JP2017050112A - Method for manufacturing nonaqueous secondary battery - Google Patents

Method for manufacturing nonaqueous secondary battery Download PDF

Info

Publication number
JP2017050112A
JP2017050112A JP2015171310A JP2015171310A JP2017050112A JP 2017050112 A JP2017050112 A JP 2017050112A JP 2015171310 A JP2015171310 A JP 2015171310A JP 2015171310 A JP2015171310 A JP 2015171310A JP 2017050112 A JP2017050112 A JP 2017050112A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
water
aqueous secondary
mixture layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015171310A
Other languages
Japanese (ja)
Other versions
JP6724311B2 (en
Inventor
徳一 山本
Tokuichi Yamamoto
徳一 山本
デルマス ジュリアン
Delmas Julien
デルマス ジュリアン
佳代子 滝澤
Kayoko Takizawa
佳代子 滝澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2015171310A priority Critical patent/JP6724311B2/en
Publication of JP2017050112A publication Critical patent/JP2017050112A/en
Application granted granted Critical
Publication of JP6724311B2 publication Critical patent/JP6724311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently manufacturing a nonaqueous secondary battery with an SEI coating formed on a negative electrode mixture layer while suppressing the worsening of a battery performance.SOLUTION: A method for manufacturing a nonaqueous secondary battery comprises: an assembly step in which a positive electrode, a negative electrode and an electrolytic solution are put in a battery container to assemble an uncharged nonaqueous secondary battery; a heating step in which the uncharged nonaqueous secondary battery is heated at 40°C or higher; and an initial charging step in which the uncharged nonaqueous secondary battery is charged after the heating step. The negative electrode has a negative electrode mixture layer including a negative electrode active material, a water-insoluble polymer and a water-soluble polymer. The water-insoluble polymer is over 1.0 to 4.0 or less times in swelling degree in the electrolytic solution, and 80 to 95 mass% in gel amount. The water-soluble polymer is over 1.0 to 2.0 or less times in swelling degree in the electrolytic solution.SELECTED DRAWING: None

Description

本発明は、非水系二次電池の製造方法に関するものである。   The present invention relates to a method for producing a non-aqueous secondary battery.

リチウムイオン二次電池などの非水系二次電池(非水電解液系二次電池)は、小型で軽量、かつエネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、非水系二次電池の更なる高性能化を目的として、様々な検討がなされている。   Non-aqueous secondary batteries (non-aqueous electrolyte secondary batteries) such as lithium ion secondary batteries are small and lightweight, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications. ing. Therefore, in recent years, various studies have been made for the purpose of further improving the performance of non-aqueous secondary batteries.

具体的には、例えば、電極活物質(正極活物質または負極活物質)と結着材とを含む電極合材層(正極合材層または負極合材層)を集電体上に形成してなる電極(正極または負極)を用いた非水系二次電池について、負極合材層の表面上にSEI(Solid Electrolyte Interphase)皮膜を形成することにより、非水系二次電池の寿命特性等を向上させることが試みられている。   Specifically, for example, an electrode mixture layer (positive electrode mixture layer or negative electrode mixture layer) including an electrode active material (positive electrode active material or negative electrode active material) and a binder is formed on the current collector. For a non-aqueous secondary battery using an electrode (positive electrode or negative electrode), the life characteristics of the non-aqueous secondary battery are improved by forming a SEI (Solid Electrolyte Interphase) film on the surface of the negative electrode mixture layer. It has been tried.

そして、従来、SEI皮膜は、非水系二次電池を製造する際に、組み立てた二次電池を所定の充電深度(SOC;State of Charge)まで充電(初期充電処理)することにより、電解液と負極合材層との界面において電解液を還元・分解して負極合材層上に形成している(例えば、特許文献1,2参照)。なお、従来の非水系二次電池の製造方法では、初期充電処理の後に非水系二次電池を加温した状態で所定時間保存(エージング処理)することにより、形成したSEI皮膜を良質な皮膜へと改質している。   And conventionally, when manufacturing a non-aqueous secondary battery, the SEI film is charged with an electrolyte solution by charging the assembled secondary battery to a predetermined charging depth (SOC; State of Charge) (initial charging process). The electrolyte is reduced and decomposed at the interface with the negative electrode mixture layer to form on the negative electrode mixture layer (see, for example, Patent Documents 1 and 2). In the conventional non-aqueous secondary battery manufacturing method, after the initial charging process, the non-aqueous secondary battery is warmed and stored for a predetermined time (aging process), thereby forming the formed SEI film into a high-quality film. It has been modified.

特開2014−238961号公報Japanese Patent Application Laid-Open No. 2014-238961 特開2015−95334号公報JP-A-2015-95334

ところで、近年では、非水系二次電池のエネルギー密度を更に高めてより高性能な非水系二次電池を提供する観点から、電極合材層の密度を高めることが検討されている。   By the way, in recent years, it has been studied to increase the density of the electrode mixture layer from the viewpoint of further increasing the energy density of the non-aqueous secondary battery and providing a higher-performance non-aqueous secondary battery.

しかし、電極合材層を高密度化した場合には、非水系二次電池の組み立て時に電極合材層中に電解液が浸透し難くなる。そのため、電極合材層、特に負極合材層を高密度化した非水系二次電池において上記従来の初期充電処理およびエージング処理を実施してSEI皮膜を形成しようとすると、負極合材層中への電解液の浸透不足に起因してSEI皮膜の形成不良や負極上への金属析出が起こり、電池性能が低下することがあった。一方で、組み立てた非水系二次電池を長時間静置することで高密度化した電極合材層に電解液を十分に浸透させてから初期充電処理を実施しようとすると、SEI皮膜の形成不良および金属析出の発生は抑制することができるものの、非水系二次電池の製造効率が低下する。   However, when the electrode mixture layer is densified, the electrolyte solution hardly penetrates into the electrode mixture layer when the non-aqueous secondary battery is assembled. Therefore, when a non-aqueous secondary battery in which the electrode mixture layer, particularly the negative electrode mixture layer is densified, is subjected to the above-described conventional initial charging treatment and aging treatment to form an SEI film, the negative electrode mixture layer is formed. Due to the insufficient penetration of the electrolyte solution, poor formation of the SEI film and metal deposition on the negative electrode occurred, and the battery performance sometimes deteriorated. On the other hand, when the initial charging process is performed after the electrolyte solution is sufficiently infiltrated into the electrode mixture layer that has been densified by leaving the assembled non-aqueous secondary battery for a long time, the formation of the SEI film is poor. Although the occurrence of metal deposition can be suppressed, the production efficiency of the non-aqueous secondary battery is reduced.

このような問題に対し、例えば、初期充電処理の前に加熱などの手段を用いて電極合材層中への電解液の浸透を促進することにより、SEI皮膜の形成不良および金属析出の発生を抑制しつつ、非水系二次電池を効率的に製造することも考えられる。   For such problems, for example, by promoting the penetration of the electrolytic solution into the electrode mixture layer by using means such as heating before the initial charging treatment, the formation of SEI film and the occurrence of metal deposition are prevented. It is also conceivable to efficiently manufacture a non-aqueous secondary battery while suppressing it.

しかし、初期充電処理の前、即ちSEI皮膜の形成前に非水系二次電池を加熱した場合には、負極合材層の剥がれや割れが生じ、電池性能が低下することがあった。   However, when the non-aqueous secondary battery is heated before the initial charging process, that is, before the formation of the SEI film, the negative electrode mixture layer may be peeled off or cracked, resulting in a decrease in battery performance.

そこで、本発明は、電極合材層(特に、負極合材層)を高密度化した場合であっても、電池性能の低下を抑制しつつ、負極合材層上にSEI皮膜を形成した非水系二次電池を効率的に製造することを可能にする技術を提供することを目的とする。   Accordingly, the present invention provides a non-deposited SEI film formed on the negative electrode mixture layer while suppressing deterioration in battery performance even when the electrode mixture layer (particularly the negative electrode mixture layer) is densified. An object of the present invention is to provide a technology that makes it possible to efficiently manufacture an aqueous secondary battery.

本発明者らは、上記目的を達成するために鋭意検討を行った。そして本発明者らは、負極合材層の結着材として所定の性状を有する非水溶性重合体と水溶性重合体とを併用すれば、非水系二次電池を初期充電する前に加熱した場合であっても負極合材層の剥がれや割れが発生するのを抑制することができることを見出し、本発明を完成させた。   The present inventors have intensively studied to achieve the above object. And if the present inventors used together the water-insoluble polymer and water-soluble polymer which have a predetermined | prescribed property as a binder of a negative electrode compound-material layer, it heated before carrying out initial charge of a non-aqueous secondary battery. Even in this case, it was found that peeling and cracking of the negative electrode composite material layer could be suppressed, and the present invention was completed.

即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池の製造方法は、正極と、負極と、電解液とを電池容器に収容して未充電非水系二次電池を組み立てる組立工程と、未充電非水系二次電池を40℃以上に加熱する加熱工程と、加熱工程後に未充電非水系二次電池を充電する初期充電工程とを含み、負極は、負極活物質と、非水溶性重合体と、水溶性重合体とを含有する負極合材層を備え、非水溶性重合体は、電解液膨潤度が1.0倍超4.0倍以下、かつ、ゲル量が80質量%以上95質量%以下であり、水溶性重合体は、電解液膨潤度が1.0倍超2.0倍以下であることを特徴とする。
このように、未充電非水系二次電池を初期充電する前に40℃以上に加熱すれば、未充電非水系二次電池を長時間に亘って静置しなくても、電解液を負極合材層に良好に浸透させることができる。従って、後に初期充電した際に、SEI皮膜を負極表面に良好に形成することができる。また、所定の電解液膨潤度およびゲル量を有する非水溶性重合体と、所定の電解液膨潤度を有する水溶性重合体とを負極合材層に含有させれば、未充電非水系二次電池を初期充電する前に加熱した場合であっても、負極合材層の剥がれや割れが発生するのを抑制することができる。従って、電池性能に優れる非水系二次電池を製造することができる。
なお、本発明において、未充電非水系二次電池を加熱する「温度」は、電池組立体周囲の雰囲気温度として測定することができれば特に限定されないが、例えば、温度調節が可能で、かつ実温度測定が可能な恒温器を用いて測定することができる。
また、本発明において、「電解液膨潤度」および「ゲル量」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
更に、本発明において、「水溶性重合体」とは、温度25℃において重合体0.5gを100gの水に溶解した際に、不溶分が1.0質量%未満となる重合体を指す。また、本発明において、「非水溶性重合体」とは、25℃において重合体0.5gを100gの水に溶解した際に、不溶分が90質量%以上となる重合体を指す。
That is, the present invention aims to advantageously solve the above-mentioned problems, and the non-aqueous secondary battery manufacturing method of the present invention contains a positive electrode, a negative electrode, and an electrolytic solution in a battery container. An assembling process for assembling the uncharged non-aqueous secondary battery, a heating process for heating the uncharged non-aqueous secondary battery to 40 ° C. or higher, and an initial charging process for charging the uncharged non-aqueous secondary battery after the heating process. The negative electrode includes a negative electrode mixture layer containing a negative electrode active material, a water-insoluble polymer, and a water-soluble polymer. The water-insoluble polymer has an electrolyte swelling degree of more than 1.0 times 4 0.0 times or less, the gel amount is 80% by mass or more and 95% by mass or less, and the water-soluble polymer has an electrolyte solution swelling degree of more than 1.0 times and 2.0 times or less.
In this way, if the uncharged non-aqueous secondary battery is heated to 40 ° C. or more before initial charging, the electrolyte solution can be mixed with the negative electrode without leaving the uncharged non-aqueous secondary battery for a long time. It can penetrate well into the material layer. Therefore, when the initial charging is performed later, the SEI film can be favorably formed on the negative electrode surface. Further, if the negative electrode mixture layer contains a water-insoluble polymer having a predetermined degree of electrolyte swelling and a gel amount and a water-soluble polymer having a predetermined degree of electrolyte swelling, an uncharged non-aqueous secondary layer Even when the battery is heated before initial charging, it is possible to suppress the peeling and cracking of the negative electrode mixture layer. Therefore, a non-aqueous secondary battery having excellent battery performance can be manufactured.
In the present invention, the “temperature” for heating the non-charged non-aqueous secondary battery is not particularly limited as long as it can be measured as the ambient temperature around the battery assembly. For example, the temperature can be adjusted and the actual temperature can be adjusted. It can be measured using a thermostat capable of measurement.
In the present invention, the “electrolyte swelling degree” and the “gel amount” can be measured using the measuring methods described in the examples of the present specification.
Further, in the present invention, the “water-soluble polymer” refers to a polymer having an insoluble content of less than 1.0% by mass when 0.5 g of the polymer is dissolved in 100 g of water at a temperature of 25 ° C. In the present invention, the “water-insoluble polymer” refers to a polymer having an insoluble content of 90% by mass or more when 0.5 g of the polymer is dissolved in 100 g of water at 25 ° C.

