JP6727666B2 - Method for producing self-assembled composite of carbon nitride and graphene oxide - Google Patents

Method for producing self-assembled composite of carbon nitride and graphene oxide Download PDF

Info

Publication number
JP6727666B2
JP6727666B2 JP2018500312A JP2018500312A JP6727666B2 JP 6727666 B2 JP6727666 B2 JP 6727666B2 JP 2018500312 A JP2018500312 A JP 2018500312A JP 2018500312 A JP2018500312 A JP 2018500312A JP 6727666 B2 JP6727666 B2 JP 6727666B2
Authority
JP
Japan
Prior art keywords
lithium
self
carbon nitride
graphene oxide
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018500312A
Other languages
Japanese (ja)
Other versions
JP2018526310A (en
Inventor
ジ・ヒ・パク
クォン・ナム・ソン
ドゥ・キョン・ヤン
キ・ヨン・クォン
Original Assignee
エルジー・ケム・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー・ケム・リミテッド filed Critical エルジー・ケム・リミテッド
Publication of JP2018526310A publication Critical patent/JP2018526310A/en
Application granted granted Critical
Publication of JP6727666B2 publication Critical patent/JP6727666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0828Carbonitrides or oxycarbonitrides of metals, boron or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本出願は、2016年6月8日付け韓国特許出願第10−2016−0071216号に基づいた優先権の利益を主張し、当該韓国特許出願の文献に開示された全ての内容を本明細書の一部として含む。 This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0071216 dated June 8, 2016, and all contents disclosed in the document of the Korean patent application are hereby incorporated by reference. Including as part.

本発明は、窒化炭素と酸化グラフェンの自己組織化複合体に係り、より詳しくは、メラミン(Melamine)、トリチオシアヌル酸(Tri−thiocyanuric acid)及び酸化グラフェン(Graphene oxide:GO)が溶解された混合液を熱処理して製造される自己組織化複合体をリチウム−硫黄電池の正極に含ませてリチウムポリスルフィドの湧出を抑制するものである。 The present invention relates to a self-assembled composite of carbon nitride and graphene oxide, and more specifically, a mixed solution in which melamine, trithiocyanuric acid and graphene oxide (GO) are dissolved. The self-assembling composite produced by heat treatment is included in the positive electrode of a lithium-sulfur battery to suppress the outflow of lithium polysulfide.

最近、電子製品、電子機器、通信機器などの小型軽量化が急速に進められており、環境問題と係る電気自動車の必要性が大きくなることによって、これら製品の動力源として使われる二次電池の性能改善に対する要求も増加する実情である。その中で、リチウム二次電池は高エネルギー密度及び高い標準電極電位のため高性能電池として相当脚光を浴びている。 Recently, electronic products, electronic devices, communication devices, etc. have been rapidly reduced in size and weight. Due to the growing need for electric vehicles that are environmentally friendly, secondary batteries used as power sources for these products have become In fact, the demand for performance improvement is increasing. Among them, the lithium secondary battery is in the spotlight as a high performance battery because of its high energy density and high standard electrode potential.

特に、リチウム−硫黄(Li−S)電池は、S−S結合(sulfur−sulfur bond)を有する硫黄系物質を正極活物質として使用し、リチウム金属を負極活物質として使用する二次電池である。正極活物質の主材料である硫黄は、資源がとても豊かで、毒性がなく、原子量が小さい長所がある。また、リチウム−硫黄電池の理論放電容量は1675mAh/g−sulfurで、理論エネルギー密度が2,600Wh/kgであって、現在研究されている他の電池システムの理論エネルギー密度(Ni−MH電池:450Wh/kg、Li−FeS電池:480Wh/kg、Li−MnO電池:1,000Wh/kg、Na−S電池:800Wh/kg)に比べて非常に高いため、現在まで開発されている電池の中で最も有望な電池である。 In particular, a lithium-sulfur (Li-S) battery is a secondary battery that uses a sulfur-based material having an S-S bond (sulfur-sulfur bond) as a positive electrode active material and lithium metal as a negative electrode active material. .. Sulfur, which is the main material of the positive electrode active material, has the advantages of being extremely rich in resources, non-toxic, and having a small atomic weight. Further, the theoretical discharge capacity of the lithium-sulfur battery is 1675 mAh/g-sulfur, and the theoretical energy density is 2,600 Wh/kg, which is the theoretical energy density (Ni-MH battery: Ni-MH battery: 450 Wh/kg, Li-FeS battery: 480 Wh/kg, Li-MnO 2 battery: 1,000 Wh/kg, Na-S battery: 800 Wh/kg). The most promising battery of all.

リチウム−硫黄電池の放電反応の中で、負極(Anode)ではリチウムの酸化反応が発生し、正極(Cathode)では硫黄の還元反応が発生する。放電前の硫黄は、環状のS構造を有しているが、還元反応(放電)の際にS−S結合が切れながらSの酸化数が減少し、酸化反応(充電)の際にS−S結合が再び形成されSの酸化数が増加する酸化−還元反応を利用して電気エネルギーを貯蔵及び生成する。このような反応の中で、硫黄は環状のSで還元反応によって線形構造のリチウムポリスルフィド(Lithium polysulfide、Li、x=8、6、4、2)に変換するようになり、結局このようなリチウムポリスルフィドが全部還元されれば、最終的にリチウムスルフィド(Lithium sulfide、LiS)が生成される。それぞれのリチウムポリスルフィドに還元される過程によって、リチウム−硫黄電池の放電挙動は、リチウムイオン電池とは違って段階的に放電電圧を示すことが特徴である。 In the discharge reaction of the lithium-sulfur battery, an oxidation reaction of lithium occurs in the negative electrode (Anode) and a reduction reaction of sulfur occurs in the positive electrode (Cathode). Sulfur before discharge has a cyclic S 8 structure, but the oxidation number of S decreases while the S—S bond is broken during the reduction reaction (discharge), and S during the oxidation reaction (charge). The electric energy is stored and generated by utilizing an oxidation-reduction reaction in which the -S bond is re-formed and the S oxidation number increases. In such a reaction, sulfur is converted to a linear structure lithium polysulfide (Lithium polysulfide, Li 2 S x , x=8, 6, 4, 2 ) by a reduction reaction with cyclic S 8 , and eventually, When all such lithium polysulfide is reduced, finally lithium sulfide (Li sulphide, Li 2 S) is produced. The discharge behavior of the lithium-sulfur battery is different from that of the lithium-ion battery in that the discharge voltage of the lithium-sulfur battery gradually changes depending on the reduction process of each lithium polysulfide.

Li、Li、Li、Liなどのリチウムポリスルフィドの中で、特に、硫黄の酸化数が高いリチウムポリスルフィド(Li、普通x>4)は、親水性の電解液に容易に溶ける。電解液に溶けたリチウムポリスルフィドは、濃度の差によってリチウムポリスルフィドが生成された正極から遠い方へ拡散していく。このように正極から湧出されたリチウムポリスルフィドは、正極反応領域の外へと遺失されてリチウムスルフィド(LiS)への段階的還元が不可能である。すなわち、正極と負極から脱して溶解された状態で存在するリチウムポリスルフィドは、電池の充・放電反応に参加することができなくなるので、正極で電気化学反応に参加する硫黄物質の量が減少し、結局、リチウム−硫黄電池の充電容量減少及びエネルギー減少を引き起こす主な要因となる。 Among lithium polysulfides such as Li 2 S 8 , Li 2 S 6 , Li 2 S 4 , and Li 2 S 2 , especially lithium polysulfides having a high oxidation number of sulfur (Li 2 S x , usually x>4) are Easily soluble in hydrophilic electrolyte. The lithium polysulfide dissolved in the electrolytic solution diffuses away from the positive electrode where the lithium polysulfide was generated due to the difference in concentration. The lithium polysulfide bled from the positive electrode in this way is lost outside the positive electrode reaction region and cannot be reduced stepwise to lithium sulfide (Li 2 S). That is, since lithium polysulfide existing in a dissolved state after being removed from the positive electrode and the negative electrode cannot participate in the charge/discharge reaction of the battery, the amount of the sulfur substance participating in the electrochemical reaction in the positive electrode decreases, After all, it is a main factor causing reduction of charge capacity and reduction of energy of the lithium-sulfur battery.

なお、負極へと拡散したリチウムポリスルフィドは、電解液中に浮遊または沈澱される他、リチウムと直接反応して負極表面にLiS形態で固着されるので、リチウム金属負極を腐食させる問題を発生させる。 The lithium polysulfide diffused into the negative electrode floats or precipitates in the electrolytic solution and directly reacts with lithium to be fixed on the negative electrode surface in the form of Li 2 S, which causes a problem of corroding the lithium metal negative electrode. Let

このようなリチウムポリスルフィドの湧出を最小化するために、多様な炭素構造や金属酸化物(Metal oxide)に硫黄粒子を担持して複合体を形成する正極複合体のモルフォロジー(Morphology)を変形させる研究が進められている。 In order to minimize the outflow of lithium polysulfide, a study has been made to modify the morphology (morphology) of a positive electrode composite in which sulfur particles are supported on various carbon structures or metal oxides (metal oxides) to form a composite. Is being promoted.

この中で、窒素がドーピングされた炭素素材の場合、表面極性(Polarity)の変化によってリチウムポリスルフィドが吸着され、炭素表面にドーピングされた幾つかの窒素作用基の中で、ピロール基(Pyrrolic group)とピリジン基(Pyridinic group)がリチウムポリスルフィドの吸着に効果を奏すると報告されている(Chem Mater.、2015,27,2048/Adv.Funct.Mater.、2014,24,1243)。 Among them, in the case of a carbon material doped with nitrogen, lithium polysulfide is adsorbed due to a change in surface polarity, and among the several nitrogen functional groups doped on the carbon surface, a pyrrole group is formed. And a pyridine group (Pyridinic group) are reported to be effective in adsorbing lithium polysulfide (Chem Mater., 2015, 27, 2048/Adv. Funct. Mater., 2014, 24, 1243).

