵回数Kとともに鍵30毎に使用履歴Hに記録される。移動速度Vは、前述の通り発音強度(ベロシティ)とも換言され得る。頻度解析部46は、押鍵回数Kの代表値または合計値を第2実施形態と同様に頻度指標F[m]として発光部E[m]毎に算定するとともに、発光部E[m]に対応する複数の鍵30について使用履歴Hに記録された移動速度Vの代表値(例えば平均値)を発光部E[m]毎に算定する。頻度解析部46は、第2実施形態と同様に、頻度指標F[m]が閾値FTHを下回る発光部E[m]を第2発光部EBに選定する。時間長q2の検出周期Qで発光制御部42が第2発光部EBを発光させる動作は第1実施形態や第2実施形態と同様である。 For example, the moving speed (for example, the past average value) V specified by the motion analysis unit 44 is recorded in the usage history H for each key 30 together with the number of key depressions K. The moving speed V can also be referred to as the pronunciation intensity (velocity) as described above. The frequency analysis unit 46 calculates the representative value or the total value of the number of key presses K as the frequency index F[m] for each light emitting unit E[m] as in the second embodiment, and the light emitting unit E[m] is calculated. A representative value (for example, an average value) of the moving speed V recorded in the usage history H for the corresponding plurality of keys 30 is calculated for each light emitting unit E[m]. Similar to the second embodiment, the frequency analysis unit 46 selects the light emitting unit E[m] whose frequency index F[m] is less than the threshold FTH as the second light emitting unit EB. The operation of causing the light emission control section 42 to emit light from the second light emitting section EB at the detection cycle Q of the time length q2 is the same as in the first and second embodiments.

また、頻度解析部46は、頻度指標F[m]が閾値FTHを上回る発光部E[m]について、移動速度Vの代表値が所定の閾値VTHを上回る場合(すなわち、高頻度で強打される傾向がある鍵30の発光部E[m])、頻度解析部46は、第2実施形態と同様に当該発光部E[m]を第1発光部EAに選定する。発光制御部42は、第1発光部EAを時間長q1の検出周期Qで順次に発光させる。他方、頻度指標F[m]が閾値FTHを上回る発光部E[m]について、移動速度Vの代表値が所定の閾値VTHを下回る場合(すなわち、高頻度で弱打される傾向がある鍵30の発光部E[m])、頻度解析部46は、当該発光部E[m]を第3発光部ECに選定する。利用者が弱打する傾向にある鍵30については、時間分解能よりも鍵30の位置の検出精度(位置分解能)を優先させる必要がある。そこで、発光制御部42は、第3実施形態で例示したように発光期間L[m]内で変動する駆動電流Zの供給により第3発光部ECを発光させる。したがって、第3発光部ECに対応する各鍵30の位置を高精度に検出することが可能である。すなわち、高頻度で強打される傾向がある各鍵30の移動を高い時間分解能で検出できる一方、高頻度で弱打される傾向がある各鍵30の位置を高精度に検出できるという利点がある。なお、第3発光部ECについては時間長q2の検出周期Qで発光させる構成が好適であるが、時間長q1の検出周期Qで第3発光部ECを発光させることも可能である。 Further, the frequency analysis unit 46, for the light emitting unit E[m] whose frequency index F[m] exceeds the threshold value FTH, when the representative value of the moving speed V exceeds the predetermined threshold value VTH (that is, it is struck with high frequency). The light emitting unit E[m] of the key 30 having a tendency and the frequency analyzing unit 46 select the light emitting unit E[m] as the first light emitting unit EA, as in the second embodiment. The light emission control unit 42 sequentially causes the first light emitting unit EA to emit light at the detection cycle Q of the time length q1. On the other hand, for the light emitting part E[m] whose frequency index F[m] exceeds the threshold value FTH, when the representative value of the moving speed V is lower than the predetermined threshold value VTH (that is, the key 30 which is apt to be hit with high frequency 30). The light emitting unit E[m]) and the frequency analyzing unit 46 select the light emitting unit E[m] as the third light emitting unit EC. For the key 30 that the user tends to tap, it is necessary to prioritize the position detection accuracy (position resolution) of the key 30 over the time resolution. Therefore, the light emission control unit 42 causes the third light emitting unit EC to emit light by supplying the drive current Z that fluctuates within the light emission period L[m] as illustrated in the third embodiment. Therefore, it is possible to detect the position of each key 30 corresponding to the third light emitting unit EC with high accuracy. That is, it is possible to detect the movement of each key 30 that is apt to be struck with high frequency with high time resolution, while detecting the position of each key 30 that is apt to be struck with high frequency with high accuracy. .. It is preferable that the third light emitting unit EC emits light in the detection cycle Q having the time length q2, but it is also possible to emit the light in the detection period Q having the time length q1.