ここで、本発明の非水系二次電池の製造方法は、負極活物質は、タップ密度が0.8g/cm3以上1.2g/cm3以下であることが好ましい。タップ密度が上記範囲内の負極活物質を使用すれば、密度および強度が高く、かつ、電解液が浸透し易い負極合材層が得られる。
なお、本発明において、負極活物質の「タップ密度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
Here, in the method for producing a non-aqueous secondary battery of the present invention, the negative electrode active material preferably has a tap density of 0.8 g / cm 3 or more and 1.2 g / cm 3 or less. If a negative electrode active material having a tap density within the above range is used, a negative electrode mixture layer having a high density and strength and allowing easy penetration of the electrolytic solution can be obtained.
In the present invention, the “tap density” of the negative electrode active material can be measured using the measurement method described in the examples of the present specification.

また、本発明の非水系二次電池の製造方法は、負極合材層の密度が1.60g/cm3以上であることが好ましい。本発明の製造方法を使用すれば、負極合材層の密度が高い場合であっても、電池性能の低下を抑制しつつ、負極合材層上にSEI皮膜を形成した非水系二次電池を効率的に製造することができる。
なお、本発明において、負極合材層の「密度」は、単位面積当たりの負極合材層の質量と厚みとを用いて算出することができる。
In the method for producing a non-aqueous secondary battery according to the present invention, the density of the negative electrode mixture layer is preferably 1.60 g / cm 3 or more. If the manufacturing method of the present invention is used, a non-aqueous secondary battery in which a SEI film is formed on the negative electrode mixture layer while suppressing a decrease in battery performance even when the density of the negative electrode mixture layer is high. It can be manufactured efficiently.
In the present invention, the “density” of the negative electrode mixture layer can be calculated using the mass and thickness of the negative electrode mixture layer per unit area.

更に、本発明の非水系二次電池の製造方法は、負極合材層が、負極活物質100質量部当たり、0.5質量部以上4質量部以下の割合の非水溶性重合体と、0.5質量部以上3質量部以下の割合の水溶性重合体とを含有することが好ましい。
非水溶性重合体および水溶性重合体の配合量を上記範囲とすることにより、負極合材層の強度を高めつつ内部抵抗の上昇を抑制して、電池性能に優れる非水系二次電池を製造することができる。
Furthermore, in the method for producing a non-aqueous secondary battery of the present invention, the negative electrode mixture layer has a water-insoluble polymer in a ratio of 0.5 parts by mass or more and 4 parts by mass or less per 100 parts by mass of the negative electrode active material; It is preferable to contain a water-soluble polymer in a proportion of 5 parts by mass or more and 3 parts by mass or less.
By making the blending amount of the water-insoluble polymer and the water-soluble polymer in the above range, the increase in the internal resistance is suppressed while increasing the strength of the negative electrode mixture layer, and a non-aqueous secondary battery with excellent battery performance is manufactured. can do.

また、本発明の非水系二次電池の製造方法は、未充電非水系二次電池が、負極と正極との間にセパレータを更に備え、未充電非水系二次電池を温度60℃で15時間放置した際の負極とセパレータとの接着力が1.0N/m以下であることが好ましい。
このように、負極とセパレータとの間の接着力を低くすることにより、充放電に伴う負極活物質の膨張収縮に起因して負極合材層が剥がれることを抑制し、電池性能に優れる非水系二次電池を製造することができる。
なお、負極とセパレータとの間の「接着力」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
In the non-aqueous secondary battery manufacturing method of the present invention, the uncharged non-aqueous secondary battery further includes a separator between the negative electrode and the positive electrode, and the uncharged non-aqueous secondary battery is heated at 60 ° C. for 15 hours. It is preferable that the adhesive force between the negative electrode and the separator when left to stand is 1.0 N / m or less.
Thus, by reducing the adhesive force between the negative electrode and the separator, the negative electrode mixture layer is prevented from peeling off due to the expansion and contraction of the negative electrode active material accompanying charge / discharge, and the non-aqueous system is excellent in battery performance. A secondary battery can be manufactured.
The “adhesive strength” between the negative electrode and the separator can be measured using the measuring method described in the examples of the present specification.

本発明によれば、電池性能の低下を抑制しつつ、負極合材層上にSEI皮膜を形成した非水系二次電池を効率的に製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the nonaqueous secondary battery which formed the SEI membrane | film | coat on the negative mix layer can be manufactured efficiently, suppressing the fall of battery performance.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(非水系二次電池の製造方法)
本発明の製造方法では、正極および負極を含む電池部材と、電解液とを電池容器に収容してなる非水系二次電池を製造する。なお、電池容器に収容される電池部材には、正極および負極以外に、正極と負極とを隔離して正極と負極との間の短絡を防ぐセパレータ等の既知の電池部材が含まれていてもよい。
また、本発明の製造方法は、電池部材と電解液とを電池容器に収容して未充電非水系二次電池を組み立てる組立工程と、未充電非水系二次電池を所定の温度以上に加熱する加熱工程と、加熱工程後に未充電非水系二次電池を充電する初期充電工程とを含む。更に、本発明の製造方法では、負極として、負極活物質と、所定の性状を有する非水溶性重合体と、所定の性状を有する水溶性重合体とを含有する負極合材層を備える負極を使用する。
そして、本発明の非水系二次電池の製造方法によれば、未充電非水系二次電池を初期充電する前に加熱工程を施すので、初期充電の前に負極合材層中への電解液の浸透を促進して、SEI皮膜の形成不良や負極上への金属析出を抑制しつつ、負極合材層上にSEI皮膜を形成した非水系二次電池を効率的に製造することができる。また、本発明の非水系二次電池の製造方法によれば、所定の性状を有する非水溶性重合体および水溶性重合体を使用しているので、初期充電の前に加熱工程を実施した場合であっても、負極合材層の剥がれや割れが発生するのを抑制することができる。従って、本発明の非水系二次電池の製造方法によれば、良好なSEI皮膜が形成された負極合材層を有し、寿命特性等の電池特性に優れている非水系二次電池を効率的に製造することができる。
(Method for producing non-aqueous secondary battery)
In the production method of the present invention, a non-aqueous secondary battery is produced in which a battery member including a positive electrode and a negative electrode and an electrolytic solution are accommodated in a battery container. In addition to the positive electrode and the negative electrode, the battery member accommodated in the battery container may include a known battery member such as a separator that separates the positive electrode and the negative electrode and prevents a short circuit between the positive electrode and the negative electrode. Good.
The manufacturing method of the present invention also includes an assembling process for assembling an uncharged non-aqueous secondary battery by housing a battery member and an electrolyte in a battery container, and heating the uncharged non-aqueous secondary battery to a predetermined temperature or higher. A heating step and an initial charging step of charging the uncharged non-aqueous secondary battery after the heating step. Furthermore, in the production method of the present invention, as the negative electrode, a negative electrode comprising a negative electrode mixture layer containing a negative electrode active material, a water-insoluble polymer having a predetermined property, and a water-soluble polymer having a predetermined property. use.
And according to the manufacturing method of the non-aqueous secondary battery of the present invention, since the heating step is performed before the initial charge of the uncharged non-aqueous secondary battery, the electrolyte solution into the negative electrode mixture layer before the initial charge The non-aqueous secondary battery in which the SEI film is formed on the negative electrode mixture layer can be efficiently manufactured while promoting the penetration of SEI and suppressing the formation failure of the SEI film and metal deposition on the negative electrode. In addition, according to the method for manufacturing a non-aqueous secondary battery of the present invention, since a water-insoluble polymer having a predetermined property and a water-soluble polymer are used, a heating step is performed before initial charging. Even so, it is possible to suppress the peeling and cracking of the negative electrode mixture layer. Therefore, according to the method for producing a non-aqueous secondary battery of the present invention, a non-aqueous secondary battery having a negative electrode composite layer on which a good SEI film is formed and having excellent battery characteristics such as life characteristics is efficiently produced. Can be manufactured automatically.

<負極>
本発明の製造方法を用いて製造される非水系二次電池の負極としては、所定の負極合材層を備えるものであれば特に限定されることなく、例えば、所定の負極合材層を集電体上に形成してなる負極を用いることができる。
<Negative electrode>
The negative electrode of the non-aqueous secondary battery manufactured using the manufacturing method of the present invention is not particularly limited as long as it includes a predetermined negative electrode mixture layer. For example, a predetermined negative electrode mixture layer is collected. A negative electrode formed on an electric body can be used.

[集電体]
ここで、集電体としては、既知の集電体を用いることができる。そして、集電体の材料としては、電気導電性、電気化学的な耐久性、および耐熱性を有するため金属が好ましく、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金等を用いることができる。
[Current collector]
Here, a known current collector can be used as the current collector. And as a material of an electrical power collector, since it has electrical conductivity, electrochemical durability, and heat resistance, a metal is preferable, for example, iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, Platinum or the like can be used.

[負極合材層]
本発明の製造方法に用いられる負極の負極合材層は、負極活物質、非水溶性重合体、および水溶性重合体を含有する。
ここで、負極合材層の密度は、1.60g/cm3以上であることが好ましく、1.65g/cm3以上であることがより好ましく、1.70g/cm3以上であることが更に好ましく、2.0g/cm3以下であることが好ましい。負極合材層の密度を1.60g/cm3以上にすれば、非水系二次電池のエネルギー密度を十分に高めることができる。なお、通常、負極合材層の密度を高めると電解液が負極合材層に浸透し難くなる。しかし、本発明の製造方法によれば、初期充電工程の前に加熱工程を実施するので、負極合材層の密度を1.60g/cm3以上にした場合であっても、短時間で負極合材層中へ電解液を良好に浸透させ、電解液の浸透不足に起因したSEI皮膜の形成不良および金属析出の発生を抑制することができる。
[Negative electrode mixture layer]
The negative electrode mixture layer of the negative electrode used in the production method of the present invention contains a negative electrode active material, a water-insoluble polymer, and a water-soluble polymer.
Here, the density of the negative electrode material layer is preferably 1.60 g / cm 3 or more, more preferably 1.65 g / cm 3 or more, still be at 1.70 g / cm 3 or more Preferably, it is 2.0 g / cm 3 or less. When the density of the negative electrode mixture layer is 1.60 g / cm 3 or more, the energy density of the non-aqueous secondary battery can be sufficiently increased. In general, when the density of the negative electrode mixture layer is increased, the electrolyte does not easily penetrate into the negative electrode mixture layer. However, according to the manufacturing method of the present invention, since the heating step is performed before the initial charging step, the negative electrode mixture layer can be formed in a short time even when the density of the negative electrode mixture layer is 1.60 g / cm 3 or more. The electrolyte solution can be satisfactorily permeated into the composite material layer, and the formation failure of the SEI film and the occurrence of metal deposition due to insufficient permeation of the electrolyte solution can be suppressed.

[[非水溶性重合体]]
負極合材層に含まれる非水溶性重合体は、負極合材層に含まれる成分が負極合材層から脱離しないように保持するとともに、集電体上に形成された負極合材層が集電体と良好に結着するよう保持し得る成分である。
[[Water-insoluble polymer]]
The water-insoluble polymer contained in the negative electrode mixture layer holds the components contained in the negative electrode mixture layer so as not to be detached from the negative electrode mixture layer, and the negative electrode mixture layer formed on the current collector has It is a component that can be held to bind well with the current collector.