特に、窒化炭素(C、Carbon nitride:CN)は、炭素と窒素が交互に配列され、六角形の輪が2次元に広がる構造を有する二元化合物であって、リチウムポリスルフィド吸着に有利なピリジン基を多量含んでおり、リチウム−硫黄電池で問題となるリチウムポリスルフィドの湧出を抑制できると知られている(Nano Lett.、2015,15,5137)。このような窒化炭素は、一般的に尿素(urea)、ジシアンジアミド(dicyandiamide)、メラミン(melamine)などの窒素前駆体を熱処理することで合成することができる。しかし、窒化炭素は10−11S/mの低い伝導性によって、それだけでは電池の電極素材として活用するのに限界があるのが実情である。 In particular, carbon nitride (C 3 N 4 , carbon nitride: CN) is a binary compound having carbon and nitrogen arranged alternately and having a hexagonal ring extending in two dimensions, which is advantageous for lithium polysulfide adsorption. It contains a large amount of pyridine group, and is known to be capable of suppressing the outflow of lithium polysulfide, which is a problem in lithium-sulfur batteries (Nano Lett., 2015, 15, 5137). Such carbon nitride can be generally synthesized by heat-treating a nitrogen precursor such as urea, dicyandiamide, and melamine. However, due to the low conductivity of 10 −11 S/m, carbon nitride is limited in its practical use as a battery electrode material.

韓国登録特許第1347789号公報Korean Registered Patent No. 1347789

Chem Mater.、2015,27,2048Chem Mater. , 2015, 27, 2048 Adv.Funct.Mater.、2014,24,1243Adv. Funct. Mater. , 2014, 24, 1243 Nano Lett.、2015,15,5137Nano Lett. , 2015, 15, 5137

上述したように、リチウム−硫黄電池は、正極から湧出して拡散されるリチウムポリスルフィドによって充・放電サイクルが進められるほど、電池の容量及び寿命の特性が低下する問題点がある。ここで、本発明者らは、リチウム−硫黄電池の正極材として、リチウムポリスルフィドの吸着に性能を表すピリジン基(Pyridinic group)を多量含み、伝導性が改善された窒化炭素−酸化グラフェン(Carbon nitride−Graphene oxide)の複合体を開発しようとした。
したがって、本発明の目的は、リチウムポリスルフィドの湧出及び拡散が抑制されたリチウム−硫黄電池を提供することである。
As described above, the lithium-sulfur battery has a problem that the capacity and life characteristics of the battery deteriorate as the charging/discharging cycle is advanced by the lithium polysulfide that is spouted from the positive electrode and diffused. Here, as a positive electrode material of a lithium-sulfur battery, the present inventors have included a large amount of a pyridine group (Pyridinic group), which exhibits performance in adsorbing lithium polysulfide, and have improved conductivity, and thus carbon nitride-graphene oxide (Carbon nitride). -An attempt was made to develop a complex of Graphene oxide).
Therefore, it is an object of the present invention to provide a lithium-sulfur battery in which the effusion and diffusion of lithium polysulfide is suppressed.

上記の目的を達成するために、本発明は、メラミン(Melamine)、トリチオシアヌル酸(Tri−thiocyanuric acid)及び酸化グラフェン(Graphene oxide)が溶解された混合液を熱処理して製造される窒化炭素(CN)と酸化グラフェン(GO)の自己組織化複合体(Self−assembled composite)の製造方法を提供する。 In order to achieve the above object, the present invention provides a carbon nitride (CN) produced by heat treating a mixed solution of melamine, tri-thiocyanuric acid and graphene oxide. And a graphene oxide (GO) self-assembled composite (Self-assembled composite).

また、本発明は、上記製造方法で製造される窒化炭素(CN)と酸化グラフェン(GO)の自己組織化複合体(Self−assembled composite)を提供する。 The present invention also provides a self-assembled composite of carbon nitride (CN) and graphene oxide (GO) manufactured by the above manufacturing method.

また、本発明は、上記製造方法で製造される窒化炭素(CN)と酸化グラフェン(GO)の自己組織化複合体(Self−assembled composite)を含むリチウム−硫黄電池用正極及びこれを含むリチウム−硫黄電池を提供する。 In addition, the present invention provides a positive electrode for a lithium-sulfur battery including a self-assembled composite of carbon nitride (CN) and graphene oxide (GO) manufactured by the above manufacturing method, and a lithium-containing positive electrode including the same. Provide a sulfur battery.

本発明によれば、ピリジン基(Pyridinic group)を多量含み、伝導性が改善された窒化炭素(CN)と酸化グラフェン(GO)の自己組織化複合体(Self−assembled composite)が充・放電時に正極から湧出されるリチウムポリスルフィドを吸着して拡散を防止する役割をするので、シャトル反応を抑制し、リチウム−硫黄電池の容量及び寿命特性を向上させることができる。 According to the present invention, a self-assembled composite of carbon nitride (CN) and graphene oxide (GO) containing a large amount of a pyridine group (Pyridinic group) and having improved conductivity (Self-assembled composite) is charged and discharged. Since it plays the role of preventing the diffusion by adsorbing the lithium polysulfide that springs from the positive electrode, it is possible to suppress the shuttle reaction and improve the capacity and life characteristics of the lithium-sulfur battery.

本発明の実施例1によるメラミン、トリチオシアヌル酸と酸化グラフェンの自己組織化複合体の走査顕微鏡イメージである。3 is a scanning microscope image of a self-assembled complex of melamine, trithiocyanuric acid and graphene oxide according to Example 1 of the present invention. 本発明の実施例1によるメラミン、トリチオシアヌル酸と酸化グラフェンの自己組織化複合体を熱処理して製造されたGO/CN自己組織化複合体の走査顕微鏡イメージである。1 is a scanning microscope image of a GO/CN self-assembled composite prepared by heat-treating a self-assembled composite of melamine, trithiocyanuric acid and graphene oxide according to Example 1 of the present invention. 本発明の実施例2によるS−(GO/CN)複合体の走査顕微鏡イメージである。3 is a scanning microscope image of an S-(GO/CN) complex according to Example 2 of the present invention. 本発明の比較例1によるメラミンとトリチオシアヌル酸の自己組織化複合体の走査顕微鏡イメージである。3 is a scanning microscope image of a self-assembled complex of melamine and trithiocyanuric acid according to Comparative Example 1 of the present invention. 本発明の比較例1によるメラミンとトリチオシアヌル酸の自己組織化複合体を熱処理して製造された窒化炭素の走査顕微鏡イメージである。1 is a scanning microscope image of carbon nitride produced by heat-treating a self-assembled composite of melamine and trithiocyanuric acid according to Comparative Example 1 of the present invention. 本発明の比較例1による窒化炭素のXPS分析スペクトルである。3 is an XPS analysis spectrum of carbon nitride according to Comparative Example 1 of the present invention. 本発明の実施例1によるGO/CN自己組織化複合体のXPS分析スペクトルである。3 is an XPS analysis spectrum of a GO/CN self-assembled composite according to Example 1 of the present invention. 本発明の実施例1によるGO/CN自己組織化複合体の自己組織化複合体の粉体抵抗データである。3 is a powder resistance data of the self-assembled composite of GO/CN self-assembled composite according to Example 1 of the present invention. 本発明の製造例1によるリチウム−硫黄電池の放電容量を示したデータである。3 is data showing a discharge capacity of a lithium-sulfur battery according to Production Example 1 of the present invention. 本発明の製造例2によるリチウム−硫黄電池の放電容量を示したデータである。3 is data showing a discharge capacity of a lithium-sulfur battery according to Production Example 2 of the present invention. 本発明の製造例3によるリチウム−硫黄電池の放電容量を示したデータである。3 is data showing a discharge capacity of a lithium-sulfur battery according to Production Example 3 of the present invention. 本発明の製造例1、2及び3によるリチウム−硫黄電池のサイクル寿命特性と充・放電効率を示したデータである。3 is data showing cycle life characteristics and charge/discharge efficiency of lithium-sulfur batteries according to Production Examples 1, 2 and 3 of the present invention. 本発明の製造例4によるリチウム−硫黄電池の放電容量を示したデータである。3 is data showing a discharge capacity of a lithium-sulfur battery according to Production Example 4 of the present invention. 本発明の製造例4によるリチウム−硫黄電池のサイクル寿命特性と充・放電効率を示したデータである。3 is data showing cycle life characteristics and charge/discharge efficiency of a lithium-sulfur battery according to Production Example 4 of the present invention.

以下、本発明の好ましい実施例を添付の例示図面に基づいて詳しく説明する。このような図面は、本発明を説明するための一具現例であって、幾つか異なる形態で具現されてもよく、本明細書に限定されない。この時、図面では本発明を明確に説明するため、説明と無関係な部分を省略し、明細書全体に亘って類似する部分に対しては、類似する図面符号を使用した。また、図面で表示された構成要素の大きさ及び相対的な大きさは、実際の縮尺とは無関係であり、説明の明瞭性のために縮小されたり誇張されたこともある。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying exemplary drawings. The drawings are exemplary embodiments for explaining the present invention, and may be embodied in different forms, and are not limited to the present specification. At this time, in order to clearly describe the present invention in the drawings, portions unrelated to the description are omitted, and similar reference numerals are used for similar portions throughout the specification. Further, the size and relative size of the components shown in the drawings are irrelevant to the actual scale, and may be reduced or exaggerated for clarity of explanation.

