JP6725712B1 - Water treatment method - Google Patents

Water treatment method Download PDF

Info

Publication number
JP6725712B1
JP6725712B1 JP2019017419A JP2019017419A JP6725712B1 JP 6725712 B1 JP6725712 B1 JP 6725712B1 JP 2019017419 A JP2019017419 A JP 2019017419A JP 2019017419 A JP2019017419 A JP 2019017419A JP 6725712 B1 JP6725712 B1 JP 6725712B1
Authority
JP
Japan
Prior art keywords
water
treated
ozone
hydrogen peroxide
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019017419A
Other languages
Japanese (ja)
Other versions
JP2020124655A (en
Inventor
健介 奥田
健介 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2019017419A priority Critical patent/JP6725712B1/en
Application granted granted Critical
Publication of JP6725712B1 publication Critical patent/JP6725712B1/en
Publication of JP2020124655A publication Critical patent/JP2020124655A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】オゾン及び過酸化水素を併用した促進酸化処理工程を採用した場合に、粒状体充填層が過酸化水素に起因する泡により閉塞することを効果的に抑制しつつ、臭素酸イオン濃度の充分に低い処理済水を得ることができる、水処理方法を提供する。【解決手段】被処理水を所定の方法で促進酸化処理する工程(A)の後に、過酸化水素を還元剤と反応させて還元処理して分解する工程(B)を実施してから、被処理水を粒状体充填層に通して吸着処理する工程(C)を実施する、水処理方法である。【選択図】図1PROBLEM TO BE SOLVED: To effectively suppress clogging of a granular material packed layer with bubbles caused by hydrogen peroxide while adopting an accelerated oxidation treatment step using both ozone and hydrogen peroxide, and to improve the bromate ion concentration. Provided is a water treatment method capable of obtaining sufficiently low treated water. SOLUTION: After the step (A) of subjecting the water to be treated to an accelerated oxidation treatment by a predetermined method, a step (B) of reacting hydrogen peroxide with a reducing agent for reduction treatment to decompose is carried out, and thereafter, It is a water treatment method of carrying out the step (C) of adsorbing the treated water through the granular material packed bed. [Selection diagram] Figure 1

Description

本発明は、水処理方法に関するものである。特に、本発明は、臭素含有成分を含む被処理水を酸化処理して処理済水を得る水処理方法に関するものである。 The present invention relates to a water treatment method. In particular, the present invention relates to a water treatment method in which treated water containing a bromine-containing component is subjected to oxidation treatment to obtain treated water.

従来、オゾンが強い酸化力を有するという特性を利用して、オゾンガスを被処理水中に散気するオゾン処理により、被処理水中の有機物、無機物、及びカビ臭物質等を酸化除去する水処理が広く実施されてきた。オゾン処理では、オゾン分子による酸化分解反応と、オゾン分子が分解して生成したヒドロキシラジカルによる酸化分解反応とが行われる。近年、特に、ヒドロキシラジカルの酸化力が非常に高いことが見出され、オゾンに対して、紫外線及び過酸化水素などを組み合わせることで、ヒドロキシラジカルの生成を促進させることで、オゾン分子では分解し難い難分解性物質を分解することができる、促進酸化処理(advanced oxidation process:AOP)という水処理方法が着目されている。 Conventionally, by utilizing the characteristic that ozone has a strong oxidizing power, a wide range of water treatments have been carried out by oxidizing ozone gas into the water to be treated to oxidize and remove organic substances, inorganic substances, musty odor substances, etc. in the water to be treated. Has been implemented. In the ozone treatment, an oxidative decomposition reaction by ozone molecules and an oxidative decomposition reaction by hydroxy radicals generated by decomposition of ozone molecules are performed. In recent years, in particular, it has been found that the oxidative power of hydroxy radicals is very high. By combining ultraviolet rays and hydrogen peroxide with ozone, the generation of hydroxy radicals is promoted, and ozone molecules are decomposed. Attention has been focused on a water treatment method called an advanced oxidation process (AOP) that can decompose difficult-to-decompose substances.

促進酸化処理では、被処理水に臭素含有成分が含有されていると、これがオゾンと反応して臭素酸イオンを生成することがある。そこで従来、促進酸化処理により生成された臭素酸イオンを分解する目的で、被処理水を促進酸化処理した後に、還元剤処理を行う処理方法が検討されてきた(例えば、特許文献1参照)。特許文献1には、還元剤処理工程において、促進酸化処理済みの被処理水を、pH5以下に調整した上で、還元剤と接触させる旨が記載されている。 In the accelerated oxidation treatment, when the water to be treated contains a bromine-containing component, this may react with ozone to generate bromate ions. Therefore, in order to decompose bromate ions generated by the accelerated oxidation treatment, a treatment method has been studied in which the water to be treated is subjected to the accelerated oxidation treatment and then the reducing agent treatment is performed (see, for example, Patent Document 1). Patent Document 1 describes that in the reducing agent treatment step, the water to be treated that has been subjected to the accelerated oxidation treatment is adjusted to have a pH of 5 or less and then brought into contact with the reducing agent.

特開2003−62583号公報JP, 2003-62583, A

しかし、特許文献1に記載の処理方法には、還元剤処理工程を経て得られる処理済水中における臭素酸イオン濃度を、より低濃度とする余地があった。 However, the treatment method described in Patent Document 1 has room for reducing the concentration of bromate ions in the treated water obtained through the reducing agent treatment step.

また、促進酸化処理を採用した水処理方法では、促進酸化処理工程の後段に、例えば、粉末活性炭及びその他の粒状の吸着材が充填されてなる充填層(以下、「粒状体充填層」と称する。)に対して、促進酸化処理工程を経た被処理水を導入する工程を実施することが一般的に行われている。ここで、促進酸化処理工程にてヒドロキシラジカルの生成を促進する目的で、過酸化水素を添加した場合には、粒状体充填層に導入された被処理水中に過酸化水素が残留していることがある。そうすると、過酸化水素が粒状体充填層にて分解して発泡し、粒状体充填層の空隙に泡が充満して粒状体充填層を閉塞させてしまう虞があった。 Further, in the water treatment method adopting the accelerated oxidation treatment, for example, a packed bed (hereinafter, referred to as “particulate packed bed”) filled with activated carbon powder and other granular adsorbents after the accelerated oxidation treatment step. The process of introducing the water to be treated which has been subjected to the accelerated oxidation treatment process is generally carried out for. Here, when hydrogen peroxide is added for the purpose of accelerating the generation of hydroxy radicals in the accelerated oxidation treatment step, that hydrogen peroxide remains in the water to be treated introduced into the granular material packed bed. There is. Then, hydrogen peroxide may be decomposed and foamed in the granular material-filled layer, and voids in the granular material-filled layer may be filled with bubbles to block the granular material-filled layer.

