JP6724311B2 - Method for manufacturing non-aqueous secondary battery - Google Patents

Method for manufacturing non-aqueous secondary battery Download PDF

Info

Publication number
JP6724311B2
JP6724311B2 JP2015171310A JP2015171310A JP6724311B2 JP 6724311 B2 JP6724311 B2 JP 6724311B2 JP 2015171310 A JP2015171310 A JP 2015171310A JP 2015171310 A JP2015171310 A JP 2015171310A JP 6724311 B2 JP6724311 B2 JP 6724311B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
water
aqueous secondary
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015171310A
Other languages
Japanese (ja)
Other versions
JP2017050112A (en
Inventor
徳一 山本
徳一 山本
デルマス ジュリアン
デルマス ジュリアン
佳代子 滝澤
佳代子 滝澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2015171310A priority Critical patent/JP6724311B2/en
Publication of JP2017050112A publication Critical patent/JP2017050112A/en
Application granted granted Critical
Publication of JP6724311B2 publication Critical patent/JP6724311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、非水系二次電池の製造方法に関するものである。 The present invention relates to a method for manufacturing a non-aqueous secondary battery.

リチウムイオン二次電池などの非水系二次電池(非水電解液系二次電池)は、小型で軽量、かつエネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、非水系二次電池の更なる高性能化を目的として、様々な検討がなされている。 Non-aqueous secondary batteries (non-aqueous electrolyte secondary batteries) such as lithium-ion secondary batteries are small and lightweight, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications. ing. Therefore, in recent years, various studies have been made for the purpose of further improving the performance of non-aqueous secondary batteries.

具体的には、例えば、電極活物質(正極活物質または負極活物質)と結着材とを含む電極合材層(正極合材層または負極合材層)を集電体上に形成してなる電極(正極または負極)を用いた非水系二次電池について、負極合材層の表面上にSEI(Solid Electrolyte Interphase)皮膜を形成することにより、非水系二次電池の寿命特性等を向上させることが試みられている。 Specifically, for example, an electrode mixture layer (positive electrode mixture layer or negative electrode mixture layer) containing an electrode active material (positive electrode active material or negative electrode active material) and a binder is formed on a current collector. A non-aqueous secondary battery using a different electrode (positive electrode or negative electrode) by improving the life characteristics of the non-aqueous secondary battery by forming a SEI (Solid Electrolyte Interphase) film on the surface of the negative electrode mixture layer Is being attempted.

そして、従来、SEI皮膜は、非水系二次電池を製造する際に、組み立てた二次電池を所定の充電深度(SOC;State of Charge)まで充電(初期充電処理)することにより、電解液と負極合材層との界面において電解液を還元・分解して負極合材層上に形成している(例えば、特許文献1,2参照)。なお、従来の非水系二次電池の製造方法では、初期充電処理の後に非水系二次電池を加温した状態で所定時間保存(エージング処理)することにより、形成したSEI皮膜を良質な皮膜へと改質している。 Then, conventionally, when manufacturing a non-aqueous secondary battery, the SEI film is charged with an electrolytic solution by charging the assembled secondary battery to a predetermined charge depth (SOC; State of Charge) (initial charging process). The electrolytic solution is reduced and decomposed at the interface with the negative electrode mixture layer to form it on the negative electrode mixture layer (see, for example, Patent Documents 1 and 2). In the conventional non-aqueous secondary battery manufacturing method, after the initial charge treatment, the non-aqueous secondary battery is stored in a heated state for a predetermined time (aging treatment), so that the formed SEI film becomes a good quality film. Has been modified.

特開2014−238961号公報JP, 2014-238961, A 特開2015−95334号公報JP, 2005-95334, A

ところで、近年では、非水系二次電池のエネルギー密度を更に高めてより高性能な非水系二次電池を提供する観点から、電極合材層の密度を高めることが検討されている。 By the way, in recent years, from the viewpoint of further increasing the energy density of the non-aqueous secondary battery to provide a higher-performance non-aqueous secondary battery, increasing the density of the electrode mixture layer has been studied.

しかし、電極合材層を高密度化した場合には、非水系二次電池の組み立て時に電極合材層中に電解液が浸透し難くなる。そのため、電極合材層、特に負極合材層を高密度化した非水系二次電池において上記従来の初期充電処理およびエージング処理を実施してSEI皮膜を形成しようとすると、負極合材層中への電解液の浸透不足に起因してSEI皮膜の形成不良や負極上への金属析出が起こり、電池性能が低下することがあった。一方で、組み立てた非水系二次電池を長時間静置することで高密度化した電極合材層に電解液を十分に浸透させてから初期充電処理を実施しようとすると、SEI皮膜の形成不良および金属析出の発生は抑制することができるものの、非水系二次電池の製造効率が低下する。 However, when the density of the electrode mixture layer is increased, it becomes difficult for the electrolytic solution to permeate into the electrode mixture layer during assembly of the non-aqueous secondary battery. Therefore, when an SEI film is formed by performing the above-described conventional initial charging treatment and aging treatment in a non-aqueous secondary battery in which the electrode composite material layer, particularly the negative electrode composite material layer is densified, when the SEI film is formed in the negative electrode composite material layer, Due to insufficient permeation of the electrolyte solution, the SEI film could be poorly formed and metal might be deposited on the negative electrode, resulting in a decrease in battery performance. On the other hand, when the assembled non-aqueous secondary battery is allowed to stand for a long time to allow the electrolyte solution to fully permeate the electrolyte solution and then perform the initial charge treatment, the SEI film is not formed properly. Further, although the occurrence of metal precipitation can be suppressed, the production efficiency of the non-aqueous secondary battery is reduced.

このような問題に対し、例えば、初期充電処理の前に加熱などの手段を用いて電極合材層中への電解液の浸透を促進することにより、SEI皮膜の形成不良および金属析出の発生を抑制しつつ、非水系二次電池を効率的に製造することも考えられる。 To solve such a problem, for example, a method such as heating may be used before the initial charge treatment to promote the permeation of the electrolytic solution into the electrode mixture layer, thereby preventing the formation of the SEI film and the occurrence of metal precipitation. It is also conceivable to efficiently manufacture the non-aqueous secondary battery while suppressing it.

しかし、初期充電処理の前、即ちSEI皮膜の形成前に非水系二次電池を加熱した場合には、負極合材層の剥がれや割れが生じ、電池性能が低下することがあった。 However, when the non-aqueous secondary battery was heated before the initial charge treatment, that is, before the formation of the SEI film, the negative electrode composite material layer was peeled or cracked, and the battery performance was sometimes deteriorated.

そこで、本発明は、電極合材層(特に、負極合材層)を高密度化した場合であっても、電池性能の低下を抑制しつつ、負極合材層上にSEI皮膜を形成した非水系二次電池を効率的に製造することを可能にする技術を提供することを目的とする。 Therefore, in the present invention, even when the electrode composite material layer (particularly, the negative electrode composite material layer) is densified, the SEI film is formed on the negative electrode composite material layer while suppressing the deterioration of the battery performance. It is an object of the present invention to provide a technique that enables efficient production of a water-based secondary battery.

本発明者らは、上記目的を達成するために鋭意検討を行った。そして本発明者らは、負極合材層の結着材として所定の性状を有する非水溶性重合体と水溶性重合体とを併用すれば、非水系二次電池を初期充電する前に加熱した場合であっても負極合材層の剥がれや割れが発生するのを抑制することができることを見出し、本発明を完成させた。 The present inventors have earnestly studied to achieve the above object. And the present inventors, if a non-water-soluble polymer having a predetermined property and a water-soluble polymer are used together as a binder of the negative electrode mixture layer, the non-aqueous secondary battery is heated before initial charging. Even in such a case, it was found that peeling or cracking of the negative electrode mixture layer can be suppressed, and the present invention was completed.

即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池の製造方法は、正極と、負極と、電解液とを電池容器に収容して未充電非水系二次電池を組み立てる組立工程と、未充電非水系二次電池を40℃以上に加熱する加熱工程と、加熱工程後に未充電非水系二次電池を充電する初期充電工程とを含み、負極は、負極活物質と、非水溶性重合体と、水溶性重合体とを含有する負極合材層を備え、非水溶性重合体は、電解液膨潤度が1.0倍超4.0倍以下、かつ、ゲル量が80質量%以上95質量%以下であり、水溶性重合体は、電解液膨潤度が1.0倍超2.0倍以下であることを特徴とする。
このように、未充電非水系二次電池を初期充電する前に40℃以上に加熱すれば、未充電非水系二次電池を長時間に亘って静置しなくても、電解液を負極合材層に良好に浸透させることができる。従って、後に初期充電した際に、SEI皮膜を負極表面に良好に形成することができる。また、所定の電解液膨潤度およびゲル量を有する非水溶性重合体と、所定の電解液膨潤度を有する水溶性重合体とを負極合材層に含有させれば、未充電非水系二次電池を初期充電する前に加熱した場合であっても、負極合材層の剥がれや割れが発生するのを抑制することができる。従って、電池性能に優れる非水系二次電池を製造することができる。
なお、本発明において、未充電非水系二次電池を加熱する「温度」は、電池組立体周囲の雰囲気温度として測定することができれば特に限定されないが、例えば、温度調節が可能で、かつ実温度測定が可能な恒温器を用いて測定することができる。
また、本発明において、「電解液膨潤度」および「ゲル量」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
更に、本発明において、「水溶性重合体」とは、温度25℃において重合体0.5gを100gの水に溶解した際に、不溶分が1.0質量%未満となる重合体を指す。また、本発明において、「非水溶性重合体」とは、25℃において重合体0.5gを100gの水に溶解した際に、不溶分が90質量%以上となる重合体を指す。
That is, the present invention is intended to advantageously solve the above problems, a method for producing a non-aqueous secondary battery of the present invention, a positive electrode, a negative electrode, and an electrolytic solution is housed in a battery container. The assembly process of assembling the uncharged non-aqueous secondary battery, the heating process of heating the uncharged non-aqueous secondary battery to 40° C. or higher, and the initial charging process of charging the uncharged non-aqueous secondary battery after the heating process. The negative electrode includes a negative electrode mixture layer containing a negative electrode active material, a water-insoluble polymer, and a water-soluble polymer, and the water-insoluble polymer has an electrolytic solution swelling degree of more than 1.0 times 4. The water-soluble polymer has a gel content of not more than 0.0 times and not less than 80% by mass and not more than 95% by mass, and the water-soluble polymer has an electrolytic solution swelling degree of more than 1.0 times and not more than 2.0 times.
As described above, if the uncharged non-aqueous secondary battery is heated to 40° C. or higher before the initial charging, the electrolytic solution can be mixed with the negative electrode without leaving the uncharged non-aqueous secondary battery for a long time. The material layer can be satisfactorily penetrated. Therefore, the SEI film can be satisfactorily formed on the surface of the negative electrode when the initial charge is performed later. Further, if the negative electrode mixture layer contains a water-insoluble polymer having a predetermined electrolytic solution swelling degree and a gel amount and a water-soluble polymer having a predetermined electrolytic solution swelling degree, the uncharged non-aqueous secondary Even when the battery is heated before the initial charge, peeling or cracking of the negative electrode mixture layer can be suppressed. Therefore, a non-aqueous secondary battery having excellent battery performance can be manufactured.
In the present invention, the “temperature” for heating the uncharged non-aqueous secondary battery is not particularly limited as long as it can be measured as the ambient temperature around the battery assembly, but for example, the temperature can be adjusted and the actual temperature. It can be measured using a thermostat capable of measurement.
In addition, in the present invention, the “electrolyte swelling degree” and the “gel amount” can be measured using the measuring methods described in Examples of the present specification.
Furthermore, in the present invention, the “water-soluble polymer” refers to a polymer having an insoluble content of less than 1.0% by mass when 0.5 g of the polymer is dissolved in 100 g of water at a temperature of 25° C. Further, in the present invention, the “water-insoluble polymer” refers to a polymer having an insoluble content of 90% by mass or more when 0.5 g of the polymer is dissolved in 100 g of water at 25° C.

ここで、本発明の非水系二次電池の製造方法は、負極活物質は、タップ密度が0.8g/cm3以上1.2g/cm3以下であることが好ましい。タップ密度が上記範囲内の負極活物質を使用すれば、密度および強度が高く、かつ、電解液が浸透し易い負極合材層が得られる。
なお、本発明において、負極活物質の「タップ密度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
Here, in the method for producing a non-aqueous secondary battery of the present invention, the negative electrode active material preferably has a tap density of 0.8 g/cm 3 or more and 1.2 g/cm 3 or less. When the negative electrode active material having a tap density within the above range is used, a negative electrode mixture layer having a high density and strength and being easily penetrated by the electrolytic solution can be obtained.
In the present invention, the “tap density” of the negative electrode active material can be measured by using the measuring method described in the examples of this specification.

また、本発明の非水系二次電池の製造方法は、負極合材層の密度が1.60g/cm3以上であることが好ましい。本発明の製造方法を使用すれば、負極合材層の密度が高い場合であっても、電池性能の低下を抑制しつつ、負極合材層上にSEI皮膜を形成した非水系二次電池を効率的に製造することができる。
なお、本発明において、負極合材層の「密度」は、単位面積当たりの負極合材層の質量と厚みとを用いて算出することができる。
Further, in the method for producing a non-aqueous secondary battery of the present invention, the density of the negative electrode mixture layer is preferably 1.60 g/cm 3 or more. By using the manufacturing method of the present invention, even when the density of the negative electrode mixture layer is high, a non-aqueous secondary battery having a SEI film formed on the negative electrode mixture layer is suppressed while suppressing deterioration of battery performance. It can be manufactured efficiently.
In the present invention, the “density” of the negative electrode mixture layer can be calculated using the mass and thickness of the negative electrode mixture layer per unit area.

更に、本発明の非水系二次電池の製造方法は、負極合材層が、負極活物質100質量部当たり、0.5質量部以上4質量部以下の割合の非水溶性重合体と、0.5質量部以上3質量部以下の割合の水溶性重合体とを含有することが好ましい。
非水溶性重合体および水溶性重合体の配合量を上記範囲とすることにより、負極合材層の強度を高めつつ内部抵抗の上昇を抑制して、電池性能に優れる非水系二次電池を製造することができる。
Further, in the method for producing a non-aqueous secondary battery of the present invention, the negative electrode mixture layer contains a water-insoluble polymer in a proportion of 0.5 parts by mass or more and 4 parts by mass or less per 100 parts by mass of the negative electrode active material, and It is preferable to contain a water-soluble polymer in a ratio of 0.5 parts by mass or more and 3 parts by mass or less.
By controlling the content of the water-insoluble polymer and the water-soluble polymer in the above range, it is possible to produce a non-aqueous secondary battery having excellent battery performance while suppressing the increase in internal resistance while increasing the strength of the negative electrode mixture layer. can do.

また、本発明の非水系二次電池の製造方法は、未充電非水系二次電池が、負極と正極との間にセパレータを更に備え、未充電非水系二次電池を温度60℃で15時間放置した際の負極とセパレータとの接着力が1.0N/m以下であることが好ましい。
このように、負極とセパレータとの間の接着力を低くすることにより、充放電に伴う負極活物質の膨張収縮に起因して負極合材層が剥がれることを抑制し、電池性能に優れる非水系二次電池を製造することができる。
なお、負極とセパレータとの間の「接着力」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
Further, in the method for producing a non-aqueous secondary battery of the present invention, the uncharged non-aqueous secondary battery further includes a separator between the negative electrode and the positive electrode, and the uncharged non-aqueous secondary battery is heated at a temperature of 60° C. for 15 hours. The adhesive strength between the negative electrode and the separator when left standing is preferably 1.0 N/m or less.
In this way, by lowering the adhesive force between the negative electrode and the separator, it is possible to prevent the negative electrode mixture layer from peeling due to expansion and contraction of the negative electrode active material due to charging and discharging, and a non-aqueous system excellent in battery performance. A secondary battery can be manufactured.
The "adhesive force" between the negative electrode and the separator can be measured using the measuring method described in the examples of this specification.