本発明における自己組織化複合体は、メラミンとトリチオシアヌル酸(または、これに酸化グラフェンを添加して)が前駆体状態で化学反応を行わずに、静電引力によって結合された状態であることに対し、自己組織化複合体は、メラミン、トリチオシアヌル酸と酸化グラフェンが熱処理によって化学反応を引き起こし、窒化炭素を形成して酸化グラフェンと複合化されたことを意味する。 The self-assembled complex in the present invention is a state in which melamine and trithiocyanuric acid (or graphene oxide added thereto) do not undergo a chemical reaction in a precursor state and are bound by electrostatic attraction. On the other hand, the self-assembled complex means that melamine, trithiocyanuric acid and graphene oxide caused a chemical reaction by heat treatment to form carbon nitride and were complexed with graphene oxide.

本発明は、窒化炭素(Carbon nitride:CN)の合成方式によって前駆体としてメラミン(Melamine)とトリチオシアヌル酸(Tri−thiocyanuric acid)を熱処理する方式を選択し、混合過程で伝導性を与えることができる酸化グラフェン(Graphene oxide)を添加して自己組織化複合体(Self−assembled composite)を製造し、このように伝導性が改善された素材が適用された正極及びリチウム−硫黄電池を提示する。 The present invention can provide conductivity in a mixing process by selecting a method of heat-treating melamine and trithiocyanuric acid as precursors by a carbon nitride (CN) synthesis method. Graphene oxide is added to prepare a self-assembled composite, and a positive electrode and a lithium-sulfur battery to which the material having improved conductivity is applied are presented.

窒化炭素(CN)と酸化グラフェン(GO)の自己組織化複合体(以下、GO/CN自己組織化複合体)は、窒化炭素の電子輸送能力を酸化グラフェンが補うことができるので、窒化炭素の電子伝達に対する触媒活性を向上させることができる。 A self-assembled composite of carbon nitride (CN) and graphene oxide (GO) (hereinafter, GO/CN self-assembled composite) can be used because graphene oxide can supplement the electron transporting ability of carbon nitride. The catalytic activity for electron transfer can be improved.

本発明によれば、GO/CN自己組織化複合体は、窒化炭素の前駆体物質と酸化グラフェンが溶解された混合液を熱処理して製造することができる。この時、窒化炭素の前駆体物質として、メラミン(Melamine)、トリチオシアヌル酸(Tri−thiocyanuric acid)を適用することが好ましい。 According to the present invention, the GO/CN self-assembled composite can be manufactured by heat-treating a mixed solution in which a precursor material of carbon nitride and graphene oxide are dissolved. At this time, it is preferable to apply melamine and tri-thiocyanuric acid as carbon nitride precursor substances.

メラミンとトリチオシアヌル酸をジメチルスルホキシド(Dimethyl sulfoxide:DMSO)溶媒に溶かした後で水を添加すれば、自己組織化複合体を形成するようになる。このように自己組織化複合体を形成するメラミンとトリチオシアヌル酸は、水素結合及び静電引力で結合され、なお、π−π相互作用(π−π Interaction)を通じて積層(Stacking)される。このようなメラミンとトリチオシアヌル酸の自己組織化複合体をヘリウム(He)、窒素(N)、アルゴン(Ar)、ネオン(Ne)またはキセノン(Xe)のような不活性気体雰囲気で400ないし700℃で1ないし10時間熱処理すると、直方体形状の窒化炭素を形成する。 When melamine and trithiocyanuric acid are dissolved in a dimethylsulfoxide (DMSO) solvent and water is added, a self-assembled complex is formed. Thus, melamine and trithiocyanuric acid that form a self-assembled complex are bonded by hydrogen bond and electrostatic attraction, and are stacked through π-π interaction (π-π Interaction). The self-assembled complex of melamine and trithiocyanuric acid may be used in an inert gas atmosphere such as helium (He), nitrogen (N 2 ), argon (Ar), neon (Ne) or xenon (Xe) at 400 to 700. When heat-treated at 1° C. for 1 to 10 hours, rectangular parallelepiped carbon nitride is formed.

上述したメラミンとトリチオシアヌル酸の自己組織化複合体の形成原理を利用して、DMSOにメラミンとトリチオシアヌル酸を溶解した後、水に溶解された酸化グラフェン(Graphene oxide:GO)を混合すれば、図3に図示されたような自己組織化複合体を形成し、以後、上述した方法と同じ方法により、上述した不活性気体雰囲気で400ないし700℃で1ないし10時間熱処理すると、ナノチューブタイプのGO/CN自己組織化複合体を形成することができる。 Utilizing the above-described principle of forming a self-assembled complex of melamine and trithiocyanuric acid, if melamine and trithiocyanuric acid are dissolved in DMSO and then graphene oxide (GO) dissolved in water is mixed, 3, a self-assembled complex as shown in FIG. 3 is formed, and then heat-treated at 400 to 700° C. for 1 to 10 hours in the above-mentioned inert gas atmosphere by the same method as described above to obtain the nanotube-type GO/ A CN self-assembled complex can be formed.

より具体的に、メラミン、トリチオシアヌル酸及び酸化グラフェンが溶解された混合液でメラミンとトリチオシアヌル酸のモル含量比は、2:1ないし1:2であることが自己組織化複合体を形成するのに最も好ましいが、本発明ではこれを制限しない。また、上記混合液で酸化グラフェンは、メラミンとトリチオシアヌル酸の重量対比0.1〜90重量%の範囲内で添加し、GO/CN自己組織化複合体に構成しようとする含量より過量で添加することが好ましい。これは溶媒を取り除く洗浄及びフィルタリング過程でGO/CN自己組織化複合体を形成して、残りの酸化グラフェンが流出されるためである。このように製造されたGO/CN自己組織化複合体において、酸化グラフェンの含量はGO/CN自己組織化複合体の全体重量対比1ないし50重量%で含有されてもよい。 More specifically, the molar ratio of melamine to trithiocyanuric acid is 2:1 to 1:2 in the mixed solution in which melamine, trithiocyanuric acid and graphene oxide are dissolved. Most preferably, the invention is not limited to this. Further, graphene oxide in the above mixture is added within a range of 0.1 to 90% by weight with respect to the weight of melamine and trithiocyanuric acid, and is added in an amount more than the content to constitute the GO/CN self-assembled complex. It is preferable. This is because the GO/CN self-assembled complex is formed in the washing and filtering process for removing the solvent, and the remaining graphene oxide is discharged. In the GO/CN self-assembled composite thus prepared, the content of graphene oxide may be 1 to 50% by weight based on the total weight of the GO/CN self-assembled composite.

[リチウム−硫黄電池用正極]
前述した一具現例で提示するGO/CN自己組織化複合体は、リチウム−硫黄電池の正極活物質として使用する硫黄と単純混合して使用したり、複合化された形態で使うことができる。このようなGO/CN自己組織化複合体は、リチウムポリスルフィドを吸着するようになって、結果、放電容量が増加し、過電圧の特性を改善することができる。また、優れた放電容量の維持率を示し、長期間のサイクル後にも高容量を保つ。特に、複合化された形態は、GO/CN自己組織化複合体の表面を硫黄でコーティングした構造である場合、硫黄との接触面積が増加してポリスルフィドをさらに効果的に吸着することができる。
[Cathode for lithium-sulfur battery]
The GO/CN self-assembling composite presented in the above-described embodiment may be used as a simple mixture with sulfur used as a positive electrode active material of a lithium-sulfur battery, or in a composite form. The GO/CN self-assembled composite can adsorb lithium polysulfide, resulting in increased discharge capacity and improved overvoltage characteristics. In addition, it exhibits an excellent discharge capacity retention rate and maintains a high capacity even after a long-term cycle. In particular, when the composite form has a structure in which the surface of the GO/CN self-assembled composite is coated with sulfur, the contact area with sulfur is increased and polysulfide can be more effectively adsorbed.

正極は、正極活物質として硫黄系物質は、硫黄元素(Elemental sulfur、S8)、硫黄系化合物またはこれらの混合物を含むことができるし、これらは導電材と複合して適用することができる。上記硫黄系列化合物は、具体的に、Li(n≧1)、有機硫黄化合物または炭素−硫黄ポリマー((C:x=2.5〜50、n≧2)などであってもよい。 In the positive electrode, the sulfur-based material as a positive electrode active material may include elemental sulfur (S8), a sulfur-based compound, or a mixture thereof, and these may be applied in combination with a conductive material. Specific examples of the sulfur-based compound include Li 2 S n (n≧1), organic sulfur compounds or carbon-sulfur polymers ((C 2 S x ) n : x=2.5 to 50, n≧2). May be

上記導電材は、多孔性であってもよい。よって、上記導電材としては、多孔性及び導電性を有するものであれば、制限されずに使うことができるし、例えば、多孔性を有する炭素系物質を使うことができる。このような炭素系物質としては、カーボンブラック、グラファイト、グラフェン、活性炭、炭素繊維、炭素ナノチューブ(CNT)などを使うことができる。また、金属メッシュなどの金属性纎維;銅、銀、ニッケル、アルミニウムなどの金属性粉末;またはポリフェニレン誘導体などの有機導電性材料も使うことができる。上記導電性材料は、単独または混合して使用されてもよい。 The conductive material may be porous. Therefore, the conductive material can be used without limitation as long as it has porosity and conductivity, and for example, a carbonaceous material having porosity can be used. As such a carbon-based material, carbon black, graphite, graphene, activated carbon, carbon fiber, carbon nanotube (CNT) or the like can be used. Further, a metal fiber such as a metal mesh; a metal powder such as copper, silver, nickel or aluminum; or an organic conductive material such as a polyphenylene derivative can be used. The above conductive materials may be used alone or in combination.