−非水溶性重合体の性状−
そして、負極合材層に含まれる非水溶性重合体は、電解液膨潤度が、1.0倍超4.0倍以下であることが必要であり、非水溶性重合体の電解液膨潤度は、1.1倍以上であることが好ましく、1.3倍以上であることがより好ましく、3.0倍以下であることが好ましく、2.0倍以下であることがより好ましい。非水溶性重合体の電解液膨潤度が1.0倍超であれば、負極合材層のイオン伝導性を十分に確保し、二次電池の内部抵抗を十分に下げることができる。また、非水溶性重合体の電解液膨潤度が4.0倍以下であれば、負極合材層の強度を十分に高め、初期充電工程の前に加熱工程を実施した場合であっても、負極合材層の剥がれや割れが発生するのを抑制することができる。
なお、電解液膨潤度は、例えば、非水溶性重合体の組成を調整することにより制御することができる。
-Properties of water-insoluble polymers-
The water-insoluble polymer contained in the negative electrode mixture layer needs to have an electrolyte swelling degree of more than 1.0 times and not more than 4.0 times. Is preferably 1.1 times or more, more preferably 1.3 times or more, preferably 3.0 times or less, and more preferably 2.0 times or less. If the degree of swelling of the electrolyte solution of the water-insoluble polymer is more than 1.0 times, the ion conductivity of the negative electrode mixture layer can be sufficiently secured, and the internal resistance of the secondary battery can be sufficiently lowered. Further, if the degree of electrolyte swelling of the water-insoluble polymer is 4.0 times or less, the strength of the negative electrode mixture layer is sufficiently increased, and even when the heating step is performed before the initial charging step, Generation | occurrence | production of the negative electrode compound material layer and a crack can be suppressed.
Note that the degree of swelling of the electrolytic solution can be controlled, for example, by adjusting the composition of the water-insoluble polymer.

また、非水溶性重合体は、ゲル量が、80質量%以上95質量%以下であることが必要であり、非水溶性重合体のゲル量は、82質量%以上であることが好ましく、94質量%以下であることが好ましい。非水溶性重合体のゲル量が80質量%以上95質量%以下であれば、負極合材層の強度および柔軟性を十分に高め、初期充電工程の前に加熱工程を実施した場合であっても、負極合材層の剥がれや割れが発生するのを抑制することができる。
なお、ゲル量は、例えば、非水溶性重合体の組成、重合温度、並びに、重合に使用する連鎖移動剤の添加量および種類を調整することにより制御することができる。
Further, the water-insoluble polymer needs to have a gel amount of 80% by mass or more and 95% by mass or less, and the gel amount of the water-insoluble polymer is preferably 82% by mass or more. It is preferable that it is below mass%. If the gel amount of the water-insoluble polymer is 80% by mass or more and 95% by mass or less, the strength and flexibility of the negative electrode mixture layer is sufficiently increased, and the heating step is performed before the initial charging step. Moreover, it can suppress that peeling and a crack of a negative electrode compound material layer generate | occur | produce.
The gel amount can be controlled, for example, by adjusting the composition of the water-insoluble polymer, the polymerization temperature, and the amount and type of chain transfer agent used for the polymerization.

−非水溶性重合体の組成−
非水溶性重合体としては、上述した電解液膨潤度およびゲル量を有していれば、特に限定されることなく、共役ジエン系重合体やアクリル系重合体などの任意の重合体を使用することができる。中でも、非水溶性重合体としては、共役ジエン系重合体が好ましく、芳香族ビニル単量体単位と共役ジエン単量体単位とを主構成単位とする共重合体がより好ましい。ここで、「芳香族ビニル単量体単位と共役ジエン単量体単位とが主構成単位である」とは、共重合体中において、芳香族ビニル単量体単位および共役ジエン単量体単位の合計含有量が、共重合体の全単量体単位の50質量%を超えることを指す。
-Composition of water-insoluble polymer-
The water-insoluble polymer is not particularly limited as long as it has the above-described electrolyte swelling degree and gel amount, and any polymer such as a conjugated diene polymer or an acrylic polymer is used. be able to. Among these, as the water-insoluble polymer, a conjugated diene polymer is preferable, and a copolymer having an aromatic vinyl monomer unit and a conjugated diene monomer unit as main constituent units is more preferable. Here, “the aromatic vinyl monomer unit and the conjugated diene monomer unit are the main constituent units” means that the aromatic vinyl monomer unit and the conjugated diene monomer unit in the copolymer. It means that the total content exceeds 50% by mass of the total monomer units of the copolymer.

−芳香族ビニル単量体単位−
ここで、芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、例えば、スチレン、α−メチルスチレン、p−t−ブチルスチレン、ブトキシスチレン、ビニルナフタレン、ビニルトルエン、クロロスチレンなどが挙げられる。これらの中でも、スチレンが好ましい。これらは1種単独で、または、2種以上を組み合わせてもよい。
そして、共重合体中の芳香族ビニル単量体単位の割合は、10質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、80質量%以下であることが好ましく、75質量%以下であることがより好ましく、70質量%以下であることが更に好ましい。芳香族ビニル単量体単位の割合を10質量%以上とすれば、非水溶性重合体の電解液膨潤度が過度に大きくなるのを抑制し、負極合材層の強度をより高めることができるからである。また、芳香族ビニル単量体単位の割合を80質量%以下とすれば、非水溶性重合体の靭性を高め、負極合材層の割れや剥がれが発生するのを十分に抑制することができるからである。
-Aromatic vinyl monomer unit-
Here, examples of the aromatic vinyl monomer that can form an aromatic vinyl monomer unit include styrene, α-methylstyrene, pt-butylstyrene, butoxystyrene, vinylnaphthalene, vinyltoluene, and chlorostyrene. Etc. Among these, styrene is preferable. These may be used alone or in combination of two or more.
And the ratio of the aromatic vinyl monomer unit in the copolymer is preferably 10% by mass or more, more preferably 30% by mass or more, still more preferably 50% by mass or more, It is preferably 80% by mass or less, more preferably 75% by mass or less, and further preferably 70% by mass or less. If the ratio of the aromatic vinyl monomer unit is 10% by mass or more, the electrolyte solution swelling degree of the water-insoluble polymer can be suppressed from being excessively increased, and the strength of the negative electrode mixture layer can be further increased. Because. Further, if the ratio of the aromatic vinyl monomer unit is 80% by mass or less, the toughness of the water-insoluble polymer can be increased, and the occurrence of cracking and peeling of the negative electrode mixture layer can be sufficiently suppressed. Because.

−共役ジエン単量体単位−
また、共役ジエン単量体単位を形成し得る共役ジエン単量体としては、例えば、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、2−エチル−1,3−ブタジエン、1,3−ペンタジエン、2−クロル−1,3−ブタジエン、ピペリレンなどが挙げられる。これらの中でも、1,3−ブタジエンが好ましい。これらは1種単独で、または、2種以上を組み合わせて用いることができる。
そして、共重合体中の共役ジエン単量体単位の割合は、20質量%以上であることが好ましく、25質量%以上であることがより好ましく、30質量%以上であることが更に好ましく、50質量%以下であることが好ましく、45質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。共役ジエン単量体単位の割合を20質量%以上とすれば、共重合体のゲル量を高めることができると共に、電解液膨潤度が過度に大きくなるのを抑制することができる。そして、その結果、柔軟性と強度との双方に優れる負極合材層が得られるからである。また、共役ジエン単量体単位の割合を50質量%以下とすれば、負極合材層を適度な硬さとし、負極合材層の強度を十分に確保することができるからである。
-Conjugated diene monomer unit-
Examples of the conjugated diene monomer that can form a conjugated diene monomer unit include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3- Examples include butadiene, 1,3-pentadiene, 2-chloro-1,3-butadiene, and piperylene. Among these, 1,3-butadiene is preferable. These can be used alone or in combination of two or more.
The proportion of the conjugated diene monomer unit in the copolymer is preferably 20% by mass or more, more preferably 25% by mass or more, still more preferably 30% by mass or more, and 50 It is preferably at most mass%, more preferably at most 45 mass%, further preferably at most 40 mass%. When the ratio of the conjugated diene monomer unit is 20% by mass or more, it is possible to increase the gel amount of the copolymer and to suppress the electrolyte solution swelling degree from becoming excessively large. As a result, a negative electrode mixture layer having excellent flexibility and strength can be obtained. Moreover, if the ratio of the conjugated diene monomer unit is 50% by mass or less, the negative electrode composite material layer can have an appropriate hardness, and the strength of the negative electrode composite material layer can be sufficiently ensured.

−その他の単量体単位−
なお、芳香族ビニル単量体単位と共役ジエン単量体単位とを主構成単位とする共重合体は、芳香族ビニル単量体単位および共役ジエン単量体単位以外のその他の単量体単位を含んでいてもよい。その他の単量体単位としては、特に限定されることなく、例えば、不飽和カルボン酸単量体単位などの酸性基含有単量体単位、(メタ)アクリル酸エステル単量体単位、ニトリル基含有単量体単位などが挙げられる。これらは1種単独で、または、2種以上を組み合わせてもよい。なお、本願において、「(メタ)アクリル」とはアクリルおよび/またはメタクリルを意味する。
-Other monomer units-
The copolymer having an aromatic vinyl monomer unit and a conjugated diene monomer unit as main constituent units is other monomer units other than the aromatic vinyl monomer unit and the conjugated diene monomer unit. May be included. Other monomer units are not particularly limited, for example, acidic group-containing monomer units such as unsaturated carboxylic acid monomer units, (meth) acrylic acid ester monomer units, nitrile group-containing A monomer unit etc. are mentioned. These may be used alone or in combination of two or more. In the present application, “(meth) acryl” means acryl and / or methacryl.

=酸性基含有単量体単位=
酸性基含有単量体単位である不飽和カルボン酸単量体単位を形成し得る不飽和カルボン酸単量体としては、例えば、不飽和モノカルボン酸およびその誘導体、不飽和ジカルボン酸およびその酸無水物、並びにそれらの誘導体が挙げられる。不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、およびクロトン酸が挙げられる。不飽和モノカルボン酸の誘導体の例としては、2−エチルアクリル酸、イソクロトン酸、α−アセトキシアクリル酸、β−trans−アリールオキシアクリル酸、α−クロロ−β−E−メトキシアクリル酸、およびβ−ジアミノアクリル酸が挙げられる。不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、およびイタコン酸が挙げられる。不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、およびジメチル無水マレイン酸が挙げられる。不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキル等が挙げられる。これらは、1種単独で、または、2種以上を組み合わせて用いることができる。
= Acid group-containing monomer unit =
Examples of unsaturated carboxylic acid monomers that can form unsaturated carboxylic acid monomer units that are acidic group-containing monomer units include unsaturated monocarboxylic acids and derivatives thereof, unsaturated dicarboxylic acids and acid anhydrides thereof. Products, and derivatives thereof. Examples of unsaturated monocarboxylic acids include acrylic acid, methacrylic acid, and crotonic acid. Examples of unsaturated monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, α-acetoxyacrylic acid, β-trans-aryloxyacrylic acid, α-chloro-β-E-methoxyacrylic acid, and β -Diaminoacrylic acid. Examples of unsaturated dicarboxylic acids include maleic acid, fumaric acid, and itaconic acid. Examples of unsaturated dicarboxylic acid anhydrides include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride. Examples of unsaturated dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, diphenyl maleate, nonyl maleate, decyl maleate, dodecyl maleate , Octadecyl maleate, fluoroalkyl maleate and the like. These can be used individually by 1 type or in combination of 2 or more types.

これらの中でも、不飽和カルボン酸単量体としては、アクリル酸、メタクリル酸等の不飽和モノカルボン酸や、マレイン酸、フマル酸、イタコン酸等の不飽和ジカルボン酸が好ましく、アクリル酸、イタコン酸がより好ましく、イタコン酸が更に好ましい。
そして、共重合体中の酸性基含有単量体単位の割合は、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、2質量%以上であることが更に好ましく、10質量%以下であることが好ましく、8質量%以下であることがより好ましく、6質量%以下であることが更に好ましい。酸性基含有単量体単位の割合を0.5質量%以上とすれば、負極活物質同士、および集電体と負極合材層との接着性を高めることができるからである。一方、酸性基含有単量体単位の割合を10質量%以下とすれば、負極合材層の割れや剥がれが発生するのを十分に抑制することができるからである。
Among these, the unsaturated carboxylic acid monomer is preferably an unsaturated monocarboxylic acid such as acrylic acid or methacrylic acid, or an unsaturated dicarboxylic acid such as maleic acid, fumaric acid or itaconic acid, and acrylic acid or itaconic acid. Is more preferable, and itaconic acid is still more preferable.
The proportion of the acidic group-containing monomer unit in the copolymer is preferably 0.5% by mass or more, more preferably 1% by mass or more, and further preferably 2% by mass or more. Preferably, it is preferably 10% by mass or less, more preferably 8% by mass or less, and further preferably 6% by mass or less. This is because if the ratio of the acidic group-containing monomer unit is 0.5 mass% or more, the adhesion between the negative electrode active materials and between the current collector and the negative electrode mixture layer can be improved. On the other hand, if the ratio of the acidic group-containing monomer unit is 10% by mass or less, the negative electrode composite material layer can be sufficiently prevented from being cracked or peeled off.