本発明によれば、電池性能の低下を抑制しつつ、負極合材層上にSEI皮膜を形成した非水系二次電池を効率的に製造することができる。 ADVANTAGE OF THE INVENTION According to this invention, the non-aqueous secondary battery which formed the SEI film|membrane on the negative electrode mixture layer can be manufactured efficiently, suppressing a fall of battery performance.

以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

(非水系二次電池の製造方法)
本発明の製造方法では、正極および負極を含む電池部材と、電解液とを電池容器に収容してなる非水系二次電池を製造する。なお、電池容器に収容される電池部材には、正極および負極以外に、正極と負極とを隔離して正極と負極との間の短絡を防ぐセパレータ等の既知の電池部材が含まれていてもよい。
また、本発明の製造方法は、電池部材と電解液とを電池容器に収容して未充電非水系二次電池を組み立てる組立工程と、未充電非水系二次電池を所定の温度以上に加熱する加熱工程と、加熱工程後に未充電非水系二次電池を充電する初期充電工程とを含む。更に、本発明の製造方法では、負極として、負極活物質と、所定の性状を有する非水溶性重合体と、所定の性状を有する水溶性重合体とを含有する負極合材層を備える負極を使用する。
そして、本発明の非水系二次電池の製造方法によれば、未充電非水系二次電池を初期充電する前に加熱工程を施すので、初期充電の前に負極合材層中への電解液の浸透を促進して、SEI皮膜の形成不良や負極上への金属析出を抑制しつつ、負極合材層上にSEI皮膜を形成した非水系二次電池を効率的に製造することができる。また、本発明の非水系二次電池の製造方法によれば、所定の性状を有する非水溶性重合体および水溶性重合体を使用しているので、初期充電の前に加熱工程を実施した場合であっても、負極合材層の剥がれや割れが発生するのを抑制することができる。従って、本発明の非水系二次電池の製造方法によれば、良好なSEI皮膜が形成された負極合材層を有し、寿命特性等の電池特性に優れている非水系二次電池を効率的に製造することができる。
(Method for manufacturing non-aqueous secondary battery)
In the manufacturing method of the present invention, a non-aqueous secondary battery is manufactured in which a battery member including a positive electrode and a negative electrode and an electrolytic solution are housed in a battery container. Note that the battery member housed in the battery container may include, in addition to the positive electrode and the negative electrode, known battery members such as a separator that separates the positive electrode and the negative electrode to prevent a short circuit between the positive electrode and the negative electrode. Good.
In addition, the manufacturing method of the present invention includes an assembly step of assembling an uncharged non-aqueous secondary battery by housing a battery member and an electrolytic solution in a battery container, and heating the uncharged non-aqueous secondary battery to a predetermined temperature or higher. It includes a heating step and an initial charging step of charging the uncharged non-aqueous secondary battery after the heating step. Furthermore, in the production method of the present invention, as a negative electrode, a negative electrode comprising a negative electrode active material, a water-insoluble polymer having a predetermined property, and a negative electrode mixture layer containing a water-soluble polymer having a predetermined property. use.
Then, according to the method for producing a non-aqueous secondary battery of the present invention, since the heating step is performed before the initial charging of the uncharged non-aqueous secondary battery, the electrolytic solution in the negative electrode mixture layer before the initial charging is performed. It is possible to efficiently manufacture a non-aqueous secondary battery in which the SEI film is formed on the negative electrode mixture layer while promoting the permeation of the SEI film and suppressing the formation failure of the SEI film and the metal deposition on the negative electrode. Further, according to the method for producing a non-aqueous secondary battery of the present invention, since a non-water-soluble polymer having a predetermined property and a water-soluble polymer are used, when the heating step is performed before initial charging Even with this, peeling or cracking of the negative electrode mixture layer can be suppressed. Therefore, according to the method for producing a non-aqueous secondary battery of the present invention, a non-aqueous secondary battery having a negative electrode mixture layer on which a good SEI film is formed and having excellent battery characteristics such as life characteristics can be efficiently produced. Can be manufactured in a simple manner.

<負極>
本発明の製造方法を用いて製造される非水系二次電池の負極としては、所定の負極合材層を備えるものであれば特に限定されることなく、例えば、所定の負極合材層を集電体上に形成してなる負極を用いることができる。
<Negative electrode>
The negative electrode of the non-aqueous secondary battery manufactured using the manufacturing method of the present invention is not particularly limited as long as it has a predetermined negative electrode mixture layer, and for example, a predetermined negative electrode mixture layer is collected. A negative electrode formed on an electric body can be used.

[集電体]
ここで、集電体としては、既知の集電体を用いることができる。そして、集電体の材料としては、電気導電性、電気化学的な耐久性、および耐熱性を有するため金属が好ましく、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金等を用いることができる。
[Current collector]
Here, a known current collector can be used as the current collector. And as the material of the current collector, a metal is preferable because it has electrical conductivity, electrochemical durability, and heat resistance, for example, iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, Platinum or the like can be used.

[負極合材層]
本発明の製造方法に用いられる負極の負極合材層は、負極活物質、非水溶性重合体、および水溶性重合体を含有する。
ここで、負極合材層の密度は、1.60g/cm3以上であることが好ましく、1.65g/cm3以上であることがより好ましく、1.70g/cm3以上であることが更に好ましく、2.0g/cm3以下であることが好ましい。負極合材層の密度を1.60g/cm3以上にすれば、非水系二次電池のエネルギー密度を十分に高めることができる。なお、通常、負極合材層の密度を高めると電解液が負極合材層に浸透し難くなる。しかし、本発明の製造方法によれば、初期充電工程の前に加熱工程を実施するので、負極合材層の密度を1.60g/cm3以上にした場合であっても、短時間で負極合材層中へ電解液を良好に浸透させ、電解液の浸透不足に起因したSEI皮膜の形成不良および金属析出の発生を抑制することができる。
[Negative electrode mixture layer]
The negative electrode mixture layer of the negative electrode used in the production method of the present invention contains a negative electrode active material, a water-insoluble polymer, and a water-soluble polymer.
Here, the density of the negative electrode material layer is preferably 1.60 g / cm 3 or more, more preferably 1.65 g / cm 3 or more, still be at 1.70 g / cm 3 or more It is preferably 2.0 g/cm 3 or less. When the density of the negative electrode mixture layer is 1.60 g/cm 3 or more, the energy density of the non-aqueous secondary battery can be sufficiently increased. In general, when the density of the negative electrode mixture layer is increased, it becomes difficult for the electrolytic solution to permeate the negative electrode mixture layer. However, according to the manufacturing method of the present invention, since the heating step is performed before the initial charging step, even if the density of the negative electrode mixture layer is 1.60 g/cm 3 or more, the negative electrode can be formed in a short time. It is possible to satisfactorily permeate the electrolytic solution into the composite material layer, and to suppress the formation failure of the SEI film and the occurrence of metal deposition due to the insufficient permeation of the electrolytic solution.

[[非水溶性重合体]]
負極合材層に含まれる非水溶性重合体は、負極合材層に含まれる成分が負極合材層から脱離しないように保持するとともに、集電体上に形成された負極合材層が集電体と良好に結着するよう保持し得る成分である。
[[Water-insoluble polymer]]
The water-insoluble polymer contained in the negative electrode mixture layer holds the components contained in the negative electrode mixture layer so as not to be separated from the negative electrode mixture layer, and the negative electrode mixture layer formed on the current collector is It is a component that can be held so as to bind well with the current collector.

−非水溶性重合体の性状−
そして、負極合材層に含まれる非水溶性重合体は、電解液膨潤度が、1.0倍超4.0倍以下であることが必要であり、非水溶性重合体の電解液膨潤度は、1.1倍以上であることが好ましく、1.3倍以上であることがより好ましく、3.0倍以下であることが好ましく、2.0倍以下であることがより好ましい。非水溶性重合体の電解液膨潤度が1.0倍超であれば、負極合材層のイオン伝導性を十分に確保し、二次電池の内部抵抗を十分に下げることができる。また、非水溶性重合体の電解液膨潤度が4.0倍以下であれば、負極合材層の強度を十分に高め、初期充電工程の前に加熱工程を実施した場合であっても、負極合材層の剥がれや割れが発生するのを抑制することができる。
なお、電解液膨潤度は、例えば、非水溶性重合体の組成を調整することにより制御することができる。
-Properties of water-insoluble polymer-
Then, the water-insoluble polymer contained in the negative electrode mixture layer needs to have an electrolytic solution swelling degree of more than 1.0 times and 4.0 times or less. Is preferably 1.1 times or more, more preferably 1.3 times or more, preferably 3.0 times or less, and more preferably 2.0 times or less. When the electrolyte swelling degree of the water-insoluble polymer is more than 1.0 times, the ionic conductivity of the negative electrode mixture layer can be sufficiently secured and the internal resistance of the secondary battery can be sufficiently lowered. If the electrolyte swelling degree of the water-insoluble polymer is 4.0 times or less, the strength of the negative electrode mixture layer is sufficiently increased, and even when the heating step is performed before the initial charging step, It is possible to suppress peeling or cracking of the negative electrode mixture layer.
The electrolytic solution swelling degree can be controlled by, for example, adjusting the composition of the water-insoluble polymer.

また、非水溶性重合体は、ゲル量が、80質量%以上95質量%以下であることが必要であり、非水溶性重合体のゲル量は、82質量%以上であることが好ましく、94質量%以下であることが好ましい。非水溶性重合体のゲル量が80質量%以上95質量%以下であれば、負極合材層の強度および柔軟性を十分に高め、初期充電工程の前に加熱工程を実施した場合であっても、負極合材層の剥がれや割れが発生するのを抑制することができる。
なお、ゲル量は、例えば、非水溶性重合体の組成、重合温度、並びに、重合に使用する連鎖移動剤の添加量および種類を調整することにより制御することができる。
Further, the water-insoluble polymer needs to have a gel amount of 80% by mass or more and 95% by mass or less, and the gel amount of the water-insoluble polymer is preferably 82% by mass or more, 94 It is preferably not more than mass %. When the gel amount of the water-insoluble polymer is 80% by mass or more and 95% by mass or less, the strength and flexibility of the negative electrode mixture layer are sufficiently increased, and the heating step is performed before the initial charging step. Also, peeling or cracking of the negative electrode mixture layer can be suppressed.
The gel amount can be controlled by, for example, adjusting the composition of the water-insoluble polymer, the polymerization temperature, and the addition amount and type of the chain transfer agent used for the polymerization.

−非水溶性重合体の組成−
非水溶性重合体としては、上述した電解液膨潤度およびゲル量を有していれば、特に限定されることなく、共役ジエン系重合体やアクリル系重合体などの任意の重合体を使用することができる。中でも、非水溶性重合体としては、共役ジエン系重合体が好ましく、芳香族ビニル単量体単位と共役ジエン単量体単位とを主構成単位とする共重合体がより好ましい。ここで、「芳香族ビニル単量体単位と共役ジエン単量体単位とが主構成単位である」とは、共重合体中において、芳香族ビニル単量体単位および共役ジエン単量体単位の合計含有量が、共重合体の全単量体単位の50質量%を超えることを指す。
-Composition of water-insoluble polymer-
The water-insoluble polymer is not particularly limited as long as it has the electrolytic solution swelling degree and gel amount described above, and any polymer such as a conjugated diene polymer or an acrylic polymer is used. be able to. Among them, the water-insoluble polymer is preferably a conjugated diene polymer, and more preferably a copolymer having an aromatic vinyl monomer unit and a conjugated diene monomer unit as main constituent units. Here, "the aromatic vinyl monomer unit and the conjugated diene monomer unit are the main constituent units" means that in the copolymer, the aromatic vinyl monomer unit and the conjugated diene monomer unit It means that the total content exceeds 50 mass% of all the monomer units of the copolymer.

−芳香族ビニル単量体単位−
ここで、芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、例えば、スチレン、α−メチルスチレン、p−t−ブチルスチレン、ブトキシスチレン、ビニルナフタレン、ビニルトルエン、クロロスチレンなどが挙げられる。これらの中でも、スチレンが好ましい。これらは1種単独で、または、2種以上を組み合わせてもよい。
そして、共重合体中の芳香族ビニル単量体単位の割合は、10質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、80質量%以下であることが好ましく、75質量%以下であることがより好ましく、70質量%以下であることが更に好ましい。芳香族ビニル単量体単位の割合を10質量%以上とすれば、非水溶性重合体の電解液膨潤度が過度に大きくなるのを抑制し、負極合材層の強度をより高めることができるからである。また、芳香族ビニル単量体単位の割合を80質量%以下とすれば、非水溶性重合体の靭性を高め、負極合材層の割れや剥がれが発生するのを十分に抑制することができるからである。
-Aromatic vinyl monomer unit-
Here, examples of the aromatic vinyl monomer capable of forming the aromatic vinyl monomer unit include styrene, α-methylstyrene, pt-butylstyrene, butoxystyrene, vinylnaphthalene, vinyltoluene, and chlorostyrene. And so on. Of these, styrene is preferable. These may be used alone or in combination of two or more.
The proportion of the aromatic vinyl monomer unit in the copolymer is preferably 10% by mass or more, more preferably 30% by mass or more, further preferably 50% by mass or more, It is preferably 80% by mass or less, more preferably 75% by mass or less, and further preferably 70% by mass or less. When the proportion of the aromatic vinyl monomer unit is 10% by mass or more, it is possible to suppress the electrolyte solution swelling degree of the water-insoluble polymer from becoming excessively large and to further enhance the strength of the negative electrode mixture layer. Because. Further, when the proportion of the aromatic vinyl monomer unit is 80% by mass or less, the toughness of the water-insoluble polymer can be increased and the occurrence of cracking or peeling of the negative electrode mixture layer can be sufficiently suppressed. Because.

−共役ジエン単量体単位−
また、共役ジエン単量体単位を形成し得る共役ジエン単量体としては、例えば、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、2−エチル−1,3−ブタジエン、1,3−ペンタジエン、2−クロル−1,3−ブタジエン、ピペリレンなどが挙げられる。これらの中でも、1,3−ブタジエンが好ましい。これらは1種単独で、または、2種以上を組み合わせて用いることができる。
そして、共重合体中の共役ジエン単量体単位の割合は、20質量%以上であることが好ましく、25質量%以上であることがより好ましく、30質量%以上であることが更に好ましく、50質量%以下であることが好ましく、45質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。共役ジエン単量体単位の割合を20質量%以上とすれば、共重合体のゲル量を高めることができると共に、電解液膨潤度が過度に大きくなるのを抑制することができる。そして、その結果、柔軟性と強度との双方に優れる負極合材層が得られるからである。また、共役ジエン単量体単位の割合を50質量%以下とすれば、負極合材層を適度な硬さとし、負極合材層の強度を十分に確保することができるからである。
-Conjugated diene monomer unit-
Examples of the conjugated diene monomer capable of forming the conjugated diene monomer unit include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3- Examples thereof include butadiene, 1,3-pentadiene, 2-chloro-1,3-butadiene and piperylene. Among these, 1,3-butadiene is preferable. These may be used alone or in combination of two or more.
The proportion of the conjugated diene monomer unit in the copolymer is preferably 20% by mass or more, more preferably 25% by mass or more, further preferably 30% by mass or more, 50 It is preferably not more than 40% by mass, more preferably not more than 45% by mass, further preferably not more than 40% by mass. When the proportion of the conjugated diene monomer unit is 20% by mass or more, the gel amount of the copolymer can be increased and the electrolytic solution swelling degree can be suppressed from becoming excessively large. As a result, a negative electrode mixture layer having excellent flexibility and strength can be obtained. Further, if the ratio of the conjugated diene monomer unit is 50% by mass or less, the negative electrode composite material layer can have an appropriate hardness and the strength of the negative electrode composite material layer can be sufficiently secured.