(3)第3実施形態では、第1発光部EAに供給される駆動電流Zを発光期間L[m]内で2段階(z1,z2)に変化させたが、第1発光部EAに供給される駆動電流Zを発光期間L[m]内で3段階以上に変化させることも可能である。 (3) In the third embodiment, the drive current Z supplied to the first light emitting portion EA is changed in two steps (z1, z2) within the light emitting period L[m], but is supplied to the first light emitting portion EA. It is also possible to change the drive current Z to be performed in three or more steps within the light emission period L[m].

(4)第1実施形態から第3実施形態では、鍵盤楽器の各鍵30の移動の検出を例示したが、第1実施形態から第3実施形態で例示した構成を、鍵盤楽器の各ハンマの動作の検出にも同様に適用することが可能である。また、利用者が操作可能な複数の操作子(例えばボタンやツマミ)の各々の動作の検出にも、前述の各形態と同様の構成が利用され得る。以上の例示から理解される通り、検出装置100による検出の対象(例えば鍵30,ハンマ,操作子)は、移動可能な移動体として包括的に表現される。 (4) In the first to third embodiments, the detection of the movement of each key 30 of the keyboard instrument is illustrated. However, the configuration illustrated in the first to third embodiments is applied to each hammer of the keyboard instrument. The same can be applied to the detection of motion. Further, the same configuration as each of the above-described modes can be used for detecting the operation of each of a plurality of operators (for example, buttons and knobs) that can be operated by the user. As can be understood from the above examples, the target of detection by the detection device 100 (for example, the key 30, the hammer, the operator) is comprehensively expressed as a movable moving body.

(5)前述の各形態で例示した検出装置100は、前述の通り、制御装置12とプログラムとの協働で実現される。本発明の好適な態様に係るプログラムは、M個の発光部E[1]〜E[M]の各々とN個の受光部R[1]〜R[N]の各々との相異なる組合せに対応する移動体(例えば鍵30)毎に、発光部E[m]の発光時における当該移動体の位置に応じて変動する受光部R[n]の受光レベルを示す検出データXを生成する動作検出部16を制御可能なコンピュータ(例えば制御装置12)を、M個の発光部E[1]〜E[M]の各々を順次に発光させる発光制御部42として機能させるプログラムであって、発光制御部42は、M個の発光部E[1]〜E[M]のうちの第1発光部EAを発光させる駆動条件と、第1発光部EAとは異なる第2発光部EBを発光させる駆動条件とを相違させる。 (5) The detection device 100 exemplified in each of the above-described embodiments is realized by the cooperation of the control device 12 and the program as described above. The program according to the preferred embodiment of the present invention is applied to different combinations of each of the M light emitting parts E[1] to E[M] and each of the N light receiving parts R[1] to R[N]. Operation of generating detection data X indicating the light receiving level of the light receiving unit R[n] that varies depending on the position of the corresponding moving body when the light emitting unit E[m] emits light, for each corresponding moving body (for example, the key 30). A program that causes a computer (for example, the control device 12) capable of controlling the detection unit 16 to function as a light emission control unit 42 that sequentially emits light from each of the M light emitting units E[1] to E[M]. The control unit 42 causes the driving condition for causing the first light emitting unit EA of the M light emitting units E[1] to E[M] to emit light, and causes the second light emitting unit EB different from the first light emitting unit EA to emit light. Different from the driving condition.