そこで、本願発明は、オゾン及び過酸化水素を併用した促進酸化処理工程を採用した水処理方法であって、粒状体充填層が過酸化水素に起因する泡により閉塞することを効果的に抑制しつつ、臭素酸イオン濃度が充分に低い処理済水を得ることができる、水処理方法を提供することを目的とする。 Therefore, the present invention is a water treatment method that employs an accelerated oxidation treatment step in which ozone and hydrogen peroxide are used in combination, and effectively suppresses clogging of a granular material packed layer with bubbles caused by hydrogen peroxide. Meanwhile, it is an object of the present invention to provide a water treatment method capable of obtaining treated water having a sufficiently low bromate ion concentration.

本発明者は、上記課題を解決することを目的として鋭意検討を行った。本発明者は、臭素酸イオンが生成され難くするような態様で、オゾン及び過酸化水素を併用した促進酸化処理工程を実施すること、及び、促進酸化処理工程を経た被処理水に対して還元剤を添加して、促進酸化処理工程で消費されずに被処理水中に残留した過酸化水素を分解してから、粒状体充填層に供給することで、粒状体充填層が過酸化水素に起因する泡により閉塞することを効果的に抑制しつつ、臭素酸イオン濃度が充分に低い処理済水を得ることが可能であることを見出し、本発明を完成させた。 The present inventor has made earnest studies for the purpose of solving the above problems. The present inventor performs an accelerated oxidation treatment step in which ozone and hydrogen peroxide are used in combination in a manner that makes it difficult to generate bromate ions, and reduces the water to be treated that has undergone the accelerated oxidation treatment step. By adding an agent to decompose the hydrogen peroxide remaining in the water to be treated that is not consumed in the accelerated oxidation treatment step and then supplying it to the granular material packed layer, the granular material packed layer is caused by hydrogen peroxide. The inventors have found that it is possible to obtain treated water having a sufficiently low bromate ion concentration while effectively suppressing clogging by bubbles that occur, and completed the present invention.

すなわち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の水処理方法は、臭素含有成分を含む被処理水を酸化処理して処理済水を得る水処理方法であって、前記被処理水に対して、オゾン及び過酸化水素を添加して、前記被処理水を促進酸化処理する工程(A)と、前記工程(A)を経た前記被処理水に対して還元剤を添加して被処理水−還元剤混合物として、前記被処理水に残存する過酸化水素を分解する工程(B)と、前記工程(B)を経た前記被処理水を、粒状体充填層に通す工程(C)と、を含み、少なくとも、(i)前記工程(A)を経た前記被処理水中における臭素酸イオン濃度を15μg/L以下とすること、又は、(ii)前記工程(A)で添加する、前記過酸化水素の添加量が、モル基準で、前記オゾンの添加量の2倍以上となるようにすること、の何れかを成立させることを含むことを特徴とする。このような水処理方法によれば、粒状体充填層が過酸化水素に起因する泡により閉塞することを効果的に抑制しつつ、臭素酸イオン濃度が充分に低い処理済水を得ることができる That is, the present invention is intended to advantageously solve the above problems, the water treatment method of the present invention is a water treatment to obtain a treated water by oxidizing the water to be treated containing a bromine-containing component A method of adding ozone and hydrogen peroxide to the water to be treated to accelerate the water to be treated (A); and the water to be treated after the step (A). On the other hand, a step (B) of decomposing hydrogen peroxide remaining in the treated water by adding a reducing agent to form a treated water-reducing agent mixture, and the treated water after the step (B) are granular. A step (C) of passing through a body-filled layer, and at least (i) setting the bromate ion concentration in the water to be treated after the step (A) to 15 μg/L or less, or (ii) The addition amount of the hydrogen peroxide added in the step (A) is at least twice the addition amount of the ozone on a molar basis. To do. According to such a water treatment method, it is possible to obtain treated water having a sufficiently low bromate ion concentration while effectively suppressing clogging of the granular material packed layer with bubbles caused by hydrogen peroxide.

ここで、本発明の水処理方法において、前記工程(B)における前記被処理水−還元剤混合物のpHが5.0超であることが好ましい。このような水処理方法により、一層良好に、粒状体充填層が過酸化水素に起因する泡により閉塞することを抑制することができるからである。 Here, in the water treatment method of the present invention, the pH of the water to be treated-reducing agent mixture in the step (B) is preferably more than 5.0. This is because such a water treatment method can more effectively prevent the granular material-filled layer from being clogged with bubbles caused by hydrogen peroxide.

また、本発明の水処理方法において、前記工程(B)で添加する前記還元剤が亜硫酸塩であることが好ましい。このような水処理方法により、一層良好に、粒状体充填層が過酸化水素に起因する泡により閉塞することを抑制することができるからである。 Further, in the water treatment method of the present invention, it is preferable that the reducing agent added in the step (B) is a sulfite. This is because such a water treatment method can more effectively prevent the granular material-filled layer from being clogged with bubbles caused by hydrogen peroxide.

さらに、本発明の水処理方法において、前記工程(C)を経た前記被処理水の酸化還元電位が0超であることが好ましい。このような水処理方法によれば、水処理効率を一層向上することができるからである。 Furthermore, in the water treatment method of the present invention, it is preferable that the oxidation-reduction potential of the water to be treated which has undergone the step (C) is higher than 0. This is because such a water treatment method can further improve the water treatment efficiency.

本発明の水処理方法によれば、オゾン及び過酸化水素を併用した促進酸化処理工程を採用した場合に、粒状体充填層が過酸化水素に起因する泡により閉塞することを効果的に抑制しつつ、臭素酸イオン濃度が充分に低い被処理水を得ることができる。 According to the water treatment method of the present invention, when adopting the accelerated oxidation treatment step in which ozone and hydrogen peroxide are used in combination, it is possible to effectively prevent the granular material packed layer from being clogged with bubbles caused by hydrogen peroxide. Meanwhile, it is possible to obtain water to be treated having a sufficiently low bromate ion concentration.

本発明に従う水処理方法を行う代表的な水処理装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the typical water treatment apparatus which performs the water treatment method according to this invention.

以下、本発明の実施の形態を、図面に基づき詳細に説明する。本発明の水処理方法は、特に限定されることなく、例えば、浄水場等において、臭素含有成分を含む被処理水中の有機物、無機物、及び臭気物質等を除去するための高度処理に用いられうる。また、近年利用が拡大されている下水再生水利用プロセスにおいてオゾン処理及び促進酸化処理を用いる場合であって、特に、再生水の用途が、人が直接接触する蓋然性が高い用途である場合には、快適性等を向上する観点から、本発明を好適に適用しうる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The water treatment method of the present invention is not particularly limited, and can be used, for example, in a water treatment plant or the like for advanced treatment for removing organic substances, inorganic substances, odorous substances, etc. in water to be treated containing bromine-containing components. .. In addition, when the ozone treatment and the accelerated oxidation treatment are used in the sewage reclaimed water utilization process, which has been widely used in recent years, particularly when the reclaimed water is used in such a case that there is a high possibility that the person comes into direct contact, The present invention can be preferably applied from the viewpoint of improving the properties and the like.