−その他の単量体単位−
なお、芳香族ビニル単量体単位と共役ジエン単量体単位とを主構成単位とする共重合体は、芳香族ビニル単量体単位および共役ジエン単量体単位以外のその他の単量体単位を含んでいてもよい。その他の単量体単位としては、特に限定されることなく、例えば、不飽和カルボン酸単量体単位などの酸性基含有単量体単位、(メタ)アクリル酸エステル単量体単位、ニトリル基含有単量体単位などが挙げられる。これらは1種単独で、または、2種以上を組み合わせてもよい。なお、本願において、「(メタ)アクリル」とはアクリルおよび/またはメタクリルを意味する。
-Other monomer units-
Incidentally, the copolymer having an aromatic vinyl monomer unit and a conjugated diene monomer unit as a main constituent unit is a monomer unit other than the aromatic vinyl monomer unit and the conjugated diene monomer unit. May be included. Other monomer units are not particularly limited and include, for example, acidic group-containing monomer units such as unsaturated carboxylic acid monomer units, (meth)acrylic acid ester monomer units, and nitrile group-containing units. A monomer unit etc. are mentioned. These may be used alone or in combination of two or more. In addition, in this application, "(meth)acryl" means acryl and/or methacryl.

=酸性基含有単量体単位=
酸性基含有単量体単位である不飽和カルボン酸単量体単位を形成し得る不飽和カルボン酸単量体としては、例えば、不飽和モノカルボン酸およびその誘導体、不飽和ジカルボン酸およびその酸無水物、並びにそれらの誘導体が挙げられる。不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、およびクロトン酸が挙げられる。不飽和モノカルボン酸の誘導体の例としては、2−エチルアクリル酸、イソクロトン酸、α−アセトキシアクリル酸、β−trans−アリールオキシアクリル酸、α−クロロ−β−E−メトキシアクリル酸、およびβ−ジアミノアクリル酸が挙げられる。不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、およびイタコン酸が挙げられる。不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、およびジメチル無水マレイン酸が挙げられる。不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキル等が挙げられる。これらは、1種単独で、または、2種以上を組み合わせて用いることができる。
= Monomer unit containing acidic group =
Examples of the unsaturated carboxylic acid monomer capable of forming an unsaturated carboxylic acid monomer unit which is an acidic group-containing monomer unit include, for example, unsaturated monocarboxylic acid and its derivative, unsaturated dicarboxylic acid and its acid anhydride. The thing, and those derivatives are mentioned. Examples of unsaturated monocarboxylic acids include acrylic acid, methacrylic acid, and crotonic acid. Examples of unsaturated monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, α-acetoxyacrylic acid, β-trans-aryloxyacrylic acid, α-chloro-β-E-methoxyacrylic acid, and β. -Diaminoacrylic acid. Examples of unsaturated dicarboxylic acids include maleic acid, fumaric acid, and itaconic acid. Examples of unsaturated dicarboxylic acid anhydrides include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride. Examples of unsaturated dicarboxylic acid derivatives include methyl maleic acid, dimethyl maleic acid, phenyl maleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, diphenyl maleate, nonyl maleate, decyl maleate, dodecyl maleate. , Octadecyl maleate, fluoroalkyl maleate, and the like. These can be used alone or in combination of two or more.

これらの中でも、不飽和カルボン酸単量体としては、アクリル酸、メタクリル酸等の不飽和モノカルボン酸や、マレイン酸、フマル酸、イタコン酸等の不飽和ジカルボン酸が好ましく、アクリル酸、イタコン酸がより好ましく、イタコン酸が更に好ましい。
そして、共重合体中の酸性基含有単量体単位の割合は、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、2質量%以上であることが更に好ましく、10質量%以下であることが好ましく、8質量%以下であることがより好ましく、6質量%以下であることが更に好ましい。酸性基含有単量体単位の割合を0.5質量%以上とすれば、負極活物質同士、および集電体と負極合材層との接着性を高めることができるからである。一方、酸性基含有単量体単位の割合を10質量%以下とすれば、負極合材層の割れや剥がれが発生するのを十分に抑制することができるからである。
Among these, as the unsaturated carboxylic acid monomer, unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid, and maleic acid, fumaric acid, unsaturated dicarboxylic acids such as itaconic acid are preferable, and acrylic acid and itaconic acid. Is more preferable, and itaconic acid is further preferable.
And the ratio of the acidic group-containing monomer unit in the copolymer is preferably 0.5% by mass or more, more preferably 1% by mass or more, further preferably 2% by mass or more. It is preferably 10% by mass or less, more preferably 8% by mass or less, still more preferably 6% by mass or less. This is because if the proportion of the acidic group-containing monomer unit is 0.5% by mass or more, the adhesion between the negative electrode active materials and between the current collector and the negative electrode mixture layer can be improved. On the other hand, if the proportion of the acidic group-containing monomer unit is 10% by mass or less, it is possible to sufficiently suppress the occurrence of cracking or peeling of the negative electrode mixture layer.

=(メタ)アクリル酸エステル単量体単位=
(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2−エチルヘキシル、2−ヒドロキシエチルアクリレートが挙げられる。これらは、1種単独で、または、2種以上を組み合わせて用いることができる。
=(meth)acrylic acid ester monomer unit=
Examples of the (meth)acrylic acid ester monomer capable of forming the (meth)acrylic acid ester monomer unit include, for example, methyl (meth)acrylate, butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate. , 2-hydroxyethyl acrylate. These can be used alone or in combination of two or more.

=ニトリル基含有単量体単位=
ニトリル基含有単量体単位を形成し得るニトリル基含有単量体としては、α,β−エチレン性不飽和ニトリル単量体が挙げられる。具体的には、α,β−エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β−エチレン性不飽和化合物であれば特に限定されないが、例えば、アクリロニトリル;α−クロロアクリロニトリル、α−ブロモアクリロニトリルなどのα−ハロゲノアクリロニトリル;メタクリロニトリル、α−エチルアクリロニトリルなどのα−アルキルアクリロニトリル;などが挙げられる。これらの中でも、非水溶性重合体の電解液膨潤度を適度に増大させて負極合材層のイオン伝導度を高め、二次電池の内部抵抗を下げる観点から、(メタ)アクリロニトリルが好ましい。これらは、1種単独で、または、2種以上を組み合わせて用いることができる。
= Nitrile group-containing monomer unit =
Examples of the nitrile group-containing monomer capable of forming the nitrile group-containing monomer unit include α,β-ethylenically unsaturated nitrile monomers. Specifically, the α,β-ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an α,β-ethylenically unsaturated compound having a nitrile group, for example, acrylonitrile; α-chloroacrylonitrile, and α-halogenoacrylonitrile such as α-bromoacrylonitrile; α-alkylacrylonitrile such as methacrylonitrile and α-ethylacrylonitrile; and the like. Among these, (meth)acrylonitrile is preferable from the viewpoint of appropriately increasing the electrolytic solution swelling degree of the water-insoluble polymer to increase the ionic conductivity of the negative electrode mixture layer and reduce the internal resistance of the secondary battery. These can be used alone or in combination of two or more.

−非水溶性重合体の調製方法−
そして、上述した単量体を用いた非水溶性重合体の調製方法は特に限定されず、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。また、重合方法としては、イオン重合、ラジカル重合、リビングラジカル重合などの付加重合を用いることができる。
-Method for preparing water-insoluble polymer-
Then, the method for preparing a water-insoluble polymer using the above-mentioned monomer is not particularly limited, and for example, any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, or an emulsion polymerization method may be used. You can As the polymerization method, addition polymerization such as ionic polymerization, radical polymerization, living radical polymerization can be used.

−含有量−
負極合材層中に含まれている非水溶性重合体の量は、負極活物質100質量部当たり、0.5質量部以上であることが好ましく、1.0質量部以上であることがより好ましく、1.5質量部以上であることが更に好ましく、4質量部以下であることが好ましく、3質量部以下であることがより好ましく、2.5質量部以下であることが更に好ましい。所定の電解液膨潤度およびゲル量を有する非水溶性重合体の含有量が上記下限値以上であれば、負極合材層に柔軟性が付与され、負極合材層の強度を十分に確保することができるからである。また、所定の電解液膨潤度およびゲル量を有する非水溶性重合体の含有量が上記上限値以下であれば、内部抵抗が小さく、かつ、高容量の非水系二次電池が得られるからである。
-Content-
The amount of the water-insoluble polymer contained in the negative electrode mixture layer is preferably 0.5 part by mass or more, and more preferably 1.0 part by mass or more, per 100 parts by mass of the negative electrode active material. It is more preferably 1.5 parts by mass or more, further preferably 4 parts by mass or less, more preferably 3 parts by mass or less, and further preferably 2.5 parts by mass or less. When the content of the water-insoluble polymer having a predetermined electrolytic solution swelling degree and gel amount is at least the above lower limit, flexibility is imparted to the negative electrode mixture layer, and the strength of the negative electrode mixture layer is sufficiently secured. Because you can. Further, when the content of the water-insoluble polymer having a predetermined electrolytic solution swelling degree and gel amount is not more than the above upper limit, the internal resistance is small, and a high-capacity non-aqueous secondary battery can be obtained. is there.

[[水溶性重合体]]
負極合材層に含まれる水溶性重合体は、上述した非水溶性重合体と共に、負極合材層に含まれる成分が負極合材層から脱離しないように保持し、且つ、集電体上に形成された負極合材層を集電体と良好に結着させ得る成分である。
[[Water-soluble polymer]]
The water-soluble polymer contained in the negative electrode mixture layer, together with the water-insoluble polymer described above, holds the components contained in the negative electrode mixture layer so as not to be separated from the negative electrode mixture layer, and on the current collector. It is a component capable of favorably binding the negative electrode composite material layer formed on the current collector.

−水溶性重合体の性状−
そして、水溶性重合体は、電解液膨潤度が、1.0倍超2.0倍以下であることが必要であり、水溶性重合体の電解液膨潤度は、1.3倍以下であることが好ましく、1.2倍以下であることがより好ましく、1.1倍以下であることが更に好ましい。水溶性重合体の電解液膨潤度が1.0倍超であれば、負極合材層のイオン伝導性を十分に確保し、二次電池の内部抵抗を十分に下げることができる。また、水溶性重合体の電解液膨潤度が2.0倍以下であれば、負極合材層の強度を十分に高め、初期充電工程の前に加熱工程を実施した場合であっても、負極合材層の剥がれや割れが発生するのを抑制することができる。
なお、水溶性重合体の電解液膨潤度は、例えば、水溶性重合体の組成を調整することにより制御することができる。
-Properties of water-soluble polymer-
The water-soluble polymer needs to have an electrolytic solution swelling degree of more than 1.0 times and 2.0 times or less, and the electrolytic solution swelling degree of the water-soluble polymer is 1.3 times or less. It is preferably 1.2 times or less, more preferably 1.1 times or less. When the electrolytic solution swelling degree of the water-soluble polymer is more than 1.0 times, the ionic conductivity of the negative electrode mixture layer can be sufficiently secured and the internal resistance of the secondary battery can be sufficiently lowered. If the degree of swelling of the electrolyte of the water-soluble polymer is 2.0 times or less, the strength of the negative electrode mixture layer is sufficiently increased, and even if the heating step is performed before the initial charging step, the negative electrode It is possible to prevent the composite material layer from peeling or cracking.
The electrolyte solution swelling degree of the water-soluble polymer can be controlled by, for example, adjusting the composition of the water-soluble polymer.

−水溶性重合体の組成−
水溶性重合体としては、上述した電解液膨潤度を有していれば、特に限定されることなく、例えば、カルボキシメチルセルロース(CMC)、カルボキシエチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、カルボキシエチルメチルセルロースなどのセルロース化合物、およびこれらのアンモニウム塩やアルカリ金属塩などの塩類といったセルロース系重合体;酸化スターチやリン酸スターチ;カゼイン;各種変性デンプン;ポリエチレンオキサイド、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ポリスルホン酸、ポリカルボン酸;(メタ)アクリル酸共重合体、アクリルアミド系重合体、およびこれらのアンモニウム塩やアルカリ金属塩などの塩類を挙げることができる。これらは1種類を単独で使用してもよく、2種類以上を併用して用いることができる。
-Composition of water-soluble polymer-
The water-soluble polymer is not particularly limited as long as it has the electrolytic solution swelling degree described above, and includes, for example, carboxymethyl cellulose (CMC), carboxyethyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, carboxyethyl methyl cellulose. Cellulose compounds such as cellulose compounds and salts thereof such as ammonium salts and alkali metal salts; oxidized starch and phosphate starch; casein; various modified starches; polyethylene oxide, polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, polysulfonic acid , Polycarboxylic acids; (meth)acrylic acid copolymers, acrylamide polymers, and salts thereof such as ammonium salts and alkali metal salts. These may be used alone or in combination of two or more.

中でも、水溶性重合体としては、セルロース系重合体、(メタ)アクリルアミド系重合体、およびこれらの組み合わせが好ましい。 Among them, the water-soluble polymer is preferably a cellulose-based polymer, a (meth)acrylamide-based polymer, or a combination thereof.

−含有量−
負極合材層中に含まれている水溶性重合体の量は、負極活物質100質量部当たり、0.5質量部以上であることが好ましく、0.7質量部以上であることがより好ましく、0.8質量部以上であることが更に好ましく、3質量部以下であることが好ましく、2質量部以下であることがより好ましく、1.5質量部以下であることが更に好ましい。所定の電解液膨潤度を有する水溶性重合体の含有量が上記下限値以上であれば、負極合材層を適度な硬さとし、負極合材層の強度を十分に確保することができるからである。また、所定の電解液膨潤度を有する水溶性重合体の含有量が上記上限値以下であれば、二次電池の内部抵抗を低減し、高容量の非水系二次電池が得られるからである。
-Content-
The amount of the water-soluble polymer contained in the negative electrode mixture layer is preferably 0.5 parts by mass or more, and more preferably 0.7 parts by mass or more, per 100 parts by mass of the negative electrode active material. , 0.8 parts by mass or more, preferably 3 parts by mass or less, more preferably 2 parts by mass or less, and further preferably 1.5 parts by mass or less. If the content of the water-soluble polymer having a predetermined electrolyte swelling degree is equal to or more than the above lower limit, the negative electrode composite material layer has an appropriate hardness, and the strength of the negative electrode composite material layer can be sufficiently secured. is there. Further, if the content of the water-soluble polymer having a predetermined electrolytic solution swelling degree is equal to or less than the upper limit value, the internal resistance of the secondary battery is reduced, and a high-capacity non-aqueous secondary battery can be obtained. ..