=(メタ)アクリル酸エステル単量体単位=
(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2−エチルヘキシル、2−ヒドロキシエチルアクリレートが挙げられる。これらは、1種単独で、または、2種以上を組み合わせて用いることができる。
= (Meth) acrylic acid ester monomer unit =
Examples of the (meth) acrylate monomer that can form a (meth) acrylate monomer unit include, for example, methyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. , 2-hydroxyethyl acrylate. These can be used individually by 1 type or in combination of 2 or more types.

=ニトリル基含有単量体単位=
ニトリル基含有単量体単位を形成し得るニトリル基含有単量体としては、α,β−エチレン性不飽和ニトリル単量体が挙げられる。具体的には、α,β−エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β−エチレン性不飽和化合物であれば特に限定されないが、例えば、アクリロニトリル;α−クロロアクリロニトリル、α−ブロモアクリロニトリルなどのα−ハロゲノアクリロニトリル;メタクリロニトリル、α−エチルアクリロニトリルなどのα−アルキルアクリロニトリル;などが挙げられる。これらの中でも、非水溶性重合体の電解液膨潤度を適度に増大させて負極合材層のイオン伝導度を高め、二次電池の内部抵抗を下げる観点から、(メタ)アクリロニトリルが好ましい。これらは、1種単独で、または、2種以上を組み合わせて用いることができる。
= Nitrile group-containing monomer unit =
Examples of the nitrile group-containing monomer that can form a nitrile group-containing monomer unit include α, β-ethylenically unsaturated nitrile monomers. Specifically, the α, β-ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an α, β-ethylenically unsaturated compound having a nitrile group. For example, acrylonitrile; α-chloroacrylonitrile, α-halogenoacrylonitrile such as α-bromoacrylonitrile; α-alkylacrylonitrile such as methacrylonitrile and α-ethylacrylonitrile; and the like. Among these, (meth) acrylonitrile is preferable from the viewpoint of appropriately increasing the electrolyte swelling degree of the water-insoluble polymer to increase the ionic conductivity of the negative electrode mixture layer and reducing the internal resistance of the secondary battery. These can be used individually by 1 type or in combination of 2 or more types.

−非水溶性重合体の調製方法−
そして、上述した単量体を用いた非水溶性重合体の調製方法は特に限定されず、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。また、重合方法としては、イオン重合、ラジカル重合、リビングラジカル重合などの付加重合を用いることができる。
-Preparation method of water-insoluble polymer-
And the preparation method of the water-insoluble polymer using the monomer mentioned above is not specifically limited, For example, any methods, such as solution polymerization method, suspension polymerization method, block polymerization method, and emulsion polymerization method, should be used. Can do. As the polymerization method, addition polymerization such as ionic polymerization, radical polymerization, living radical polymerization and the like can be used.

−含有量−
負極合材層中に含まれている非水溶性重合体の量は、負極活物質100質量部当たり、0.5質量部以上であることが好ましく、1.0質量部以上であることがより好ましく、1.5質量部以上であることが更に好ましく、4質量部以下であることが好ましく、3質量部以下であることがより好ましく、2.5質量部以下であることが更に好ましい。所定の電解液膨潤度およびゲル量を有する非水溶性重合体の含有量が上記下限値以上であれば、負極合材層に柔軟性が付与され、負極合材層の強度を十分に確保することができるからである。また、所定の電解液膨潤度およびゲル量を有する非水溶性重合体の含有量が上記上限値以下であれば、内部抵抗が小さく、かつ、高容量の非水系二次電池が得られるからである。
-Content-
The amount of the water-insoluble polymer contained in the negative electrode mixture layer is preferably 0.5 parts by mass or more and more preferably 1.0 part by mass or more per 100 parts by mass of the negative electrode active material. Preferably, it is 1.5 parts by mass or more, more preferably 4 parts by mass or less, more preferably 3 parts by mass or less, and further preferably 2.5 parts by mass or less. If the content of the water-insoluble polymer having a predetermined degree of electrolyte swelling and gel amount is not less than the above lower limit, flexibility is imparted to the negative electrode mixture layer and sufficient strength of the negative electrode mixture layer is ensured. Because it can. In addition, if the content of the water-insoluble polymer having a predetermined degree of electrolyte swelling and a gel amount is not more than the above upper limit value, a low-internal resistance and high-capacity non-aqueous secondary battery can be obtained. is there.

[[水溶性重合体]]
負極合材層に含まれる水溶性重合体は、上述した非水溶性重合体と共に、負極合材層に含まれる成分が負極合材層から脱離しないように保持し、且つ、集電体上に形成された負極合材層を集電体と良好に結着させ得る成分である。
[[Water-soluble polymer]]
The water-soluble polymer contained in the negative electrode mixture layer is held together with the above-mentioned water-insoluble polymer so that the components contained in the negative electrode mixture layer are not detached from the negative electrode mixture layer, and on the current collector. It is a component that can bind the negative electrode composite material layer formed on the current collector well.

−水溶性重合体の性状−
そして、水溶性重合体は、電解液膨潤度が、1.0倍超2.0倍以下であることが必要であり、水溶性重合体の電解液膨潤度は、1.3倍以下であることが好ましく、1.2倍以下であることがより好ましく、1.1倍以下であることが更に好ましい。水溶性重合体の電解液膨潤度が1.0倍超であれば、負極合材層のイオン伝導性を十分に確保し、二次電池の内部抵抗を十分に下げることができる。また、水溶性重合体の電解液膨潤度が2.0倍以下であれば、負極合材層の強度を十分に高め、初期充電工程の前に加熱工程を実施した場合であっても、負極合材層の剥がれや割れが発生するのを抑制することができる。
なお、水溶性重合体の電解液膨潤度は、例えば、水溶性重合体の組成を調整することにより制御することができる。
-Properties of water-soluble polymer-
The water-soluble polymer needs to have an electrolyte solution swelling degree of more than 1.0 and 2.0 times or less, and the water-soluble polymer has an electrolyte solution swelling degree of 1.3 times or less. Preferably, it is 1.2 times or less, more preferably 1.1 times or less. When the degree of swelling of the electrolytic solution of the water-soluble polymer is more than 1.0 times, the ionic conductivity of the negative electrode mixture layer can be sufficiently secured, and the internal resistance of the secondary battery can be sufficiently lowered. Further, if the degree of swelling of the electrolytic solution of the water-soluble polymer is 2.0 times or less, the strength of the negative electrode mixture layer is sufficiently increased, and even when the heating step is performed before the initial charging step, the negative electrode The peeling and cracking of the composite material layer can be suppressed.
In addition, the electrolyte solution swelling degree of a water-soluble polymer can be controlled by adjusting the composition of the water-soluble polymer, for example.

−水溶性重合体の組成−
水溶性重合体としては、上述した電解液膨潤度を有していれば、特に限定されることなく、例えば、カルボキシメチルセルロース(CMC)、カルボキシエチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、カルボキシエチルメチルセルロースなどのセルロース化合物、およびこれらのアンモニウム塩やアルカリ金属塩などの塩類といったセルロース系重合体;酸化スターチやリン酸スターチ;カゼイン;各種変性デンプン;ポリエチレンオキサイド、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ポリスルホン酸、ポリカルボン酸;(メタ)アクリル酸共重合体、アクリルアミド系重合体、およびこれらのアンモニウム塩やアルカリ金属塩などの塩類を挙げることができる。これらは1種類を単独で使用してもよく、2種類以上を併用して用いることができる。
-Composition of water-soluble polymer-
The water-soluble polymer is not particularly limited as long as it has the above-described degree of swelling of the electrolyte solution. For example, carboxymethyl cellulose (CMC), carboxyethyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, carboxyethyl methyl cellulose Cellulose polymers such as cellulose compounds such as ammonium salts and alkali metal salts thereof; oxidized starch and phosphate starch; casein; various modified starches; polyethylene oxide, polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, polysulfonic acid , Polycarboxylic acids; (meth) acrylic acid copolymers, acrylamide polymers, and salts thereof such as ammonium salts and alkali metal salts Door can be. These may be used alone or in combination of two or more.

中でも、水溶性重合体としては、セルロース系重合体、(メタ)アクリルアミド系重合体、およびこれらの組み合わせが好ましい。   Among them, as the water-soluble polymer, a cellulose polymer, a (meth) acrylamide polymer, and a combination thereof are preferable.

−含有量−
負極合材層中に含まれている水溶性重合体の量は、負極活物質100質量部当たり、0.5質量部以上であることが好ましく、0.7質量部以上であることがより好ましく、0.8質量部以上であることが更に好ましく、3質量部以下であることが好ましく、2質量部以下であることがより好ましく、1.5質量部以下であることが更に好ましい。所定の電解液膨潤度を有する水溶性重合体の含有量が上記下限値以上であれば、負極合材層を適度な硬さとし、負極合材層の強度を十分に確保することができるからである。また、所定の電解液膨潤度を有する水溶性重合体の含有量が上記上限値以下であれば、二次電池の内部抵抗を低減し、高容量の非水系二次電池が得られるからである。
-Content-
The amount of the water-soluble polymer contained in the negative electrode mixture layer is preferably 0.5 parts by mass or more and more preferably 0.7 parts by mass or more per 100 parts by mass of the negative electrode active material. 0.8 parts by mass or more, more preferably 3 parts by mass or less, more preferably 2 parts by mass or less, and further preferably 1.5 parts by mass or less. If the content of the water-soluble polymer having a predetermined degree of electrolytic solution swelling is not less than the above lower limit value, the negative electrode mixture layer can be made to have an appropriate hardness, and the strength of the negative electrode mixture layer can be sufficiently secured. is there. Further, if the content of the water-soluble polymer having a predetermined degree of electrolyte swelling is not more than the above upper limit value, the internal resistance of the secondary battery is reduced, and a high-capacity non-aqueous secondary battery can be obtained. .

[[負極活物質]]
負極合材層に含まれる負極活物質としては、特に限定されることなく、既知の負極活物質を用いることができる。既知の負極活物質としては、例えば、非水系二次電池がリチウムイオン二次電池の場合には、炭素系活物質、シリコーン系活物質、並びに、リチウム合金を形成する単体金属および合金が挙げられる。中でも、負極活物質としては、炭素系活物質が好ましく、天然黒鉛を用いた炭素系活物質がより好ましく、天然黒鉛を低結晶性の炭素材料で被覆(以下、これを「非晶質コート」を称することがある。)してなる炭素系活物質が更に好ましい。なお、非晶質コートの方法としては、特開2013−45714号公報に開示される方法などを挙げることができる。
[[Negative electrode active material]]
The negative electrode active material contained in the negative electrode mixture layer is not particularly limited, and a known negative electrode active material can be used. Examples of known negative electrode active materials include carbon-based active materials, silicone-based active materials, and single metals and alloys that form lithium alloys when the non-aqueous secondary battery is a lithium ion secondary battery. . Among these, as the negative electrode active material, a carbon-based active material is preferable, a carbon-based active material using natural graphite is more preferable, and natural graphite is coated with a low crystalline carbon material (hereinafter referred to as “amorphous coating”). A carbon-based active material obtained by the following is more preferable. Examples of the amorphous coating method include the method disclosed in JP 2013-45714 A.