以上に例示したプログラムは、コンピュータが読取可能な記録媒体に格納された形態で提供されてコンピュータにインストールされ得る。記録媒体は、例えば非一過性(non-transitory)の記録媒体であり、CD-ROM等の光学式記録媒体(光ディスク)が好例であるが、半導体記録媒体や磁気記録媒体等の公知の任意の形式の記録媒体を包含し得る。また、通信網を介した配信の形態でプログラムをコンピュータに配信することも可能である。 The programs exemplified above may be provided in a form stored in a computer-readable recording medium and installed in the computer. The recording medium is, for example, a non-transitory recording medium, and an optical recording medium (optical disk) such as a CD-ROM is a good example, but any known recording medium such as a semiconductor recording medium or a magnetic recording medium is used. The recording medium of this type may be included. It is also possible to distribute the program to the computer in the form of distribution via a communication network.

(6)本発明の好適な態様は、前述の各形態で例示した検出装置100の動作方法(検出方法)としても特定され得る。本発明の好適な態様に係る検出方法は、M個の発光部E[1]〜E[M]の各々とN個の受光部R[1]〜R[N]の各々との相異なる組合せに対応する移動体(例えば鍵30)毎に、発光部E[m]の発光時における当該移動体の位置に応じて変動する受光部R[n]の受光レベルを示す検出データXを生成する動作検出部16を制御可能なコンピュータ(例えば制御装置12)が、M個の発光部E[1]〜E[M]の各々を順次に発光させる発光制御部42として機能させる一方、M個の発光部E[1]〜E[M]のうちの第1発光部EAを発光させる駆動条件と、第1発光部EAとは異なる第2発光部EBを発光させる駆動条件とを相違させる。 (6) The preferred aspect of the present invention can be specified as an operation method (detection method) of the detection device 100 exemplified in each of the above-described embodiments. A detection method according to a preferred embodiment of the present invention is a combination of M light emitting portions E[1] to E[M] and N light receiving portions R[1] to R[N] different from each other. The detection data X indicating the light receiving level of the light receiving unit R[n] that changes according to the position of the moving body when the light emitting unit E[m] emits light is generated for each moving body (for example, the key 30) corresponding to. A computer (for example, the control device 12) capable of controlling the operation detection unit 16 functions as a light emission control unit 42 that sequentially emits light from each of the M light emitting units E[1] to E[M], while Among the light emitting units E[1] to E[M], the driving condition for causing the first light emitting unit EA to emit light is different from the driving condition for causing the second light emitting unit EB different from the first light emitting unit EA to emit light.

100…検出装置、12…制御装置、14…記憶装置、16…動作検出部、E[m]…発光部、R[n]…受光部、20…音源回路、22…放音機器、24…A/D変換器、30…鍵、32…遮光体、42…発光制御部、44…動作解析部、46…頻度解析部。
100... Detection device, 12... Control device, 14... Storage device, 16... Motion detection unit, E[m]... Light emitting unit, R[n]... Light receiving unit, 20... Sound source circuit, 22... Sound emitting device, 24... A/D converter, 30... Key, 32... Shading body, 42... Emission control section, 44... Operation analysis section, 46... Frequency analysis section.

Claims (7)