[[負極活物質]]
負極合材層に含まれる負極活物質としては、特に限定されることなく、既知の負極活物質を用いることができる。既知の負極活物質としては、例えば、非水系二次電池がリチウムイオン二次電池の場合には、炭素系活物質、シリコーン系活物質、並びに、リチウム合金を形成する単体金属および合金が挙げられる。中でも、負極活物質としては、炭素系活物質が好ましく、天然黒鉛を用いた炭素系活物質がより好ましく、天然黒鉛を低結晶性の炭素材料で被覆(以下、これを「非晶質コート」を称することがある。)してなる炭素系活物質が更に好ましい。なお、非晶質コートの方法としては、特開2013−45714号公報に開示される方法などを挙げることができる。
[[Negative electrode active material]]
The negative electrode active material contained in the negative electrode mixture layer is not particularly limited, and a known negative electrode active material can be used. Examples of the known negative electrode active material include a carbon-based active material, a silicone-based active material, and a single metal or an alloy forming a lithium alloy when the non-aqueous secondary battery is a lithium-ion secondary battery. .. Among them, as the negative electrode active material, a carbon-based active material is preferable, a carbon-based active material using natural graphite is more preferable, and natural graphite is coated with a low crystalline carbon material (hereinafter, referred to as “amorphous coat”). Is more preferable. Examples of the amorphous coating method include the method disclosed in Japanese Patent Application Laid-Open No. 2013-45714.

−負極活物質の性状−
負極活物質は、タップ密度が0.8g/cm3以上であることが好ましく、0.85g/cm3以上であることがより好ましく、0.9g/cm3以上であることが更に好ましく、1.2g/cm3以下であることが好ましく、1.1g/cm3以下であることがより好ましく、1.05g/cm3以下であることが更に好ましい。タップ密度が0.8g/cm3以上の負極活物質を使用すれば、密度および強度の高い負極合材層を備えた負極が容易に得られるからである。また、タップ密度が1.2g/cm3以下の負極活物質を使用すれば、負極合材層中に電解液がより浸透しやすくなるからである。
− Properties of negative electrode active material −
The negative electrode active material preferably has a tap density of 0.8 g/cm 3 or more, more preferably 0.85 g/cm 3 or more, still more preferably 0.9 g/cm 3 or more. preferably .2g / cm 3 or less, more preferably 1.1 g / cm 3 or less, further preferably 1.05 g / cm 3 or less. This is because when a negative electrode active material having a tap density of 0.8 g/cm 3 or more is used, a negative electrode including a negative electrode mixture layer having high density and strength can be easily obtained. Also, if a negative electrode active material having a tap density of 1.2 g/cm 3 or less is used, the electrolytic solution will more easily penetrate into the negative electrode mixture layer.

また、負極活物質は、体積平均粒子径が、5μm以上であることが好ましく、7μm以上であることがより好ましく、10μm以上であることが更に好ましく、30μm以下であることが好ましく、25μm以下であることがより好ましく、20μm以下であることが更に好ましい。なお、本発明において、負極活物質の「体積平均粒子径」は、例えば、レーザー回折/散乱式粒子径分布測定装置(マイクロトラック・ベル社製、型番:マイクロトラックMT3000II)を用いて、50%径として湿式法により測定することができる。 The volume average particle diameter of the negative electrode active material is preferably 5 μm or more, more preferably 7 μm or more, further preferably 10 μm or more, preferably 30 μm or less, and 25 μm or less. It is more preferable that it is present, and it is further preferable that it is 20 μm or less. In the present invention, the “volume average particle size” of the negative electrode active material is, for example, 50% using a laser diffraction/scattering particle size distribution measuring device (Microtrack Bell, model number: Microtrack MT3000II). The diameter can be measured by a wet method.

ここで、負極活物質の体積平均粒子径およびタップ密度は、例えば、不定形または非球形の負極活物質粒子を球形化処理することによって制御し得る。球形化処理の好ましい方法としては、特に限定されることなく、例えば特開2010−34036号公報に開示される方法などを挙げることができる。具体的には、球形化処理は、例えば、ハイブリダイゼーションシステム(奈良機械製作所製、型番:NHS−3)を用いて、高速気流中に分散させた負極活物質粒子に衝撃力などを与えることにより行うことができる。 Here, the volume average particle diameter and tap density of the negative electrode active material can be controlled by, for example, spheroidizing the amorphous or non-spherical negative electrode active material particles. A preferable method of the spheroidizing treatment is not particularly limited, and examples thereof include the method disclosed in JP 2010-34036A. Specifically, the spheroidizing treatment is performed by, for example, using a hybridization system (manufactured by Nara Machinery Co., Ltd., model number: NHS-3) to give impact force or the like to the negative electrode active material particles dispersed in a high-speed air stream. It can be carried out.

[負極の作製]
上述した負極合材層を備える負極は、特に限定されることなく、既知の手法を用いて作製することができる。具体的には、負極は、例えば、負極活物質と、非水溶性重合体と、水溶性重合体と、任意の添加剤と、水などの分散媒とを含む負極用スラリー組成物を集電体上に塗布し、塗布した負極用スラリー組成物を乾燥させて負極合材層を形成することにより作製することができる。なお、集電体上に形成した負極合材層は、プレス加工等の加圧処理を施して密度を調整してもよい。
また、非水溶性重合体は、通常、負極用スラリー組成物中では粒子形状で存在するが、形成された負極合材層中では、粒子形状であってもよいし、その他の任意の形状であってもよい。
[Preparation of negative electrode]
The negative electrode including the above-mentioned negative electrode mixture layer is not particularly limited, and can be manufactured by a known method. Specifically, the negative electrode collects a negative electrode slurry composition containing, for example, a negative electrode active material, a water-insoluble polymer, a water-soluble polymer, an optional additive, and a dispersion medium such as water. It can be prepared by applying it on the body and drying the applied negative electrode slurry composition to form a negative electrode mixture layer. The density of the negative electrode mixture layer formed on the current collector may be adjusted by applying a pressure treatment such as pressing.
Further, the water-insoluble polymer is usually present in the form of particles in the negative electrode slurry composition, but may be in the form of particles in the formed negative electrode mixture layer, or in any other form. It may be.

<正極>
本発明の製造方法を用いて製造される非水系二次電池の正極としては、既知の正極を用いることができる。具体的には、正極としては、特に限定されることなく、集電体と、集電体上に形成された正極合材層とを有する正極を用いることができる。そして、正極合材層は、通常、正極活物質、導電材、および結着材を含有する。
ここで、集電体、正極合材層中の正極活物質、導電材、および結着材、並びに、集電体上への正極合材層の形成方法には、既知のものを用いることができ、例えば特開2013−145763号公報に記載のものを用いることができる。
<Positive electrode>
A known positive electrode can be used as the positive electrode of the non-aqueous secondary battery manufactured using the manufacturing method of the present invention. Specifically, the positive electrode is not particularly limited, and a positive electrode having a current collector and a positive electrode mixture layer formed on the current collector can be used. The positive electrode mixture layer usually contains a positive electrode active material, a conductive material, and a binder.
Here, as the current collector, the positive electrode active material in the positive electrode mixture layer, the conductive material, the binder, and the method for forming the positive electrode mixture layer on the current collector, known methods may be used. For example, those described in JP-A-2013-145763 can be used.

<電解液>
本発明の製造方法を用いて製造される非水系二次電池の電解液としては、既知の電解液を用いることができる。具体的には、非水系二次電池がリチウムイオン二次電池の場合には、特に限定されることなく、例えば、非水系溶媒に支持電解質としてリチウム塩を溶解したものが使用できる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF6、LiClO4、CF3SO3Liは好適に用いられる。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
電解液に使用する溶媒としては、支持電解質を溶解させるものであれば特に限定されないが、通常、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、および、エチルメチルカーボネート(EMC)などのアルキルカーボネート類;γ−ブチロラクトン、ギ酸メチルなどのエステル類、1,2−ジメトキシエタン、およびテトラヒドロフランなどのエーテル類;スルホラン、およびジメチルスルホキシドなどの含硫黄化合物類;が用いられる。また、電解液には添加剤を含有させて用いることも可能である。添加剤としてはビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。
<Electrolyte>
As the electrolytic solution of the non-aqueous secondary battery manufactured using the manufacturing method of the present invention, a known electrolytic solution can be used. Specifically, when the non-aqueous secondary battery is a lithium ion secondary battery, it is not particularly limited, and for example, a non-aqueous solvent in which a lithium salt is dissolved as a supporting electrolyte can be used. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, and (CF 3 CO) 2 NLi. Lithium salts such as (CF 3 SO 2 ) 2 NLi and (C 2 F 5 SO 2 )NLi. Particularly, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li which are easily dissolved in a solvent and have a high dissociation degree are preferably used. The electrolyte may be used alone or in combination of two or more at an arbitrary ratio. Usually, the higher the dissociation degree of the supporting electrolyte, the higher the lithium ion conductivity tends to be. Therefore, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
The solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte, but is usually dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene. Alkyl carbonates such as carbonate (BC) and ethylmethyl carbonate (EMC); γ-butyrolactone, esters such as methyl formate, ethers such as 1,2-dimethoxyethane, and tetrahydrofuran; sulfolane, dimethyl sulfoxide, etc. Sulfur-containing compounds; It is also possible to use the electrolytic solution containing an additive. As the additive, a carbonate-based compound such as vinylene carbonate (VC) is preferable.

<セパレータ>
本発明の製造方法を用いて製造される非水系二次電池が任意に備えるセパレータとしては、特に限定されることなく、既知のセパレータを用いることができる。既知のセパレータとしては、例えば、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂を用いた微多孔膜、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂を用いた微多孔膜、ポリオレフィン系の繊維を用いた織布または不織布、絶縁性物質よりなる粒子の集合体等が挙げられる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、非水系二次電池内の電極合材層の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂を用いた微多孔膜が好ましい。
<Separator>
The separator optionally included in the non-aqueous secondary battery manufactured using the manufacturing method of the present invention is not particularly limited, and a known separator can be used. As the known separator, for example, a microporous membrane using a polyolefin-based (polyethylene, polypropylene, polybutene, polyvinyl chloride) resin, polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, polyimide, polyimide amide, polyaramid, Examples thereof include a microporous film made of a resin such as polycycloolefin, nylon, polytetrafluoroethylene, a woven or non-woven fabric made of a polyolefin fiber, and an aggregate of particles made of an insulating material. Among these, it is possible to reduce the thickness of the entire separator, thereby increasing the ratio of the electrode mixture layer in the non-aqueous secondary battery and increasing the capacity per volume, A microporous membrane using a polyolefin-based (polyethylene, polypropylene, polybutene, polyvinyl chloride) resin is preferable.

[接着層]
ここで、正極と負極との間にセパレータを設ける場合には、電極(正極、負極)とセパレータとを良好に一体化させるために、電極とセパレータとの間に既知の接着層を設けることができる。
しかし、非水系二次電池が備える負極合材層中の負極活物質は、電池の充放電にともなって膨張収縮する。そのため、例えば、負極合材層とセパレータとが接着層を介して強固に接着されている場合は、負極活物質の膨張収縮に起因する応力を十分に緩和することができず、負極合材層にひびや割れが生じる原因となり得る。従って、負極合材層とセパレータとの間には、接着層を設けないことが好ましい。また、負極合材層とセパレータとの間に接着層を設けるとしても、接着力が低い接着層を用いることが好ましい。
具体的には、未充電非水系二次電池を温度60℃で15時間放置した際の負極とセパレータとの接着力は、1.0N/m以下であることが好ましく、0.5N/m以下であることがより好ましく、0.3N/m以下であることが更に好ましく、0.15N/m以上とすることができる。接着力を1.0N/m以下とすれば、充放電時の負極活物質の膨張収縮に起因する負極合材層の剥がれ等が助長されることを抑制できるからである。
[Adhesive layer]
Here, when a separator is provided between the positive electrode and the negative electrode, a known adhesive layer may be provided between the electrode and the separator in order to integrate the electrode (positive electrode, negative electrode) and the separator well. it can.
However, the negative electrode active material in the negative electrode mixture layer included in the non-aqueous secondary battery expands and contracts as the battery is charged and discharged. Therefore, for example, when the negative electrode mixture layer and the separator are firmly bonded via the adhesive layer, the stress due to the expansion and contraction of the negative electrode active material cannot be sufficiently relaxed, and the negative electrode mixture layer It can cause cracks and cracks. Therefore, it is preferable not to provide an adhesive layer between the negative electrode mixture layer and the separator. Further, even if an adhesive layer is provided between the negative electrode mixture layer and the separator, it is preferable to use an adhesive layer having low adhesive strength.
Specifically, the adhesive force between the negative electrode and the separator when the uncharged non-aqueous secondary battery is left for 15 hours at a temperature of 60° C. is preferably 1.0 N/m or less, and 0.5 N/m or less. Is more preferable, 0.3 N/m or less is more preferable, and 0.15 N/m or more can be set. This is because if the adhesive force is 1.0 N/m or less, it is possible to prevent the peeling of the negative electrode mixture layer due to the expansion and contraction of the negative electrode active material during charge/discharge from being promoted.

<電池容器>
本発明の製造方法を用いて製造される非水系二次電池の電池容器としては、特に限定されることなく、任意の容器体を用いることができる。具体的には、電池容器としては、例えば、アルミニウムやスチールなどの軽量な金属を用いて形成した包材やケースを採用し得る。
<Battery container>
The battery container of the non-aqueous secondary battery manufactured using the manufacturing method of the present invention is not particularly limited, and any container body can be used. Specifically, for the battery container, for example, a packaging material or a case formed by using a lightweight metal such as aluminum or steel can be adopted.

<組立工程>
本発明の非水系二次電池の製造方法に含まれる組立工程では、正極と、負極と、電解液とを電池容器に収容して、未充電非水系二次電池を準備する。なお、正極および負極は、正極と負極との間にセパレータを配置した状態で電池容器内に収容してもよい。
<Assembly process>
In the assembly process included in the method for manufacturing a non-aqueous secondary battery of the present invention, a positive electrode, a negative electrode, and an electrolytic solution are housed in a battery container to prepare an uncharged non-aqueous secondary battery. The positive electrode and the negative electrode may be housed in the battery container with a separator disposed between the positive electrode and the negative electrode.

具体的には、組立工程では、例えば、典型的には常温域において、上記正極と、負極とを、セパレータを介して重ね合わせることにより積層体を得た後、得られた積層体を必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れる。その後、積層体を収容した電池容器に電解液を注入して電池容器を封口することにより、未充電非水系二次電池を組み立てる。ここで、本明細書において「常温域」とは、20℃±10℃を指すものとする。 Specifically, in the assembly step, for example, typically in a normal temperature range, the positive electrode and the negative electrode are laminated via a separator to obtain a laminate, and then the obtained laminate is required. Depending on the shape of the battery, wrap or fold it into the battery container. Then, an uncharged non-aqueous secondary battery is assembled by injecting an electrolytic solution into the battery container containing the laminated body and sealing the battery container. Here, in the present specification, the “normal temperature range” refers to 20° C.±10° C.

なお、非水系二次電池の内部の圧力上昇、過充放電などの発生を防止するために、未充電非水系二次電池には、必要に応じて、ヒューズ、PTC素子などの過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。また、組み立てる未充電非水系二次電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。 In addition, in order to prevent an increase in internal pressure of the non-aqueous secondary battery and the occurrence of overcharging/discharging, the uncharged non-aqueous secondary battery may include an overcurrent prevention element such as a fuse or a PTC element as necessary. , Expanded metal, lead plate, etc. may be provided. The shape of the uncharged non-aqueous secondary battery to be assembled may be any of coin type, button type, sheet type, cylindrical type, prismatic type, flat type and the like.