(水処理方法)
本発明の水処理方法は、臭素含有成分を含む被処理水を酸化処理して処理済水を得る水処理方法であって、被処理水に対して、オゾン及び過酸化水素を添加して、所定の方法で被処理水を促進酸化処理する工程(A)と、工程(A)を経た被処理水に対して還元剤を添加して被処理水−還元剤混合物として、被処理水に残存する過酸化水素を分解する工程(B)と、工程(B)を経た被処理水を、粒状体充填層に通す工程(C)と、を含むことを特徴とする。本発明の水処理方法は、被処理水を所定の方法で促進酸化処理する工程(A)の後に、過酸化水素を還元剤と反応させて還元処理して分解する工程(B)を実施してから、被処理水を粒状体充填層に通して吸着処理する工程(C)を実施することで、粒状体充填層が過酸化水素に起因する泡により閉塞することを効果的に抑制しつつ、臭素酸イオン濃度が充分に低い処理済水を得ることができる。
(Water treatment method)
The water treatment method of the present invention is a water treatment method in which treated water containing a bromine-containing component is subjected to an oxidation treatment to obtain treated water, to the treated water, ozone and hydrogen peroxide are added, A step (A) in which the water to be treated is subjected to an accelerated oxidation treatment by a predetermined method, and a reducing agent is added to the water to be treated after the step (A) to be left in the water to be treated as a water-reducing agent mixture. The method is characterized by including a step (B) of decomposing the hydrogen peroxide and a step (C) of passing the water to be treated after the step (B) through the granular material packed bed. In the water treatment method of the present invention, after the step (A) of subjecting the water to be treated to an accelerated oxidation treatment by a predetermined method, a step (B) of reacting hydrogen peroxide with a reducing agent to reduce and decompose it is carried out. Then, by carrying out the step (C) of adsorbing the water to be treated through the granular material packed layer, it is possible to effectively prevent the granular material packed layer from being clogged by bubbles caused by hydrogen peroxide. It is possible to obtain treated water having a sufficiently low bromate ion concentration.

図1に、本発明に従う水処理方法を実施するために用いることができる、代表的な水処理装置の一例の概略構成を示す。水処理装置100は、上述した工程(A)を実施し得る促進酸化処理槽20、工程(B)を実施し得る還元処理槽30、及び、工程(C)を実施し得る吸着処理槽40を備える。水処理装置100は、自然流下又はポンプ送水により導入口(図示しない)を経て水処理装置100内に臭素含有成分を含む被処理水を導入し、促進酸化処理槽20にて被処理水に対して過酸化水素及びオゾンを接触させた後に、更に、還元処理槽30及び吸着処理槽40にて所定の処理をして、排出口(図示しない)より装置外へと排出する。なお、以下において、水処理装置100において導入口側を「前段側」、排出口側を「後段側」と称することがある。そして、促進酸化処理槽20では、臭素酸イオンが生成され難くするような態様で促進酸化処理が実施される。 FIG. 1 shows a schematic configuration of an example of a typical water treatment apparatus that can be used to carry out the water treatment method according to the present invention. The water treatment device 100 includes the accelerated oxidation treatment tank 20 capable of performing the above-described step (A), the reduction treatment tank 30 capable of performing the step (B), and the adsorption treatment tank 40 capable of performing the step (C). Prepare The water treatment device 100 introduces water to be treated containing a bromine-containing component into the water treatment device 100 through an inlet (not shown) by gravity flow or by pumping water, and the water to be treated is treated in the accelerated oxidation treatment tank 20. After bringing the hydrogen peroxide and ozone into contact with each other, a predetermined treatment is further performed in the reduction treatment tank 30 and the adsorption treatment tank 40, and the resultant is discharged from the apparatus through a discharge port (not shown). In the following, in the water treatment device 100, the inlet side may be referred to as the “front stage side”, and the outlet side may be referred to as the “rear stage side”. Then, in the accelerated oxidation treatment tank 20, the accelerated oxidation treatment is performed in such a manner that bromate ions are less likely to be generated.

好ましくは、水処理装置100は、促進酸化処理槽20の前段側にオゾン接触槽10を備え、且つ、オゾン接触槽10及び促進酸化処理槽20に供給するオゾンを発生させるオゾン発生装置50を備える。さらに、水処理装置100は、オゾン接触槽10を経た被処理水中における溶存オゾン濃度を測定し得る溶存オゾン濃度測定装置61を備えることが好ましい。さらにまた、水処理装置100は、任意で、工程(C)を経た被処理水中の臭素酸イオン濃度をオンサイトで測定可能な、臭素酸イオン濃度測定装置62を備えていても良い。以下の説明では、本発明にかかる促進酸化処理方法に含まれる各種工程が、各構成部にて生じる工程として記載するが、本発明にかかる水処理方法はあらゆる物理的な構成部の有無によって何ら制限されるものではない。即ち、例えば、促進酸化処理が生じうる「水槽」等の有無にかかわらず、被処理水に対してオゾン及び過酸化水素が供給されて所定の促進酸化処理が行われていれば、本発明にかかる促進酸化処理方法の範疇に含まれる。 Preferably, the water treatment device 100 includes an ozone contact tank 10 in front of the accelerated oxidation treatment tank 20 and an ozone generator 50 that generates ozone to be supplied to the ozone contact tank 10 and the accelerated oxidation treatment tank 20. .. Further, the water treatment device 100 preferably includes a dissolved ozone concentration measuring device 61 capable of measuring the dissolved ozone concentration in the water to be treated which has passed through the ozone contact tank 10. Furthermore, the water treatment device 100 may optionally include a bromate ion concentration measuring device 62 capable of measuring the bromate ion concentration in the water to be treated that has undergone the step (C) on-site. In the following description, various steps included in the accelerated oxidation treatment method according to the present invention will be described as steps that occur in each constituent portion, but the water treatment method according to the present invention will not be affected by the presence or absence of any physical constituent portion. It is not limited. That is, for example, regardless of the presence or absence of a "water tank" in which the accelerated oxidation treatment may occur, if ozone and hydrogen peroxide are supplied to the water to be treated and a predetermined accelerated oxidation treatment is performed, the present invention It is included in the category of such accelerated oxidation treatment methods.

