JP6724452B2 - Quenched steel pipe member and method for manufacturing quenched steel pipe member - Google Patents

Quenched steel pipe member and method for manufacturing quenched steel pipe member Download PDF

Info

Publication number
JP6724452B2
JP6724452B2 JP2016055872A JP2016055872A JP6724452B2 JP 6724452 B2 JP6724452 B2 JP 6724452B2 JP 2016055872 A JP2016055872 A JP 2016055872A JP 2016055872 A JP2016055872 A JP 2016055872A JP 6724452 B2 JP6724452 B2 JP 6724452B2
Authority
JP
Japan
Prior art keywords
steel pipe
pipe member
tubular body
quenched
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016055872A
Other languages
Japanese (ja)
Other versions
JP2017170452A (en
Inventor
一夫 植松
一夫 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016055872A priority Critical patent/JP6724452B2/en
Publication of JP2017170452A publication Critical patent/JP2017170452A/en
Application granted granted Critical
Publication of JP6724452B2 publication Critical patent/JP6724452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、焼入れ鋼管部材及び焼入れ鋼管部材の製造方法に関する。 The present invention relates to a quenched steel pipe member and a method for manufacturing a quenched steel pipe member.

金型を用いずに複雑な形状の鋼管部材を製造できる3次元熱間曲げ焼入れ(3DQ: 3Dimensional Hot Bending and Quench)技術が知られている。3DQは、例えば、自動車の構造材の製造に用いられる。3DQ加工により製造される構造材は軽量かつ高強度という特長がある。 There is known a three-dimensional hot bending and quenching (3DQ) technique capable of producing a steel pipe member having a complicated shape without using a die. 3DQ is used, for example, in the manufacture of automobile structural materials. The structural material manufactured by 3DQ processing is lightweight and has high strength.

3DQは、次のような方法である。すなわち、素材となる鋼管を送りながら、誘導加熱装置でAc3変態点以上まで局部的に鋼管を加熱し、誘導加熱装置よりも鋼管の送り方向下流側の冷却装置で鋼管を速やかに冷却(焼入れ)する。このとき、鋼管における誘導加熱装置と冷却装置との間には局部的な高温部が生じる。この高温部に任意の方向の曲げモーメントを与えることで鋼管を熱間変形させ、冷却装置による冷却により焼入れと形状の固定を行う。 3DQ is the following method. That is, while feeding the steel pipe as the material, the induction heating device locally heats the steel pipe up to the Ac3 transformation point or higher, and the cooling device on the downstream side of the induction heating device in the feeding direction of the steel pipe rapidly cools (quenching). To do. At this time, a local high temperature part is generated between the induction heating device and the cooling device in the steel pipe. The steel pipe is hot-deformed by applying a bending moment in an arbitrary direction to the high temperature portion, and quenching and fixing of the shape are performed by cooling with a cooling device.

高温部に曲げモーメントを与えるための曲げモーメント付与手段としては、特許文献1のように冷却手段の鋼管送り方向下流側に配置された可動ローラーダイス、特許文献2のように鋼管送り方向下流側の鋼管端部に取り付けられたチャックとマニピュレーター、特許文献3のように鋼管送り方向上流側の鋼管端部に取り付けられたチャックとマニピュレーターが例示される。 As a bending moment imparting means for imparting a bending moment to the high temperature portion, a movable roller die arranged downstream of the cooling means in the steel pipe feeding direction as in Patent Document 1 and a downstream roller side in the steel pipe feeding direction as in Patent Document 2 Examples include a chuck and a manipulator attached to the end of the steel pipe, and a chuck and a manipulator attached to the end of the steel pipe on the upstream side in the steel pipe feeding direction as in Patent Document 3.

3DQでは曲げ加工のほか、ねじり加工も可能である。特許文献1と特許文献3には3DQでねじり加工が可能であることが開示されている。特許文献4には3DQによるねじり部材が開示されている。 In addition to bending, 3DQ can also be twisted. Patent Documents 1 and 3 disclose that twisting can be performed by 3DQ. Patent Document 4 discloses a torsion member based on 3DQ.

国際公開第2006/093006号International Publication No. 2006/093006 国際公開第2010/050460号International Publication No. 2010/050460 国際公開第2011/007810号International Publication No. 2011/007810 国際公開第2010/084898号International Publication No. 2010/084898

ところで、3DQ等の高周波誘導加熱により焼入れした鋼管部材は、高強度であるが、他の部材との接合にねじやボルト等を用いる場合、硬くて穴あけ等の加工がしにくい、という問題がある。一方、焼入れ前の鋼管部材に穴をあけた場合、焼入れ時に穴の縁部が誘導加熱によって過加熱される、また、穴から鋼管部材の内部に冷却水が侵入して冷却が不均一になる、という問題がある。焼入れ前の鋼管部材に穴をあけた場合に生じる問題を解決することは困難である。 By the way, a steel pipe member quenched by high-frequency induction heating such as 3DQ has high strength, but when a screw or a bolt is used for joining with another member, there is a problem that it is hard and difficult to process such as drilling. .. On the other hand, when a hole is drilled in the steel pipe member before quenching, the edge of the hole is overheated by induction heating during quenching, and cooling water enters the inside of the steel pipe member through the hole, resulting in uneven cooling. , There is a problem. It is difficult to solve the problem that occurs when a hole is drilled in a steel pipe member before quenching.

以上の事情を鑑み、本発明の主な目的は、3DQ等の高周波誘導加熱により焼入れして製造される焼入れ鋼管部材に焼入れ後でも加工が容易な部分を設ける技術を提供することにある。 In view of the above circumstances, a main object of the present invention is to provide a technique for providing a hardened steel pipe member manufactured by quenching by high-frequency induction heating such as 3DQ with a portion that can be easily processed even after quenching.

本発明の第1の態様の焼入れ鋼管部材は、焼入れされた管状の本体と、前記本体に対し内側に窪んだ状態とされ、底部の硬度が前記本体の他の部分の硬度よりも低い窪み部と、を有している。 The quenched steel pipe member of the first aspect of the present invention is a quenched tubular body, and a recessed portion in which the hardness of the bottom portion is lower than the hardness of the other portion of the body, the recessed portion being inwardly recessed from the body. And have.