−負極活物質の性状−
負極活物質は、タップ密度が0.8g/cm3以上であることが好ましく、0.85g/cm3以上であることがより好ましく、0.9g/cm3以上であることが更に好ましく、1.2g/cm3以下であることが好ましく、1.1g/cm3以下であることがより好ましく、1.05g/cm3以下であることが更に好ましい。タップ密度が0.8g/cm3以上の負極活物質を使用すれば、密度および強度の高い負極合材層を備えた負極が容易に得られるからである。また、タップ密度が1.2g/cm3以下の負極活物質を使用すれば、負極合材層中に電解液がより浸透しやすくなるからである。
-Properties of negative electrode active material-
The negative electrode active material preferably has a tap density of 0.8 g / cm 3 or more, more preferably 0.85 g / cm 3 or more, still more preferably 0.9 g / cm 3 or more. preferably .2g / cm 3 or less, more preferably 1.1 g / cm 3 or less, further preferably 1.05 g / cm 3 or less. This is because if a negative electrode active material having a tap density of 0.8 g / cm 3 or more is used, a negative electrode including a negative electrode mixture layer having high density and strength can be easily obtained. Further, when a negative electrode active material having a tap density of 1.2 g / cm 3 or less is used, the electrolyte solution is more likely to penetrate into the negative electrode mixture layer.

また、負極活物質は、体積平均粒子径が、5μm以上であることが好ましく、7μm以上であることがより好ましく、10μm以上であることが更に好ましく、30μm以下であることが好ましく、25μm以下であることがより好ましく、20μm以下であることが更に好ましい。なお、本発明において、負極活物質の「体積平均粒子径」は、例えば、レーザー回折/散乱式粒子径分布測定装置(マイクロトラック・ベル社製、型番:マイクロトラックMT3000II)を用いて、50%径として湿式法により測定することができる。   Further, the negative electrode active material preferably has a volume average particle diameter of 5 μm or more, more preferably 7 μm or more, further preferably 10 μm or more, preferably 30 μm or less, and preferably 25 μm or less. More preferably, it is more preferably 20 μm or less. In the present invention, the “volume average particle size” of the negative electrode active material is 50% using, for example, a laser diffraction / scattering type particle size distribution measuring apparatus (manufactured by Microtrack Bell, model number: Microtrack MT3000II). The diameter can be measured by a wet method.

ここで、負極活物質の体積平均粒子径およびタップ密度は、例えば、不定形または非球形の負極活物質粒子を球形化処理することによって制御し得る。球形化処理の好ましい方法としては、特に限定されることなく、例えば特開2010−34036号公報に開示される方法などを挙げることができる。具体的には、球形化処理は、例えば、ハイブリダイゼーションシステム(奈良機械製作所製、型番:NHS−3)を用いて、高速気流中に分散させた負極活物質粒子に衝撃力などを与えることにより行うことができる。   Here, the volume average particle diameter and tap density of the negative electrode active material can be controlled, for example, by spheroidizing negative or non-spherical negative electrode active material particles. A preferable method for the spheroidizing treatment is not particularly limited, and examples thereof include a method disclosed in JP 2010-34036 A. Specifically, the spheronization treatment is performed by applying an impact force or the like to the negative electrode active material particles dispersed in a high-speed air stream using, for example, a hybridization system (manufactured by Nara Machinery Co., Ltd., model number: NHS-3). It can be carried out.

[負極の作製]
上述した負極合材層を備える負極は、特に限定されることなく、既知の手法を用いて作製することができる。具体的には、負極は、例えば、負極活物質と、非水溶性重合体と、水溶性重合体と、任意の添加剤と、水などの分散媒とを含む負極用スラリー組成物を集電体上に塗布し、塗布した負極用スラリー組成物を乾燥させて負極合材層を形成することにより作製することができる。なお、集電体上に形成した負極合材層は、プレス加工等の加圧処理を施して密度を調整してもよい。
また、非水溶性重合体は、通常、負極用スラリー組成物中では粒子形状で存在するが、形成された負極合材層中では、粒子形状であってもよいし、その他の任意の形状であってもよい。
[Preparation of negative electrode]
The negative electrode provided with the above-described negative electrode mixture layer is not particularly limited and can be produced using a known technique. Specifically, the negative electrode collects, for example, a negative electrode slurry composition including a negative electrode active material, a water-insoluble polymer, a water-soluble polymer, an optional additive, and a dispersion medium such as water. It can produce by apply | coating on a body and drying the apply | coated slurry composition for negative electrodes, and forming a negative mix layer. Note that the negative electrode mixture layer formed on the current collector may be subjected to pressure treatment such as pressing to adjust the density.
Further, the water-insoluble polymer is usually present in a particle shape in the negative electrode slurry composition, but in the formed negative electrode mixture layer, it may be in a particle shape or in any other shape. There may be.

<正極>
本発明の製造方法を用いて製造される非水系二次電池の正極としては、既知の正極を用いることができる。具体的には、正極としては、特に限定されることなく、集電体と、集電体上に形成された正極合材層とを有する正極を用いることができる。そして、正極合材層は、通常、正極活物質、導電材、および結着材を含有する。
ここで、集電体、正極合材層中の正極活物質、導電材、および結着材、並びに、集電体上への正極合材層の形成方法には、既知のものを用いることができ、例えば特開2013−145763号公報に記載のものを用いることができる。
<Positive electrode>
As the positive electrode of the non-aqueous secondary battery manufactured using the manufacturing method of the present invention, a known positive electrode can be used. Specifically, the positive electrode is not particularly limited, and a positive electrode having a current collector and a positive electrode mixture layer formed on the current collector can be used. The positive electrode mixture layer usually contains a positive electrode active material, a conductive material, and a binder.
Here, as the current collector, the positive electrode active material in the positive electrode mixture layer, the conductive material, and the binder, and a method for forming the positive electrode mixture layer on the current collector, a known method may be used. For example, those described in JP2013-145663A can be used.

<電解液>
本発明の製造方法を用いて製造される非水系二次電池の電解液としては、既知の電解液を用いることができる。具体的には、非水系二次電池がリチウムイオン二次電池の場合には、特に限定されることなく、例えば、非水系溶媒に支持電解質としてリチウム塩を溶解したものが使用できる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF6、LiClO4、CF3SO3Liは好適に用いられる。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
電解液に使用する溶媒としては、支持電解質を溶解させるものであれば特に限定されないが、通常、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、および、エチルメチルカーボネート(EMC)などのアルキルカーボネート類;γ−ブチロラクトン、ギ酸メチルなどのエステル類、1,2−ジメトキシエタン、およびテトラヒドロフランなどのエーテル類;スルホラン、およびジメチルスルホキシドなどの含硫黄化合物類;が用いられる。また、電解液には添加剤を含有させて用いることも可能である。添加剤としてはビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。
<Electrolyte>
As the electrolytic solution of the non-aqueous secondary battery manufactured using the manufacturing method of the present invention, a known electrolytic solution can be used. Specifically, when the non-aqueous secondary battery is a lithium ion secondary battery, for example, a non-aqueous solvent in which a lithium salt is dissolved as a supporting electrolyte can be used. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts. In particular, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used. In addition, electrolyte may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Usually, the lithium ion conductivity tends to increase as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
The solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte. Usually, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene. Alkyl carbonates such as carbonate (BC) and ethyl methyl carbonate (EMC); esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfolane and dimethyl sulfoxide Of sulfur-containing compounds are used. Moreover, it is also possible to use an electrolyte containing an additive. As the additive, carbonate compounds such as vinylene carbonate (VC) are preferable.

<セパレータ>
本発明の製造方法を用いて製造される非水系二次電池が任意に備えるセパレータとしては、特に限定されることなく、既知のセパレータを用いることができる。既知のセパレータとしては、例えば、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂を用いた微多孔膜、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂を用いた微多孔膜、ポリオレフィン系の繊維を用いた織布または不織布、絶縁性物質よりなる粒子の集合体等が挙げられる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、非水系二次電池内の電極合材層の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂を用いた微多孔膜が好ましい。
<Separator>
As a separator which the non-aqueous secondary battery manufactured using the manufacturing method of the present invention optionally includes, a known separator can be used without any particular limitation. As a known separator, for example, a microporous film using a polyolefin-based resin (polyethylene, polypropylene, polybutene, polyvinyl chloride), polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, polyimide, polyimide amide, polyaramid, Examples thereof include a microporous film using a resin such as polycycloolefin, nylon, and polytetrafluoroethylene, a woven or non-woven fabric using a polyolefin-based fiber, and an aggregate of particles made of an insulating material. Among these, the thickness of the entire separator can be reduced, thereby increasing the ratio of the electrode mixture layer in the non-aqueous secondary battery and increasing the capacity per volume, A microporous film using a polyolefin resin (polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferred.

[接着層]
ここで、正極と負極との間にセパレータを設ける場合には、電極(正極、負極)とセパレータとを良好に一体化させるために、電極とセパレータとの間に既知の接着層を設けることができる。
しかし、非水系二次電池が備える負極合材層中の負極活物質は、電池の充放電にともなって膨張収縮する。そのため、例えば、負極合材層とセパレータとが接着層を介して強固に接着されている場合は、負極活物質の膨張収縮に起因する応力を十分に緩和することができず、負極合材層にひびや割れが生じる原因となり得る。従って、負極合材層とセパレータとの間には、接着層を設けないことが好ましい。また、負極合材層とセパレータとの間に接着層を設けるとしても、接着力が低い接着層を用いることが好ましい。
具体的には、未充電非水系二次電池を温度60℃で15時間放置した際の負極とセパレータとの接着力は、1.0N/m以下であることが好ましく、0.5N/m以下であることがより好ましく、0.3N/m以下であることが更に好ましく、0.15N/m以上とすることができる。接着力を1.0N/m以下とすれば、充放電時の負極活物質の膨張収縮に起因する負極合材層の剥がれ等が助長されることを抑制できるからである。
[Adhesive layer]
Here, when a separator is provided between the positive electrode and the negative electrode, a known adhesive layer may be provided between the electrode and the separator in order to satisfactorily integrate the electrode (positive electrode, negative electrode) and the separator. it can.
However, the negative electrode active material in the negative electrode mixture layer provided in the nonaqueous secondary battery expands and contracts as the battery is charged and discharged. Therefore, for example, when the negative electrode mixture layer and the separator are firmly bonded via the adhesive layer, the stress due to the expansion and contraction of the negative electrode active material cannot be sufficiently relaxed, and the negative electrode mixture layer It can cause cracks and cracks. Therefore, it is preferable not to provide an adhesive layer between the negative electrode mixture layer and the separator. Moreover, even if an adhesive layer is provided between the negative electrode mixture layer and the separator, it is preferable to use an adhesive layer having a low adhesive force.
Specifically, the adhesive force between the negative electrode and the separator when an uncharged non-aqueous secondary battery is left at a temperature of 60 ° C. for 15 hours is preferably 1.0 N / m or less, and 0.5 N / m or less. More preferably, it is 0.3 N / m or less, more preferably 0.15 N / m or more. This is because, if the adhesive force is 1.0 N / m or less, it is possible to suppress the exfoliation of the negative electrode mixture layer caused by the expansion and contraction of the negative electrode active material during charge / discharge.

<電池容器>
本発明の製造方法を用いて製造される非水系二次電池の電池容器としては、特に限定されることなく、任意の容器体を用いることができる。具体的には、電池容器としては、例えば、アルミニウムやスチールなどの軽量な金属を用いて形成した包材やケースを採用し得る。
<Battery container>
The battery container of the non-aqueous secondary battery manufactured using the manufacturing method of the present invention is not particularly limited, and any container body can be used. Specifically, as the battery container, for example, a packaging material or a case formed using a light metal such as aluminum or steel can be adopted.

<組立工程>
本発明の非水系二次電池の製造方法に含まれる組立工程では、正極と、負極と、電解液とを電池容器に収容して、未充電非水系二次電池を準備する。なお、正極および負極は、正極と負極との間にセパレータを配置した状態で電池容器内に収容してもよい。
<Assembly process>
In the assembly process included in the method for manufacturing a non-aqueous secondary battery of the present invention, a positive electrode, a negative electrode, and an electrolytic solution are accommodated in a battery container to prepare an uncharged non-aqueous secondary battery. The positive electrode and the negative electrode may be accommodated in the battery container in a state where a separator is disposed between the positive electrode and the negative electrode.