<被処理水>
水処理装置100の処理対象である被処理水としては、特に限定されることなく、例えば、水道水用の原水が挙げられる。具体的には、被処理水としては、ダムや河川等から取水した水、湖沼水、井戸水、湧水、及び地下水等が挙げられる。さらに、被処理水は臭素含有成分を含み、更に、有機物等の分解対象物質を含みうる。
<Water to be treated>
The water to be treated that is the treatment target of the water treatment device 100 is not particularly limited, and examples thereof include raw water for tap water. Specifically, examples of the water to be treated include water taken from dams and rivers, lake water, well water, spring water, and groundwater. Further, the water to be treated contains a bromine-containing component and may further contain a substance to be decomposed such as an organic substance.

<オゾン接触槽>
任意の構成部であるオゾン接触槽10は、被処理水に対してオゾンを接触させる工程(D)を行う。工程(D)を、工程(A)の前段に行うことで、被処理水中における分解対象物質の分解を促進するとともに、促進酸化処理槽20において、促進酸化処理を一層効果的に実施することができる。オゾン接触槽10は、後述するオゾン発生装置50により生成されたオゾンを、第1オゾン散気装置51を介して槽内へと導入する。なお、オゾン接触槽10は、通常使用される一般的なオゾン接触槽でありうる。被処理水とオゾンとの接触は、例えば、微小な気泡として槽内へ導入されたオゾンが被処理水内を流動することにより行われる。この際、被処理水とオゾンとの接触効率を向上すべく、撹拌、気泡の微小化や、オゾン導入速度の調節等を適宜実施することができる。このようにして、被処理水と接触されたオゾンは、一部が被処理水中の分解対象物質と反応してこれらを分解し、残りは被処理水中に溶解する。
<Ozone contact tank>
The ozone contact tank 10, which is an optional component, performs the step (D) of bringing ozone into contact with the water to be treated. By performing the step (D) before the step (A), the decomposition of the decomposition target substance in the water to be treated can be promoted, and the accelerated oxidation treatment can be performed more effectively in the accelerated oxidation treatment tank 20. it can. The ozone contact tank 10 introduces ozone generated by an ozone generator 50, which will be described later, into the tank via a first ozone diffuser 51. The ozone contact tank 10 may be a commonly used general ozone contact tank. The contact between the water to be treated and ozone is performed by, for example, the ozone introduced into the tank as fine bubbles flowing in the water to be treated. At this time, in order to improve the contact efficiency between the water to be treated and ozone, stirring, miniaturization of bubbles, adjustment of ozone introduction rate, etc. can be appropriately performed. In this way, the ozone that has come into contact with the water to be treated partially reacts with the decomposition target substance in the water to be decomposed, and the rest is dissolved in the water to be treated.

<促進酸化処理槽>
任意に、オゾン接触槽10においてオゾンと接触された被処理水は、促進酸化処理槽20へと供給される。促進酸化処理槽20では、臭素酸イオンが生成され難くするような所定の態様で、被処理水の促進酸化処理を行う工程(A)が実施される。具体的には、本発明の水処理方法では、少なくとも、(i)工程(A)を経た被処理水中における臭素酸イオン濃度を15μg/L以下とすること、或いは、(ii)モル基準で、過酸化水素の添加量が、オゾンの添加量の、2倍以上となるようにすること、の何れかを満たすようにする。
<Promoted oxidation treatment tank>
Optionally, the water to be treated contacted with ozone in the ozone contact tank 10 is supplied to the accelerated oxidation treatment tank 20. In the accelerated oxidation treatment tank 20, the step (A) of performing the accelerated oxidation treatment of the water to be treated is carried out in a predetermined mode that makes it difficult to generate bromate ions. Specifically, in the water treatment method of the present invention, at least (i) the bromate ion concentration in the water to be treated after the step (A) is set to 15 μg/L or less, or (ii) on a molar basis, Either the amount of hydrogen peroxide added should be twice or more the amount of ozone added.

上記(i)のようにする場合において、工程(A)を経た被処理水中における臭素酸イオン濃度を15μg/L以下とするための具体的な方途としては、特に限定されない。上記(i)のようにするにあたり、工程(A)において、オゾン及び過酸化水素の少なくとも一方の添加量を調節しても良いし、工程(A)の前段又は工程(A)にて、被処理水に対して、次亜塩素酸塩又はアンモニウム塩を添加した状態として、工程(A)を実施しても良い。 In the case of the above (i), there is no particular limitation on the specific method for setting the bromate ion concentration in the water to be treated after the step (A) to 15 μg/L or less. In carrying out the above (i), the addition amount of at least one of ozone and hydrogen peroxide may be adjusted in the step (A), or the amount of ozone and/or hydrogen peroxide may be adjusted before the step (A) or in the step (A). The step (A) may be carried out in a state where hypochlorite or ammonium salt is added to the treated water.

工程(A)を経た被処理水中における臭素酸イオン濃度は、15μg/L以下であることが好ましく、10μg/L以下であることがより好ましい。工程(A)を経た被処理水中における臭素酸イオン濃度が上記上限値以下であれば、得られる被処理水は一層水質に優れる。なお、工程(A)を経た被処理水中における臭素酸イオン濃度は、特に限定されることなく、既知の一般的な方法により測定することができる。例えば、水処理装置100は、促進酸化処理槽20と還元処理槽30とを連結する配管に、採水管(図示しない)を備えており、かかる採水管を経て採取した被処理水をイオンクロマトグラフ-ポストカラム法に従って分析することによって、被処理水中の臭素酸イオン濃度を測定することができる。 The bromate ion concentration in the water to be treated after the step (A) is preferably 15 μg/L or less, more preferably 10 μg/L or less. When the bromate ion concentration in the water to be treated after the step (A) is not more than the above upper limit value, the obtained water to be treated is further excellent in water quality. The bromate ion concentration in the water to be treated after the step (A) is not particularly limited and can be measured by a known general method. For example, the water treatment device 100 includes a water sampling pipe (not shown) in a pipe that connects the accelerated oxidation treatment tank 20 and the reduction treatment tank 30, and the water to be treated collected through the water sampling pipe is subjected to ion chromatography. -The bromate ion concentration in the water to be treated can be measured by analyzing according to the post-column method.

また、上記(ii)のようにする場合には、工程(A)における過酸化水素の添加量及びオゾンの添加量のうちの少なくとも一方を調節して、過酸化水素の添加量がオゾンの添加量の、2倍以上となるようにする。ここで、モル基準で、工程(A)における過酸化水素の添加量がオゾンの添加量の、5倍以上とすることがより好ましく、10倍以上とすることが更に好ましい。一層良好に臭素酸イオンの生成を抑制することができるからである。尚、工程(A)における上記添加比率は、通常、15倍以下でありうる。 Further, in the case of the above (ii), at least one of the addition amount of hydrogen peroxide and the addition amount of ozone in step (A) is adjusted so that the addition amount of hydrogen peroxide is the addition amount of ozone. Be more than twice the amount. Here, the addition amount of hydrogen peroxide in the step (A) is preferably 5 times or more, and more preferably 10 times or more, of the addition amount of ozone on a molar basis. This is because the generation of bromate ions can be suppressed even better. The addition ratio in the step (A) can be usually 15 times or less.