一具現例として、上記GO/CN自己組織化複合体を含む正極材を混合してスラリーで製造したり、他の具現例として、上記GO/CN自己組織化複合体を硫黄系物質とS−(GO/CN)複合体を形成した後、スラリーで製造することができる。この時、GO/CN自己組織化複合体、硫黄系物質及び導電材を所定の配合比で混合した混合物を適用してもよく、好ましくは、GO/CN自己組織化複合体は、全体正極材の重量対比0.5〜50重量%で含まれることが、正極活物質である硫黄の含量を一定水準以上に確保することができるので好ましい。 In one embodiment, the positive electrode material containing the GO/CN self-assembled composite is mixed to produce a slurry, or in another embodiment, the GO/CN self-assembled composite is mixed with a sulfur-based material and S-. After forming the (GO/CN) complex, it can be manufactured in a slurry. At this time, a mixture obtained by mixing the GO/CN self-assembled composite, the sulfur-based substance and the conductive material at a predetermined mixing ratio may be applied. Preferably, the GO/CN self-assembled composite is the whole positive electrode material. It is preferable that the content of sulfur as the positive electrode active material be maintained at a certain level or more, in an amount of 0.5 to 50% by weight relative to the weight of the above.

上記正極スラリーを集電体に塗布し、真空乾燥してリチウム−硫黄電池用正極を形成することができる。上記スラリーは、スラリーの粘度及び形成しようとする正極の厚さによって適切な厚さで集電体にコーティングすることができ、好ましくは、10nmないし1μmの範囲内で適切に選択することができる。 The positive electrode slurry can be applied to a current collector and vacuum dried to form a positive electrode for a lithium-sulfur battery. The slurry may be coated on the current collector with an appropriate thickness depending on the viscosity of the slurry and the thickness of the positive electrode to be formed, and may be appropriately selected within the range of 10 nm to 1 μm.

この時、上記スラリーをコーティングする方法としての制限はなく、例えば、ドクターブレードコーティング(Doctor blade coating)、ディップコーティング(Dip coating)、グラビアコーティング(Gravure coating)、スリットダイコーティング(Slit die coating)、スピンコーティング(Spin coating)、コンマコーティング(Comma coating)、バーコーティング(Bar coating)、リバースロールコーティング(Reverse roll coating)、スクリーンコーティング(Screen coating)、キャップコーティング(Cap coating)の方法などを行って製造してもよい。 At this time, there is no limitation on the method of coating the slurry, for example, doctor blade coating, dip coating, gravure coating, slit die coating, spin coating. It is manufactured by a method such as coating, comma coating, bar coating, reverse roll coating, screen coating, and cap coating. May be.

上記集電体では、一般的に3〜500μmの厚さで作ることができるし、電池に化学的変化を引き起こさずに、高い導電性を有するものであれば特に制限されない。具体的に、ステンレススチール、アルミニウム、銅、チタンなどの導電性物質を使うことができ、さらに具体的に、カーボン−コーティングされたアルミニウム集電体を使うことができる。炭素がコーティングされたアルミニウム基板を使うことが、炭素がコーティングされていないものに比べて活物質に対する接着力が優秀であり、接触抵抗が低くて、アルミニウムのポリスルフィドによる腐食を防止することができる長所がある。集電体はフィルム、シート、ホイル、ネット、多孔質体、発泡体または不織布体など、多様な形態が可能である。 The current collector can be generally formed with a thickness of 3 to 500 μm, and is not particularly limited as long as it has high conductivity without causing a chemical change in the battery. Specifically, a conductive material such as stainless steel, aluminum, copper, or titanium can be used, and more specifically, a carbon-coated aluminum current collector can be used. The use of a carbon-coated aluminum substrate has better adhesion to the active material than a non-carbon-coated aluminum substrate, low contact resistance, and can prevent corrosion of aluminum by polysulfides. There is. The current collector may have various forms such as a film, a sheet, a foil, a net, a porous body, a foamed body or a non-woven body.

[リチウム−硫黄電池]
上記リチウム−硫黄電池用正極;負極活物質としてリチウム金属またはリチウム合金を含む負極;上記正極と負極の間に位置する分離膜;及び上記負極、正極及び分離膜に含浸されており、リチウム塩と有機溶媒を含む電解質を含むことができる。
[Lithium-sulfur battery]
The positive electrode for a lithium-sulfur battery; a negative electrode containing lithium metal or a lithium alloy as a negative electrode active material; a separation film positioned between the positive electrode and the negative electrode; and a lithium salt impregnated in the negative electrode, the positive electrode and the separation film. An electrolyte containing an organic solvent can be included.

上記負極は、負極活物質としてリチウムイオン(Li)を可逆的に吸蔵(Intercalation)または放出(Deintercalation)できる物質、リチウムイオンと反応して可逆的にリチウム含有化合物を形成することができる物質、リチウム金属またはリチウム合金を使うことができる。上記リチウムイオン(Li)を可逆的に吸蔵または放出できる物質は、例えば、結晶質炭素、非晶質炭素またはこれらの混合物であってもよい。上記リチウムイオン(Li)と反応して可逆的にリチウム含有化合物を形成できる物質は、例えば、酸化スズ、窒化チタンまたはシリコンであってもよい。上記リチウム合金は、例えば、リチウム(Li)とナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)、アルミニウム(Al)、シリコン(Si)及びスズ(Sn)からなる群から選択される金属の合金であってもよい。 The negative electrode is a negative electrode active material that can reversibly occlude (intercalate) or desorb lithium ions (Li + ), a substance that can react with lithium ions to reversibly form a lithium-containing compound, Lithium metal or lithium alloy can be used. The substance capable of reversibly occluding or releasing lithium ions (Li + ) may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof. The substance capable of reversibly forming a lithium-containing compound by reacting with the lithium ion (Li + ) may be, for example, tin oxide, titanium nitride or silicon. Examples of the lithium alloy include lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium (Ca). ), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), silicon (Si), and tin (Sn).

また、リチウム−硫黄電池を充・放電する過程で、正極活物質として使われる硫黄が不活性物質に変化され、リチウム負極表面に付着されることもある。このように、不活性硫黄(Inactive sulfur)は、硫黄が様々な電気化学的または化学的反応を経て正極の電気化学反応にそれ以上参加できない状態の硫黄を意味し、リチウム負極表面に形成された不活性硫黄は、リチウム負極の保護膜(Protective layer)として役割をする長所もある。 In addition, in the process of charging/discharging a lithium-sulfur battery, sulfur used as a positive electrode active material may be changed to an inactive material and attached to the surface of the lithium negative electrode. As described above, the inactive sulfur means sulfur in a state in which sulfur cannot participate in the electrochemical reaction of the positive electrode through various electrochemical or chemical reactions and is formed on the surface of the lithium negative electrode. Inert sulfur also has an advantage of serving as a protective layer of a lithium negative electrode.

正極と負極の間には通常の分離膜が介在されてもよい。上記分離膜は、電極を物理的に分離する機能を有する物理的分離膜であって、通常の分離膜として使われるものであれば、特別な制限なしに使用可能であり、特に電解液のイオンの移動に対して低抵抗でありながら電解液の含湿能に優れているものが好ましい。 A normal separation film may be interposed between the positive electrode and the negative electrode. The separation membrane is a physical separation membrane having a function of physically separating the electrodes, so long as it is used as an ordinary separation membrane, it can be used without any special limitation, and in particular, ions of the electrolytic solution. It is preferable that the resistance to the movement of the electrolyte is low and the moisture-containing ability of the electrolytic solution is excellent.

また、上記分離膜は、正極と負極を互いに分離または絶縁させながら正極と負極の間にリチウムイオンの輸送を可能とする。このような分離膜は、多孔性で、非伝導性または絶縁性の物質からなる。上記分離膜は、フィルムのような独立的な部材であるか、または正極及び/または負極に付け加えられたコーティング層であってもよい。 Further, the separation membrane enables transport of lithium ions between the positive electrode and the negative electrode while separating or insulating the positive electrode and the negative electrode from each other. Such a separation membrane is made of a porous, non-conductive or insulating material. The separation membrane may be an independent member such as a film, or a coating layer added to the positive electrode and/or the negative electrode.

具体的には、多孔性高分子フィルム、例えばエチレン単独重合体、プロピレン単独重合体、エチレン/ブテン共重合体、エチレン/ヘキセン共重合体、及びエチレン/メタクリレート共重合体などのようなポリオレフィン系高分子で製造した多孔性高分子フィルムを単独で、またはこれらを積層して使ってもよく、または通常的な多孔性不織布、例えば高融点の硝子纎維、ポリエチレンテレフタレート纎維などからなった不織布を使ってもよいが、これに限定されることはない。 Specifically, porous polymer films such as ethylene homopolymers, propylene homopolymers, ethylene/butene copolymers, ethylene/hexene copolymers, and ethylene-based methacrylate polymers such as ethylene/methacrylate copolymers. The porous polymer film produced by the molecule may be used alone, or these may be laminated, or an ordinary porous nonwoven fabric, for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc. It may be used, but is not limited to this.

上記正極、負極及び分離膜に含浸されている電解質は、リチウム塩を含む非水系電解質としてリチウム塩と電解液で構成されており、他にも有機固体電解質及び無機固体電解質などが使われる。 The electrolyte with which the positive electrode, the negative electrode, and the separation membrane are impregnated is composed of a lithium salt and an electrolytic solution as a non-aqueous electrolyte containing a lithium salt, and in addition, an organic solid electrolyte, an inorganic solid electrolyte, or the like is used.

本発明のリチウム塩は、非水系有機溶媒に溶解されやすい物質として、例えば、LiCl、LiBr、LiI、LiClO、LiBF、LiB10Cl10、LiB(Ph)、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、LiSOCH、LiSOCF、LiSCN、LiC(CFSO、LiN(CFSO、LiNO、クロロボランリチウム、低級脂肪族カルボン酸リチウム、4フェニルホウ酸リチウム、リチウムイミドからなる群から一つ以上が含まれてもよい。 The lithium salt of the present invention is, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB(Ph) 4 , LiPF 6 , LiCF 3 SO 3 as a substance that is easily dissolved in a non-aqueous organic solvent. , LiCF 3 CO 2, LiAsF 6 , LiSbF 6, LiAlCl 4, LiSO 3 CH 3, LiSO 3 CF 3, LiSCN, LiC (CF 3 SO 2) 3, LiN (CF 3 SO 2) 2, LiNO 3, chloroborane One or more may be included from the group consisting of lithium, lower aliphatic lithium carboxylate, lithium 4-phenylborate, and lithium imide.