本発明の第2の態様の焼入れ鋼管部材は、第1の態様の焼入れ鋼管部材において、前記窪み部の底部は、未焼入れ状態とされている。 A quenched steel pipe member according to a second aspect of the present invention is the quenched steel pipe member according to the first aspect, wherein the bottom of the recess is in an unquenched state.

本発明の第3の態様の焼入れ鋼管部材は、第1の態様又は第2の態様の焼入れ鋼管部材において、前記窪み部の底部と前記本体の他の部分との硬度差が150〜250HVの範囲内とされている。 The hardened steel pipe member of the third aspect of the present invention is the hardened steel pipe member of the first aspect or the second aspect, wherein the hardness difference between the bottom of the recess and the other portion of the main body is in the range of 150 to 250 HV. It is said to be inside.

本発明の第4の態様の焼入れ鋼管部材は、第1〜第3の態様のいずれか一態様の焼入れ鋼管部材において、前記窪み部が前記本体の長手方向の端部に形成されている。 A quenched steel pipe member according to a fourth aspect of the present invention is the quenched steel pipe member according to any one of the first to third aspects, wherein the recessed portion is formed at an end portion in the longitudinal direction of the main body.

本発明の第5の態様の焼入れ鋼管部材の製造方法は、長手方向の一部において外周に窪み部が形成された焼入れ前の管体を、前記管体に対応する形状の誘導加熱コイルに通して加熱した後、急冷して焼入れする。 In the method for manufacturing a quenched steel pipe member according to a fifth aspect of the present invention, a tubular body before quenching, in which a recess is formed in the outer periphery in a part in the longitudinal direction, is passed through an induction heating coil having a shape corresponding to the tubular body. After heating, quench and quench.

本発明の第6の態様の焼入れ鋼管部材の製造方法は、第5の態様の焼入れ鋼管部材の製造方法において、焼入れ前の前記管体にプレス加工で前記窪み部を形成する。 A method for manufacturing a quenched steel pipe member according to a sixth aspect of the present invention is the method for manufacturing a quenched steel pipe member according to the fifth aspect, wherein the recessed portion is formed in the tubular body before quenching by press working.

本発明は、3DQ等の高周波誘導加熱により焼入れして製造される鋼管部材に、焼入れ後でも加工が容易な部分を設ける技術を提供することができる。 INDUSTRIAL APPLICABILITY The present invention can provide a technique of providing a steel pipe member manufactured by quenching by high-frequency induction heating such as 3DQ with a portion that can be easily processed even after quenching.

本発明の一実施形態に係る焼入れ鋼管部材の斜視図である。It is a perspective view of the hardening steel pipe member which concerns on one Embodiment of this invention. 本発明の一実施形態で用いるプレス装置で焼入れ前の管体をプレスした状態を示す該管体の断面図である。FIG. 3 is a cross-sectional view of the tubular body showing a state in which the tubular body before quenching is pressed by the pressing device used in the embodiment of the present invention. 本発明の一実施形態で用いる3DQ装置の全体構成を示す斜視図である。It is a perspective view showing the whole 3DQ device composition used by one embodiment of the present invention. 3DQ装置の誘導加熱コイルを管体送り方向下流から上流に向かってみた様子を、挿通される管体の断面と共に示す図である。It is a figure which shows a mode that the induction heating coil of the 3DQ device was seen from the downstream in the tube feeding direction to the upstream, together with the cross section of the tube inserted. 本発明の他の実施形態に係る焼入れ鋼管部材の斜視図である。It is a perspective view of the hardening steel pipe member which concerns on other embodiment of this invention. 実施例の焼入れ鋼管部材を焼入れする際の直線Y上及び直線Z上の加熱温度を示すグラフである。It is a graph which shows the heating temperature on the straight line Y and the straight line Z at the time of quenching the quenched steel pipe member of an Example. 実施例の焼入れ鋼管部材の直線Y上及び直線Z上の硬度を示すグラフである。It is a graph which shows the hardness on the straight line Y and the straight line Z of the quenched steel pipe member of an Example.

3DQ等の高周波誘導加熱により焼入れした鋼管部材(以下、適宜「焼入れ鋼管部材」と記載する。)は、高強度のため、他の部材との接合にねじやボルト等を用いる場合、硬くて穴あけ等の加工がしにくいという問題がある。一方、焼入れ鋼管部材と他の部材との接合に溶接を用いる場合、焼入れ鋼管部材の溶接の熱を受けた部分がHAZ軟化により低強度となるという問題がある。 Steel pipe members that have been quenched by high-frequency induction heating such as 3DQ (hereinafter referred to as "quenched steel pipe members" as appropriate) have high strength, so when using screws, bolts, etc. for joining with other members, they are hard and drilled. There is a problem that it is difficult to process such as. On the other hand, when welding is used for joining the hardened steel pipe member and another member, there is a problem that a portion of the hardened steel pipe member which receives heat of welding has low strength due to HAZ softening.

ここで、鋼材を焼入れするということは、鋼材をオーステナイト変態させた後、急冷してマルテンサイト変態させることである。鋼材は、鋼材の組織に占めるマルテンサイト組織の割合が高いほど高強度になるため、鋼材で形成される焼入れ鋼管部材に上記の問題が生じる。本発明者は、焼入れ鋼管部材の加工されたり、溶接されたりする部位のマルテンサイト組織の割合を低くする、あるいは、マルテンサイト組織を無くすことができれば、上記の問題を解消できると考えた。 Here, quenching a steel material is to transform the steel material into austenite and then rapidly cool it to transform into martensite. The higher the ratio of the martensite structure to the structure of the steel material is, the higher the strength of the steel material is. Therefore, the above-described problem occurs in the quenched steel pipe member formed of the steel material. The present inventor thought that the above problems could be solved if the ratio of the martensite structure in the worked or welded portion of the quenched steel pipe member could be reduced or the martensite structure could be eliminated.