複数の発光部の各々と複数の受光部の各々との相異なる組合せに対応する移動体毎に、前記発光部の発光時における当該移動体の位置に応じて変動する前記受光部の受光レベルを示す検出データを生成する動作検出部と、
前記複数の発光部の各々を順次に発光させる発光制御部とを具備し、
前記発光制御部は、前記複数の発光部のうち移動の頻度が高い移動体に対応する第1発光部を発光させる周期と、移動の頻度が低い移動体に対応する第2発光部を発光させる周期とを相違させる
検出装置。
For each moving body corresponding to a different combination of each of the plurality of light emitting units and each of the plurality of light receiving units, a light receiving level of the light receiving unit that varies according to the position of the moving body when the light emitting unit emits light is set. An operation detection unit that generates the detection data shown,
A light emission control unit for sequentially emitting light from each of the plurality of light emitting units,
The light emission control unit includes a period for emitting the first light emitting portion the frequency of movement corresponding to high mobile among the plurality of light emitting portions to emit a second light emitting unit frequency of movement corresponding to the lower moving body A detector that makes the cycle different.
複数の発光部の各々と複数の受光部の各々との相異なる組合せに対応する移動体毎に、前記発光部の発光時における当該移動体の位置に応じて変動する前記受光部の受光レベルを示す検出データを生成する動作検出部と、
前記複数の発光部の各々を発光期間における駆動電流の供給で順次に発光させる発光制御部とを具備し、
前記発光制御部は、前記複数の発光部のうち移動の頻度が高い移動体に対応する第1発光部については前記発光期間内で駆動電流を複数の電流に変化させ移動の頻度が低い移動体に対応する第2発光部については前記発光期間内で駆動電流を一定に維持する
検出装置。
For each moving body that corresponds to a different combination of each of the plurality of light emitting units and each of the plurality of light receiving units, the light receiving level of the light receiving unit that varies according to the position of the moving body when the light emitting unit emits light is set. An operation detection unit that generates the detection data shown,
A light emission control unit that sequentially emits light from each of the plurality of light emitting units by supplying a drive current during a light emitting period ,
The light emission control unit changes the drive current to a plurality of currents within the light emission period for the first light emitting unit corresponding to the moving body having a high frequency of movement among the plurality of light emitting units, and moves the drive current having a low frequency of movement. A detection device that maintains a constant drive current within the light emission period for the second light emission unit corresponding to the body .
前記移動体は、鍵盤楽器の鍵またはハンマであり、
前記鍵盤楽器の音域のうち第1範囲に属する前記移動体は前記第1発光部に対応し、前記第1範囲の低音側の第2範囲または高音側の第3範囲に属する前記移動体は前記第2発光部に対応する
請求項または請求項の検出装置。
The moving body is a key or hammer of a keyboard instrument,
The moving body belonging to a first range of the range of the keyboard instrument corresponds to the first light emitting unit, and the moving body belonging to the second range on the low tone side or the third range on the high tone side of the first range is the detection device according to claim 1 or claim 2 corresponding to the second light-emitting portion.
前記発光部に対応する移動体に関する移動頻度の指標である頻度指標を前記複数の発光部の各々について算定し、前記各発光部の前記頻度指標に応じて前記第1発光部と前記第2発光部とを選定する頻度解析部
を具備する請求項または請求項の検出装置。
A frequency index, which is an index of the movement frequency of the moving body corresponding to the light emitting unit, is calculated for each of the plurality of light emitting units, and the first light emitting unit and the second light emitting unit are calculated according to the frequency index of each of the light emitting units. The detection device according to claim 1 or 2 , further comprising a frequency analysis unit that selects a unit.
前記頻度解析部は、前記複数の移動体に関する使用履歴を利用して、前記複数の発光部の各々について前記頻度指標を算定する
請求項の検出装置。
The detection device according to claim 4 , wherein the frequency analysis unit calculates the frequency index for each of the plurality of light emitting units by using a usage history regarding the plurality of moving bodies.
複数の発光部の各々と複数の受光部の各々との相異なる組合せに対応する移動体毎に、前記発光部の発光時における当該移動体の位置に応じて変動する前記受光部の受光レベルを示す検出データを生成する動作検出部を制御可能なコンピュータを、前記複数の発光部の各々を順次に発光させる発光制御部として機能させるプログラムであって、
前記発光制御部は、前記複数の発光部のうち移動の頻度が高い移動体に対応する第1発光部を発光させる周期と、移動の頻度が低い移動体に対応する第2発光部を発光させる周期とを相違させる
プログラム。
For each moving body that corresponds to a different combination of each of the plurality of light emitting units and each of the plurality of light receiving units, the light receiving level of the light receiving unit that varies according to the position of the moving body when the light emitting unit emits light is set. A program capable of causing a computer capable of controlling an operation detection unit that generates detection data to function as a light emission control unit that sequentially emits light from each of the plurality of light emitting units,
The light emission control unit includes a period for emitting the first light emitting portion the frequency of movement corresponding to high mobile among the plurality of light emitting portions to emit a second light emitting unit frequency of movement corresponding to the lower moving body A program that makes the cycle different.
複数の発光部の各々と複数の受光部の各々との相異なる組合せに対応する移動体毎に、前記発光部の発光時における当該移動体の位置に応じて変動する前記受光部の受光レベルを示す検出データを生成する動作検出部を制御可能なコンピュータを、前記複数の発光部の各々を発光期間における駆動電流の供給で順次に発光させる発光制御部として機能させるプログラムであって、
前記発光制御部は、前記複数の発光部のうち移動の頻度が高い移動体に対応する第1発光部については前記発光期間内で駆動電流を複数の電流に変化させ移動の頻度が低い移動体に対応する第2発光部については前記発光期間内で駆動電流を一定に維持する
プログラム。
For each moving body that corresponds to a different combination of each of the plurality of light emitting units and each of the plurality of light receiving units, the light receiving level of the light receiving unit that varies according to the position of the moving body when the light emitting unit emits light is set. A program that causes a computer capable of controlling an operation detection unit that generates detection data to function as a light emission control unit that sequentially causes each of the plurality of light emission units to emit light by supplying a drive current in a light emission period ,
The light emission control unit changes the drive current to a plurality of currents within the light emission period for the first light emitting unit corresponding to the moving body having a high frequency of movement among the plurality of light emitting units, and moves the drive current having a low frequency of movement. A program for maintaining a constant drive current within the light emission period for the second light emission unit corresponding to the body .
JP2016038806A 2016-03-01 2016-03-01 Detection device and program Active JP6728771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016038806A JP6728771B2 (en) 2016-03-01 2016-03-01 Detection device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038806A JP6728771B2 (en) 2016-03-01 2016-03-01 Detection device and program