具体的には、組立工程では、例えば、典型的には常温域において、上記正極と、負極とを、セパレータを介して重ね合わせることにより積層体を得た後、得られた積層体を必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れる。その後、積層体を収容した電池容器に電解液を注入して電池容器を封口することにより、未充電非水系二次電池を組み立てる。ここで、本明細書において「常温域」とは、20℃±10℃を指すものとする。   Specifically, in the assembly process, for example, typically, in the normal temperature range, the positive electrode and the negative electrode are overlapped via a separator to obtain a laminate, and then the obtained laminate is required. Depending on the shape of the battery, it is wound or folded into a battery container. Thereafter, an uncharged non-aqueous secondary battery is assembled by injecting an electrolytic solution into the battery container containing the laminate and sealing the battery container. Here, in this specification, “room temperature region” refers to 20 ° C. ± 10 ° C.

なお、非水系二次電池の内部の圧力上昇、過充放電などの発生を防止するために、未充電非水系二次電池には、必要に応じて、ヒューズ、PTC素子などの過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。また、組み立てる未充電非水系二次電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。   In order to prevent the occurrence of pressure increase and overcharge / discharge in the non-aqueous secondary battery, the non-charged non-aqueous secondary battery includes an overcurrent prevention element such as a fuse or a PTC element as necessary. An expanded metal, a lead plate, or the like may be provided. Moreover, the shape of the non-chargeable non-aqueous secondary battery to be assembled may be any of a coin type, a button type, a sheet type, a cylindrical type, a square shape, a flat type, and the like.

<加熱工程>
本発明の非水系二次電池の製造方法に含まれる加熱工程では、上述の組立工程により得られた未充電非水系二次電池を40℃以上の高温域まで昇温することにより、電極合材層(特に負極合材層)に電解液を良好に浸透させる。なお、加熱工程では、所定の温度まで昇温した未充電非水系二次電池を当該温度で所定時間保持することにより、電極合材層への電解液の浸透を更に促進させることができる。
<Heating process>
In the heating step included in the method for producing a non-aqueous secondary battery of the present invention, the temperature of the non-charged non-aqueous secondary battery obtained by the above-described assembly step is raised to a high temperature range of 40 ° C. or higher, whereby an electrode mixture is obtained. The electrolyte solution penetrates well into the layer (particularly the negative electrode mixture layer). In the heating step, the permeation of the electrolyte solution into the electrode mixture layer can be further promoted by holding the non-charged non-aqueous secondary battery heated to a predetermined temperature at the temperature for a predetermined time.

ここで、未充電非水系二次電池の加熱温度は、40℃以上とすることが必要であり、50℃以上が好ましく、55℃以上がより好ましく、85℃以下が好ましく、70℃以下がより好ましい。40℃以上で未充電非水系二次電池を加熱すれば、電池内の電解液粘度が低下することにより、電解液が電極合材層内に入り込み易くなり、かつ電極合材層内に十分に行き渡り易くなる。そして、その結果、高密度の負極合材層を用いた場合であっても、後述する初期充電時にSEI皮膜の形成不良および金属析出の発生を抑制することができ、良好な寿命特性およびレート特性を有する非水系二次電池が得られる。また、85℃以下で未充電非水系二次電池を加熱すれば、加熱時の電解液の引火を予防して安全に非水系二次電池を製造することができるからである。   Here, the heating temperature of the non-charged non-aqueous secondary battery needs to be 40 ° C. or higher, preferably 50 ° C. or higher, more preferably 55 ° C. or higher, preferably 85 ° C. or lower, more preferably 70 ° C. or lower. preferable. If an uncharged non-aqueous secondary battery is heated at 40 ° C. or higher, the electrolyte viscosity in the battery decreases, so that the electrolyte easily enters the electrode mixture layer, and is sufficiently in the electrode mixture layer. It becomes easy to get around. As a result, even when a high-density negative electrode mixture layer is used, it is possible to suppress the formation failure of SEI film and the occurrence of metal precipitation at the time of initial charging described later, and good life characteristics and rate characteristics. A non-aqueous secondary battery having Further, if the non-charged non-aqueous secondary battery is heated at 85 ° C. or less, the non-aqueous secondary battery can be manufactured safely by preventing the electrolyte from igniting during heating.

さらに、加熱した未充電非水系二次電池の加熱保持(温度保持)時間は、1時間以上が好ましく、5時間以上がより好ましく、10時間以上が更に好ましく、50時間以下が好ましい。未充電非水系二次電池を1時間以上にわたって加熱すれば、電極合材層中に電解液を十分に浸透させることができるからである。また、未充電非水系二次電池の加熱を50時間以下にすれば、長時間の加熱による電極合材層の劣化を予防できると共に、非水系二次電池の生産効率が低下するのを抑制できるからである。   Furthermore, the heating and holding (temperature holding) time of the heated non-charged non-aqueous secondary battery is preferably 1 hour or longer, more preferably 5 hours or longer, further preferably 10 hours or longer, and preferably 50 hours or shorter. This is because if the uncharged non-aqueous secondary battery is heated for 1 hour or longer, the electrolyte solution can be sufficiently permeated into the electrode mixture layer. Further, if heating of the non-charged non-aqueous secondary battery is set to 50 hours or less, deterioration of the electrode mixture layer due to long-time heating can be prevented, and reduction in production efficiency of the non-aqueous secondary battery can be suppressed. Because.

なお、本発明の非水系二次電池の製造方法では、所定の性状を有する非水溶性重合体および水溶性重合体を含む負極合材層を使用しているので、上述の加熱処理を施しても、負極合材層の剥がれや割れの発生を抑制することができる。   In the method for producing a non-aqueous secondary battery according to the present invention, since the negative electrode mixture layer containing a water-insoluble polymer having a predetermined property and a water-soluble polymer is used, the above heat treatment is performed. In addition, it is possible to suppress the peeling and cracking of the negative electrode mixture layer.

<初期充電工程>
本発明の非水系二次電池の製造方法に含まれる初期充電工程では、上述の加熱工程により加熱された未充電非水系二次電池を所定の充電深度まで充電することにより、負極合材層上に良好なSEI皮膜を効率的に形成する。ここで、負極合材層上に十分なSEI皮膜を効率よく形成する観点からは、充電深度は5%以上80%以下とすることが好ましい。
なお、本発明の非水系二次電池の製造方法では、初期充電工程の前に上述した加熱工程を実施しているので、SEI皮膜の形成不良および金属析出の発生を抑制することができ、良好な電池特性を有する非水系二次電池が得られる。
<Initial charging process>
In the initial charging step included in the method for manufacturing the non-aqueous secondary battery of the present invention, the non-charged non-aqueous secondary battery heated by the above-described heating step is charged to a predetermined charging depth, so that In addition, an excellent SEI film is efficiently formed. Here, from the viewpoint of efficiently forming a sufficient SEI film on the negative electrode mixture layer, the charging depth is preferably 5% or more and 80% or less.
In the non-aqueous secondary battery manufacturing method of the present invention, since the heating step described above is performed before the initial charging step, it is possible to suppress the formation failure of the SEI film and the occurrence of metal deposition. A non-aqueous secondary battery having excellent battery characteristics can be obtained.

以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
実施例および比較例において、未充電非水系二次電池の加熱温度、非水溶性重合体および水溶性重合体の電解液膨潤度、非水溶性重合体のゲル量、負極活物質のタップ密度、負極とセパレータとの接着力、初期満充電後の負極合材層の状態、および非水系二次電池のレート特性は、それぞれ以下の方法を使用して測定、評価、または観察した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” and “part” representing amounts are based on mass unless otherwise specified.
In Examples and Comparative Examples, the heating temperature of the non-charged non-aqueous secondary battery, the electrolyte solution swelling degree of the water-insoluble polymer and the water-soluble polymer, the gel amount of the water-insoluble polymer, the tap density of the negative electrode active material, The adhesive strength between the negative electrode and the separator, the state of the negative electrode mixture layer after the initial full charge, and the rate characteristics of the non-aqueous secondary battery were measured, evaluated, or observed using the following methods, respectively.

<加熱温度>
加熱温度は、恒温器(エスペック社製、型番:PU−2KT)を用いて、任意の温度に設定した上、未充電非水系二次電池の周囲の雰囲気実温度として測定した。測定結果を表1に示す。
<Heating temperature>
The heating temperature was set as an arbitrary temperature using a thermostat (model number: PU-2KT, manufactured by Espec Corp.) and then measured as an actual ambient temperature around the non-charged non-aqueous secondary battery. The measurement results are shown in Table 1.

<電解液膨潤度>
電解液膨潤度は、非水溶性重合体および水溶性重合体のそれぞれについて、非水溶性重合体または水溶性重合体を含む乾燥フィルム片の重量と、非水溶性重合体または水溶性重合体を含む乾燥フィルム片を電解液に浸漬させて得た膨潤フィルム片の重量とを用いて求めることができる。具体的には、非水溶性重合体または水溶性重合体が水中に分散または溶解された水分散液または水溶液を用意し、用意した水分散液または水溶液を、湿度50%、温度23℃以上25℃以下の環境下で乾燥させ、乾燥分散体を得た。その後、得られた乾燥分散体を、厚み3±0.3mmに成膜し、直径12mmに裁断することにより、乾燥フィルム片を用意した。
用意した乾燥フィルム片を精秤し、得られた乾燥フィルム片の重量をW0とした。
次に、精秤した乾燥フィルム片を、濃度1.0MのLiPF6電解液(溶媒:エチレンカーボネート/エチルメチルカーボネート=3/7(体積比)の混合溶媒であり、添加剤としてビニレンカーボネート2質量%(溶媒比)を含む)50gに、60℃にて72時間浸漬させ、電解液を乾燥フィルム片に浸透させた。そして、電解液の浸透により膨潤したフィルム片、即ち膨潤フィルム片を得た。
その後、電解液から引き揚げた膨潤フィルム片を軽く拭いた後に、精秤して得られた膨潤フィルム片の重量をW1とした。
そして、得られた精秤値を用いて下記式(I):
電解液膨潤度=(W1/W0) ・・・(I)
に従って、電解液膨潤度(倍)を算出した。測定結果を表1に示す。
<Electrolytic solution swelling>
The degree of swelling of the electrolytic solution is determined for each of the water-insoluble polymer and the water-soluble polymer by the weight of the water-insoluble polymer or the dry film piece containing the water-soluble polymer and the water-insoluble polymer or water-soluble polymer. It can obtain | require using the weight of the swelling film piece obtained by immersing the dry film piece to contain in electrolyte solution. Specifically, an aqueous dispersion or aqueous solution in which a water-insoluble polymer or a water-soluble polymer is dispersed or dissolved in water is prepared, and the prepared aqueous dispersion or aqueous solution has a humidity of 50% and a temperature of 23 ° C. or more and 25 ° C. It dried in the environment below ℃ and obtained the dry dispersion. Then, the obtained dry dispersion was formed into a film with a thickness of 3 ± 0.3 mm and cut into a diameter of 12 mm to prepare a dry film piece.
The prepared dry film piece was precisely weighed, and the weight of the obtained dry film piece was designated as W0.
Next, the precisely weighed dry film piece was a mixed solvent of LiPF 6 electrolyte solution (solvent: ethylene carbonate / ethyl methyl carbonate = 3/7 (volume ratio)) having a concentration of 1.0 M, and 2 mass of vinylene carbonate as an additive. % (Including the solvent ratio)) was immersed in 60 g at 60 ° C. for 72 hours, and the electrolytic solution was permeated into the dried film piece. And the film piece swollen by the osmosis | permeation of electrolyte solution, ie, the swelling film piece, was obtained.
Thereafter, the swollen film piece pulled up from the electrolytic solution was lightly wiped, and the weight of the swollen film piece obtained by precise weighing was defined as W1.
And the following formula (I):
Electrolyte swelling degree = (W1 / W0) (I)
Thus, the degree of swelling (times) of the electrolyte was calculated. The measurement results are shown in Table 1.