一般的に、鋼材のマルテンサイト組織はオーステナイト相を急冷することで発生する。このオーステナイト相の割合は加熱温度によって調整可能である。つまり、マルテンサイト組織の割合は、鋼材の加熱温度によって調整可能である。鋼材をAc3変態点以上に加熱すれば組織を全てオーステナイト相にすることが可能であり、そこから急冷すると鋼材の組織を全てマルテンサイト組織にすることが可能である。一方、鋼材の加熱温度がAc1変態点未満であるとオーステナイト相が発生しないため、そこから急冷してもマルテンサイト組織は発生しない。また、鋼材をAc1変態点からAc3変態点の間の温度に加熱すると温度が高いほどオーステナイト相の割合が増加し、急冷した後のマルテンサイト組織の割合が増加する。つまり、鋼管部材に加熱温度がAc3変態点未満の低い箇所を選択的に設けることができれば、マルテンサイト組織の割合が低い箇所を選択的に生じさせることができると本発明者は考えた。 Generally, the martensitic structure of steel is generated by rapidly cooling the austenite phase. The proportion of this austenite phase can be adjusted by the heating temperature. That is, the ratio of the martensite structure can be adjusted by the heating temperature of the steel material. When the steel material is heated to the Ac3 transformation point or higher, the entire structure can be made into an austenite phase, and when it is rapidly cooled, the entire structure of the steel material can be made to have a martensite structure. On the other hand, if the heating temperature of the steel material is lower than the Ac1 transformation point, the austenite phase does not occur, and therefore the martensite structure does not occur even when the steel is rapidly cooled. When the steel material is heated to a temperature between the Ac1 transformation point and the Ac3 transformation point, the proportion of the austenite phase increases as the temperature rises, and the proportion of the martensite structure after quenching increases. That is, the inventor of the present invention considered that if a low heating temperature lower than the Ac3 transformation point can be selectively provided in the steel pipe member, a low martensite structure ratio can be selectively generated.

高周波誘導加熱による加熱で鋼管部材に部分的に加熱温度が低い箇所を生じさせるには、鋼管部材の表面に発生する誘導電流を低くすることが考えられる。また、鋼管部材の長手方向で部分的に加熱温度を低くするには、加熱温度を低くする部位が誘導加熱コイルを通過する際に、誘導加熱コイルに流す電力を下げることが考えられる。さらに、鋼管部材の断面内で部分的に加熱温度を低くするには、加熱温度を低くする部位と誘導加熱コイルとの間のクリアランスを部分的に広くすることが考えられる。しかし、これらの方法では鋼管部材の断面内、長手方向のどちらも部分的、すなわち島状に加熱温度を低くすることができない。 In order to partially generate a portion having a low heating temperature in the steel pipe member by heating by the high frequency induction heating, it is conceivable to reduce the induction current generated on the surface of the steel pipe member. Further, in order to partially lower the heating temperature in the longitudinal direction of the steel pipe member, it is conceivable to lower the electric power supplied to the induction heating coil when the portion for lowering the heating temperature passes through the induction heating coil. Further, in order to partially lower the heating temperature within the cross section of the steel pipe member, it is conceivable to partially widen the clearance between the portion for lowering the heating temperature and the induction heating coil. However, these methods cannot reduce the heating temperature locally, that is, in an island shape in both the cross section and the longitudinal direction of the steel pipe member.

そのため、本発明者は、一部を窪ませた焼入れ前の鋼管部材を誘導加熱した場合、窪ませた部分において誘導加熱コイルとのクリアランスが広くなるため、加熱温度が他の箇所と比べ低くなると考えた。この技術を用いることで、3DQ等の高周波誘導加熱により焼入れして製造される鋼管部材に、焼入れ後でも加工が容易でかつ溶接等の熱で低強度化し難い部分を設けることができる、と考えられる。 Therefore, the present inventor, when induction heating the steel pipe member before quenching that is partially recessed, because the clearance with the induction heating coil in the recessed portion becomes wide, the heating temperature becomes lower than other locations. Thought. By using this technology, it is thought that it is possible to provide a steel pipe member that is manufactured by quenching by high-frequency induction heating such as 3DQ with a portion that is easy to process even after quenching and that is difficult to reduce strength by heat such as welding. To be

以下で説明する本発明の実施の形態は、上記知見に基づくものである。 The embodiments of the present invention described below are based on the above findings.

本発明の一実施形態に係る焼入れ鋼管部材20(以下、適宜「鋼管部材20」と記載する。)及び焼入れ鋼管部材20の製造方法について説明する。 A quenched steel pipe member 20 (hereinafter, appropriately referred to as "steel pipe member 20") and a method for manufacturing the quenched steel pipe member 20 according to an embodiment of the present invention will be described.

まず、鋼管部材20について説明する。
図1に示されるように、鋼管部材20は、後述する3DQ装置40(図3参照)の高周波誘導加熱で焼入れされた管状の本体22と、この本体22に対して内側に窪んだ状態とされ、底部24Aの硬度が本体22の他の部分の硬度よりも低い窪み部24と、を有している。なお、図1では、鋼管部材20の長手方向を矢印X方向で示し、図4では、鋼管部材20を長手方向と直交する方向の断面で見て、縦方向を矢印A方向で示し、横方向を矢印B方向で示している。
First, the steel pipe member 20 will be described.
As shown in FIG. 1, the steel pipe member 20 has a tubular main body 22 that has been quenched by high-frequency induction heating of a 3DQ device 40 (see FIG. 3) described below, and is in a state of being recessed inward with respect to the main body 22. The bottom portion 24A has a hollow portion 24 having a hardness lower than the hardness of other portions of the main body 22. In addition, in FIG. 1, the longitudinal direction of the steel pipe member 20 is indicated by an arrow X direction, and in FIG. 4, the longitudinal direction is indicated by an arrow A direction when viewed in a cross section of the steel pipe member 20 in a direction orthogonal to the longitudinal direction. Is indicated by the arrow B direction.

図1に示されるように、本体22は、角形管状とされており、4つの平板部分22Aと、平板部分22A同士をつなぐ4つの角部22Bと、を含んで構成されている。また、隣り合う平板部分22Aの成す角度は90度とされている。本体22として、例えば、電縫管(電気抵抗溶接管)が用いられる。なお、本発明は上記構成に限定されず、本体22としてシームレス管を用いてもよい。 As shown in FIG. 1, the main body 22 has a rectangular tubular shape, and is configured to include four flat plate portions 22A and four corner portions 22B connecting the flat plate portions 22A to each other. The angle formed by the adjacent flat plate portions 22A is 90 degrees. As the main body 22, for example, an electric resistance welded pipe (electric resistance welded pipe) is used. The present invention is not limited to the above configuration, and a seamless tube may be used as the main body 22.