上記リチウム塩の濃度は、電解質混合物の正確な造成、塩の溶解度、溶解された塩の伝導性、電池の充電及び放電条件、作業温度及びリチウムバッテリー分野において公知の他の要因のような多くの要因によって、0.2〜4M、具体的に0.3〜2M、より具体的に0.3〜1.5Mであってもよい。0.2M未満で使えば電解質の伝導度が低くなって電解質の性能が低下されることがあり、4Mを超過して使えば電解質の粘度が増加してリチウムイオン(Li)の移動性が減少されることがある。 The concentration of the lithium salt may depend on many factors such as the exact composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and discharging conditions of the battery, the working temperature and other factors known in the lithium battery field. Depending on the factor, it may be 0.2-4M, specifically 0.3-2M, more specifically 0.3-1.5M. If it is used below 0.2M, the conductivity of the electrolyte may be lowered and the performance of the electrolyte may be deteriorated. If it is used above 4M, the viscosity of the electrolyte may be increased to improve the mobility of lithium ion (Li + ). May be reduced.

上記非水系有機溶媒は、リチウム塩を上手く溶解しなければならないが、本発明の非水系有機溶媒としては、例えば、ジエチレングリコールジメチルエーテル、N−メチル−2−ピロリドン、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ガンマ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロキシフラン(franc)、2−メチルテトラヒドロフラン、ジメチルスルホキシド、1,3−ジオキソラン、4−メチル−1,3−ジオキセン、ジエチルエーテル、ホルムアミド、ジメチルホルムアミド、アセトニトリル、ニトロメタン、ギ酸メチル、酢酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エーテル、プロピオン酸メチル、プロピオン酸エチルなどの非プロトン性有機溶媒が使われてもよく、上記有機溶媒は一つまたは二つ以上の有機溶媒の混合物であってもよい。 The above-mentioned non-aqueous organic solvent must dissolve lithium salt well, but examples of the non-aqueous organic solvent of the present invention include diethylene glycol dimethyl ether, N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, Dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, gamma-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydroxyfuran (franc), 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, 4-methyl-1,3-dioxene, diethyl ether, formamide, dimethylformamide, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl An aprotic organic solvent such as -2-imidazolidinone, a propylene carbonate derivative, a tetrahydrofuran derivative, an ether, methyl propionate, and ethyl propionate may be used, and the organic solvent is one or more organic solvents. It may be a mixture of.

上記有機固体電解質としては、例えば、ポリエチレン誘導体、ポリエチレンオキシド誘導体、ポリプロピレンオキシド誘導体、リン酸エステルポリマー、ポリアジテイションリシン(Agitation lysine)、ポリエステルスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、イオン性解離基を含む重合体などが使われてもよい。 Examples of the organic solid electrolyte include a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphoric acid ester polymer, a polyagitation lysine, a polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, and an ionic dissociative group. Polymers and the like may be used.

本発明の無機固体電解質としては、例えば、LiN、LiI、LiNI、LiN−LiI−LiOH、LiSiO、LiSiO−LiI−LiOH、LiSiS、LiSiO、LiSiO−LiI−LiOH、LiPO−LiS−SiSなどのLiの窒化物、ハロゲン化物、硫酸塩などが使われてもよい。 As the inorganic solid electrolyte of the present invention, for example, Li 3 N, LiI, Li 5 NI 2, Li 3 N-LiI-LiOH, LiSiO 4, LiSiO 4 -LiI-LiOH, Li 2 SiS 3, Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, Li nitrides such as Li 3 PO 4 -Li 2 S- SiS 2, halide, or the like may be sulfate is used.

本発明の電解質には、充・放電特性、難燃性などの改善を目的として、例えば、ピリジン、亜リン酸塩トリエチル、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グリム(glyme)、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N−置換オキサゾリジノン、N,N−置換イミダゾリジノン、エチレングリコールジアルキルエーテル、アンモニウム塩、ピロール、2−メトキシエタノール、三塩化アルミニウムなどが添加されてもよい。場合によっては、不燃性を与えるために、四塩化炭素、三フッ化エチレンなどのハロゲン含有溶媒をさらに含んでもよく、高温保存の特性を向上させるために、二酸化炭素ガスをさらに含んでもよく、FEC(Fluoro−ethylene carbonate)、PRS(Propene sultone)、FPC(Fluoro−propylene carbonate)などをさらに含んでもよい。 The electrolyte of the present invention includes, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, and hexaphosphoric acid for the purpose of improving charge/discharge characteristics and flame retardancy. Triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imidazolidinone, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol, aluminum trichloride and the like may be added. In some cases, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included to impart nonflammability, and carbon dioxide gas may be further included to improve the characteristics of high temperature storage. It may further include (Fluoro-Ethylene Carbonate), PRS (Propene Sultone), FPC (Fluoro-Propylene Carbonate) and the like.

上述した正極と負極を所定の大きさで切り取った正極板と負極板の間に上記正極板と負極板に対応する所定の大きさで切り取った分離膜を介在させて積層することで、スタック型電極組み立て体を製造することができる。 By stacking the positive electrode plate and the negative electrode plate, which are cut in a predetermined size, between the positive electrode plate and the negative electrode plate with the separation film cut in a predetermined size corresponding to the positive electrode plate and the negative electrode plate interposed, and stacking the stacked electrode assembly. The body can be manufactured.

または、正極と負極が分離膜シートを間に置いて対面するように介在し、二つ以上の正極板及び負極板を分離膜シート上に配したり、または上記二つ以上の正極板及び負極板が分離膜を挟んで積層されているユニットセルを二つ以上分離膜シート上に配列し、上記分離膜シートを巻取したり、電極板またはユニットセルの大きさで分離膜シートを折り曲げることにより、スタックアンドフォールディング型電極組み立て体を製造することができる。 Alternatively, the positive electrode and the negative electrode are interposed so as to face each other with the separation membrane sheet interposed therebetween, and two or more positive electrode plates and negative electrode plates are arranged on the separation membrane sheet, or the above two or more positive electrode plates and negative electrodes are arranged. Arranging two or more unit cells in which plates are laminated with a separation membrane sandwiched between them on the separation membrane sheet, and winding the separation membrane sheet or bending the separation membrane sheet in the size of the electrode plate or the unit cell. Thus, a stack-and-folding type electrode assembly can be manufactured.

以下、本発明の好ましい実施例を添付の例示図面に基づいて詳しく説明する。このような図面は、本発明を説明するための一具現例として幾つか異なる形態で具現されてもよく、本明細書に限定されない。このとき、図面では本発明を明確に説明するために、説明と関係ない部分を省略しており、明細書全体に亘って類似の部分に対しては類似の図面符号を付けた。また、図面で示された構成要素の大きさ及び相対的な大きさは、実際の縮尺とは無関係であり、説明の明瞭性のために縮小されたり誇張されたものである。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying exemplary drawings. Such drawings may be embodied in a number of different forms as an embodiment for explaining the present invention, and are not limited to the present specification. At this time, in order to clearly explain the present invention in the drawings, parts unrelated to the description are omitted, and like parts are denoted by like drawing numerals throughout the specification. Further, the size and relative size of the components shown in the drawings are irrelevant to the actual scale, and are reduced or exaggerated for clarity of explanation.

<実施例1>GO/CN自己組織化複合体製造
メラミン(Melamine)2mmolを10mLのDMSOに溶解した後、これに2%酸化グラフェン(Graphene oxide)水溶液2gを添加し、これにトリチオシアヌル酸(Tri−thiocyanuric acid)2mmolが溶解されたジメチルスルホキシド(DMSO)溶液5mLを添加した後、蒸溜水15mLを順次添加して自己組織化複合体を製造した。以後、上記製造された自己組織化複合体を水で3回洗浄した後、110℃真空オーブンで一晩乾燥して獲得した(図1に図示)。
Example 1 Production of GO/CN Self-Assembled Complex After dissolving 2 mmol of melamine (Melamine) in 10 mL of DMSO, 2 g of a 2% aqueous graphene oxide solution (Graphene oxide) was added thereto, and trithiocyanuric acid (Trithianuric acid) was added thereto. After adding 5 mL of a dimethylsulfoxide (DMSO) solution in which 2 mmol of -thiocyanoric acid) was dissolved, 15 mL of distilled water was sequentially added to produce a self-assembled complex. Then, the prepared self-assembled composite was washed with water 3 times and then dried in a vacuum oven at 110° C. overnight to obtain (see FIG. 1).

上記獲得した自己組織化複合体を550℃でAr気体を流しながら4時間熱処理し、直径200nm〜1μmと長さ2μm〜10μmの中が空いているチューブ(Tube)タイプのGO/CN自己組織化複合体が形成された(図2に図示)。製造されたGO/CN自己組織化複合体のサンプルを採取してBET分析結果43m/gの比表面積を有し、0.49cm/gの細孔体積(Pore volume)を有するものと示された。 The obtained self-assembled composite was heat-treated at 550° C. for 4 hours while flowing Ar gas to form a tube type GO/CN self-assembly having a diameter of 200 nm to 1 μm and a length of 2 μm to 10 μm. A complex was formed (illustrated in Figure 2). A sample of the manufactured GO/CN self-assembled composite was taken and shown by BET analysis to have a specific surface area of 43 m 2 /g and a pore volume of 0.49 cm 3 /g (Pore volume). Was done.