<加熱工程>
本発明の非水系二次電池の製造方法に含まれる加熱工程では、上述の組立工程により得られた未充電非水系二次電池を40℃以上の高温域まで昇温することにより、電極合材層(特に負極合材層)に電解液を良好に浸透させる。なお、加熱工程では、所定の温度まで昇温した未充電非水系二次電池を当該温度で所定時間保持することにより、電極合材層への電解液の浸透を更に促進させることができる。
<Heating process>
In the heating step included in the method for producing a non-aqueous secondary battery of the present invention, the uncharged non-aqueous secondary battery obtained by the above-described assembly step is heated to a high temperature range of 40° C. or higher to obtain an electrode mixture. The layer (particularly the negative electrode mixture layer) is allowed to penetrate the electrolytic solution well. In the heating step, the uncharged non-aqueous secondary battery, which has been heated to a predetermined temperature, is kept at the temperature for a predetermined time to further promote the permeation of the electrolytic solution into the electrode mixture layer.

ここで、未充電非水系二次電池の加熱温度は、40℃以上とすることが必要であり、50℃以上が好ましく、55℃以上がより好ましく、85℃以下が好ましく、70℃以下がより好ましい。40℃以上で未充電非水系二次電池を加熱すれば、電池内の電解液粘度が低下することにより、電解液が電極合材層内に入り込み易くなり、かつ電極合材層内に十分に行き渡り易くなる。そして、その結果、高密度の負極合材層を用いた場合であっても、後述する初期充電時にSEI皮膜の形成不良および金属析出の発生を抑制することができ、良好な寿命特性およびレート特性を有する非水系二次電池が得られる。また、85℃以下で未充電非水系二次電池を加熱すれば、加熱時の電解液の引火を予防して安全に非水系二次電池を製造することができるからである。 Here, the heating temperature of the uncharged non-aqueous secondary battery needs to be 40° C. or higher, preferably 50° C. or higher, more preferably 55° C. or higher, preferably 85° C. or lower, and 70° C. or lower. preferable. When the uncharged non-aqueous secondary battery is heated at 40° C. or higher, the viscosity of the electrolytic solution in the battery is lowered, so that the electrolytic solution easily enters the electrode mixture layer and is sufficiently contained in the electrode mixture layer. It becomes easy to spread. As a result, even when a high-density negative electrode mixture layer is used, it is possible to suppress the formation failure of the SEI film and the occurrence of metal deposition at the time of initial charging described later, and to obtain good life characteristics and rate characteristics. A non-aqueous secondary battery having is obtained. Further, if the uncharged non-aqueous secondary battery is heated at 85° C. or lower, ignition of the electrolytic solution at the time of heating can be prevented and the non-aqueous secondary battery can be manufactured safely.

さらに、加熱した未充電非水系二次電池の加熱保持(温度保持)時間は、1時間以上が好ましく、5時間以上がより好ましく、10時間以上が更に好ましく、50時間以下が好ましい。未充電非水系二次電池を1時間以上にわたって加熱すれば、電極合材層中に電解液を十分に浸透させることができるからである。また、未充電非水系二次電池の加熱を50時間以下にすれば、長時間の加熱による電極合材層の劣化を予防できると共に、非水系二次電池の生産効率が低下するのを抑制できるからである。 Furthermore, the heating and holding (temperature holding) time of the heated uncharged non-aqueous secondary battery is preferably 1 hour or longer, more preferably 5 hours or longer, further preferably 10 hours or longer, and preferably 50 hours or shorter. This is because if the uncharged non-aqueous secondary battery is heated for 1 hour or more, the electrolytic solution can be sufficiently permeated into the electrode mixture layer. Further, if the uncharged non-aqueous secondary battery is heated for 50 hours or less, deterioration of the electrode mixture layer due to long-time heating can be prevented, and reduction in production efficiency of the non-aqueous secondary battery can be suppressed. Because.

なお、本発明の非水系二次電池の製造方法では、所定の性状を有する非水溶性重合体および水溶性重合体を含む負極合材層を使用しているので、上述の加熱処理を施しても、負極合材層の剥がれや割れの発生を抑制することができる。 Incidentally, in the method for producing a non-aqueous secondary battery of the present invention, since the negative electrode mixture layer containing a non-water-soluble polymer and a water-soluble polymer having predetermined properties is used, the above heat treatment is performed. Also, the occurrence of peeling or cracking of the negative electrode mixture layer can be suppressed.

<初期充電工程>
本発明の非水系二次電池の製造方法に含まれる初期充電工程では、上述の加熱工程により加熱された未充電非水系二次電池を所定の充電深度まで充電することにより、負極合材層上に良好なSEI皮膜を効率的に形成する。ここで、負極合材層上に十分なSEI皮膜を効率よく形成する観点からは、充電深度は5%以上80%以下とすることが好ましい。
なお、本発明の非水系二次電池の製造方法では、初期充電工程の前に上述した加熱工程を実施しているので、SEI皮膜の形成不良および金属析出の発生を抑制することができ、良好な電池特性を有する非水系二次電池が得られる。
<Initial charging process>
In the initial charging step included in the method for producing a non-aqueous secondary battery of the present invention, by charging the uncharged non-aqueous secondary battery heated by the heating step to a predetermined charging depth, on the negative electrode mixture layer Efficiently forms a good SEI film. Here, from the viewpoint of efficiently forming a sufficient SEI film on the negative electrode mixture layer, the charging depth is preferably 5% or more and 80% or less.
In addition, in the method for manufacturing a non-aqueous secondary battery of the present invention, since the heating step described above is performed before the initial charging step, it is possible to suppress the formation failure of the SEI film and the occurrence of metal precipitation, which is good. A non-aqueous secondary battery having excellent battery characteristics can be obtained.

以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
実施例および比較例において、未充電非水系二次電池の加熱温度、非水溶性重合体および水溶性重合体の電解液膨潤度、非水溶性重合体のゲル量、負極活物質のタップ密度、負極とセパレータとの接着力、初期満充電後の負極合材層の状態、および非水系二次電池のレート特性は、それぞれ以下の方法を使用して測定、評価、または観察した。
Hereinafter, the present invention will be specifically described based on Examples, but the present invention is not limited to these Examples. In the following description, "%" and "parts" representing amounts are based on mass unless otherwise specified.
In Examples and Comparative Examples, heating temperature of uncharged non-aqueous secondary battery, electrolyte swelling degree of water-insoluble polymer and water-soluble polymer, gel amount of water-insoluble polymer, tap density of negative electrode active material, The adhesive strength between the negative electrode and the separator, the state of the negative electrode mixture layer after the initial full charge, and the rate characteristic of the non-aqueous secondary battery were measured, evaluated, or observed using the following methods.

<加熱温度>
加熱温度は、恒温器(エスペック社製、型番:PU−2KT)を用いて、任意の温度に設定した上、未充電非水系二次電池の周囲の雰囲気実温度として測定した。測定結果を表1に示す。
<Heating temperature>
The heating temperature was set to an arbitrary temperature using a thermostat (manufactured by ESPEC Corp., model number: PU-2KT), and then measured as an actual ambient temperature around the uncharged non-aqueous secondary battery. The measurement results are shown in Table 1.

<電解液膨潤度>
電解液膨潤度は、非水溶性重合体および水溶性重合体のそれぞれについて、非水溶性重合体または水溶性重合体を含む乾燥フィルム片の重量と、非水溶性重合体または水溶性重合体を含む乾燥フィルム片を電解液に浸漬させて得た膨潤フィルム片の重量とを用いて求めることができる。具体的には、非水溶性重合体または水溶性重合体が水中に分散または溶解された水分散液または水溶液を用意し、用意した水分散液または水溶液を、湿度50%、温度23℃以上25℃以下の環境下で乾燥させ、乾燥分散体を得た。その後、得られた乾燥分散体を、厚み3±0.3mmに成膜し、直径12mmに裁断することにより、乾燥フィルム片を用意した。
用意した乾燥フィルム片を精秤し、得られた乾燥フィルム片の重量をW0とした。
次に、精秤した乾燥フィルム片を、濃度1.0MのLiPF6電解液(溶媒:エチレンカーボネート/エチルメチルカーボネート=3/7(体積比)の混合溶媒であり、添加剤としてビニレンカーボネート2質量%(溶媒比)を含む)50gに、60℃にて72時間浸漬させ、電解液を乾燥フィルム片に浸透させた。そして、電解液の浸透により膨潤したフィルム片、即ち膨潤フィルム片を得た。
その後、電解液から引き揚げた膨潤フィルム片を軽く拭いた後に、精秤して得られた膨潤フィルム片の重量をW1とした。
そして、得られた精秤値を用いて下記式(I):
電解液膨潤度=(W1/W0) ・・・(I)
に従って、電解液膨潤度(倍)を算出した。測定結果を表1に示す。
<Electrolyte swelling degree>
The degree of swelling of the electrolytic solution is the weight of the water-insoluble polymer or the dry film piece containing the water-soluble polymer and the water-insoluble polymer or the water-soluble polymer for the water-insoluble polymer and the water-soluble polymer, respectively. It can be determined by using the weight of the swollen film piece obtained by immersing the containing dry film piece in the electrolytic solution. Specifically, an aqueous dispersion or aqueous solution in which a water-insoluble polymer or a water-soluble polymer is dispersed or dissolved in water is prepared, and the prepared aqueous dispersion or aqueous solution is used at a humidity of 50% and a temperature of 23°C or higher 25 It was dried in an environment of ℃ or below to obtain a dry dispersion. Then, the obtained dried dispersion was formed into a film having a thickness of 3±0.3 mm and cut into a diameter of 12 mm to prepare a dried film piece.
The prepared dry film piece was precisely weighed, and the weight of the obtained dry film piece was defined as W0.
Next, a precisely weighed dry film piece was used as a mixed solvent of LiPF 6 electrolyte solution (solvent: ethylene carbonate/ethyl methyl carbonate=3/7 (volume ratio)) having a concentration of 1.0 M, and 2 mass% of vinylene carbonate as an additive. % (Including solvent ratio) was immersed for 72 hours at 60° C. to allow the electrolytic solution to permeate the dried film piece. Then, a film piece swollen by permeation of the electrolytic solution, that is, a swollen film piece was obtained.
After that, the swelling film piece lifted up from the electrolytic solution was lightly wiped and then precisely weighed, and the weight of the swelling film piece was set to W1.
Then, using the obtained precise measured value, the following formula (I):
Electrolyte swelling degree=(W1/W0) (I)
According to the above, the degree of swelling (fold) of the electrolytic solution was calculated. The measurement results are shown in Table 1.

<ゲル量>
ゲル量は、非水溶性重合体の全固形分の重量に対する、非水溶性重合体の固形分のうちテトラヒドロフランに不溶な固形分の重量の割合(質量%)として求めることができる。具体的には、非水溶性重合体が水中に分散された水分散液を、湿度50%、温度23℃以上25℃以下の環境下で3日間乾燥させた後に、更に熱風オーブンを用いて、120℃環境下で1時間乾燥させることにより、乾燥分散体を得た。得られた乾燥分散体を、厚み3±0.3mmに成膜し、一辺が3mm以上5mm以下の略正方形状に裁断することにより、乾燥フィルム片を用意した。
用意した乾燥フィルム片を精秤し、得られた乾燥フィルム片の重量をV0とした。
次に、乾燥フィルム片を、100gのテトラヒドロフランに23℃以上25℃以下にて24時間浸漬させ、溶解させた。テトラヒドロフランから引き揚げた残留フィルム片を、105℃環境下で3時間真空乾燥した後に、乾燥させた残留フィルム片を精秤し、得られた残留フィルム片の重量をV1とした。
そして、得られた精秤値を用いて下記式(II):
ゲル量=(V1/V0)×100 ・・・(II)
に従って、ゲル量(質量%)を算出した。測定結果を表1に示す。
<Amount of gel>
The gel amount can be determined as a ratio (mass%) of the weight of the solid content of the water-insoluble polymer, which is insoluble in tetrahydrofuran, to the total weight of the solid content of the water-insoluble polymer. Specifically, an aqueous dispersion in which a water-insoluble polymer is dispersed in water is dried for 3 days in an environment of a humidity of 50% and a temperature of 23° C. or higher and 25° C. or lower, and then using a hot air oven, A dried dispersion was obtained by drying in an environment of 120° C. for 1 hour. The obtained dried dispersion was formed into a film having a thickness of 3±0.3 mm, and a dry film piece was prepared by cutting into a substantially square shape with one side of 3 mm or more and 5 mm or less.
The prepared dry film piece was precisely weighed, and the weight of the obtained dry film piece was defined as V0.
Next, the dried film piece was immersed and dissolved in 100 g of tetrahydrofuran at 23° C. or higher and 25° C. or lower for 24 hours. The residual film piece lifted up from tetrahydrofuran was vacuum dried in an environment of 105° C. for 3 hours, and the dried residual film piece was precisely weighed, and the weight of the obtained residual film piece was defined as V1.
Then, using the obtained precise measured value, the following formula (II):
Gel amount=(V1/V0)×100 (II)
The gel amount (mass %) was calculated in accordance with. The measurement results are shown in Table 1.

<タップ密度>
負極活物質のタップ密度は、パウダテスタ(登録商標)(ホソカワミクロン社製、PT−D)を用いて測定した。具体的には、まず、測定容器に充填した負極活物質の粉体を容器上面にてすり切った。次いで、測定容器に測定器付属のキャップを取り付け、取り付けたキャップの上縁まで負極活物質の粉体を追加充填し、高さ1.8cmから180回繰り返し落下させることにより、タッピングを行った。タッピング終了後にキャップを外し、容器上面にて負極活物質の粉体を再びすり切った。タッピング後にすり切った試料を秤量し、この状態の嵩密度を固め嵩密度、即ちタップ密度(g/cm3)として測定した。タップ密度が高いほど、負極活物質の密度が高く、高密度充放電に適した非水系二次電池が得られることを示す。測定結果を表1に示す。
<Tap density>
The tap density of the negative electrode active material was measured using Powder Tester (registered trademark) (PT-D manufactured by Hosokawa Micron Corp.). Specifically, first, the powder of the negative electrode active material filled in the measurement container was scraped off on the upper surface of the container. Then, a cap attached to the measuring instrument was attached to the measurement container, powder of the negative electrode active material was additionally filled up to the upper edge of the attached cap, and tapping was performed by repeatedly dropping from a height of 1.8 cm 180 times. After the tapping was completed, the cap was removed, and the powder of the negative electrode active material was scraped again on the upper surface of the container. The sample scraped off after tapping was weighed, and the bulk density in this state was solidified and measured as the bulk density, that is, the tap density (g/cm 3 ). It is shown that the higher the tap density, the higher the density of the negative electrode active material, and that a non-aqueous secondary battery suitable for high-density charge/discharge can be obtained. The measurement results are shown in Table 1.