また、本体22は、3DQ装置40によって長手方向の中間部23(図3参照)が曲げられている。 The main body 22 has a longitudinal intermediate portion 23 (see FIG. 3) bent by the 3DQ device 40.

窪み部24は、本体22の長手方向の両端部22Cにそれぞれ形成されている。この窪み部24は、本体22の平板部分22Aを内側に向けて押し出して成形されており、底部24Aが平坦状とされている。 The recesses 24 are formed on both ends 22C of the main body 22 in the longitudinal direction. The recessed portion 24 is formed by extruding the flat plate portion 22A of the main body 22 inward, and the bottom portion 24A is flat.

また、窪み部24は、少なくとも底部24Aが未焼入れ状態とされている。このため、底部24Aの硬度は、焼入れされた本体22の他の部分(窪み部以外の部分)の硬度よりも低くされている。なお、ここでいう「硬度」とは、ビッカース硬さを指している。また、ここでいう「未焼入れ状態」とは、マルテンサイト組織が30%以下の状態を指している。 Further, at least the bottom portion 24A of the recess 24 is in an unquenched state. Therefore, the hardness of the bottom portion 24A is set to be lower than the hardness of the other portion (the portion other than the recessed portion) of the quenched main body 22. The term "hardness" as used herein refers to Vickers hardness. In addition, the “non-quenched state” here means a state where the martensite structure is 30% or less.

窪み部24の底部24Aの硬度(ビッカース硬さ)と本体22の他の部分の硬度(ビッカース硬さ)の硬度差は、150〜250HVの範囲内に設定されている。 The hardness difference between the hardness (Vickers hardness) of the bottom portion 24A of the depression 24 and the hardness (Vickers hardness) of the other portion of the main body 22 is set within a range of 150 to 250 HV.

また、窪み部24の底部24Aの硬度は、200〜300HVの範囲内に設定されている。なお、窪み部24の底部24Aの硬度は、少なくとも引っ張り強さ660〜720MPaが確保できる210〜230HVの範囲内に設定することがより好ましい。 The hardness of the bottom 24A of the recess 24 is set within the range of 200 to 300 HV. The hardness of the bottom portion 24A of the recess 24 is more preferably set within a range of 210 to 230 HV that can secure at least a tensile strength of 660 to 720 MPa.

一方、本体22のその他の部分の硬度は、350〜450HVの範囲内に設定されている。なお、本体22のその他の部分の硬度は、少なくとも引っ張り強さ1200MPa以上が確保できる380HV以上に設定することがより好ましい。 On the other hand, the hardness of the other parts of the main body 22 is set within the range of 350 to 450 HV. The hardness of the other portions of the main body 22 is more preferably set to 380 HV or more, which can secure at least a tensile strength of 1200 MPa or more.

次に、鋼管部材20の製造に用いるプレス装置30及び3次元熱間曲げ焼入れ装置40(以下、適宜「3DQ装置40」と記載する。)について説明する。 Next, the press device 30 and the three-dimensional hot bending and quenching device 40 (hereinafter appropriately referred to as “3DQ device 40”) used for manufacturing the steel pipe member 20 will be described.

図2に示されるように、プレス装置30は、焼入れ後に鋼管部材20の本体22となる角形管状の管体80にプレス加工をするための装置である。このプレス装置30は、管体80の長手方向の両端部80Cにそれぞれ窪み部24をプレス加工するための固定型32と可動型34を備えている。このプレス装置30では、管体80の端部80Cに挿入した固定型32で管体80の平板部分80Aを内側から支持し、可動型34で固定型32に形成された凹部32Aに向けて管体80の平板部分80Aを押し出して、管体80に窪み部24を加工するようになっている。 As shown in FIG. 2, the pressing device 30 is a device for pressing a rectangular tubular body 80 which becomes the main body 22 of the steel pipe member 20 after quenching. The pressing device 30 includes a fixed die 32 and a movable die 34 for pressing the recessed portions 24 at both ends 80C in the longitudinal direction of the tubular body 80. In this pressing apparatus 30, the fixed die 32 inserted into the end portion 80C of the tubular body 80 supports the flat plate portion 80A of the tubular body 80 from the inside, and the movable die 34 guides the flat portion 80A toward the concave portion 32A formed in the fixed die 32. The flat plate portion 80A of the body 80 is pushed out to process the hollow portion 24 in the tubular body 80.

図3に示されるように、3DQ装置40は、送り装置42と、誘導加熱コイル44と、冷却装置46と、曲げモーメント付与装置48としての可動ローラーダイス50及び支持ローラー52と、を備えている。 As shown in FIG. 3, the 3DQ device 40 includes a feeding device 42, an induction heating coil 44, a cooling device 46, a movable roller die 50 as a bending moment applying device 48, and a support roller 52. ..

送り装置42は、管体80の後端(管体80の送り方向(以下、適宜「管体送り方向」と記載する。)の上流側の端部)を把持するチャック43を備えており、このチャック43が押し出されることで管体80が長手方向に送られる。このチャック43は、管体80を把持可能な構造とされている。 The feeding device 42 includes a chuck 43 that holds a rear end of the tubular body 80 (an upstream end portion in the feeding direction of the tubular body 80 (hereinafter, appropriately referred to as a “pipeline feeding direction”)), The tubular body 80 is sent in the longitudinal direction by pushing out the chuck 43. The chuck 43 has a structure capable of gripping the tubular body 80.

図4に示されるように、誘導加熱コイル44は、送り装置42によって送られる管体80が挿通するように設けられている。この誘導加熱コイル44は、管体80に対応する形状、具体的には、管体80の断面に略相似する矩形形状とされている。また、管体80が誘導加熱コイル44に挿通されると、管体80における誘導加熱コイル44に挿通された部分が誘導加熱コイル44によって急速に加熱される。ここで、管体80の窪み部24と誘導加熱コイル44との間のクリアランスC1は、管体80の他の部分と誘導加熱コイル44との間のクリアランスC2よりも広くなっている。 As shown in FIG. 4, the induction heating coil 44 is provided so that the tubular body 80 fed by the feeding device 42 is inserted therethrough. The induction heating coil 44 has a shape corresponding to the tubular body 80, specifically, a rectangular shape substantially similar to the cross section of the tubular body 80. When the tubular body 80 is inserted into the induction heating coil 44, the portion of the tubular body 80 inserted into the induction heating coil 44 is rapidly heated by the induction heating coil 44. Here, the clearance C1 between the hollow portion 24 of the tubular body 80 and the induction heating coil 44 is wider than the clearance C2 between the other portion of the tubular body 80 and the induction heating coil 44.