<実施例2>S−(GO/CN)複合体製造
上記実施例1で製造されたGO/CN自己組織化複合体と硫黄粒子を複合化するために、155℃で硫黄を溶融拡散(melt−diffusion)させる方式によって、S:(GO/CN)の重量比が7:3になるようにGO/CN自己組織化複合体に硫黄を担持し、S−(GO/CN)複合体を製造した(図3に図示)。その結果、GO/CN自己組織化複合体の表面に硫黄が被覆されたS−(GO/CN)複合体が形成された。
<Example 2> Production of S-(GO/CN) composite In order to complex the GO/CN self-assembled composite produced in Example 1 with the sulfur particles, melt diffusion of sulfur at 155[deg.] C. (melt). S-(GO/CN) composite is prepared by supporting sulfur on the GO/CN self-assembled composite such that the weight ratio of S: (GO/CN) is 7:3 by the method of (-diffusion). (Illustrated in FIG. 3). As a result, an S-(GO/CN) complex in which sulfur was coated on the surface of the GO/CN self-assembled complex was formed.

<比較例1>窒化炭素(CN)製造
メラミン(Melamine)とトリチオシアヌル酸(Tri−thiocyanuric acid)をそれぞれ4mmolずつ取って、それぞれ20mLと10mLのジメチルスルホキシド(DMSO)溶媒で溶かし、これを混合した後、水30mLを添加して自己組織化複合体を製造した。以後、上記実施例1と同じ方法で洗浄及び乾燥して獲得した(図4に図示)。
以後、上記実施例1と同じ方法で熱処理して、約1μm×5μm大きさの直方体形状の窒化炭素(CN)粒子が形成された(図5に図示)。
Comparative Example 1 Carbon Nitride (CN) Production Melamine (Melamine) and trithiocyanuric acid (Tri-thiocyanoric acid) were taken in an amount of 4 mmol each and dissolved in 20 mL and 10 mL of dimethylsulfoxide (DMSO) solvent, and after mixing them, , 30 mL of water was added to produce a self-assembled complex. Then, it was obtained by washing and drying in the same manner as in Example 1 (shown in FIG. 4).
Thereafter, heat treatment was performed in the same manner as in Example 1 to form rectangular parallelepiped carbon nitride (CN) particles having a size of about 1 μm×5 μm (shown in FIG. 5).

<製造例1>リチウム−硫黄電池製作
S/Super−P(9:1):デンカブラック(Denka black):CMC/SBRの割合が80:10:10のスラリーを製造した。このように製造されたスラリーを利用して2mAh/cmのローディングを有する正極スラリーをアルミニウム(Al)ホイルの上にコーティングした。この正極を利用して、CR2032コインセル(Coin cell)タイプでDEGDME:DOL=6:4、1M LiFSI、1%のLiNO組成の電解液を使用してリチウム−硫黄電池を製作した。(ただし、CMCはCarboxymethyl cellulose、SBRはスチレンブタジエンゴム:Styrene−butadiene rubber、DEGDMEはジエチレングリコールジメチルエーテル:Diethylene glycol dimethyl ether、DOLはジオキソラン:Dioxolane、LiFSIは リチウムビス(フルオロスルホニル)イミド:Lithium bis(fluorosulfonyl)imideである。)
<Production Example 1> Lithium-sulfur battery production S/Super-P (9:1): Denka black: A slurry having a ratio of CMC/SBR of 80:10:10 was produced. The positive electrode slurry having a loading of 2 mAh/cm 2 was coated on the aluminum (Al) foil using the slurry prepared as described above. Using this positive electrode, a lithium-sulfur battery was manufactured using a CR2032 coin cell type DEGDME:DOL=6:4, 1M LiFSI, and an electrolyte solution of 1% LiNO 3 composition. (However, CMC is Carboxymethyl cellulose, SBR is styrene-butadiene rubber: Styrene-butadiene rubber, DEGDME is diethylene glycol dimethyl ether: Diethylene glycol dimethyl ether, DOL is dioxolane: Dioxolane, LiFSI lithium bis (fluorosulfonyl) imide: Lithium bis (fluorosulfonyl) It is an image.)

<製造例2>リチウム−硫黄電池製作
比較例1で製造された窒化炭素(CN)を正極添加剤として適用するために、S/Super−P(9:1):デンカブラック(Denka black):CN:CMC/SBRの割合が80:10:5:5になるようにスラリーを製造した。このように製造されたスラリーを利用して上記製造例1と同じ方法でリチウム−硫黄電池を製作した。
<Production Example 2> Production of lithium-sulfur battery In order to apply the carbon nitride (CN) produced in Comparative Example 1 as a positive electrode additive, S/Super-P (9:1): Denka black (Denka black): The slurry was prepared so that the ratio of CN:CMC/SBR was 80:10:5:5. A lithium-sulfur battery was manufactured in the same manner as in Manufacturing Example 1 using the slurry manufactured as described above.

<製造例3>リチウム−硫黄電池製作
実施例1で製造されたGO/CN自己組織化複合体を正極添加剤として適用するために、S/SuperP(9:1):デンカブラック(Denka black):GO/CN自己組織化複合体:CMC/SBRの割合が80:10:5:5になるようにスラリーを製造した。このように製造されたスラリーを利用して上記製造例1と同じ方法でリチウム−硫黄電池を製作した。
<Production Example 3> Lithium-Sulfur Battery Production In order to apply the GO/CN self-assembled composite produced in Example 1 as a positive electrode additive, S/SuperP (9:1): Denka black (Denka black). A slurry was prepared so that the ratio of :GO/CN self-assembled complex:CMC/SBR was 80:10:5:5. A lithium-sulfur battery was manufactured in the same manner as in Manufacturing Example 1 using the slurry manufactured as described above.

<製造例4>リチウム−硫黄電池製作
実施例2で製造されたS−(GO/CN)複合体を正極活物質として適用するために、S−(GO/CN)複合体:デンカブラック(Denka black):CMC/SBRの割合が90:5:5になるように電極スラリーを製造して、上記製造例1と同じ方法でリチウム−硫黄電池を製作した。
<Production Example 4> Lithium-sulfur battery production In order to apply the S-(GO/CN) composite prepared in Example 2 as a positive electrode active material, S-(GO/CN) composite: Denka black (Denka). An electrode slurry was prepared so that the ratio of black):CMC/SBR was 90:5:5, and a lithium-sulfur battery was manufactured in the same manner as in Manufacturing Example 1 above.

<実験例1>XPS(X−ray Photoelectron Spectroscopy)実施
上記製造された実施例1のGO/CN自己組織化複合体と比較例1の窒化炭素サンプルをXPS(X−ray Photoelectron Spectroscopy)を行って、C 1s及びN 1sスペクトルと表面元素を分析した。
先ず、図6と図7のデータを参考すればC 1s及びN 1sスペクトルで比較例1の窒化炭素は、図6で確認できるように、帯電効果(Charging effect)で正確な測定が難しかった。しかし、実施例1のGO/CN自己組織化複合体のC−N−Cピリジン型Nが多量含有されているし、帯電効果(Charging effect)が顕著に減少したことを図7を通じて確認することができた。これを通じて実施例1のGO/CN自己組織化複合体は、酸化グラフェンによって伝導性が増加したことを確認することができた。
また、表面元素分析結果を下記表1に示した。
<Experimental Example 1> Implementation of XPS (X-ray Photoelectron Spectroscopy) The GO/CN self-assembled composite of Example 1 prepared above and the carbon nitride sample of Comparative Example 1 were subjected to XPS (X-ray Photoelectron Spectroscopy). , C 1s and N 1s spectra and surface elements were analyzed.
First, referring to the data of FIGS. 6 and 7, it was difficult to accurately measure the carbon nitride of Comparative Example 1 by C 1s and N 1s spectra due to the charging effect, as can be seen in FIG. 6. However, it was confirmed from FIG. 7 that the GO/CN self-assembled complex of Example 1 contained a large amount of C—N—C pyridine type N and the charging effect was significantly reduced. I was able to. From this, it was possible to confirm that the GO/CN self-assembled composite of Example 1 had increased conductivity due to graphene oxide.
The results of surface elemental analysis are shown in Table 1 below.

グラファイト状窒化炭素(Graphitic carbon nitride)の理論的C/Nの割合が0.75で、一般的に末端基の水素が結合されて0.72と報告されており、上記表1を参考すれば、実施例1によって合成されたGO/CN自己組織化複合体の場合0.79、比較例1によって合成された窒化炭素(CN)の場合0.71が測定された。 The theoretical C/N ratio of graphitic carbon nitride is 0.75, and it is generally reported that the terminal hydrogen is bonded to 0.72. Referring to Table 1 above, , 0.79 was measured for the GO/CN self-assembled composite synthesized by Example 1, and 0.71 was measured for the carbon nitride (CN) synthesized by Comparative Example 1.

<実験例2>粉体抵抗測定
実施例1のGO/CN自己組織化複合体と比較例1の窒化炭素の粉体抵抗を測定した。比較例1の窒化炭素は、抵抗が10Ω・cm以上と非常に高くて測定値を得にくかったが、図8のデータを参考すれば、実施例1のGO/CN自己組織化複合体は、抵抗が減少して、1.04g/ccの密度(Density)を有する時の粉体抵抗が1.13×10Ω・cmと測定された。
Experimental Example 2 Powder Resistance Measurement The GO/CN self-assembled composite of Example 1 and the carbon nitride of Comparative Example 1 were measured for powder resistance. The carbon nitride of Comparative Example 1 had a very high resistance of 10 7 Ω·cm or more, and it was difficult to obtain a measured value. However, referring to the data of FIG. 8, the GO/CN self-assembled composite of Example 1 was obtained. Was measured to have a powder resistance of 1.13×10 2 Ω·cm when the resistance was decreased and the density (Density) was 1.04 g/cc.