なお、上記(i)のようにする、即ち、工程(A)を経た前記被処理水中における臭素酸イオン濃度を15μg/L以下とするための手段が、上記(ii)に明記したように、工程(A)にて、モル基準で、過酸化水素の添加量が、オゾンの添加量の、2倍以上となるようにすることであっても良い。換言すると、工程(A)において、上記(i)及び(ii)の双方が満たされても良い。さらに、工程(A)の前段に、任意工程である、被処理水に対してオゾンを接触させる工程(D)を実施する場合であっても(言い換えれば、上述したような任意の構成部であるオゾン接触槽10を設ける場合であっても)、上記(ii)の条件を成立させるにあたり、工程(D)におけるオゾンの添加量を考慮することなく、あくまでも、工程(A)におけるオゾンの添加量を基準として、工程(A)における過酸化水素の添加量を決定することが好ましい。 In addition, as described in (ii) above, that is, a means for making the bromate ion concentration in the water to be treated after step (A) to be 15 μg/L or less is as described in (ii) above. In step (A), the amount of hydrogen peroxide added may be twice or more the amount of ozone added on a molar basis. In other words, in step (A), both (i) and (ii) above may be satisfied. Further, even in the case where the step (D) of bringing ozone into contact with the water to be treated, which is an optional step, is carried out before the step (A) (in other words, in the arbitrary constituent part as described above). Even when a certain ozone contact tank 10 is provided), in satisfying the condition of (ii) above, the ozone addition amount in the step (A) is added without considering the ozone addition amount in the step (D). It is preferable to determine the amount of hydrogen peroxide added in step (A) based on the amount.

促進酸化処理槽20は、オゾン接触槽10と同様に、後述するオゾン発生装置50により生成されたオゾンを、第2オゾン散気装置52を介して槽内へと導入する。そして、促進酸化処理槽20は、過酸化水素注入装置21により供給された過酸化水素及びオゾンを、被処理水と接触させる。このとき、促進酸化処理槽20内では、オゾンと過酸化水素とが反応することで、オゾンよりも酸化力の強いヒドロキシラジカルが生成される。かかるヒドロキシラジカルにより、被処理水中における分解対象物質、特に、難分解性物質が良好に分解されうる。さらに、上記ヒドロキシラジカルの生成によりオゾンが分解されるので、オゾンが過剰となり臭素含有成分とオゾンとが反応して臭素酸イオンが生成されることを抑制することができる。なお、促進酸化処理槽20及び過酸化水素注入装置21としては、一般的なものを使用することができる。 Similar to the ozone contact tank 10, the accelerated oxidation treatment tank 20 introduces ozone generated by an ozone generator 50, which will be described later, into the tank via a second ozone diffuser 52. Then, the accelerated oxidation treatment tank 20 brings the hydrogen peroxide and ozone supplied by the hydrogen peroxide injection device 21 into contact with the water to be treated. At this time, in the accelerated oxidation treatment tank 20, the reaction between ozone and hydrogen peroxide produces a hydroxy radical having a stronger oxidizing power than ozone. By such a hydroxy radical, a substance to be decomposed in the water to be treated, particularly a hardly decomposable substance, can be decomposed well. Furthermore, since ozone is decomposed by the generation of the hydroxy radicals, it is possible to prevent ozone from becoming excessive and reacting with the bromine-containing component and ozone to generate bromate ions. As the accelerated oxidation treatment tank 20 and the hydrogen peroxide injection device 21, general ones can be used.

<過酸化水素注入装置>
過酸化水素注入装置21は、工程(A)にて添加するオゾンの添加量に基づいて、促進酸化処理槽20に対して過酸化水素を供給する。図1では、促進酸化処理槽20に対して直接過酸化水素を投入する態様を示すが、促進酸化処理槽20の前段側で過酸化水素を被処理水中に供給しても良い。なお、過酸化水素注入装置21は、特に限定されることなく、水処理装置に対して取り付け可能な一般的な薬品注入手段として実装することができ、例えば、過酸化水素貯蔵タンク、供給ポンプ及び流量調節バルブ等により実装することができる。
<Hydrogen peroxide injection device>
The hydrogen peroxide injection device 21 supplies hydrogen peroxide to the accelerated oxidation treatment tank 20 based on the amount of ozone added in step (A). Although FIG. 1 shows a mode in which hydrogen peroxide is directly added to the accelerated oxidation treatment tank 20, hydrogen peroxide may be supplied to the water to be treated on the upstream side of the accelerated oxidation treatment tank 20. The hydrogen peroxide injection device 21 is not particularly limited and can be implemented as a general chemical injection means attachable to a water treatment device. For example, a hydrogen peroxide storage tank, a supply pump, and It can be mounted by a flow control valve or the like.

<オゾン発生装置>
オゾン発生装置50は、オゾン供給管70を介して第1オゾン散気装置51及び第2オゾン散気装置52と連通されており、これらを介してオゾン接触槽10及び促進酸化処理槽20に対してオゾンガスを供給する。第1オゾン散気装置51及び第2オゾン散気装置52は、例えば、空孔を有する散気管やメンブレン散気管などにより構成することができる。そして、オゾン供給管70は、第1オゾン量調節装置71及び第2オゾン量調節装置72を備えることが好ましい。第1及び第2オゾン量調節装置71及び72は、オゾン接触槽10及び促進酸化処理槽20に供給するオゾン量をそれぞれ調節できる限りにおいて特に限定されることなく、例えば、流量調節バルブとして構成されうる。第1及び第2オゾン量調節装置71及び72が流量調節バルブとして構成される場合には、流量調節バルブの開度を種々変更することにより、各槽10及び20に供給するオゾン量を調節することができる。また、オゾン発生装置50への制御信号(電気信号)を用いて、オゾンガス流量は変えずに発生オゾンガスの濃度を制御する方法も適用可能である。なお、オゾン発生装置50としては、特に限定されることなく、例えば、放電現象により発生する電子により酸素をオゾンに変換する既知のオゾン発生装置を用いることができる。なお、上記したように、オゾン接触槽10は、任意構成であるため、水処理装置100がこれを備えない場合には、第1オゾン散気装置51及び第1オゾン量調節装置71は存在せず、オゾン発生装置50により生成されたオゾンは、全て第2オゾン散気装置52を介して促進酸化処理槽20に供給される。
<Ozone generator>
The ozone generator 50 is in communication with the first ozone diffuser 51 and the second ozone diffuser 52 via the ozone supply pipe 70, and is connected to the ozone contact tank 10 and the accelerated oxidation treatment tank 20 via these. Supply ozone gas. The first ozone diffuser 51 and the second ozone diffuser 52 can be configured by, for example, diffusers having pores, membrane diffusers, or the like. The ozone supply pipe 70 preferably includes a first ozone amount adjusting device 71 and a second ozone amount adjusting device 72. The first and second ozone amount adjusting devices 71 and 72 are not particularly limited as long as the amounts of ozone supplied to the ozone contact tank 10 and the accelerated oxidation treatment tank 20 can be adjusted, and are configured as, for example, flow rate adjusting valves. sell. When the first and second ozone amount adjusting devices 71 and 72 are configured as flow rate adjusting valves, the amount of ozone supplied to each tank 10 and 20 is adjusted by changing the opening degree of the flow rate adjusting valve. be able to. Further, a method of controlling the concentration of the generated ozone gas without changing the flow rate of the ozone gas by using a control signal (electrical signal) to the ozone generator 50 is also applicable. The ozone generator 50 is not particularly limited, and for example, a known ozone generator that converts oxygen into ozone by electrons generated by a discharge phenomenon can be used. As described above, since the ozone contact tank 10 has an arbitrary configuration, when the water treatment device 100 does not include this, the first ozone diffuser device 51 and the first ozone amount adjusting device 71 do not exist. Instead, all the ozone generated by the ozone generator 50 is supplied to the accelerated oxidation treatment tank 20 via the second ozone diffuser 52.