冷却装置46は、誘導加熱コイル44の管体送り方向下流に誘導加熱コイル44と近接して設けられている。この冷却装置46は、誘導加熱コイル44で急速加熱された管体80を急速に冷却する。これにより、管体80が焼入れされて強度が向上する。 The cooling device 46 is provided downstream of the induction heating coil 44 in the tube feeding direction and in proximity to the induction heating coil 44. The cooling device 46 rapidly cools the tubular body 80 that has been rapidly heated by the induction heating coil 44. As a result, the tubular body 80 is quenched and the strength is improved.

曲げモーメント付与装置48(以下、適宜「曲げ装置」48と記載する。)は、可動ローラーダイス50と支持ローラー52とで構成されている。支持ローラー52は、誘導加熱コイル44の管体送り方向上流に誘導加熱コイル44に近接して設けられており、管体80を管体送り方向に移動可能に支持する。他方、可動ローラーダイス50は、冷却装置46の管体送り方向下流に設けられており、管体80を保持しつつ、自らが移動可能に構成されている。可動ローラーダイス50が移動することで管体80に曲げモーメントが付与され、支持ローラー52が管体80から曲げに対する反力を受けることで、管体80に生じている軟化した高温部が変形する。 The bending moment imparting device 48 (hereinafter appropriately referred to as “bending device” 48) is composed of a movable roller die 50 and a support roller 52. The support roller 52 is provided upstream of the induction heating coil 44 in the pipe feeding direction and close to the induction heating coil 44, and supports the pipe 80 movably in the pipe feeding direction. On the other hand, the movable roller die 50 is provided downstream of the cooling device 46 in the tube feeding direction, and is configured to be movable while holding the tube 80. As the movable roller die 50 moves, a bending moment is applied to the tubular body 80, and the supporting roller 52 receives a reaction force against the bending from the tubular body 80, whereby the softened high temperature portion generated in the tubular body 80 is deformed. ..

次に、プレス装置30及び3DQ装置40を用いた鋼管部材20の製造方法について説明する。 Next, a method of manufacturing the steel pipe member 20 using the press device 30 and the 3DQ device 40 will be described.

まず、3DQ装置40での焼入れ後に鋼管部材20の本体22となる管体80を用意する。 First, a pipe body 80 which will be the main body 22 of the steel pipe member 20 after quenching with the 3DQ device 40 is prepared.

次に、プレス装置30を用いて管体80の両端部80Cに窪み部24を形成する。その後、管体80を3DQ装置40にセットする。具体的には、送り装置42に管体80をセットし、チャック43で管体80を把持させる。 Next, the depressions 24 are formed in both ends 80C of the tubular body 80 using the pressing device 30. Then, the tubular body 80 is set in the 3DQ device 40. Specifically, the tube body 80 is set on the feeding device 42, and the tube body 80 is gripped by the chuck 43.

次に、3DQ装置40を用いて管体80を誘導加熱する。このとき、図4に示されるように、管体80の窪み部24と誘導加熱コイル44との間のクリアランスC1が管体80の他の部分と誘導加熱コイル44との間のクリアランスC2よりも広くなるため、管体80の窪み部24の加熱温度が管体80の他の部分の加熱温度よりも低くなる。なお、本実施形態では、管体80の他の部分の加熱温度がAc3変態点以上、窪み部24の加熱温度がAc3変態点未満となるように設定されている。また、管体80の窪み部24の加熱温度は、窪み部24の深さ(すなわち、クリアランスC1の大きさ)、管径、厚み、材質(熱伝導率)、誘導加熱コイル44を流れる電流の大きさ、周波数等を変更することで調整することができる。
なお、鋼管部材20の窪み部24の穴あけ加工等を容易にする観点からは、管体80の窪み部24の加熱温度はAc3変態点未満とすることが好ましい。管体80の窪み部24は、加熱温度が低いほど焼入れ後の硬度を低くできるため、加工性が向上する。しかし、管体80の窪み部24の加熱温度が低いほど焼入れ後の管体80(すなわち、鋼管部材20)の強度が低下するため、管体80の窪み部24の加熱温度はAc1変態点以上Ac3変態点未満とすることが好ましい。
一方で、鋼管部材20の窪み部24の溶接による低強度化を抑制する観点からは、管体80の窪み部24の加熱温度はAc1変態点以下とすることが好ましい。ただし、少しのマルテンサイト組織の存在は許容されるため、Ac1変態点以上の加熱温度も許容される。
Next, the tubular body 80 is induction-heated using the 3DQ device 40. At this time, as shown in FIG. 4, the clearance C1 between the hollow portion 24 of the tubular body 80 and the induction heating coil 44 is larger than the clearance C2 between the other portion of the tubular body 80 and the induction heating coil 44. Since it becomes wider, the heating temperature of the hollow portion 24 of the tubular body 80 becomes lower than the heating temperature of other portions of the tubular body 80. In this embodiment, the heating temperature of the other portion of the tubular body 80 is set to the Ac3 transformation point or higher, and the heating temperature of the recess 24 is set to the Ac3 transformation point or lower. The heating temperature of the hollow portion 24 of the tubular body 80 depends on the depth of the hollow portion 24 (that is, the size of the clearance C1), the pipe diameter, the thickness, the material (heat conductivity), and the current flowing through the induction heating coil 44. It can be adjusted by changing the size and frequency.
From the viewpoint of facilitating the drilling of the recess 24 of the steel pipe member 20, it is preferable that the heating temperature of the recess 24 of the tubular body 80 be less than the Ac3 transformation point. The lower the heating temperature of the hollow portion 24 of the tubular body 80, the lower the hardness after quenching, so the workability is improved. However, the lower the heating temperature of the hollow portion 24 of the tubular body 80 is, the lower the strength of the quenched tubular body 80 (that is, the steel pipe member 20) is. Therefore, the heating temperature of the hollow portion 24 of the tubular body 80 is equal to or higher than the Ac1 transformation point. It is preferable that the temperature is lower than the Ac3 transformation point.
On the other hand, from the viewpoint of suppressing the reduction in strength of the hollow portion 24 of the steel pipe member 20 due to welding, the heating temperature of the hollow portion 24 of the tubular body 80 is preferably set to the Ac1 transformation point or lower. However, since a slight amount of martensite structure is allowed, a heating temperature of Ac1 transformation point or higher is also allowed.