<実験例3>放電容量測定
製造例1ないし3で製作されたリチウム−硫黄電池の放電容量の特性を測定(0.1C/0.1C)し、その結果、図9ないし図11を参考すれば、製造例1に比べて窒化炭素を添加した製造例2の場合、放電容量が全般的に増加し、GO/CN自己組織化複合体を添加した製造例3では、製造例1に比べて全体的に放電過電圧が小幅減少することを確認することができた。
<Experimental Example 3> Discharge capacity measurement The discharge capacity characteristics of the lithium-sulfur batteries manufactured in Production Examples 1 to 3 were measured (0.1 C/0.1 C), and as a result, refer to FIGS. 9 to 11. For example, in the case of Production Example 2 in which carbon nitride was added as compared with Production Example 1, the discharge capacity was generally increased, and in Production Example 3 in which the GO/CN self-assembled composite was added, compared to Production Example 1. It was confirmed that the discharge overvoltage was slightly reduced as a whole.

<実験例4>サイクル寿命特性と充・放電効率測定
製造例1ないし3で製作されたリチウム−硫黄電池のサイクル寿命特性(0.1C/0.1Cで2.5cycle以後0.3C/0.5Cに充・放電)と充・放電効率特性を測定し、その結果、図12を参考すれば、窒化炭素を使用した製造例2と製造例3の充・放電効率が製造例1に比べて大きく向上しており、特にGO/CN自己組織化複合体を添加した製造例3でサイクル特性がさらに向上した。
<Experimental Example 4> Cycle life characteristics and measurement of charge/discharge efficiency Cycle life characteristics of the lithium-sulfur batteries manufactured in Production Examples 1 to 3 (0.1 C/0.1 C after 2.5 cycle and 0.3 C/0. Charge/discharge at 5C) and charge/discharge efficiency characteristics were measured. As a result, referring to FIG. 12, the charge/discharge efficiency of Production Example 2 and Production Example 3 using carbon nitride was higher than that of Production Example 1. The cycle characteristics were further improved, and especially in Production Example 3 in which the GO/CN self-assembled composite was added, the cycle characteristics were further improved.

<実験例5>放電容量測定
製造例4で製作されたリチウム−硫黄電池の放電容量特性を測定(0.1C/0.1C)し、その結果、図9と図13を比較して参考すれば、初期放電容量は製造例1とほぼ類似で、サイクルの進行時、製造例1に比べて放電容量が全般的に増加した。
<Experimental Example 5> Discharge capacity measurement The discharge capacity characteristics of the lithium-sulfur battery manufactured in Manufacturing Example 4 were measured (0.1 C/0.1 C), and as a result, FIG. 9 and FIG. 13 were compared for reference. For example, the initial discharge capacity was almost similar to that of Production Example 1, and the discharge capacity generally increased as compared with Production Example 1 during the progress of the cycle.

<実験例6>サイクル寿命特性と充・放電効率測定
製造例4で製作されたリチウム−硫黄電池のサイクル寿命特性(0.1C/0.1Cで2.5サイクル以後0.3C/0.5Cに充・放電)と充・放電効率特性を測定し、その結果を図14に図示した。製造例3でGO/CN自己組織化複合体を正極添加剤として使った時より製造例4でS−(GO/CN)複合体を正極活物質として製造したリチウム−硫黄電池の容量維持率が優秀であり、充・放電効率も安定的に維持されることを確認することができた。
<Experimental Example 6> Cycle life characteristics and charge/discharge efficiency measurement Cycle life characteristics of the lithium-sulfur battery manufactured in Production Example 4 (0.1 C/0.1 C after 2.5 cycles, 0.3 C/0.5 C) Charging/discharging) and charging/discharging efficiency characteristics were measured, and the results are shown in FIG. When the GO/CN self-assembled composite was used as the positive electrode additive in Preparation Example 3, the capacity retention rate of the lithium-sulfur battery prepared by using the S-(GO/CN) composite as the positive electrode active material in Preparation Example 4 was higher. It was confirmed that it was excellent and that the charge/discharge efficiency was maintained stably.

このような結果は、正極添加剤として使った時より硫黄と複合化したS−(GO/CN)複合体として使う時、硫黄とGO/CN自己組織化複合体の接触面積が増加してリチウムポリスルフィドの吸着により有利だったためであると解釈される。 This result indicates that when used as an S-(GO/CN) composite complexed with sulfur, the contact area between the sulfur and the GO/CN self-assembled composite is increased when used as an S-(GO/CN) composite compound than when used as a positive electrode additive. It is considered that this is because the adsorption of polysulfide was advantageous.

本発明によるリチウム−硫黄電池は、優れた放電容量、出力特性及び容量維持率を安定的に示すので、携帯電話、ノートパソコン、デジタルカメラなどのポータブル機器、及びハイブリッド電気自動車(Hybrid Electric Vehicle:HEV)などの電気自動車分野などに有用である。 INDUSTRIAL APPLICABILITY The lithium-sulfur battery according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, and therefore, portable devices such as mobile phones, laptop computers, digital cameras, and hybrid electric vehicles (HEVs). ) Is useful in the field of electric vehicles.

これによって、本発明の他の一具現例によれば、上記リチウム−硫黄電池を単位セルで含む電池モジュール及びこれを含む電池パックは、電気自動車(Electric Vehicle、EV)、ハイブリッド電気自動車(Hybrid Electric Vehicle 、HEV)、プラグ−インハイブリッド電気自動車(Plug−in Hybrid Electric Vehicle、PHEV)、電力貯蔵装置などの多様な電源供給装置として使われてもよい。 Accordingly, according to another embodiment of the present invention, a battery module including the lithium-sulfur battery as a unit cell and a battery pack including the same are provided in an electric vehicle (EV) and a hybrid electric vehicle (Hybrid Electric). It may be used as various power supply devices such as a vehicle, a HEV, a plug-in hybrid electric vehicle, and a power storage device.

Claims (6)

窒化炭素前駆体と酸化グラフェンが溶解された混合液を熱処理して製造し、
上記窒化炭素前駆体は、メラミンとトリチオシアヌル酸であることを特徴とする、酸化グラフェン/窒化炭素自己組織化複合体の製造方法。
It is manufactured by heat-treating a mixed solution in which a carbon nitride precursor and graphene oxide are dissolved,
The method for producing a graphene oxide/carbon nitride self-assembled composite, wherein the carbon nitride precursor is melamine and trithiocyanuric acid.
上記窒化炭素前駆体は、メラミンとトリチオシアヌル酸のモル比が2:1ないし1:2となるように製造することを特徴とする、請求項1に記載の酸化グラフェン/窒化炭素自己組織化複合体の製造方法。 The graphene oxide/carbon nitride self-assembled composite according to claim 1, wherein the carbon nitride precursor is prepared such that the molar ratio of melamine to trithiocyanuric acid is 2:1 to 1:2. Manufacturing method. 上記混合液を製造する際に、溶媒はジメチルスルホキシドと水の混合溶媒であることを特徴とする、請求項1に記載の酸化グラフェン/窒化炭素自己組織化複合体の製造方法。 The method for producing a graphene oxide/carbon nitride self-assembled composite according to claim 1, wherein the solvent is a mixed solvent of dimethyl sulfoxide and water when the mixed solution is produced. 上記ジメチルスルホキシドと水は2:1ないし1:2の重量比で混合されることを特徴とする、請求項3に記載の酸化グラフェン/窒化炭素自己組織化複合体の製造方法。 The method for preparing a graphene oxide/carbon nitride self-assembled composite according to claim 3, wherein the dimethyl sulfoxide and water are mixed in a weight ratio of 2:1 to 1:2. 上記混合液を製造する際に、上記メラミンとトリチオシアヌル酸はジメチルスルホキシドに溶解し、上記酸化グラフェンは水に溶解した後、二つの溶液を混合して混合液を製造することを特徴とする、請求項1に記載の酸化グラフェン/窒化炭素自己組織化複合体の製造方法。 In producing the mixed solution, the melamine and trithiocyanuric acid are dissolved in dimethylsulfoxide, the graphene oxide is dissolved in water, the two solutions are mixed to produce a mixed solution, Claims Item 2. A method for producing a graphene oxide/carbon nitride self-assembled composite according to Item 1. 上記熱処理は400ないし700℃で1ないし10時間行われることを特徴とする、請求項1に記載の酸化グラフェン/窒化炭素自己組織化複合体の製造方法。 The method of claim 1, wherein the heat treatment is performed at 400 to 700° C. for 1 to 10 hours.
JP2018500312A 2016-06-08 2017-01-25 Method for producing self-assembled composite of carbon nitride and graphene oxide Active JP6727666B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2016-0071216 2016-06-08
KR1020160071216A KR102024897B1 (en) 2016-06-08 2016-06-08 Self-assembled composite with Carbon Nitride and Graphene Oxide, Manufacturing Method Thereof, Cathode Applying the same, And Lithium-Sulfur Battery Comprising The Same
PCT/KR2017/000916 WO2017213325A1 (en) 2016-06-08 2017-01-25 Self-assembled composite of carbon nitride and graphene oxide, manufacturing method for same, positive electrode having same applied thereto, and lithium-sulfur battery comprising same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019220410A Division JP6862527B2 (en) 2016-06-08 2019-12-05 Self-assembled composite of carbon nitride and graphene oxide, positive electrode to which this is applied, and lithium-sulfur battery containing it

Publications (2)

Publication Number Publication Date
JP2018526310A JP2018526310A (en) 2018-09-13
JP6727666B2 true JP6727666B2 (en) 2020-07-22

Family

ID=60578818

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018500312A Active JP6727666B2 (en) 2016-06-08 2017-01-25 Method for producing self-assembled composite of carbon nitride and graphene oxide
JP2019220410A Active JP6862527B2 (en) 2016-06-08 2019-12-05 Self-assembled composite of carbon nitride and graphene oxide, positive electrode to which this is applied, and lithium-sulfur battery containing it

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019220410A Active JP6862527B2 (en) 2016-06-08 2019-12-05 Self-assembled composite of carbon nitride and graphene oxide, positive electrode to which this is applied, and lithium-sulfur battery containing it

Country Status (6)