<負極とセパレータとの接着力>
負極とセパレータとの接着力は、負極表面の引張り応力として測定した。具体的には、組立工程にて得られた未充電非水系二次電池に対し、表1に記載した各実施例および各比較例における加熱温度および加熱保持時間にて加熱処理を行った。その後、加熱処理が施された未充電非水系二次電池から、電解液に浸漬されていた負極およびセパレータを備える積層体を取り出し、長さ10mm×幅10mmの大きさに切り出し、試験片を得た。そして、得られた試験片の表面に付着した電解液を拭き取り、拭き取った試験片表面のうち負極表面側に粘着テープを貼り付けた。この際、粘着テープとしてはJIS Z1522に規定されるものを用いた。そして、試験片の一端を鉛直上方に引張り速度50mm/分にて引き剥がしたときの応力を接着力として測定した(なお、粘着テープは水平な試験台に固定した。)。
測定結果を表1に示す。なお、負極とセパレータとの間に接着層を設けない場合であっても、負極合材層界面において電解液の液膜による応力が働くため、通常、接着力は接着層の有無にかかわらず0.1N/m以上の測定値を示す。
<Adhesive force between negative electrode and separator>
The adhesive force between the negative electrode and the separator was measured as a tensile stress on the negative electrode surface. Specifically, the uncharged non-aqueous secondary battery obtained in the assembly process was subjected to heat treatment at the heating temperature and the heating holding time in each Example and each Comparative Example described in Table 1. Then, a laminate including the negative electrode and the separator that had been immersed in the electrolytic solution was taken out from the heat-treated uncharged non-aqueous secondary battery and cut into a size of length 10 mm×width 10 mm to obtain a test piece. It was Then, the electrolyte solution adhering to the surface of the obtained test piece was wiped off, and an adhesive tape was attached to the surface of the wiped test piece on the negative electrode surface side. At this time, the adhesive tape specified in JIS Z1522 was used. Then, the stress when peeling one end of the test piece vertically upward at a pulling speed of 50 mm/min was measured as an adhesive force (the adhesive tape was fixed to a horizontal test stand).
The measurement results are shown in Table 1. Even when the adhesive layer is not provided between the negative electrode and the separator, the stress due to the liquid film of the electrolytic solution acts at the negative electrode mixture layer interface, so that the adhesive force is usually 0 regardless of the presence or absence of the adhesive layer. A measured value of 1 N/m or more is shown.

<初期満充電後の負極合材層の状態>
各実施例および各比較例に記載した方法で製造した非水系二次電池5個をドライルームにて解体し、負極合材層の割れや剥がれについて目視観察した。ここで、比較例4においては、加熱終了後の非水系二次電池を用いた。評価基準は以下の通りとした。測定結果を表1に示す。
A:負極合材層の欠損(割れや剥がれ)が見られる電池の個数が1個以下
B:負極合材層の欠損(割れや剥がれ)が見られる電池の個数が2個
C:負極合材層の欠損(割れや剥がれ)が見られる電池の個数が3個
D:負極合材層の欠損(割れや剥がれ)が見られる電池の個数が4個以上
<State of negative electrode mixture layer after initial full charge>
Five non-aqueous secondary batteries manufactured by the methods described in each example and each comparative example were disassembled in a dry room, and the negative electrode mixture layer was visually observed for cracks and peeling. Here, in Comparative Example 4, a non-aqueous secondary battery after completion of heating was used. The evaluation criteria are as follows. The measurement results are shown in Table 1.
A: The number of batteries with a defect (cracking or peeling) in the negative electrode mixture layer was 1 or less. B: The number of batteries with a defect (cracking or peeling) in the negative electrode mixture layer was 2 C: Negative electrode mixture. The number of batteries with layer loss (cracking or peeling) is 3 D: The number of batteries with negative electrode mixture layer loss (cracking or peeling) is 4 or more

<非水系二次電池のレート特性>
各実施例および各比較例に記載した方法で製造した非水系二次電池の初期容量を確認後、非水系二次電池を、25℃環境下、0.2Cで4.2Vまで定電流定電圧法(カットオフ条件:0.02C)にて満充電した。その後、非水系二次電池を25℃環境下、0.2Cにて3.0Vまで定電流放電し、そのときの放電容量C1を測定した。そして、非水系二次電池を25℃環境下、4.2Vの定電流定電圧法(カットオフ条件:0.02C)によって再び満充電した後、25℃環境下、1Cにて3.0Vまで定電流放電し、その際の放電容量C2を測定した。非水系二次電池のレート特性C2/C1は、下記式(III):
2/C1=(C2/C1)×100 ・・・(III)
に従って、C1に対するC2の比(%)として算出した。評価基準は以下の通りとした。C2/C1値が大きいほど、製造された非水系二次電池のレート特性が優れていることを示す。測定結果を表1に示す。
A:C2/C1が85%以上
B:C2/C1が85%未満75%以上
C:C2/C1が75%未満65%以上
D:C2/C1が65%未満
<Rate characteristics of non-aqueous secondary battery>
After confirming the initial capacity of the non-aqueous secondary battery manufactured by the method described in each of the examples and each of the comparative examples, the non-aqueous secondary battery was subjected to a constant current constant voltage up to 4.2 V at 0.2 C under a 25° C. environment. Method (cut-off condition: 0.02C). After that, the non-aqueous secondary battery was discharged at a constant current of 0.2 C to 3.0 V under a 25° C. environment, and the discharge capacity C1 at that time was measured. Then, after fully recharging the non-aqueous secondary battery by the constant current constant voltage method of 4.2V (cutoff condition: 0.02C) under the environment of 25°C, under the environment of 25°C, up to 3.0V at 1C. A constant current discharge was performed and the discharge capacity C2 at that time was measured. The rate characteristic C 2 /C 1 of the non-aqueous secondary battery is expressed by the following formula (III):
C 2 / C 1 = (C2 / C1) × 100 ··· (III)
According to the above, the ratio (%) of C2 to C1 was calculated. The evaluation criteria are as follows. The larger the C 2 / C 1 value shows that the superior rate characteristics of a nonaqueous secondary battery produced. The measurement results are shown in Table 1.
A: C 2 / C 1 is 85% or more B: C 2 / C 1 is 75% or more than 85% C: C 2 / C 1 is 65% or more than 75% D: C 2 / C 1 is less than 65%

(実施例1)
<非水溶性重合体の調製>
芳香族ビニル単量体としてのスチレン63部、脂肪族共役ジエン単量体としての1,3−ブタジエン33部、酸性基含有単量体としてのイタコン酸4部、連鎖移動剤としてのt−ドデシルメルカプタン0.3部、および乳化剤としてのラウリル硫酸ナトリウム0.35部を容器Aに入れ、混合物を得た。得られた混合物を、容器Aから耐圧容器Bへ添加すると同時に、重合開始剤としての過硫酸カリウム1部を耐圧容器Bへ添加することにより、重合を開始した。なお、重合反応温度は75℃を維持した。
重合転化率が97%になった時点で冷却し、反応を停止して、非水溶性重合体を含む混合物を得た。得られた非水溶性重合体を含む混合物に、濃度5%の水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体を除去した。その後冷却し、非水溶性重合体を含む水分散液(固形分濃度:40%)を得た。
(Example 1)
<Preparation of water-insoluble polymer>
63 parts of styrene as an aromatic vinyl monomer, 33 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, 4 parts of itaconic acid as an acidic group-containing monomer, t-dodecyl as a chain transfer agent. 0.3 part of mercaptan and 0.35 part of sodium lauryl sulfate as an emulsifier were put in a container A to obtain a mixture. Polymerization was started by adding 1 part of potassium persulfate as a polymerization initiator to the pressure resistant container B at the same time as adding the obtained mixture from the container A to the pressure resistant container B. The polymerization reaction temperature was maintained at 75°C.
When the polymerization conversion rate reached 97%, the mixture was cooled and the reaction was stopped to obtain a mixture containing a water-insoluble polymer. A pH of 8 was adjusted by adding a 5% aqueous sodium hydroxide solution to the obtained mixture containing the water-insoluble polymer. Then, the unreacted monomer was removed by heating under reduced pressure. Then, it was cooled to obtain an aqueous dispersion containing a water-insoluble polymer (solid content concentration: 40%).

<負極活物質の調製>
平均粒子径100μmの鱗片状黒鉛粒子を、ハイブリダイゼーションシステム(奈良機械製作所製、型番:NHS−3、回転数(ローター周速度):65m/秒、回転滞留時間:15分間)を用いて球形化処理することにより、体積平均粒子径(50%径)15μm、およびタップ密度1.02g/cm3の球状黒鉛粒子を得た。
その後、得られた球状黒鉛粒子100部に対し、低結晶性の被膜形成炭素材としてのタールピッチを30部添加し、ヘンシェルミキサーを用いて、200℃環境下で30分混合した。得られた混合物を、窒素雰囲気下1000℃でプレ焼成し、更に窒素雰囲気下1500℃で焼成し、粉砕することにより、球状黒鉛粒子のコアがタールピッチで非晶質コートされた、炭素系の負極活物質を得た。得られた負極活物質の体積平均粒子径(50%径)は15μm、タップ密度は1.04g/cm3であった。
<Preparation of negative electrode active material>
Spheroidal graphite particles with an average particle diameter of 100 μm are made spherical by using a hybridization system (manufactured by Nara Machinery Co., Ltd., model number: NHS-3, rotational speed (rotor peripheral speed): 65 m/sec, rotational residence time: 15 minutes). By the treatment, spherical graphite particles having a volume average particle diameter (50% diameter) of 15 μm and a tap density of 1.02 g/cm 3 were obtained.
Then, 30 parts of tar pitch as a low crystalline film-forming carbon material was added to 100 parts of the obtained spherical graphite particles and mixed for 30 minutes in a 200° C. environment using a Henschel mixer. The obtained mixture was pre-fired at 1000° C. under a nitrogen atmosphere, further fired at 1500° C. under a nitrogen atmosphere, and pulverized to obtain a carbon-based carbonaceous material in which the core of spherical graphite particles was amorphous-coated with tar pitch. A negative electrode active material was obtained. The obtained negative electrode active material had a volume average particle size (50% size) of 15 μm and a tap density of 1.04 g/cm 3 .

<負極用スラリー組成物の調製>
ディスパー付きのプラネタリーミキサーに、上述の通り得られた炭素系の負極活物質を100部、および水溶性重合体としてのアクリルアミド系重合体(アクリル酸単位/アクリルアミド単位=50%/50%)を固形分換算で1部加えて混合物を得た。得られた混合物にイオン交換水を添加して固形分濃度60%に調整した後、25℃環境下で60分間混合した。次に、イオン交換水を用いて固形分濃度を48%に調整した後、更に25℃環境下で15分間混合し、負極活物質と水溶性重合体との混合液を得た。
得られた負極活物質と水溶性重合体との混合液に、上述の方法で調製した非水溶性重合体を含む水分散液(非水溶性重合体の固形分換算で2部)を加え、イオン交換水を用いて最終固形分濃度が50%となるように調整し、更に10分間混合した後、減圧下で脱泡処理することにより、負極用スラリー組成物を得た。
<Preparation of negative electrode slurry composition>
In a planetary mixer equipped with a disper, 100 parts of the carbon-based negative electrode active material obtained as described above and an acrylamide-based polymer (acrylic acid unit/acrylamide unit=50%/50%) as a water-soluble polymer were added. A mixture was obtained by adding 1 part in terms of solid content. Ion-exchanged water was added to the obtained mixture to adjust the solid content concentration to 60%, and then the mixture was mixed in an environment of 25° C. for 60 minutes. Next, the solid content concentration was adjusted to 48% with ion-exchanged water, and the mixture was further mixed for 15 minutes in an environment of 25° C. to obtain a mixed liquid of the negative electrode active material and the water-soluble polymer.
To the obtained mixed liquid of the negative electrode active material and the water-soluble polymer, an aqueous dispersion containing the water-insoluble polymer prepared by the above method (2 parts in terms of solid content of the water-insoluble polymer) was added, A negative electrode slurry composition was obtained by adjusting the final solid content concentration to 50% with ion-exchanged water, mixing for 10 minutes, and then performing defoaming treatment under reduced pressure.

<非水系二次電池用負極の作製>
上述の通り得られた負極用スラリー組成物を、コンマコーター(サンクメタル社製)を用いて、集電体としての銅箔(厚さ15μm)の片面上に、塗付量が9mg/cm2以上10mg/cm2以下となるように塗布した。負極用スラリー組成物が塗布された銅箔を、60℃のオーブン内を2分間かけて搬送(速度:0.5m/分)することにより乾燥させ、更に120℃のオーブン内で2分間加熱処理して、負極原反を得た。
得られた負極原反を、ロールプレス機を用いて、11トン以上14トン以下の荷重でプレスすることにより、密度が1.75g/cm3の負極合材層を集電体上に備える非水系二次電池用負極を得た。
<Preparation of negative electrode for non-aqueous secondary battery>
The slurry composition for a negative electrode obtained as described above was coated on one surface of a copper foil (thickness: 15 μm) as a current collector with a comma coater (manufactured by Sank Metal Co., Ltd.) at a coating amount of 9 mg/cm 2. It was applied so as to be 10 mg/cm 2 or less. The copper foil coated with the negative electrode slurry composition is dried by conveying it in an oven at 60° C. for 2 minutes (speed: 0.5 m/min), and further heat-treated in the oven at 120° C. for 2 minutes. Then, a negative electrode raw material was obtained.
A negative electrode mixture layer having a density of 1.75 g/cm 3 is provided on the current collector by pressing the obtained negative electrode raw material with a load of 11 tons to 14 tons using a roll press machine. A negative electrode for an aqueous secondary battery was obtained.

<非水系二次電池用正極の作製>
プラネタリーミキサーに、正極活物質としてのLiCoO2を100部、導電材としてのアセチレンブラック(電気化学工業社製、品番:HS−100)を2部、結着材としてのポリフッ化ビニリデン(クレハ化学社製、品番:KF−1100)を2部、および全固形分濃度が67%となる量の2−メチルピリロドンを加えて混合し、正極用スラリー組成物を調製した。
得られた正極用スラリー組成物を、前記コンマコーターで、集電体としてのアルミ箔(厚さ20μm)の片面上に塗布した。正極用スラリー組成物が塗布されたアルミ箔を、60℃のオーブン内を2分間かけて搬送(速度:0.5m/分)することにより乾燥させ、更に120℃のオーブン内で2分間加熱処理をした。同様の塗布・乾燥作業を、集電体のもう一方の表面上にも施すことによって、正極原反を得た。
得られた正極原反を、前記ロールプレス機を用いて、正極合材層の密度が3.40mg/cm3以上3.50g/cm3以下となるようにプレスすることにより、非水系二次電池用正極を得た。
<Preparation of positive electrode for non-aqueous secondary battery>
In a planetary mixer, 100 parts of LiCoO 2 as a positive electrode active material, 2 parts of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., product number: HS-100) as a conductive material, polyvinylidene fluoride as a binder (Kreha Chemical (Manufactured by K.K., product number: KF-1100), and 2-methylpyrrilodon in an amount such that the total solid content concentration was 67% were added and mixed to prepare a positive electrode slurry composition.
The obtained positive electrode slurry composition was applied to one side of an aluminum foil (thickness 20 μm) as a current collector by the comma coater. The aluminum foil coated with the positive electrode slurry composition is dried by conveying it in an oven at 60° C. for 2 minutes (speed: 0.5 m/min), and further heat-treated in the oven at 120° C. for 2 minutes. Did. The same coating and drying operations were performed on the other surface of the current collector to obtain a positive electrode raw material.
The obtained positive electrode raw material is pressed using the roll press so that the positive electrode mixture layer has a density of 3.40 mg/cm 3 or more and 3.50 g/cm 3 or less, whereby a non-aqueous secondary material is obtained. A positive electrode for a battery was obtained.