誘導加熱された管体80は、冷却装置46で急冷される。このようにして管体80が焼入れされて鋼管部材20が製造される。 The induction-heated tube 80 is rapidly cooled by the cooling device 46. In this way, the pipe body 80 is quenched and the steel pipe member 20 is manufactured.

次に、本実施形態の鋼管部材20の作用効果について説明する。
鋼管部材20では、窪み部24の底部24Aの硬度を本体22の他の部分の硬度よりも低くしているため、他の部材との接合にねじやボルト等を用いる場合でも、底部24Aに穴あけ等の加工(後加工)を容易に行うことができる。
Next, the function and effect of the steel pipe member 20 of the present embodiment will be described.
In the steel pipe member 20, since the hardness of the bottom portion 24A of the recessed portion 24 is lower than the hardness of other portions of the main body 22, even if a screw or a bolt is used for joining with another member, the bottom portion 24A is drilled. And the like (post-processing) can be easily performed.

また、鋼管部材20では、窪み部24を未焼入れ状態としていることから、他の部材との接合に溶接を用いる場合でも、溶接の熱を受けた部分がHAZ軟化(焼き戻し)により低強度となることが抑制される。 Further, in the steel pipe member 20, since the recessed portion 24 is in an unquenched state, even when welding is used for joining with other members, the portion that has received the heat of welding has low strength due to HAZ softening (tempering). Is suppressed.

さらに、鋼管部材20では、窪み部24の底部24Aを平坦状としていることから、他の部材と焼入れ鋼管部材20との接触を面接触にできるため、他の部材からの荷重を面で受け止めることができる。 Further, in the steel pipe member 20, since the bottom portion 24A of the hollow portion 24 is flat, the contact between the other member and the quenched steel pipe member 20 can be made into a surface contact, so that the load from the other member can be received by the surface. You can

また、鋼管部材20では、窪み部24の底部24Aのビッカース硬さと本体22の他の部分のビッカース硬さの硬度差を150〜250HVの範囲内としている。このため、窪み部24の底部24Aの強度と、後加工を容易にするための硬度を両立することができる。 Further, in the steel pipe member 20, the hardness difference between the Vickers hardness of the bottom portion 24A of the hollow portion 24 and the Vickers hardness of the other portion of the main body 22 is within the range of 150 to 250 HV. Therefore, the strength of the bottom portion 24A of the recess 24 and the hardness for facilitating the post-processing can be compatible.

鋼管部材20では、窪み部24が本体22の長手方向の端部22Cに形成しているため、例えば、中間部23のように曲げられる部位に形成するものと比べて、窪み部24を形成したことによる強度低下を抑制できる。 In the steel pipe member 20, since the recessed portion 24 is formed at the end portion 22C in the longitudinal direction of the main body 22, for example, the recessed portion 24 is formed as compared with that formed at a bendable portion such as the intermediate portion 23. It is possible to suppress the strength reduction.

〔上記実施形態の補足説明〕
上記実施形態の鋼管部材20の製造方法では、角形管状の管体80にプレス装置30を用いて窪み部24を成形しているが、本発明はこの構成に限定されない。例えば、プレス加工で窪み部24を成形した鋼板を矩形閉断面となるように折り曲げて角形管状の管体80を成形してもよい。上記構成とすることで、閉断面の部材(管体80)にプレス加工で窪み部24を成形するよりもプレス装置の構成を簡単にすることができる。
[Supplementary explanation of the above embodiment]
In the method for manufacturing the steel pipe member 20 of the above-described embodiment, the depression 24 is formed in the rectangular tubular body 80 using the pressing device 30, but the present invention is not limited to this configuration. For example, a square steel tubular body 80 may be formed by bending a steel plate having the recess 24 formed by pressing into a rectangular closed cross section. With the above configuration, the configuration of the pressing device can be simplified as compared with the case where the recessed portion 24 is formed by pressing the member (tube 80) having the closed cross section.

また、上記実施形態の鋼管部材20では、本体22の両端部22Cに窪み部24を設けているが、本発明はこの構成に限定されない。例えば、図5に示される変形例の鋼管部材60のように、本体62の両端部62C以外にも窪み部64を設けてもよい。上記構成とすることで、鋼管部材60に対して後加工を行う部位の選択肢が増える。また、鋼管部材60では、本体62の両端部62C以外に窪み部64を設けるため、上記のように、プレス加工で窪み部64を成形した鋼板を矩形閉断面となるように折り曲げて角形管状の管体を成形する方法を用いることが好ましい。なお、図5の符号62Aは、鋼管部材60の平板部分を示し、符号62Bは、鋼管部材60の角部を示している。 Further, in the steel pipe member 20 of the above-described embodiment, the recesses 24 are provided at both ends 22C of the main body 22, but the present invention is not limited to this configuration. For example, like the steel pipe member 60 of the modified example shown in FIG. 5, the recessed portions 64 may be provided in addition to the both end portions 62C of the main body 62. With the above-described configuration, the choices of sites for post-processing the steel pipe member 60 are increased. Further, in the steel pipe member 60, since the recessed portion 64 is provided in addition to the both end portions 62C of the main body 62, as described above, the steel plate on which the recessed portion 64 is formed by pressing is bent into a rectangular closed cross section to form a rectangular tubular shape. It is preferable to use a method of forming a tubular body. Note that reference numeral 62A in FIG. 5 indicates a flat plate portion of the steel pipe member 60, and reference numeral 62B indicates a corner portion of the steel pipe member 60.