<ゲル量>
ゲル量は、非水溶性重合体の全固形分の重量に対する、非水溶性重合体の固形分のうちテトラヒドロフランに不溶な固形分の重量の割合(質量%)として求めることができる。具体的には、非水溶性重合体が水中に分散された水分散液を、湿度50%、温度23℃以上25℃以下の環境下で3日間乾燥させた後に、更に熱風オーブンを用いて、120℃環境下で1時間乾燥させることにより、乾燥分散体を得た。得られた乾燥分散体を、厚み3±0.3mmに成膜し、一辺が3mm以上5mm以下の略正方形状に裁断することにより、乾燥フィルム片を用意した。
用意した乾燥フィルム片を精秤し、得られた乾燥フィルム片の重量をV0とした。
次に、乾燥フィルム片を、100gのテトラヒドロフランに23℃以上25℃以下にて24時間浸漬させ、溶解させた。テトラヒドロフランから引き揚げた残留フィルム片を、105℃環境下で3時間真空乾燥した後に、乾燥させた残留フィルム片を精秤し、得られた残留フィルム片の重量をV1とした。
そして、得られた精秤値を用いて下記式(II):
ゲル量=(V1/V0)×100 ・・・(II)
に従って、ゲル量(質量%)を算出した。測定結果を表1に示す。
<Amount of gel>
The gel amount can be determined as the ratio (mass%) of the solid content insoluble in tetrahydrofuran out of the solid content of the water-insoluble polymer with respect to the total solid content of the water-insoluble polymer. Specifically, an aqueous dispersion in which a water-insoluble polymer is dispersed in water is dried for 3 days in an environment of 50% humidity and a temperature of 23 ° C. or more and 25 ° C. or less, and further using a hot air oven, A dried dispersion was obtained by drying in a 120 ° C. environment for 1 hour. The obtained dried dispersion was formed into a film having a thickness of 3 ± 0.3 mm, and cut into a substantially square shape having a side of 3 mm or more and 5 mm or less to prepare a dry film piece.
The prepared dry film piece was precisely weighed, and the weight of the obtained dry film piece was designated as V0.
Next, the dried film piece was immersed and dissolved in 100 g of tetrahydrofuran at 23 ° C. or more and 25 ° C. or less for 24 hours. The residual film piece lifted from tetrahydrofuran was vacuum-dried at 105 ° C. for 3 hours, and then the dried residual film piece was precisely weighed, and the weight of the obtained residual film piece was set to V1.
And the following formula (II):
Gel amount = (V1 / V0) × 100 (II)
Thus, the gel amount (mass%) was calculated. The measurement results are shown in Table 1.

<タップ密度>
負極活物質のタップ密度は、パウダテスタ(登録商標)(ホソカワミクロン社製、PT−D)を用いて測定した。具体的には、まず、測定容器に充填した負極活物質の粉体を容器上面にてすり切った。次いで、測定容器に測定器付属のキャップを取り付け、取り付けたキャップの上縁まで負極活物質の粉体を追加充填し、高さ1.8cmから180回繰り返し落下させることにより、タッピングを行った。タッピング終了後にキャップを外し、容器上面にて負極活物質の粉体を再びすり切った。タッピング後にすり切った試料を秤量し、この状態の嵩密度を固め嵩密度、即ちタップ密度(g/cm3)として測定した。タップ密度が高いほど、負極活物質の密度が高く、高密度充放電に適した非水系二次電池が得られることを示す。測定結果を表1に示す。
<Tap density>
The tap density of the negative electrode active material was measured using a powder tester (registered trademark) (manufactured by Hosokawa Micron Corporation, PT-D). Specifically, first, the powder of the negative electrode active material filled in the measurement container was ground on the upper surface of the container. Next, a cap attached to the measuring instrument was attached to the measurement container, and a powder of the negative electrode active material was additionally filled up to the upper edge of the attached cap, and tapping was performed by repeatedly dropping from a height of 1.8 cm to 180 times. After the tapping, the cap was removed, and the negative electrode active material powder was ground again on the upper surface of the container. The sample worn after tapping was weighed, and the bulk density in this state was hardened and measured as the bulk density, that is, the tap density (g / cm 3 ). It shows that the density of a negative electrode active material is so high that a tap density is high, and the nonaqueous secondary battery suitable for high-density charging / discharging is obtained. The measurement results are shown in Table 1.

<負極とセパレータとの接着力>
負極とセパレータとの接着力は、負極表面の引張り応力として測定した。具体的には、組立工程にて得られた未充電非水系二次電池に対し、表1に記載した各実施例および各比較例における加熱温度および加熱保持時間にて加熱処理を行った。その後、加熱処理が施された未充電非水系二次電池から、電解液に浸漬されていた負極およびセパレータを備える積層体を取り出し、長さ10mm×幅10mmの大きさに切り出し、試験片を得た。そして、得られた試験片の表面に付着した電解液を拭き取り、拭き取った試験片表面のうち負極表面側に粘着テープを貼り付けた。この際、粘着テープとしてはJIS Z1522に規定されるものを用いた。そして、試験片の一端を鉛直上方に引張り速度50mm/分にて引き剥がしたときの応力を接着力として測定した(なお、粘着テープは水平な試験台に固定した。)。
測定結果を表1に示す。なお、負極とセパレータとの間に接着層を設けない場合であっても、負極合材層界面において電解液の液膜による応力が働くため、通常、接着力は接着層の有無にかかわらず0.1N/m以上の測定値を示す。
<Adhesive strength between negative electrode and separator>
The adhesive force between the negative electrode and the separator was measured as tensile stress on the negative electrode surface. Specifically, the uncharged non-aqueous secondary battery obtained in the assembly process was subjected to heat treatment at the heating temperature and the heating holding time in each Example and each Comparative Example described in Table 1. Thereafter, the laminate including the negative electrode and the separator immersed in the electrolytic solution is taken out from the uncharged non-aqueous secondary battery subjected to the heat treatment, and cut into a size of 10 mm length × 10 mm width to obtain a test piece. It was. And the electrolyte solution adhering to the surface of the obtained test piece was wiped off, and the adhesive tape was affixed on the negative electrode surface side among the wiped test piece surfaces. At this time, the adhesive tape defined in JIS Z1522 was used. Then, the stress when the one end of the test piece was pulled vertically upward at a pulling speed of 50 mm / min was measured as an adhesive force (the adhesive tape was fixed to a horizontal test stand).
The measurement results are shown in Table 1. Even when the adhesive layer is not provided between the negative electrode and the separator, the stress due to the liquid film of the electrolyte acts at the negative electrode mixture layer interface, and therefore the adhesive force is usually 0 regardless of the presence or absence of the adhesive layer. Shows a measured value of 1 N / m or more.

<初期満充電後の負極合材層の状態>
各実施例および各比較例に記載した方法で製造した非水系二次電池5個をドライルームにて解体し、負極合材層の割れや剥がれについて目視観察した。ここで、比較例4においては、加熱終了後の非水系二次電池を用いた。評価基準は以下の通りとした。測定結果を表1に示す。
A:負極合材層の欠損(割れや剥がれ)が見られる電池の個数が1個以下
B:負極合材層の欠損(割れや剥がれ)が見られる電池の個数が2個
C:負極合材層の欠損(割れや剥がれ)が見られる電池の個数が3個
D:負極合材層の欠損(割れや剥がれ)が見られる電池の個数が4個以上
<State of negative electrode mixture layer after initial full charge>
Five non-aqueous secondary batteries manufactured by the methods described in each Example and each Comparative Example were disassembled in a dry room and visually observed for cracking and peeling of the negative electrode mixture layer. Here, in Comparative Example 4, a non-aqueous secondary battery after completion of heating was used. The evaluation criteria were as follows. The measurement results are shown in Table 1.
A: The number of batteries in which defects (cracking or peeling) of the negative electrode mixture layer are found is 1 or less B: The number of batteries in which defects (breaking or peeling) of the negative electrode mixture layer are seen is two C: Negative electrode mixture The number of batteries in which layer defects (cracking or peeling) are observed is three. D: The number of batteries in which defects (breaking or peeling) are observed in the negative electrode composite material layer is four or more.

<非水系二次電池のレート特性>
各実施例および各比較例に記載した方法で製造した非水系二次電池の初期容量を確認後、非水系二次電池を、25℃環境下、0.2Cで4.2Vまで定電流定電圧法(カットオフ条件:0.02C)にて満充電した。その後、非水系二次電池を25℃環境下、0.2Cにて3.0Vまで定電流放電し、そのときの放電容量C1を測定した。そして、非水系二次電池を25℃環境下、4.2Vの定電流定電圧法(カットオフ条件:0.02C)によって再び満充電した後、25℃環境下、1Cにて3.0Vまで定電流放電し、その際の放電容量C2を測定した。非水系二次電池のレート特性C2/C1は、下記式(III):
2/C1=(C2/C1)×100 ・・・(III)
に従って、C1に対するC2の比(%)として算出した。評価基準は以下の通りとした。C2/C1値が大きいほど、製造された非水系二次電池のレート特性が優れていることを示す。測定結果を表1に示す。
A:C2/C1が85%以上
B:C2/C1が85%未満75%以上
C:C2/C1が75%未満65%以上
D:C2/C1が65%未満
<Rate characteristics of non-aqueous secondary batteries>
After confirming the initial capacity of the non-aqueous secondary battery produced by the method described in each example and each comparative example, the non-aqueous secondary battery was constant current and constant voltage up to 4.2 V at 0.2 C in a 25 ° C. environment. The battery was fully charged by the method (cut-off condition: 0.02 C). Thereafter, the non-aqueous secondary battery was discharged at a constant current up to 3.0 V at 0.2 C in a 25 ° C. environment, and the discharge capacity C1 at that time was measured. The non-aqueous secondary battery is fully charged again by the constant current / constant voltage method (cut-off condition: 0.02C) of 4.2V in a 25 ° C environment, and then reaches 3.0V at 1C in a 25 ° C environment. A constant current was discharged, and the discharge capacity C2 at that time was measured. The rate characteristic C 2 / C 1 of the non-aqueous secondary battery is expressed by the following formula (III):
C 2 / C 1 = (C2 / C1) × 100 (III)
The ratio was calculated as the ratio (%) of C2 to C1. The evaluation criteria were as follows. The larger the C 2 / C 1 value shows that the superior rate characteristics of a nonaqueous secondary battery produced. The measurement results are shown in Table 1.
A: C 2 / C 1 is 85% or more B: C 2 / C 1 is less than 85% 75% or more C: C 2 / C 1 is less than 75% 65% or more D: C 2 / C 1 is less than 65%

(実施例1)
<非水溶性重合体の調製>
芳香族ビニル単量体としてのスチレン63部、脂肪族共役ジエン単量体としての1,3−ブタジエン33部、酸性基含有単量体としてのイタコン酸4部、連鎖移動剤としてのt−ドデシルメルカプタン0.3部、および乳化剤としてのラウリル硫酸ナトリウム0.35部を容器Aに入れ、混合物を得た。得られた混合物を、容器Aから耐圧容器Bへ添加すると同時に、重合開始剤としての過硫酸カリウム1部を耐圧容器Bへ添加することにより、重合を開始した。なお、重合反応温度は75℃を維持した。
重合転化率が97%になった時点で冷却し、反応を停止して、非水溶性重合体を含む混合物を得た。得られた非水溶性重合体を含む混合物に、濃度5%の水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体を除去した。その後冷却し、非水溶性重合体を含む水分散液(固形分濃度:40%)を得た。
Example 1
<Preparation of water-insoluble polymer>
63 parts of styrene as an aromatic vinyl monomer, 33 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, 4 parts of itaconic acid as an acidic group-containing monomer, t-dodecyl as a chain transfer agent 0.3 parts of mercaptan and 0.35 parts of sodium lauryl sulfate as an emulsifier were put in a container A to obtain a mixture. Polymerization was started by adding 1 part of potassium persulfate as a polymerization initiator to the pressure vessel B at the same time as adding the obtained mixture from the vessel A to the pressure vessel B. The polymerization reaction temperature was maintained at 75 ° C.
When the polymerization conversion rate reached 97%, the mixture was cooled and the reaction was stopped to obtain a mixture containing a water-insoluble polymer. A sodium hydroxide aqueous solution having a concentration of 5% was added to the resulting mixture containing the water-insoluble polymer to adjust the pH to 8. Thereafter, unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to obtain an aqueous dispersion (solid content concentration: 40%) containing a water-insoluble polymer.