<還元処理槽>
還元処理槽30では、工程(A)を経た被処理水に対して、還元剤注入装置31により還元剤を添加して被処理水−還元剤混合物として、被処理水に残存する過酸化水素を分解する工程(B)を実施する。還元剤としては、過酸化水素を還元可能な程度の還元力を呈し得る限りにおいて、亜硫酸塩、チオ硫酸塩、亜硝酸塩等のあらゆる還元剤を使用することができる。中でも、過酸化水素分解効果に加えて、被処理水中の溶存酸素濃度を低減することで、後段の工程(C)における発泡を一層良好に抑制することができるため、亜硫酸塩が好ましい。
<Reduction treatment tank>
In the reduction treatment tank 30, a reducing agent is added to the water to be treated after the step (A) by the reducing agent injecting device 31, and a hydrogen peroxide remaining in the water to be treated is formed as a water to be treated-reducing agent mixture. The step (B) of decomposing is carried out. As the reducing agent, any reducing agent such as sulfite, thiosulfate, and nitrite can be used as long as it can exhibit a reducing power capable of reducing hydrogen peroxide. Among these, sulfite is preferable because, in addition to the effect of decomposing hydrogen peroxide, reducing the dissolved oxygen concentration in the water to be treated can more effectively suppress foaming in the subsequent step (C).

そして、工程(B)では、被処理水−還元剤混合物のpHが5.0超であることが好ましく、5.8以上であることがより好ましい。なお、被処理水−還元剤混合物のpHは、通常、8.6以下であり得る。被処理水−還元剤混合物のpHが5.0超であれば、過酸化水素の分解効果を一層させることができる。なお、被処理水の性状、過酸化水素の投入量によっては、工程(B)にて、pH調整剤の添加等の、pHを調節するための処理を行わなくても、上記条件が満たされる場合がある。還元処理槽30では、図示しないpH計等により被処理水−還元剤混合物のpHをモニタリングして、必要に応じて、pH調整剤注入装置32等により、硫酸及び水酸化ナトリウム等のpH調整剤を注入することができる。 Then, in the step (B), the pH of the water to be treated-reducing agent mixture is preferably more than 5.0, and more preferably 5.8 or more. The pH of the water to be treated-reducing agent mixture can be usually 8.6 or less. When the pH of the water to be treated-reducing agent mixture exceeds 5.0, the effect of decomposing hydrogen peroxide can be further enhanced. It should be noted that, depending on the properties of the water to be treated and the amount of hydrogen peroxide added, the above conditions are satisfied even if the process for adjusting the pH such as the addition of a pH adjuster is not carried out in the step (B). There are cases. In the reduction treatment tank 30, the pH of the water to be treated-reducing agent mixture is monitored by a pH meter or the like (not shown), and if necessary, a pH adjusting agent injection device 32 or the like is used to adjust the pH adjusting agent such as sulfuric acid and sodium hydroxide. Can be injected.

なお、工程(B)における被処理水−還元剤混合物の酸化還元電位は、−200mV以上+400mV以下であることが好ましく、0に近い値であることがより好ましい。被処理水−還元剤混合物の酸化還元電位が上記範囲内であれば、工程(B)において過酸化水素を良好に分散することができる。 The redox potential of the water to be treated-reducing agent mixture in step (B) is preferably -200 mV or more and +400 mV or less, and more preferably a value close to 0. When the redox potential of the water to be treated-reducing agent mixture is within the above range, hydrogen peroxide can be well dispersed in the step (B).

<吸着処理槽>
吸着処理槽40では、工程(B)を経た被処理水を、粒状体充填層に通す工程(C)を実施する。粒状体充填層を構成する粒状体としては、粉末活性炭等の吸着材が挙げられる。さらに、粒状体充填層を構成する粒状体が、粉末二酸化マンガン、粉末塩化鉄(III)等の分解触媒として機能し得るその他の粒状体を含んでいても良い。工程(C)では、工程(B)を経た被処理水中に残留した有機物等を粉末活性炭等の吸着材に対して吸着させることができる。また、粒状体充填層を構成する粒状体が粉末二酸化マンガン、粉末塩化鉄(III)等の分解触媒として機能し得る粒状体を含む場合には、工程(C)にて、被処理水中に残留した有機物等を分解することができる。吸着処理槽40としては、特に限定されることなく、例えば、活性炭吸着池のような一般的に使用されうる構成を採用することができる。
<Adsorption treatment tank>
In the adsorption treatment tank 40, a step (C) of passing the water to be treated which has been subjected to the step (B) through the granular material packed bed is carried out. An adsorbent such as powdered activated carbon may be used as the granular material forming the granular material packed layer. Further, the granules constituting the granule-filled layer may contain other granules such as powdered manganese dioxide and powdered iron (III) chloride that can function as a decomposition catalyst. In the step (C), organic substances and the like remaining in the water to be treated after the step (B) can be adsorbed on an adsorbent such as powdered activated carbon. Further, in the case where the granular material constituting the granular material packed layer contains granular material capable of functioning as a decomposition catalyst such as powdered manganese dioxide and powdered iron (III) chloride, it remains in the water to be treated in step (C). It is possible to decompose organic substances and the like. The adsorption treatment tank 40 is not particularly limited, and may have a generally-used configuration such as an activated carbon adsorption tank.