また、上記実施形態で使用する送り装置42は、チャック43により管体80の後端を押し出し、位置が固定された誘導加熱コイル44に管体80を挿通させるものであったが、本発明における送り装置はこれに限定されない。送り装置は、誘導加熱コイル44に対して管体80を長手方向に移動(相対移動)させる装置であればよく、例えば、管体80の後端を把持するチャック43が移動せずに誘導加熱コイル44が移動することにより、誘導加熱コイル44に対して管体80長手方向に送るものであってもよい。 Further, the feeding device 42 used in the above-mentioned embodiment pushes the rear end of the tubular body 80 by the chuck 43 and inserts the tubular body 80 into the induction heating coil 44 whose position is fixed. The feeding device is not limited to this. The feeding device may be any device that moves (relatively moves) the tubular body 80 in the longitudinal direction with respect to the induction heating coil 44. The coil 44 may be moved to feed the induction heating coil 44 in the longitudinal direction of the tubular body 80.

また、上記実施形態で使用する曲げモーメント付与装置48は、管体80に曲げモーメントを付与できれば特に限定されない。曲げモーメント付与装置は、管体80の送り方向下流側の端部80Cに取り付けられたチャックとマニピュレーターであってもよいし、管体80の送り方向上流側の端部80Cに取り付けられたチャックとマニピュレーターであってもよい。 The bending moment applying device 48 used in the above embodiment is not particularly limited as long as the bending moment can be applied to the tubular body 80. The bending moment imparting device may be a chuck and a manipulator attached to the end portion 80C of the pipe body 80 on the downstream side in the feed direction, or a chuck attached to the end portion 80C of the pipe body 80 on the upstream side in the feed direction. It may be a manipulator.

また、本発明の一実施形態の鋼管部材20は、様々な自動車用構造部材として用いることができる。例えば、車両前端部および後端部に車幅方向に沿って設けられるバンパー補強部材や、フロントピラー、ドア内に配置されるドアビーム、シート補強材として用いることができる。 Moreover, the steel pipe member 20 of one embodiment of the present invention can be used as various structural members for automobiles. For example, it can be used as a bumper reinforcing member provided along the vehicle width direction at a front end portion and a rear end portion of a vehicle, a front pillar, a door beam arranged in a door, and a seat reinforcing material.

以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものでなく、その主旨を逸脱しない範囲内において上記以外にも種々変形して実施することが可能であることは勿論である。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above, and various modifications other than the above can be carried out without departing from the gist of the invention. Of course.

<実験例>
本発明における効果を検証するため、実施形態の焼入れ鋼管部材20と同じ構成の実施例の焼入れ鋼管部材を準備し、以下の実験を行った。なお、実施例の鋼管部材では、クリアランスC1を7mmとし、クリアランスC2を3mmとしている。すなわち、クリアランスC1はクリアランスC2の2倍以上の値に設定されている。
<Experimental example>
In order to verify the effect of the present invention, a quenched steel pipe member of an example having the same configuration as the quenched steel pipe member 20 of the embodiment was prepared and the following experiment was conducted. In the steel pipe member of the example, the clearance C1 is 7 mm and the clearance C2 is 3 mm. That is, the clearance C1 is set to a value that is at least twice the clearance C2.

(実験1)
実験1では、焼入れ時における実施例の鋼管部材の他の部分の加熱温度と窪み部の加熱温度を測定した。具体的には、図1に示される鋼管部材20の窪み部を通る直線Y及び直線Zに沿った加熱温度を測定した。測定温度についてはグラフ化して図6に示した。
(Experiment 1)
In Experiment 1, the heating temperature of the other portion and the heating temperature of the hollow portion of the steel pipe member of the example during quenching were measured. Specifically, the heating temperature along the straight line Y and the straight line Z passing through the recessed portion of the steel pipe member 20 shown in FIG. 1 was measured. The measured temperature is graphed and shown in FIG.

(実験2)
実験2では、焼入れ後の実施例の鋼管部材の他の部分の硬度と窪み部の硬度を測定した。具体的には、図1に示される鋼管部材20の窪み部を通る直線Y及び直線Zに沿った硬度を測定した。測定硬度についてはグラフ化して図7に示した。
(Experiment 2)
In Experiment 2, the hardness of the other portion and the hardness of the recessed portion of the steel pipe member of the example after quenching were measured. Specifically, the hardness along the straight line Y and the straight line Z passing through the recessed portion of the steel pipe member 20 shown in FIG. 1 was measured. The measured hardness is shown in a graph in FIG. 7.

図6に示されるように、実施例の鋼管部材の直線Y上では、窪み部に対応する領域において加熱温度が低下していることが分かる。これは、窪み部において誘導加熱コイルとの間のクリアランスが広がるため、誘導電流が低下し、加熱温度が低下したためと推測される。 As shown in FIG. 6, on the straight line Y of the steel pipe member of the example, it can be seen that the heating temperature is lowered in the region corresponding to the depression. It is presumed that this is because the clearance between the hollow and the induction heating coil in the recessed portion was widened, so that the induction current was lowered and the heating temperature was lowered.

図7に示されるように、実施例の鋼管部材の直線Z上では、窪み部に対応する領域において硬度が低下していることが分かる。これは、図6に示されるように、焼入れ時に窪み部の加熱温度が他の部分よりも低く、窪み部が未焼き状態、すなわち、他の部分と比べて、マルテンサイト組織が少ない、あるいは、マルテンサイト組織がない状態となったためと推測される。 As shown in FIG. 7, on the straight line Z of the steel pipe member of the example, it can be seen that the hardness is reduced in the region corresponding to the depression. As shown in FIG. 6, this is because the heating temperature of the dent portion during quenching is lower than that of the other portion, and the dent portion is in an unbaked state, that is, the martensite structure is less than that of the other portion, or It is presumed that the martensite structure was lost.

以上のことから、本発明に開示の技術を用いることで、3DQ等の高周波誘導加熱により焼入れして製造される焼入れ鋼管部材に、焼入れ後でも加工が容易な部分を設けることが可能なことは明らかである。 From the above, by using the technique disclosed in the present invention, it is possible to provide a hardened steel pipe member manufactured by quenching by high frequency induction heating such as 3DQ with a portion that can be easily processed even after quenching. it is obvious.