Publications (2)

Publication Number Publication Date
JP2017156498A JP2017156498A (en) 2017-09-07
JP6728771B2 true JP6728771B2 (en) 2020-07-22

Family

ID=59808768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038806A Active JP6728771B2 (en) 2016-03-01 2016-03-01 Detection device and program

Country Status (1)

Country Link
JP (1) JP6728771B2 (en)

Also Published As

Publication number Publication date
JP2017156498A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
US6359207B1 (en) Position transducer system with built-in calibrator for moving object, method for accurately determining position of moving object and keyboard musical instrument equipped with the position transducer system
US9087494B2 (en) Musical instrument equipped with a pedal, and method therefor
KR100907592B1 (en) Optical transducer systems, optical modulators, and instruments using them for monitoring moving parts
CN1163445A (en) Keyboard music instrument with key monitor capable of accurately identifying key movement
US7411124B2 (en) Self-calibrating transducer system and musical instrument equipped with the same
US6229081B1 (en) Keyboard musical instrument, position sensing device and light-emitting controller both incorporated therein
CN109155125A (en) For calibrating the system and method for music apparatus
US8859877B2 (en) Damper drive device for musical instrument, and musical instrument
US8937239B2 (en) Light emission control device
KR100690466B1 (en) Musical instrument recording advanced music data codes for playback, music data generator and music data source for the musical instrument
EP3425625B1 (en) Detection device, keyboard musical instrument, detection method, and program
JP6728771B2 (en) Detection device and program
US20140130652A1 (en) Simulating muting in a drive control device for striking member in sound generation mechanism
US8859878B2 (en) Method and device for identifying half point of pedal on keyboard musical instrument
JP6665580B2 (en) Detection device and program
US20140305286A1 (en) Keyboard musical instrument, and method for reproducing half performance of pedal or key damper on keyboard musical instrument
US5834669A (en) Method and apparatus for optically determining note characteristics from hammer catchers in a keyboard operated musical instrument
US9384720B2 (en) Keyboard musical instrument, and method for recording half performance of pedal or key damper on keyboard musical instrument
JP3873823B2 (en) Reproduction performance evaluation device, musical instrument and keyboard musical instrument
JP4144288B2 (en) Performance information recording device and keyboard instrument
JP3903847B2 (en) Detection sensor evaluation device, electronic musical instrument and electronic keyboard musical instrument
JP6357772B2 (en) Electronic musical instrument, program and pronunciation pitch selection method
JP4218731B2 (en) Performance information output device
JP6343911B2 (en) Electronic musical instrument, program and pronunciation pitch selection method
JP2006099005A (en) Velocity-determining device of keyboard instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R151 Written notification of patent or utility model registration

Ref document number: 6728771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151