本発明の水処理方法では、工程(C)に処される被処理水が工程(B)を経たものであるため、被処理水中に含まれる過酸化水素の量が非常に少ないか実質的にゼロとなり、残留過酸化水素が粒状体の表面で分解されることに起因してガスが発生することが抑制される。その結果、かかるガスが気泡となって粒状体充填層の空隙(即ち、被処理水の流路)を閉塞することが抑制されている。従って、工程(C)の効率が粒状体充填層の目詰まりによって低下する虞が少なく、水処理効率を向上させることができる。 In the water treatment method of the present invention, since the water to be treated in the step (C) has passed through the step (B), the amount of hydrogen peroxide contained in the water to be treated is very small or substantially. It becomes zero, and generation of gas due to decomposition of residual hydrogen peroxide on the surface of the granular material is suppressed. As a result, it is possible to prevent the gas from forming bubbles and blocking the voids (that is, the channels of the water to be treated) in the granular material packed layer. Therefore, the efficiency of the step (C) is less likely to decrease due to the clogging of the granular material packed layer, and the water treatment efficiency can be improved.

ここで、工程(C)を経た被処理水の酸化還元電位が0超であることが好ましく、+400mV以下であることが好ましく、0に近い値であることがより好ましい。工程(C)を経た時点における被処理水の酸化還元電位の値が0に近い正の値であれば、工程(C)を経た被処理水中に残留する還元剤の量が少ないことを意味する。従って、工程(C)を経た被処理水の酸化還元電位が0超であれば、工程(C)の後段にて、次亜塩素酸塩及び過マンガン酸カリウム等の酸化剤により残留還元剤を分解する酸化工程を実施する際の、酸化剤の添加量を少なくすることができ、コスト効果を高めることができる。言い換えれば、工程(C)を経た後であって、酸化工程を実施する前の時点における被処理水の酸化還元電位が、上記条件を満たすことが好ましい。なお、工程(A)の前段にて被処理水に対して次亜塩素酸塩を添加した場合であっても、工程(C)の後段にて、次亜塩素酸塩等の酸化剤を添加することが好ましい。 Here, the redox potential of the water to be treated after the step (C) is preferably more than 0, preferably +400 mV or less, and more preferably close to 0. If the value of the oxidation-reduction potential of the treated water at the time of passing through the step (C) is a positive value close to 0, it means that the amount of the reducing agent remaining in the treated water after the step (C) is small. .. Therefore, if the redox potential of the water to be treated after the step (C) is more than 0, the residual reducing agent is removed by an oxidizing agent such as hypochlorite and potassium permanganate in the latter stage of the step (C). It is possible to reduce the amount of the oxidizing agent added when carrying out the oxidation step of decomposing, and it is possible to enhance the cost effect. In other words, it is preferable that the oxidation-reduction potential of the water to be treated after the step (C) and before the oxidation step satisfies the above condition. Even if hypochlorite is added to the water to be treated in the former stage of step (A), an oxidizing agent such as hypochlorite is added in the latter stage of step (C). Preferably.

このように、本願の水処理方法によれば、被処理水を所定の方法で促進酸化処理する工程(A)の後に、過酸化水素を還元剤と反応させて還元処理して分解する工程(B)を実施してから、被処理水を粒状体充填層に通して吸着処理する工程(C)を実施することで、粒状体充填層が過酸化水素に起因する泡により閉塞することを効果的に抑制しつつ、臭素酸イオン濃度が充分に低い処理済水を得ることができる。 Thus, according to the water treatment method of the present application, after the step (A) of subjecting the water to be treated to accelerated oxidation treatment by a predetermined method, hydrogen peroxide is reacted with a reducing agent to undergo reduction treatment and decomposition ( By carrying out the step (C) of carrying out the adsorption treatment by passing the water to be treated through the granular material packed bed after carrying out B), it is effective that the granular material packed layer is blocked by bubbles due to hydrogen peroxide. It is possible to obtain treated water having a sufficiently low bromate ion concentration while suppressing it.

なお、本願の水処理方法を好適に実施することができる水処理装置100は、特に限定されることなく以下に挙げるような任意の構成部を備えていても良い。 In addition, the water treatment apparatus 100 capable of suitably implementing the water treatment method of the present application is not particularly limited, and may include any of the following components.

<制御装置>
水処理装置100は、制御装置80を備えていても良い。制御装置80は、さらに、オゾン供給量制御装置81及び過酸化水素供給量制御装置82を備えることが好ましい。制御装置80、オゾン供給量制御装置81及び過酸化水素供給量制御装置82は、特に限定されることなく、CPU(Central Processing Unit)等により構成することができ、図示しないが内蔵又は外付けの記憶部(例えば、メモリ)等を備えうる。
<Control device>
The water treatment device 100 may include the control device 80. The control device 80 preferably further includes an ozone supply amount control device 81 and a hydrogen peroxide supply amount control device 82. The control device 80, the ozone supply amount control device 81, and the hydrogen peroxide supply amount control device 82 are not particularly limited and can be configured by a CPU (Central Processing Unit) or the like. A storage unit (for example, a memory) or the like may be provided.

オゾン供給量制御装置81は、溶存オゾン濃度測定装置61により測定したオゾン濃度の測定値に基づいて、オゾン接触槽10及び促進酸化処理槽20に供給するオゾン量をそれぞれ制御することができる。また、過酸化水素供給量制御装置82は、促進酸化処理槽20に供給する過酸化水素の量を制御することができる。 The ozone supply amount control device 81 can respectively control the amount of ozone supplied to the ozone contact tank 10 and the accelerated oxidation treatment tank 20 based on the measured value of the ozone concentration measured by the dissolved ozone concentration measuring device 61. Further, the hydrogen peroxide supply amount control device 82 can control the amount of hydrogen peroxide supplied to the accelerated oxidation treatment tank 20.

以上、一例を用いて本発明の水処理方法について説明したが、本発明の水処理方法は、上記一例に限定されることはなく、適宜変更を加えることができる。例えば、工程(A)、或いは、工程(D)を実施する場合にはその前段において、ポリ塩化アルミニウム(PAC)等の凝集剤を添加及び混和し、膜ろ過する工程を実施することももちろん可能である。 Although the water treatment method of the present invention has been described above with reference to an example, the water treatment method of the present invention is not limited to the above example and can be appropriately modified. For example, in the case of carrying out the step (A) or the step (D), it is of course possible to carry out the step of adding and mixing a coagulant such as polyaluminum chloride (PAC) and performing membrane filtration in the preceding stage. Is.