Country Link
US (1) US10804538B2 (en)
EP (1) EP3312139B1 (en)
JP (2) JP6727666B2 (en)
KR (1) KR102024897B1 (en)
CN (1) CN108137324B (en)
WO (1) WO2017213325A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108298585A (en) * 2018-02-28 2018-07-20 中国科学院金属研究所 Micro/nano-scale wave structure and preparation method thereof in a kind of macrocomposite
CN108910845A (en) * 2018-06-14 2018-11-30 云南大学 A kind of microwave-assisted method for preparing hyperfluorescence carbon nitride material
CN108840318A (en) * 2018-06-15 2018-11-20 陕西科技大学 A kind of honeycomb multi-stage porous nitrogen sulfur doping three-dimensional carbon material and preparation method thereof
CN109019565A (en) * 2018-06-15 2018-12-18 陕西科技大学 A kind of preparation method of three-dimensional porous nitrogen sulfur doping carbon nanosheet
CN108821258A (en) * 2018-06-15 2018-11-16 陕西科技大学 A kind of stub constructs the preparation method of three-dimensional porous nitrogen sulfur doping carbon material used as anode
CN108963152B (en) * 2018-06-28 2021-05-25 肇庆市华师大光电产业研究院 g-C applied to lithium-sulfur battery diaphragm3N4Preparation method of/RGO coating
CN109003831B (en) * 2018-07-25 2020-11-06 重庆交通大学 A kind of carbon nitride/graphene composite electrode material and preparation method thereof
CN109686948B (en) * 2018-12-26 2022-02-11 辽宁工程技术大学 A kind of preparation method of lithium-sulfur battery composite cathode material
CN109592828B (en) * 2019-01-24 2020-10-23 周诗健 High-efficiency treatment method of high-concentration organic wastewater
CN109970155B (en) * 2019-01-28 2022-01-04 中南大学 Preparation method of lead dioxide electrode modified by graphene oxide
CN109772415A (en) * 2019-02-26 2019-05-21 江苏大学 Preparation method of a dark gray carbon nitride photocatalyst with broad spectral response
CN110075901B (en) * 2019-05-14 2021-10-19 东南大学 Preparation of porous sulfur-doped graphitic carbon nitride-reduced graphene oxide nanosheets
KR102231402B1 (en) * 2019-05-17 2021-03-24 전남대학교산학협력단 Liquid crystal fiber comprising graphitic carbon nitride, and manufacturing method thereof
CN110775959A (en) * 2019-10-31 2020-02-11 西北工业大学 Preparation method for preparing nitrogen-sulfur co-doped porous graphene by supramolecular template method
CN112993231A (en) * 2019-12-12 2021-06-18 中国科学院大连化学物理研究所 Carbon-sulfur composite electrode and preparation and application thereof
KR102408220B1 (en) * 2020-02-07 2022-06-15 전남대학교산학협력단 Method for producing graphitic carbon nitride, graphitic carbon nitride produced by the same, catalyst comprising the same
CN111403702B (en) * 2020-03-13 2022-05-17 北京航空航天大学 Sulfur-carrying material and positive electrode material for lithium-sulfur battery
CN111446451A (en) * 2020-04-07 2020-07-24 绍兴诺鼎卫浴洁具股份有限公司 Co-Ni carbon material loaded g-C3N4-rGO positive electrode material of lithium-sulfur battery and preparation method thereof
CN111740109B (en) * 2020-06-22 2021-06-08 珠海冠宇电池股份有限公司 Preparation method of boron and phosphorus doped graphitized carbon-nitrogen compound cathode material activated by KOH
CN111939957A (en) * 2020-08-15 2020-11-17 青岛农业大学 A kind of preparation method of photocatalytic nitrogen fixation material porous carbon nitride nanofiber/graphene
CN111933962B (en) * 2020-08-31 2022-02-18 大连理工大学 A kind of N, S co-doped metal-free CNS oxygen reduction catalyst and preparation method
KR102697267B1 (en) * 2021-08-04 2024-08-20 전남대학교산학협력단 A method for manufacturing a cathode material for a lithium-sulfur battery and a cathode material for a lithium-sulfur battery manufactured thereby
EP4212477A1 (en) * 2022-01-12 2023-07-19 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Novel carbon nitride compositions and their use as photoelectrodes
CN114558600B (en) * 2022-01-20 2023-10-20 南京林业大学 Mixed dimension S doped g-C 3 N 4 Base van der Waals heterojunction photocatalyst, preparation method and application thereof
CN114408913B (en) * 2022-02-08 2023-10-20 咸阳师范学院 Graphene oxide/carbon nitride three-dimensional composite material and preparation method and application thereof
JP2023161891A (en) * 2022-04-26 2023-11-08 株式会社Abri Cathode for lithium sulfur battery, lithium sulfur battery, and charge and discharge method for the same
WO2024081391A1 (en) * 2022-10-14 2024-04-18 Conamix Inc. Solid-state lithium-sulfur battery compositions and devices

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091566A (en) * 2006-09-29 2008-04-17 Fujitsu Ltd Method for producing carbon nanotube structure covered with insulating film and field effect transistor device comprising the structure
KR101150843B1 (en) 2010-09-15 2012-06-13 한국생산기술연구원 Preparing method of cathode catalyst comprising carbon nitride and conductive carbon support for pemfc, cathode catalyst for pemfc, electrode for pemfc and pemfc
KR101211949B1 (en) 2010-11-17 2012-12-18 성균관대학교산학협력단 Hybrid complex and Method of preparing thereof
WO2012088697A1 (en) * 2010-12-30 2012-07-05 海洋王照明科技股份有限公司 Graphene ramification-carbon nanotube composite material and preparation method thereof
KR101347789B1 (en) 2012-05-31 2014-01-06 인하대학교 산학협력단 method of preparing carbon nitride-graphene composites and the carbon nitride-graphene composites prepared by the same method
EP2687483A1 (en) * 2012-07-16 2014-01-22 Basf Se Graphene containing nitrogen and optionally iron and/or cobalt
JP2014114205A (en) * 2012-11-14 2014-06-26 Toshiba Corp Carbon material, method for producing the same, and electrochemical cell, oxygen reduction device and refrigerator using the same
KR101486658B1 (en) 2013-09-13 2015-01-29 한국과학기술원 Electrode material based upon graphene for high-performance supercapacitor and supercapacitor comprising the same
CN103539101B (en) 2013-09-26 2015-05-20 华中科技大学 Chemical liquid phase preparation method of graphene and products thereof
CN103861632B (en) * 2014-04-07 2016-01-20 吉林大学 A kind of preparation method of nitride porous carbon catalysis material of sulfur doping
CN103985875B (en) 2014-05-21 2016-08-24 南京理工大学 A kind of application of Graphene-carbonitride composite
CN105244476A (en) * 2014-06-11 2016-01-13 中国科学院苏州纳米技术与纳米仿生研究所 Nitrogen-doped graphene-coated nanometer sulfur cathode composite material, and preparation method and applications thereof
KR101714127B1 (en) 2014-12-11 2017-03-08 주식회사 엘지화학 Metal complex oxide catalyst for producing butadiene and preparation method thereof
US10388947B2 (en) 2015-02-06 2019-08-20 The Regents Of The University Of California Pnictide containing catalysts for electrochemical conversion reactions and methods of use
KR101640545B1 (en) 2015-03-27 2016-07-18 부산대학교 산학협력단 Production method of catalyst-graphitic carbon nitride-reduced graphene oxide composite, the composite produced thereby, and an electrode using the same
CN108470890A (en) * 2018-03-15 2018-08-31 陕西科技大学 A kind of application of the preparation method of nitrogen sulphur codope three-dimensional grapheme, its product and the product that prepare

Also Published As

Publication number Publication date
EP3312139B1 (en) 2021-03-03
EP3312139A1 (en) 2018-04-25
CN108137324B (en) 2021-02-02
US10804538B2 (en) 2020-10-13
KR20170138855A (en) 2017-12-18
JP2020040879A (en) 2020-03-19
JP2018526310A (en) 2018-09-13
EP3312139A4 (en) 2018-07-18
KR102024897B1 (en) 2019-09-24
US20180212248A1 (en) 2018-07-26
CN108137324A (en) 2018-06-08
JP6862527B2 (en) 2021-04-21
WO2017213325A1 (en) 2017-12-14

Similar Documents

Publication Publication Date Title
JP6862527B2 (en) Self-assembled composite of carbon nitride and graphene oxide, positive electrode to which this is applied, and lithium-sulfur battery containing it
CN107925042B (en) Lithium-sulfur battery separator having composite coating layer including polydopamine, method of manufacturing the same, and lithium-sulfur battery including the same
CN111386621B (en) Binder for lithium-sulfur battery, positive electrode comprising same, and lithium-sulfur battery
CN113812022B (en) Lithium-sulfur secondary battery
CN112585782B (en) Lithium-sulfur secondary battery
US20250046787A1 (en) Sulfur-carbon composite, preparation method thereof, positive electrode for lithium secondary battery and lithium second
KR20200049685A (en) Carbon -surfur complex, method for manufacturing the same and lithium secondary battery comprising the same
KR20210014430A (en) A separator for litithium secondary battery and lithium secondary battery comprising the same
CN113841277A (en) Lithium-sulfur secondary battery
CN111279518B (en) Separator for lithium-sulfur battery and lithium-sulfur battery comprising same
CN110800136B (en) Positive electrode for lithium-sulfur battery and lithium-sulfur battery including the same
JP7065893B2 (en) Lithium-sulfur battery
KR20210082141A (en) Sulfur-carbon complex, cathode comprising the same, and lithium secondary battery comprising the electrode
CN119343802A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR102415160B1 (en) Positive electrode active material for lithium secondary battery including vanadium oxide coated with carbon and method for preparing the same
KR102229446B1 (en) A separator for litithium-sulfur battery and lithium-sulfur battery comprising the same
KR102468497B1 (en) Lithium-surfur secondary battery comprising protective film having oxide semiconductor layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200626

R150 Certificate of patent or registration of utility model

Ref document number: 6727666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250