20、60 鋼管部材(焼入れ鋼管部材)
22、62 本体
22C、62C 端部
24、64 窪み部
24A 底部
44 誘導加熱コイル
80 管体
80C 端部
C1 クリアランス
C2 クリアランス
20, 60 Steel pipe members (hardened steel pipe members)
22, 62 Main body 22C, 62C End part 24, 64 Dimple part 24A Bottom part 44 Induction heating coil 80 Tubular body 80C End part C1 clearance C2 clearance

Claims (5)

焼入れされた管状の本体と、窪み部とを有し、
前記窪み部は、前記本体に対し内側に窪み且つ内側に突出した形状であって前記本体の長手方向の端部にのみ形成されると共に前記本体の長手方向の端面に至り底部が平坦状で且つ前記底部の硬度が前記本体の他の部分の硬度よりも低い、焼入れ鋼管部材。
Having a quenched tubular body and a recess,
The recess portion, reaches the longitudinal end faces of the longitudinal is formed only on the end Rutotomoni the body of the main body a shape projecting and inward recesses inwardly relative to the body, bottom flat shape And a hardened steel pipe member in which the hardness of the bottom portion is lower than the hardness of other portions of the main body.
前記窪み部の底部は、未焼入れ状態とされている、請求項1に記載の焼入れ鋼管部材。 The quenched steel pipe member according to claim 1, wherein a bottom portion of the recessed portion is in an unquenched state. 前記窪み部の底部と前記本体の他の部分との硬度差が150〜250HVの範囲内とされている、請求項1又は請求項2に記載の焼入れ鋼管部材。 The hardened steel pipe member according to claim 1 or 2, wherein the hardness difference between the bottom of the recess and the other portion of the main body is in the range of 150 to 250 HV. 焼入れ前の管体であって長手方向の端部にのみ前記管体に対し内側に窪み且つ内側に突出した形状で前記管体の長手方向の端面に至り底部が平坦状とされた窪み部が形成された前記管体を、前記管体に対応する形状の誘導加熱コイルに通して加熱した後、急冷して焼入れする、焼入れ鋼管部材の製造方法。 In the tubular body before quenching, there is a recessed portion that is recessed inward with respect to the tubular body only at the end portion in the longitudinal direction and protrudes inward and reaches the end face in the longitudinal direction of the tubular body and has a flat bottom. A method for manufacturing a quenched steel pipe member, comprising heating the formed tubular body through an induction heating coil having a shape corresponding to the tubular body, followed by quenching and quenching. 焼入れ前の前記管体にプレス加工で前記窪み部を形成する、請求項に記載の焼入れ鋼管部材の製造方法。 The method for manufacturing a quenched steel pipe member according to claim 4 , wherein the recessed portion is formed in the pipe body before quenching by press working.
JP2016055872A 2016-03-18 2016-03-18 Quenched steel pipe member and method for manufacturing quenched steel pipe member Active JP6724452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016055872A JP6724452B2 (en) 2016-03-18 2016-03-18 Quenched steel pipe member and method for manufacturing quenched steel pipe member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016055872A JP6724452B2 (en) 2016-03-18 2016-03-18 Quenched steel pipe member and method for manufacturing quenched steel pipe member

Publications (2)

Publication Number Publication Date
JP2017170452A JP2017170452A (en) 2017-09-28
JP6724452B2 true JP6724452B2 (en) 2020-07-15

Family

ID=59969929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016055872A Active JP6724452B2 (en) 2016-03-18 2016-03-18 Quenched steel pipe member and method for manufacturing quenched steel pipe member

Country Status (1)

Country Link
JP (1) JP6724452B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7155986B2 (en) 2018-12-13 2022-10-19 トヨタ自動車株式会社 Steel plate member and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6643931B2 (en) * 2000-07-12 2003-11-11 Shape Corporation Method of manufacturing a one-piece tubular doorbeam
JP4135397B2 (en) * 2002-05-13 2008-08-20 日産自動車株式会社 Method and apparatus for quenching pressed parts
WO2007060905A1 (en) * 2005-11-24 2007-05-31 Kikuchi Co., Ltd. Quenching equipment and quenching system
JP5194707B2 (en) * 2006-10-19 2013-05-08 パナソニック株式会社 Product storage column and vending machine
JP5402562B2 (en) * 2008-11-21 2014-01-29 新日鐵住金株式会社 Hot press molded product, manufacturing apparatus and manufacturing method thereof
DE102009003508B4 (en) * 2009-02-19 2013-01-24 Thyssenkrupp Steel Europe Ag Process for producing a press-hardened metal component
JP6068934B2 (en) * 2012-11-07 2017-01-25 アイシン高丘株式会社 Manufacturing method of press-molded products

Also Published As

Publication number Publication date
JP2017170452A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
KR101567132B1 (en) Method for producing a structural part from an iron-manganese steel sheet
US20130136945A1 (en) Tailored Properties By Post Hot Forming Processing
WO2006093005A1 (en) Member for reinforcing vehicle body
US20100086803A1 (en) Hot-formed profile
CN105002449A (en) Thermal-assistaed roll forming of high strength material
EP3150325B1 (en) Joining structure for member in motor vehicle body
JP5619162B2 (en) High frequency heating coil
CA2992138A1 (en) Ultra high strength body and chassis components
JP5883879B2 (en) Rolling forming apparatus for performing the same method as the method for rolling forming an outer shape or a structural part for an automobile seat rail
JP6724452B2 (en) Quenched steel pipe member and method for manufacturing quenched steel pipe member
Vogt et al. Local laser softening of high-strength steel with an adapted intensity
WO2010084898A1 (en) Hollow member
US20160368352A1 (en) Vehicle door impact beam and method of manufacturing vehicle door impact beam
JP7238660B2 (en) Hollow bending part manufacturing method, hollow bending part manufacturing apparatus, and hollow bending part
US10543519B2 (en) Manufacturing method for bent member and hot-bending apparatus for steel material
JP4513587B2 (en) Manufacturing method of composite parts with excellent quenching deformation reduction effect
KR101689578B1 (en) Flexible roll forming method
US20160108485A1 (en) Method and apparatus for hardening a component or semi-finished product
JP5187010B2 (en) Method and apparatus for hot bending of metal material
KR101738985B1 (en) Hot formed steel part for vehicles and the method for manufacturing the same
KR100994646B1 (en) Automotive door impact beam having high strength and manufacturing method and built-in method of the same
CA2916123C (en) Method and device for partially hardening semifinished products
JP5395233B2 (en) Bumper structure manufacturing method
JP7205409B2 (en) Manufacturing method of hollow bending part and hollow bending part
KR20120033013A (en) Suspension in vehicle using hot stamping and the method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200608

R151 Written notification of patent or utility model registration

Ref document number: 6724452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151