<非水系二次電池の製造>
単層のポリプロピレン製セパレータ(長さ500mm×幅65mm×厚さ25μm、気孔率55%、乾式法により製造)の片面に、接着層用組成物(日本ゼオン社製、品名:BM−2500M)をグラビアコート法(線数300)により塗布し、50℃環境下で1分間乾燥させることにより、1層当たりの厚みが1μmの接着層をセパレータ上に形成した。次に、接着層が形成されたセパレータを長さ50mm×幅40mmに切り出し、上述の通り作製した正極を長さ45mm×幅35mmに切り出し、上述の通り作製した負極を長さ47mm×幅37mmに切り出した。そして、切り出した正極、セパレータ、および負極を、以下のように重ねて、非水系二次電池を製造した。
具体的には、両面に正極合材層を備える正極の両側にセパレータ配置して正極をセパレータで挟んだ。なお、正極合材層にはセパレータの接着層が塗布されている側の面が接触するようにした。そして、セパレータの、正極と接していない側の面(接着層が設けられていない側の面)上に、それぞれ負極を重ね、積層体を得た。そして、得られた積層体を、電池容器としてのアルミ包材外装に入れ、積層電池を得た。
その後、積層電池内に、電解液としての濃度1.0MのLiPF6溶液(溶媒:エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(体積比)の混合溶媒であり、添加剤としてビニレンカーボネート(2質量%)を含有している)を充填した。更に、電解液が充填された積層電池を、温度150℃でヒートシールし、アルミ包材外装の開口を密封閉口した後に、25℃環境下で5秒間、圧力10MPaのプレスを行って正極とセパレータとを加圧接着して未充電非水系二次電池を得た(組立工程)。そして、得られた未充電非水系二次電池を用いて負極とセパレータとの接着力を評価した。
また、得られた未充電非水系二次電池を、温度60℃にて15時間加熱した後に(加熱工程)、25℃環境下、0.2Cで4.2Vまで定電流定電圧法(カットオフ条件:0.02C)により充電深度20%まで充電し(初期充電工程)、非水系二次電池としてのリチウムイオン二次電池を製造した。そして、製造したリチウムイオン二次電池を用いて初期満充電後の負極合材層の状態および非水系二次電池のレート特性を評価した。
<Manufacture of non-aqueous secondary battery>
On one surface of a single-layer polypropylene separator (length 500 mm×width 65 mm×thickness 25 μm, porosity 55%, produced by a dry method), an adhesive layer composition (manufactured by Zeon Corporation, product name: BM-2500M) was used. The adhesive layer having a thickness of 1 μm per layer was formed on the separator by applying by the gravure coating method (300 lines) and drying for 1 minute in an environment of 50° C. Next, the separator having the adhesive layer formed thereon was cut into a length of 50 mm and a width of 40 mm, the positive electrode prepared as described above was cut into a length of 45 mm and a width of 35 mm, and the negative electrode prepared as described above was formed into a length of 47 mm and a width of 37 mm. I cut it out. Then, the cut out positive electrode, separator, and negative electrode were stacked as follows to manufacture a non-aqueous secondary battery.
Specifically, separators were arranged on both sides of a positive electrode having positive electrode mixture layers on both sides, and the positive electrodes were sandwiched between the separators. The surface of the positive electrode mixture layer on the side on which the adhesive layer of the separator was applied was in contact. Then, the negative electrode was laminated on the surface of the separator not in contact with the positive electrode (the surface on the side where the adhesive layer was not provided) to obtain a laminate. Then, the obtained laminated body was put in an aluminum packaging material exterior as a battery container to obtain a laminated battery.
Then, in the laminated battery, a LiPF 6 solution (solvent: ethylene carbonate (EC)/ethyl methyl carbonate (EMC)=3/7 (volume ratio)) as an electrolytic solution, which was a mixed solvent, was used as an additive. As a result, vinylene carbonate (containing 2% by mass) was charged. Furthermore, the laminated battery filled with the electrolytic solution was heat-sealed at a temperature of 150° C., the opening of the aluminum packaging material exterior was hermetically closed, and then pressed at a pressure of 10 MPa for 5 seconds in an environment of 25° C. to positive electrode and separator. And were pressure-bonded to obtain an uncharged non-aqueous secondary battery (assembly process). Then, the adhesive force between the negative electrode and the separator was evaluated using the obtained uncharged non-aqueous secondary battery.
Moreover, after heating the obtained uncharged non-aqueous secondary battery for 15 hours at a temperature of 60° C. (heating step), in a 25° C. environment, a constant current constant voltage method (cutoff at 0.2 C to 4.2 V) was performed. The battery was charged to a depth of charge of 20% under the condition: 0.02 C (initial charging step) to manufacture a lithium ion secondary battery as a non-aqueous secondary battery. Then, using the manufactured lithium ion secondary battery, the state of the negative electrode mixture layer after the initial full charge and the rate characteristic of the non-aqueous secondary battery were evaluated.

(実施例2)
非水系二次電池の製造時に、加熱工程における加熱温度を50℃に変更した以外は実施例1と同様にして、非水溶性重合体、負極活物質、スラリー組成物、負極、正極および非水系二次電池を製造した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Example 2)
At the time of manufacturing the non-aqueous secondary battery, a water-insoluble polymer, a negative electrode active material, a slurry composition, a negative electrode, a positive electrode and a non-aqueous system were prepared in the same manner as in Example 1 except that the heating temperature in the heating step was changed to 50°C. A secondary battery was manufactured. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例3)
非水溶性重合体の調製時に、スチレンの量を29.5部とし、1.3−ブタジエンの量を47.5部とし、イタコン酸の量を3部とし、t−ドデシルメルカプタンの量を1.3部とし、更にその他の単量体としてのアクリロニトリル20部を混合物に追加した。また、スラリー組成物の調製時に、水溶性重合体の種類をカルボキシメチルセルロースのナトリウム塩(ダイセルファインケム社製、品名:CMCダイセル2200)に変更した。更に、非水系二次電池の製造時に、組立工程において、負極合材層にセパレータの接着層が接触するようにし、セパレータの、負極と接していない側の面(接着層が設けられていない側の面)上に正極を重ね、更に、ヒートシールにてアルミ包材外装の開口を密封閉口した後に、25℃環境下で5秒間、圧力10MPaのプレスを行って負極とセパレータとを加圧接着して未充電非水系二次電池を得た。上記以外は実施例1と同様にして、非水溶性重合体、負極活物質、スラリー組成物、負極、正極および非水系二次電池を製造した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Example 3)
When preparing the water-insoluble polymer, the amount of styrene was 29.5 parts, the amount of 1.3-butadiene was 47.5 parts, the amount of itaconic acid was 3 parts, and the amount of t-dodecyl mercaptan was 1 part. 0.3 parts, and 20 parts of acrylonitrile as another monomer was further added to the mixture. Further, at the time of preparing the slurry composition, the type of the water-soluble polymer was changed to sodium salt of carboxymethyl cellulose (manufactured by Daicel Finechem, product name: CMC Daicel 2200). Furthermore, in the assembly process during the production of the non-aqueous secondary battery, the negative electrode mixture layer is brought into contact with the adhesive layer of the separator, and the surface of the separator not in contact with the negative electrode (the side not provided with the adhesive layer). Surface), and after further sealing and closing the opening of the aluminum wrapping material exterior by heat sealing, press at a pressure of 10 MPa for 5 seconds in an environment of 25° C. to bond the negative electrode and the separator under pressure. Then, an uncharged non-aqueous secondary battery was obtained. A water-insoluble polymer, a negative electrode active material, a slurry composition, a negative electrode, a positive electrode and a non-aqueous secondary battery were manufactured in the same manner as in Example 1 except the above. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例4)
負極活物質の調製時に、ハイブリダイゼーションシステムの条件を、回転数(ローター周速度):40m/秒、回転滞留時間:10分間に調整することにより、非晶質コートされた負極活物質のタップ密度を0.86g/cm3に変更し、更に、スラリー組成物の調製時に、水溶性重合体の種類をカルボキシメチルセルロースのナトリウム塩(ダイセルファインケム社製、品名:CMCダイセル2200)に変更した以外は実施例1と同様にして、非水溶性重合体、負極活物質、スラリー組成物、負極、正極および非水系二次電池を製造した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Example 4)
When the negative electrode active material was prepared, the tap density of the amorphous coated negative electrode active material was adjusted by adjusting the conditions of the hybridization system such that the rotation speed (rotor peripheral speed): 40 m/sec and the rotation residence time: 10 minutes. Was changed to 0.86 g/cm 3, and the kind of the water-soluble polymer was changed to sodium salt of carboxymethyl cellulose (manufactured by Daicel Finechem, product name: CMC Daicel 2200) at the time of preparing the slurry composition. In the same manner as in Example 1, a water-insoluble polymer, a negative electrode active material, a slurry composition, a negative electrode, a positive electrode and a non-aqueous secondary battery were manufactured. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例5)
スラリー組成物の調製時に、水溶性重合体の種類をカルボキシメチルセルロースのナトリウム塩(ダイセルファインケム社製、品名:CMCダイセル2200)に変更し、非水溶性重合体の配合量を1質量部に変更した以外は実施例1と同様にして、非水溶性重合体、負極活物質、スラリー組成物、負極、正極および非水系二次電池を製造した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Example 5)
At the time of preparing the slurry composition, the type of the water-soluble polymer was changed to sodium salt of carboxymethyl cellulose (manufactured by Daicel FineChem, product name: CMC Daicel 2200), and the amount of the water-insoluble polymer was changed to 1 part by mass. A water-insoluble polymer, a negative electrode active material, a slurry composition, a negative electrode, a positive electrode and a non-aqueous secondary battery were manufactured in the same manner as in Example 1 except for the above. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例6)
スラリー組成物の調製時に、水溶性重合体の種類をカルボキシメチルセルロースのナトリウム塩(ダイセルファインケム社製、品名:CMCダイセル2200)に変更した。更に、非水系二次電池の製造時に、組立工程において、負極合材層にセパレータの接着層が接触するようにし、セパレータの、負極と接していない側の面(接着層が設けられていない側の面)上に正極を重ね、更に、ヒートシールにてアルミ包材外装の開口を密封閉口した後に、50℃環境下で5秒間、圧力10MPaのプレスを行って負極とセパレータとを加圧接着して未充電非水系二次電池を得た。上記以外は実施例1と同様にして、非水溶性重合体、負極活物質、スラリー組成物、負極、正極および非水系二次電池を製造した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Example 6)
At the time of preparing the slurry composition, the type of the water-soluble polymer was changed to sodium salt of carboxymethyl cellulose (manufactured by Daicel FineChem, product name: CMC Daicel 2200). Furthermore, in the assembly process during the production of the non-aqueous secondary battery, the negative electrode mixture layer is brought into contact with the adhesive layer of the separator, and the surface of the separator not in contact with the negative electrode (the side not provided with the adhesive layer). Surface), and after further sealing and closing the opening of the aluminum wrapping material exterior by heat sealing, press at 10 MPa pressure for 5 seconds in a 50° C. environment to bond the negative electrode and the separator under pressure. Then, an uncharged non-aqueous secondary battery was obtained. A water-insoluble polymer, a negative electrode active material, a slurry composition, a negative electrode, a positive electrode and a non-aqueous secondary battery were manufactured in the same manner as in Example 1 except the above. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例1)
非水溶性重合体の調製時に、t−ドデシルメルカプタンの量を3.0部に変更した以外は、実施例3と同様にして、非水溶性重合体、負極活物質、スラリー組成物、負極、正極および非水系二次電池を製造した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative Example 1)
At the time of preparing the water-insoluble polymer, the water-insoluble polymer, the negative electrode active material, the slurry composition, the negative electrode were prepared in the same manner as in Example 3 except that the amount of t-dodecyl mercaptan was changed to 3.0 parts. A positive electrode and a non-aqueous secondary battery were manufactured. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例2)
スラリー組成物の調製時に、水溶性重合体の種類をカルボキシメチルセルロースのナトリウム塩(ダイセルファインケム社製、品名:CMCダイセル2200)に変更し、更に、非水系二次電池の製造時に、加熱工程における加熱温度を25℃に変更した以外は、実施例1と同様にして、非水溶性重合体、負極活物質、スラリー組成物、負極、正極および非水系二次電池を製造した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative example 2)
At the time of preparing the slurry composition, the type of the water-soluble polymer was changed to sodium salt of carboxymethylcellulose (manufactured by Daicel FineChem, product name: CMC Daicel 2200), and further, heating in a heating step was performed at the time of manufacturing the non-aqueous secondary battery. A water-insoluble polymer, a negative electrode active material, a slurry composition, a negative electrode, a positive electrode and a non-aqueous secondary battery were manufactured in the same manner as in Example 1 except that the temperature was changed to 25°C. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例3)
スラリー組成物の調製時に、水溶性重合体の種類をアクリル酸エチル単位(EA)/アクリル酸ブチル単位(BA)/メタクリルアミド単位(MAA)=40/30/30(質量比)の共重合体に変更した。更に、非水系二次電池の製造時に、組立工程において、負極合材層にセパレータの接着層が接触するようにし、セパレータの、負極と接していない側の面(接着層が設けられていない側の面)上に正極を重ね、更に、ヒートシールにてアルミ包材外装の開口を密封閉口した後に、30℃環境下で5秒間、圧力10MPaのプレスを行って負極とセパレータとを加圧接着して未充電非水系二次電池を得た。上記以外は実施例1と同様にして、非水溶性重合体、負極活物質、スラリー組成物、負極、正極および非水系二次電池を製造した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative example 3)
When preparing the slurry composition, the type of the water-soluble polymer is a copolymer of ethyl acrylate unit (EA)/butyl acrylate unit (BA)/methacrylamide unit (MAA)=40/30/30 (mass ratio) Changed to. Furthermore, in the assembly process during the production of the non-aqueous secondary battery, the negative electrode mixture layer is brought into contact with the adhesive layer of the separator, and the surface of the separator not in contact with the negative electrode (the side not provided with the adhesive layer). Surface), and after further sealing and closing the opening of the aluminum wrapping material exterior by heat sealing, press at 10 MPa pressure for 5 seconds in an environment of 30° C. to bond the negative electrode and the separator under pressure. Then, an uncharged non-aqueous secondary battery was obtained. A water-insoluble polymer, a negative electrode active material, a slurry composition, a negative electrode, a positive electrode and a non-aqueous secondary battery were manufactured in the same manner as in Example 1 except the above. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例4)
スラリー組成物の調製時に、水溶性重合体の種類をカルボキシメチルセルロースのナトリウム塩(ダイセルファインケム社製、品名:CMCダイセル2200)に変更した。更に、非水系二次電池の製造時に、組立工程で得られた未充電非水系二次電池を、加熱工程を施すことなく、0.1Cで充電深度20%まで充電し、その後60℃環境下で15時間加熱し、更に0.2Cで4.2Vまで定電流定電圧充電法(カットオフ条件:0.02C)によって充電して非水系二次電池を製造した。上記以外は実施例1と同様にして、非水溶性重合体、負極活物質、スラリー組成物、負極、正極および非水系二次電池を製造した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative Example 4)
At the time of preparing the slurry composition, the type of the water-soluble polymer was changed to sodium salt of carboxymethyl cellulose (manufactured by Daicel FineChem, product name: CMC Daicel 2200). Further, at the time of manufacturing the non-aqueous secondary battery, the uncharged non-aqueous secondary battery obtained in the assembly process was charged to 0.1C at a charge depth of 20% without performing a heating process, and then under an environment of 60°C. It was heated for 15 hours at 0.2 C and further charged by a constant current constant voltage charging method (cut-off condition: 0.02 C) at 0.2 C to 4.2 V to manufacture a non-aqueous secondary battery. A water-insoluble polymer, a negative electrode active material, a slurry composition, a negative electrode, a positive electrode and a non-aqueous secondary battery were manufactured in the same manner as in Example 1 except the above. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