本発明の水処理方法によれば、オゾン及び過酸化水素を併用した促進酸化処理工程を採用した場合に、粒状体充填層が過酸化水素に起因する泡により閉塞することを効果的に抑制しつつ、臭素酸イオン濃度の充分に低い処理済水を得ることができる。 According to the water treatment method of the present invention, when adopting the accelerated oxidation treatment step in which ozone and hydrogen peroxide are used in combination, it is possible to effectively prevent the granular material packed layer from being clogged with bubbles caused by hydrogen peroxide. Meanwhile, treated water having a sufficiently low bromate ion concentration can be obtained.

10 オゾン接触槽
20 促進酸化処理槽
30 還元処理槽
40 吸着処理槽
50 オゾン発生装置
51 第1オゾン散気装置
52 第2オゾン散気装置
61 溶存オゾン濃度測定装置
62 臭素酸イオン濃度測定装置
70 オゾン供給管
71 第1オゾン量調節装置
72 第2オゾン量調節装置
80 制御装置
81 オゾン供給量制御装置
82 過酸化水素供給量制御装置
100 水処理装置
10 ozone contact tank 20 accelerated oxidation treatment tank 30 reduction treatment tank 40 adsorption treatment tank 50 ozone generator 51 first ozone diffuser 52 second ozone diffuser 61 dissolved ozone concentration measuring device 62 bromate ion concentration measuring device 70 ozone Supply pipe 71 First ozone amount adjusting device 72 Second ozone amount adjusting device 80 Control device 81 Ozone supply amount control device 82 Hydrogen peroxide supply amount control device 100 Water treatment device

Claims (4)

臭素含有成分を含む被処理水を酸化処理して処理済水を得る水処理方法であって、
前記被処理水に対して、オゾン及び過酸化水素を添加して、前記被処理水を促進酸化処理する工程(A)と、
前記工程(A)を経た前記被処理水に対して還元剤を添加して被処理水−還元剤混合物として、前記被処理水に残存する過酸化水素を分解する工程(B)と、
前記工程(B)を経た前記被処理水を、粒状体充填層に通す工程(C)と、を含み、
少なくとも、
(i)前記工程(A)を経た前記被処理水中における臭素酸イオン濃度を15μg/L以下とすること、又は、
(ii)前記工程(A)で添加する前記過酸化水素の添加量が、モル基準で、前記オゾンの添加量の2倍以上となるようにすること、
の何れかを成立させることを含む、
水処理方法。
A water treatment method for obtaining treated water by oxidizing treated water containing a bromine-containing component,
A step (A) of adding ozone and hydrogen peroxide to the water to be treated to accelerate and oxidize the water to be treated;
A step (B) of decomposing hydrogen peroxide remaining in the water to be treated as a water-to-be-treated-reducing agent mixture by adding a reducing agent to the water to be treated after the step (A).
A step (C) of passing the water to be treated which has passed through the step (B) through a granular material packed bed,
at least,
(I) setting the bromate ion concentration in the water to be treated after the step (A) to 15 μg/L or less, or
(Ii) The addition amount of the hydrogen peroxide added in the step (A) is at least twice the addition amount of the ozone on a molar basis.
Including establishing any of
Water treatment method.
前記工程(B)における前記被処理水−還元剤混合物のpHが5.0超である、請求項1に記載の水処理方法。 The water treatment method according to claim 1, wherein the pH of the water to be treated-reducing agent mixture in the step (B) is higher than 5.0. 前記工程(B)で添加する前記還元剤が亜硫酸塩である、請求項1又は2に記載の水処理方法。 The water treatment method according to claim 1, wherein the reducing agent added in the step (B) is a sulfite. 前記工程(C)を経た前記被処理水の酸化還元電位が0超である、請求項1〜3の何れかに記載の水処理方法。 The water treatment method according to any one of claims 1 to 3, wherein the redox potential of the water to be treated after the step (C) is more than 0.
JP2019017419A 2019-02-01 2019-02-01 Water treatment method Active JP6725712B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019017419A JP6725712B1 (en) 2019-02-01 2019-02-01 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019017419A JP6725712B1 (en) 2019-02-01 2019-02-01 Water treatment method

Publications (2)

Publication Number Publication Date
JP6725712B1 true JP6725712B1 (en) 2020-07-22
JP2020124655A JP2020124655A (en) 2020-08-20

Family

ID=71663922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019017419A Active JP6725712B1 (en) 2019-02-01 2019-02-01 Water treatment method

Country Status (1)

Country Link
JP (1) JP6725712B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062583A (en) * 2001-08-29 2003-03-04 Nkk Corp Treating method for sewage containing decomposition resistant organic material and bromine, and equipment therefor
JP2005230731A (en) * 2004-02-20 2005-09-02 Kurita Water Ind Ltd Method and apparatus for water treatment
JP6246573B2 (en) * 2013-12-03 2017-12-13 メタウォーター株式会社 Water treatment control device, water treatment control method

Also Published As

Publication number Publication date
JP2020124655A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
WO2011108610A1 (en) Water treatment method and ultrapure water production method
US20080220533A1 (en) Measuring Method for Total Organic Carbon, Measuring Method for Total Nitrogen and Measuring Apparatus for the Methods
TWI568683B (en) Water treatment method and method for producing ultrapure water
TWI444338B (en) Method and apparatus for removing organic matter
JP2008043898A (en) Water treatment system and water treatment method
JP2005279409A (en) Treatment method of organometallic compound-containing waste water
JP6725712B1 (en) Water treatment method
JP4978275B2 (en) Primary pure water production process water treatment method and apparatus
JP6703881B2 (en) Accelerated oxidation treatment method and accelerated oxidation treatment device
KR102497835B1 (en) Composition for Fenton oxidation, and a method for the oxidative degradation of organic pollutants using the same
WO2022050838A1 (en) Wastewater ozone treatment
JP4219664B2 (en) Ultrapure water production equipment
WO2021182480A1 (en) Water treatment method, control device for water treatment device, and control program for water treatment device
JP2008264630A (en) Water treatment apparatus for making ultrapure water and water treatment system for making ultrapure water
JP4522302B2 (en) Detoxification method of organic arsenic
WO2018155120A1 (en) Method for manufacturing iron supporting activated carbon for water treatment device
JP2003001277A (en) Method for decomposing persistent substance
JP2011240344A (en) Water treatment apparatus for manufacturing ultrapure water
JP2007069190A (en) Method and apparatus for treating nitrite nitrogen-containing water
Kishimoto et al. Efficacy of vacuum ultraviolet photolysis for bromate and chlorate removal
JPH10230291A (en) Biological denitrification method of water and device therefor
CN215627271U (en) Device for treating high-concentration COD wastewater by ozone
JP5789922B2 (en) Water treatment method and ultrapure water production method
JP2024004090A (en) Water treatment method
CN115745137A (en) Method for treating alkaline wastewater by Fenton system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200625

R150 Certificate of patent or registration of utility model

Ref document number: 6725712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250