Figure 0006724311
TDM:t−ドデシルメルカプタン
THF:テトラヒドロフラン
AA/Aam:アクリル酸/アクリルアミド共重合体
CMC:カルボキシメチルセルロースのナトリウム塩
EA/BA/MAA:アクリル酸エチル/アクリル酸ブチル/メタクリルアミド共重合体
Figure 0006724311
TDM: t-dodecyl mercaptan THF: tetrahydrofuran AA/Aam: acrylic acid/acrylamide copolymer CMC: sodium salt of carboxymethyl cellulose EA/BA/MAA: ethyl acrylate/butyl acrylate/methacrylamide copolymer

表1より、初期充電工程前に加熱工程を施した実施例1〜6では、初期充電後に加熱処理を施した比較例4と比較し、初期充放電直後のレート特性が優れた非水系二次電池が得られることが分かる。
しかし、初期充電工程前に加熱工程を施したとしても、加熱温度が25℃である比較例2では、加熱温度が40℃以上である実施例1〜6と比較し、初期充放電直後のレート特性が著しく悪化してしまうことが分かる。
また、電解液膨潤度が4.0倍超、かつ、ゲル量が80質量%未満である非水溶性重合体を用いた比較例1では、電解液膨潤度が1.0倍超4.0倍以下、かつ、ゲル量が80質量%以上95質量%以下である非水溶性重合体を用いた実施例1〜6と比較し、初期充電後の負極合材層の欠損が著しく進み、また初期充放電直後のレート特性も著しく悪化していることが分かる。
さらに、電解液膨潤度が2.0倍超の水溶性重合体を用いた比較例3では、電解液膨潤度が1.0倍超2.0倍以下の水溶性重合体を用いた実施例1〜6と比較し、初期充電後の負極合材層の欠損が著しく進み、また初期充放電直後のレート特性も著しく悪化していることが分かる。
なお、密度1.70g/cm3以上の負極合材層を用いている実施例1〜6において、初期充電後の負極合材層の欠損も程度も低く、かつ良好な初期充放電直後のレートを維持していることから、本発明の製造方法は、高密度電極を用いた場合であっても、高い電池性能を維持した非水系二次電池の製造に適していることが分かる。
From Table 1, in Examples 1 to 6 in which the heating step was performed before the initial charging step, as compared with Comparative Example 4 in which the heating treatment was performed after the initial charging, the non-aqueous secondary having excellent rate characteristics immediately after the initial charging and discharging was performed. It turns out that a battery is obtained.
However, even if the heating process is performed before the initial charging process, in Comparative Example 2 in which the heating temperature is 25° C., the rate immediately after the initial charge/discharge is compared with Examples 1 to 6 in which the heating temperature is 40° C. or higher. It can be seen that the characteristics are significantly deteriorated.
Further, in Comparative Example 1 using a water-insoluble polymer having an electrolytic solution swelling degree of more than 4.0 times and a gel amount of less than 80% by mass, the electrolytic solution swelling degree of more than 1.0 times 4.0. Double or less, and compared with Examples 1 to 6 using a water-insoluble polymer having a gel amount of 80% by mass or more and 95% by mass or less, the loss of the negative electrode mixture layer after initial charging is significantly advanced, and It can be seen that the rate characteristic immediately after the initial charge/discharge is remarkably deteriorated.
Further, in Comparative Example 3 using a water-soluble polymer having an electrolyte swelling degree of more than 2.0 times, an example using a water-soluble polymer having an electrolyte solution swelling degree of more than 1.0 times and 2.0 times or less. It can be seen that, as compared with Nos. 1 to 6, the loss of the negative electrode mixture layer after the initial charge is significantly advanced, and the rate characteristics immediately after the initial charge and discharge are significantly deteriorated.
In Examples 1 to 6 in which the negative electrode mixture layer having a density of 1.70 g/cm 3 or more was used, the negative electrode mixture layer after initial charging had a low degree of defects and a good rate immediately after initial charge/discharge. Therefore, it is understood that the manufacturing method of the present invention is suitable for manufacturing a non-aqueous secondary battery that maintains high battery performance even when a high-density electrode is used.

本発明によれば、電池性能の低下を抑制しつつ、負極合材層上にSEI皮膜を形成した非水系二次電池を効率的に製造する方法を提供することができる。 According to the present invention, it is possible to provide a method for efficiently producing a non-aqueous secondary battery in which an SEI film is formed on a negative electrode mixture layer while suppressing deterioration of battery performance.

Claims (2)

正極と、負極と、電解液とを電池容器に収容して未充電非水系二次電池を組み立てる組立工程と、
前記未充電非水系二次電池を40℃以上85℃以下で1時間以上50時間以下加熱する加熱工程と、
前記加熱工程後に前記未充電非水系二次電池を充電する初期充電工程と、
を含む非水系二次電池の製造方法であって、
前記負極は、負極活物質と、非水溶性重合体と、水溶性重合体とを含有する負極合材層を備え、
前記非水溶性重合体は、電解液膨潤度が1.0倍超4.0倍以下、かつ、ゲル量が80質量%以上95質量%以下であり、
前記水溶性重合体は、電解液膨潤度が1.0倍超2.0倍以下であり、
前記電解液膨潤度は、前記非水溶性重合体の水分散液または前記水溶性重合体の水溶液を、湿度50%、温度23℃以上25℃以下の環境下で乾燥させることにより作製した厚み3±0.3mm、直径12mmの乾燥フィルム片の重量W0と、前記乾燥フィルム片を測定用電解液に60℃にて72時間浸漬させて得られた膨潤フィルム片の重量W1とを用いて、式:電解液膨潤度=(W1/W0)により算出されるものであり、
前記測定用電解液は、濃度1.0MのLiPF 6 を含み、
前記測定用電解液の溶媒は、エチレンカーボネート/エチルメチルカーボネート=3/7(体積比)の混合溶媒であり、添加剤としてビニレンカーボネート2質量%(溶媒比)を含み、
前記負極合材層の密度が1.60g/cm3以上であり、
前記負極合材層は、前記負極活物質100質量部当たり、前記非水溶性重合体を0.5質量部以上4質量部以下の割合で含有し、前記水溶性重合体を0.5質量部以上3質量部以下の割合で含有し、
前記未充電非水系二次電池は、前記負極と前記正極との間にセパレータを更に備え、
前記未充電非水系二次電池を温度60℃で15時間放置した際の前記負極と前記セパレータとの接着力が1.0N/m以下であり、
前記非水溶性重合体は、共役ジエン系重合体、又はアクリル系重合体であり、
前記水溶性重合体は、セルロース系重合体;酸化スターチやリン酸スターチ;カゼイン;変性デンプン;ポリエチレンオキサイド、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ポリスルホン酸、ポリカルボン酸;(メタ)アクリル酸共重合体、アクリルアミド系重合体、およびこれらの塩類から選ばれる少なくとも1種類であり、
前記電解液は、非水系溶媒に支持電解質としてリチウム塩を溶解したものである、非水系二次電池の製造方法。
An assembling process of assembling the positive electrode, the negative electrode, and the electrolytic solution in a battery container to assemble an uncharged non-aqueous secondary battery,
A heating step of heating the uncharged non-aqueous secondary battery at 40° C. or higher and 85° C. or lower for 1 hour or more and 50 hours or less;
An initial charging step of charging the uncharged non-aqueous secondary battery after the heating step,
A method of manufacturing a non-aqueous secondary battery comprising:
The negative electrode includes a negative electrode active material, a water-insoluble polymer, a negative electrode mixture layer containing a water-soluble polymer,
The water-insoluble polymer has an electrolyte swelling degree of more than 1.0 times and 4.0 times or less, and a gel amount of 80% by mass or more and 95% by mass or less,
The water-soluble polymer has an electrolyte swelling degree of more than 1.0 times and 2.0 times or less,
The degree of swelling of the electrolytic solution is a thickness 3 produced by drying an aqueous dispersion of the water-insoluble polymer or an aqueous solution of the water-soluble polymer in an environment of a humidity of 50% and a temperature of 23° C. or higher and 25° C. or lower. Using a weight W0 of a dry film piece having a diameter of ±0.3 mm and a diameter of 12 mm and a weight W1 of a swollen film piece obtained by immersing the dry film piece in a measuring electrolyte solution at 60° C. for 72 hours, : Electrolyte swelling degree=(W1/W0)
The measurement electrolytic solution contains LiPF 6 having a concentration of 1.0 M ,
The solvent of the measurement electrolytic solution is a mixed solvent of ethylene carbonate/ethyl methyl carbonate=3/7 (volume ratio), and contains 2 mass% of vinylene carbonate (solvent ratio) as an additive,
The density of the negative electrode mixture layer is 1.60 g/cm 3 or more,
The negative electrode mixture layer contains the water-insoluble polymer in a ratio of 0.5 parts by mass or more and 4 parts by mass or less, and 0.5 parts by mass of the water-soluble polymer, per 100 parts by mass of the negative electrode active material. Contains at a ratio of 3 parts by mass or less and
The uncharged non-aqueous secondary battery further comprises a separator between the negative electrode and the positive electrode,
The adhesive strength between the negative electrode and the separator when the uncharged non-aqueous secondary battery is left for 15 hours at a temperature of 60° C. is 1.0 N/m or less,
The water-insoluble polymer is a conjugated diene polymer, or an acrylic polymer,
The water-soluble polymer is a cellulose-based polymer; oxidized starch or starch phosphate; casein; modified starch; polyethylene oxide, polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, polysulfonic acid, polycarboxylic acid; (meth)acrylic acid copolymer At least one selected from coalesce, acrylamide polymer, and salts thereof,
The electrolytic solution is a method for manufacturing a non-aqueous secondary battery, in which a lithium salt is dissolved as a supporting electrolyte in a non-aqueous solvent.
前記負極活物質のタップ密度が0.8g/cm3以上1.2g/cm3以下である、請求項1に記載の非水系二次電池の製造方法。 The method for producing a non-aqueous secondary battery according to claim 1, wherein the negative electrode active material has a tap density of 0.8 g/cm 3 or more and 1.2 g/cm 3 or less.
JP2015171310A 2015-08-31 2015-08-31 Method for manufacturing non-aqueous secondary battery Active JP6724311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015171310A JP6724311B2 (en) 2015-08-31 2015-08-31 Method for manufacturing non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015171310A JP6724311B2 (en) 2015-08-31 2015-08-31 Method for manufacturing non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2017050112A JP2017050112A (en) 2017-03-09
JP6724311B2 true JP6724311B2 (en) 2020-07-15

Family

ID=58279523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015171310A Active JP6724311B2 (en) 2015-08-31 2015-08-31 Method for manufacturing non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP6724311B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018201427A1 (en) 2017-05-05 2018-11-08 Robert Bosch Gmbh Lithium ion battery and prelithiation method of anode
JP7111100B2 (en) 2017-07-28 2022-08-02 日本ゼオン株式会社 ELECTROCHEMICAL DEVICE ELECTRODE, ELECTROCHEMICAL DEVICE, AND METHOD FOR MANUFACTURING ELECTROCHEMICAL DEVICE ELECTRODE
JP7022325B2 (en) * 2018-03-15 2022-02-18 トヨタ自動車株式会社 Manufacturing method of non-aqueous electrolyte secondary battery
KR20230025785A (en) * 2020-06-16 2023-02-23 주식회사 쿠라레 Binder suitable for electrical storage device electrode, binder solution for electrical storage device electrode, electrical storage device electrode slurry, electrical storage device electrode and electrical storage device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736584B2 (en) * 2010-09-07 2015-06-17 西武ポリマ化成株式会社 Joint material
JP4937397B2 (en) * 2010-10-25 2012-05-23 富士フイルム株式会社 Medical image diagnosis support apparatus and method, and program
US9450223B2 (en) * 2012-02-06 2016-09-20 Samsung Sdi Co., Ltd. Lithium secondary battery
WO2015033827A1 (en) * 2013-09-03 2015-03-12 日本ゼオン株式会社 Slurry composition for negative electrode for lithium ion secondary battery, manufacturing method for negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102301032B1 (en) * 2013-10-28 2021-09-09 제온 코포레이션 Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery and production method

Also Published As

Publication number Publication date
JP2017050112A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
US10044026B2 (en) Paste composition for lithium ion secondary battery negative electrode-use, composite particles for lithium ion secondary battery negative electrode-use, slurry composition for lithium ion secondary battery negative electrode-use, negative electrode for lithium ion secondary battery-use, and lithium ion secondary battery
JP5761197B2 (en) Secondary battery negative electrode binder composition, secondary battery negative electrode slurry composition, secondary battery negative electrode, secondary battery, and method for producing secondary battery negative electrode binder composition
JP6094840B2 (en) Lithium ion secondary battery
US11807698B2 (en) Binder for non-aqueous secondary battery porous membrane-use, composition for non-aqueous secondary battery porous membrane-use, porous membrane for non-aqueous secondary battery-use, and non-aqueous secondary battery
JP6135399B2 (en) Porous film composition for lithium ion secondary battery, separator with protective layer for lithium ion secondary battery, electrode with protective layer for lithium ion secondary battery, and lithium ion secondary battery
WO2017094252A1 (en) Composition for non-aqueous secondary cell adhesive layer, adhesive layer for non-aqueous secondary cell, laminate body, and non-aqueous secondary cell
JP6273956B2 (en) Binder for secondary battery porous membrane, slurry composition for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery
US11462740B2 (en) Conductive material paste for electrochemical device, slurry composition for electrochemical device positive electrode and method of producing same, positive electrode for electrochemical device, and electrochemical device
TWI695535B (en) Composition for adhesive and adhesive film, composition for electric storage device, slurry for electric storage device electrode, electrode for electric storage device, slurry for protective film and electric storage device
JP7056642B2 (en) Conductive material dispersion for electrochemical element electrodes, slurry composition for electrochemical element electrodes and their manufacturing methods, electrodes for electrochemical elements, and electrochemical elements
KR20160102404A (en) Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery cathode, method for producing secondary battery cathode, and secondary battery
JP6988799B2 (en) Composition for non-aqueous secondary battery functional layer, non-aqueous secondary battery functional layer and non-aqueous secondary battery
JP6645101B2 (en) Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20180111829A (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP6724311B2 (en) Method for manufacturing non-aqueous secondary battery
KR102407600B1 (en) Binder composition for a non-aqueous secondary battery electrode, a slurry composition for a non-aqueous secondary battery electrode, an electrode for a non-aqueous secondary battery, and a non-aqueous secondary battery
US10784502B2 (en) Slurry composition for secondary battery negative electrode, negative electrode for secondary battery, and secondary battery
JP6874690B2 (en) Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrodes for non-aqueous secondary batteries, and non-aqueous secondary batteries
JP2017033871A (en) Negative electrode and lithium ion secondary battery, and manufacturing method of the same
US20170054152A1 (en) Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery
KR102369487B1 (en) Binder composition for a non-aqueous secondary battery electrode, a slurry composition for a non-aqueous secondary battery electrode, an electrode for a non-aqueous secondary battery, and a non-aqueous secondary battery
CN108140838B (en) Binder composition for nonaqueous secondary battery electrode, slurry composition, electrode, and nonaqueous secondary battery
JP6759566B2 (en) Non-aqueous secondary battery
JP2015041570A (en) Porous film composition for lithium ion secondary batteries, porous film for lithium ion secondary batteries, lithium ion secondary battery, and method for manufacturing porous film for lithium ion secondary batteries
JP7371497B2 (en) Adhesive composition for power storage device, functional layer for power storage device, power storage device, and manufacturing method of power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200608

R150 Certificate of patent or registration of utility model

Ref document number: 6724311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250