<負極活物質の調製>
平均粒子径100μmの鱗片状黒鉛粒子を、ハイブリダイゼーションシステム(奈良機械製作所製、型番:NHS−3、回転数(ローター周速度):65m/秒、回転滞留時間:15分間)を用いて球形化処理することにより、体積平均粒子径(50%径)15μm、およびタップ密度1.02g/cm3の球状黒鉛粒子を得た。
その後、得られた球状黒鉛粒子100部に対し、低結晶性の被膜形成炭素材としてのタールピッチを30部添加し、ヘンシェルミキサーを用いて、200℃環境下で30分混合した。得られた混合物を、窒素雰囲気下1000℃でプレ焼成し、更に窒素雰囲気下1500℃で焼成し、粉砕することにより、球状黒鉛粒子のコアがタールピッチで非晶質コートされた、炭素系の負極活物質を得た。得られた負極活物質の体積平均粒子径(50%径)は15μm、タップ密度は1.04g/cm3であった。
<Preparation of negative electrode active material>
Spherical graphite particles having an average particle diameter of 100 μm are spheroidized using a hybridization system (manufactured by Nara Machinery Co., Ltd., model number: NHS-3, rotation speed (rotor peripheral speed): 65 m / sec, rotation residence time: 15 minutes). By processing, spherical graphite particles having a volume average particle diameter (50% diameter) of 15 μm and a tap density of 1.02 g / cm 3 were obtained.
Thereafter, 30 parts of tar pitch as a low-crystalline film-forming carbon material was added to 100 parts of the obtained spherical graphite particles, and mixed for 30 minutes in a 200 ° C. environment using a Henschel mixer. The obtained mixture was pre-fired at 1000 ° C. in a nitrogen atmosphere, and further fired at 1500 ° C. in a nitrogen atmosphere and pulverized, whereby the core of spherical graphite particles was amorphous-coated with tar pitch, A negative electrode active material was obtained. The obtained negative electrode active material had a volume average particle diameter (50% diameter) of 15 μm and a tap density of 1.04 g / cm 3 .

<負極用スラリー組成物の調製>
ディスパー付きのプラネタリーミキサーに、上述の通り得られた炭素系の負極活物質を100部、および水溶性重合体としてのアクリルアミド系重合体(アクリル酸単位/アクリルアミド単位=50%/50%)を固形分換算で1部加えて混合物を得た。得られた混合物にイオン交換水を添加して固形分濃度60%に調整した後、25℃環境下で60分間混合した。次に、イオン交換水を用いて固形分濃度を48%に調整した後、更に25℃環境下で15分間混合し、負極活物質と水溶性重合体との混合液を得た。
得られた負極活物質と水溶性重合体との混合液に、上述の方法で調製した非水溶性重合体を含む水分散液(非水溶性重合体の固形分換算で2部)を加え、イオン交換水を用いて最終固形分濃度が50%となるように調整し、更に10分間混合した後、減圧下で脱泡処理することにより、負極用スラリー組成物を得た。
<Preparation of slurry composition for negative electrode>
In a planetary mixer with a disper, 100 parts of the carbon-based negative electrode active material obtained as described above, and an acrylamide polymer (acrylic acid unit / acrylamide unit = 50% / 50%) as a water-soluble polymer One part in terms of solid content was added to obtain a mixture. Ion exchange water was added to the resulting mixture to adjust the solid content concentration to 60%, and then the mixture was mixed in a 25 ° C. environment for 60 minutes. Next, after adjusting solid content concentration to 48% using ion-exchange water, it further mixed for 15 minutes in 25 degreeC environment, and obtained the liquid mixture of a negative electrode active material and a water-soluble polymer.
To the mixed liquid of the obtained negative electrode active material and the water-soluble polymer, an aqueous dispersion containing the water-insoluble polymer prepared by the above-described method (2 parts in terms of solid content of the water-insoluble polymer) is added, The final solid content concentration was adjusted to 50% using ion-exchanged water, and further mixed for 10 minutes, and then defoamed under reduced pressure to obtain a slurry composition for negative electrode.

<非水系二次電池用負極の作製>
上述の通り得られた負極用スラリー組成物を、コンマコーター(サンクメタル社製)を用いて、集電体としての銅箔(厚さ15μm)の片面上に、塗付量が9mg/cm2以上10mg/cm2以下となるように塗布した。負極用スラリー組成物が塗布された銅箔を、60℃のオーブン内を2分間かけて搬送(速度:0.5m/分)することにより乾燥させ、更に120℃のオーブン内で2分間加熱処理して、負極原反を得た。
得られた負極原反を、ロールプレス機を用いて、11トン以上14トン以下の荷重でプレスすることにより、密度が1.75g/cm3の負極合材層を集電体上に備える非水系二次電池用負極を得た。
<Preparation of negative electrode for non-aqueous secondary battery>
Using a comma coater (manufactured by Sunk Metal Co., Ltd.), the coating amount of the negative electrode slurry composition obtained as described above was 9 mg / cm 2 on one surface of a copper foil (thickness 15 μm) as a current collector. It was applied so as to be 10 mg / cm 2 or less. The copper foil coated with the slurry composition for the negative electrode is dried by transporting it in a 60 ° C. oven for 2 minutes (speed: 0.5 m / min), and further heat-treated in a 120 ° C. oven for 2 minutes. Thus, a negative electrode raw material was obtained.
The obtained negative electrode raw material is pressed with a load of 11 to 14 tons using a roll press machine, whereby a negative electrode mixture layer having a density of 1.75 g / cm 3 is provided on the current collector. A negative electrode for an aqueous secondary battery was obtained.

<非水系二次電池用正極の作製>
プラネタリーミキサーに、正極活物質としてのLiCoO2を100部、導電材としてのアセチレンブラック(電気化学工業社製、品番:HS−100)を2部、結着材としてのポリフッ化ビニリデン(クレハ化学社製、品番:KF−1100)を2部、および全固形分濃度が67%となる量の2−メチルピリロドンを加えて混合し、正極用スラリー組成物を調製した。
得られた正極用スラリー組成物を、前記コンマコーターで、集電体としてのアルミ箔(厚さ20μm)の片面上に塗布した。正極用スラリー組成物が塗布されたアルミ箔を、60℃のオーブン内を2分間かけて搬送(速度:0.5m/分)することにより乾燥させ、更に120℃のオーブン内で2分間加熱処理をした。同様の塗布・乾燥作業を、集電体のもう一方の表面上にも施すことによって、正極原反を得た。
得られた正極原反を、前記ロールプレス機を用いて、正極合材層の密度が3.40mg/cm3以上3.50g/cm3以下となるようにプレスすることにより、非水系二次電池用正極を得た。
<Preparation of positive electrode for non-aqueous secondary battery>
In a planetary mixer, 100 parts of LiCoO 2 as a positive electrode active material, 2 parts of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., product number: HS-100) as a conductive material, and polyvinylidene fluoride (Kureha Chemical) as a binder A slurry composition for a positive electrode was prepared by adding and mixing 2 parts of a product, product number: KF-1100) and 2-methylpyrrhodone in an amount such that the total solid content concentration was 67%.
The obtained positive electrode slurry composition was applied onto one surface of an aluminum foil (thickness 20 μm) as a current collector by the comma coater. The aluminum foil coated with the positive electrode slurry composition is dried by conveying it in an oven at 60 ° C. over 2 minutes (speed: 0.5 m / min), and further heat-treated in an oven at 120 ° C. for 2 minutes. Did. The same coating and drying operation was performed on the other surface of the current collector to obtain a positive electrode raw material.
By pressing the obtained positive electrode fabric using the roll press machine so that the density of the positive electrode mixture layer is 3.40 mg / cm 3 or more and 3.50 g / cm 3 or less, a non-aqueous secondary material is obtained. A positive electrode for a battery was obtained.

<非水系二次電池の製造>
単層のポリプロピレン製セパレータ(長さ500mm×幅65mm×厚さ25μm、気孔率55%、乾式法により製造)の片面に、接着層用組成物(日本ゼオン社製、品名:BM−2500M)をグラビアコート法(線数300)により塗布し、50℃環境下で1分間乾燥させることにより、1層当たりの厚みが1μmの接着層をセパレータ上に形成した。次に、接着層が形成されたセパレータを長さ50mm×幅40mmに切り出し、上述の通り作製した正極を長さ45mm×幅35mmに切り出し、上述の通り作製した負極を長さ47mm×幅37mmに切り出した。そして、切り出した正極、セパレータ、および負極を、以下のように重ねて、非水系二次電池を製造した。
具体的には、両面に正極合材層を備える正極の両側にセパレータ配置して正極をセパレータで挟んだ。なお、正極合材層にはセパレータの接着層が塗布されている側の面が接触するようにした。そして、セパレータの、正極と接していない側の面(接着層が設けられていない側の面)上に、それぞれ負極を重ね、積層体を得た。そして、得られた積層体を、電池容器としてのアルミ包材外装に入れ、積層電池を得た。
その後、積層電池内に、電解液としての濃度1.0MのLiPF6溶液(溶媒:エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(体積比)の混合溶媒であり、添加剤としてビニレンカーボネート(2質量%)を含有している)を充填した。更に、電解液が充填された積層電池を、温度150℃でヒートシールし、アルミ包材外装の開口を密封閉口した後に、25℃環境下で5秒間、圧力10MPaのプレスを行って正極とセパレータとを加圧接着して未充電非水系二次電池を得た(組立工程)。そして、得られた未充電非水系二次電池を用いて負極とセパレータとの接着力を評価した。
また、得られた未充電非水系二次電池を、温度60℃にて15時間加熱した後に(加熱工程)、25℃環境下、0.2Cで4.2Vまで定電流定電圧法(カットオフ条件:0.02C)により充電深度20%まで充電し(初期充電工程)、非水系二次電池としてのリチウムイオン二次電池を製造した。そして、製造したリチウムイオン二次電池を用いて初期満充電後の負極合材層の状態および非水系二次電池のレート特性を評価した。
<Manufacture of non-aqueous secondary batteries>
On one side of a single-layer polypropylene separator (length 500 mm × width 65 mm × thickness 25 μm, porosity 55%, manufactured by dry method), an adhesive layer composition (manufactured by ZEON Corporation, product name: BM-2500M) An adhesive layer having a thickness of 1 μm per layer was formed on the separator by applying by a gravure coating method (number of lines: 300) and drying in a 50 ° C. environment for 1 minute. Next, the separator on which the adhesive layer was formed was cut out into a length of 50 mm × a width of 40 mm, the positive electrode prepared as described above was cut out into a length of 45 mm × width of 35 mm, and the negative electrode prepared as described above was cut into a length of 47 mm × width of 37 mm. Cut out. And the cut-out positive electrode, separator, and negative electrode were piled up as follows, and the non-aqueous secondary battery was manufactured.
Specifically, separators were disposed on both sides of the positive electrode provided with the positive electrode mixture layer on both sides, and the positive electrode was sandwiched between the separators. The positive electrode mixture layer was brought into contact with the surface on which the separator adhesive layer was applied. Then, the negative electrode was stacked on the surface of the separator that was not in contact with the positive electrode (the surface on which the adhesive layer was not provided) to obtain a laminate. And the obtained laminated body was put into the aluminum packaging material exterior as a battery container, and the laminated battery was obtained.
Then, in the laminated battery, a LiPF 6 solution having a concentration of 1.0 M as an electrolytic solution (solvent: ethylene carbonate (EC) / ethyl methyl carbonate (EMC) = 3/7 (volume ratio) mixed solvent, additive) As vinylene carbonate (containing 2% by mass). Further, the laminated battery filled with the electrolytic solution was heat sealed at a temperature of 150 ° C., and the opening of the aluminum packaging exterior was hermetically closed, followed by pressing at a pressure of 10 MPa for 5 seconds in an environment of 25 ° C. And an uncharged non-aqueous secondary battery were obtained (assembly process). And the adhesive force of a negative electrode and a separator was evaluated using the obtained non-charging non-aqueous secondary battery.
Moreover, after heating the obtained non-chargeable non-aqueous secondary battery at a temperature of 60 ° C. for 15 hours (heating process), the constant current / constant voltage method (cut-off method) up to 4.2 V at 0.2 C in a 25 ° C. environment. Under the condition: 0.02C), the battery was charged to a charging depth of 20% (initial charging step) to manufacture a lithium ion secondary battery as a non-aqueous secondary battery. Then, the state of the negative electrode mixture layer after the initial full charge and the rate characteristics of the non-aqueous secondary battery were evaluated using the manufactured lithium ion secondary battery.

(実施例2)
非水系二次電池の製造時に、加熱工程における加熱温度を50℃に変更した以外は実施例1と同様にして、非水溶性重合体、負極活物質、スラリー組成物、負極、正極および非水系二次電池を製造した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Example 2)
A water-insoluble polymer, a negative electrode active material, a slurry composition, a negative electrode, a positive electrode, and a non-aqueous system were produced in the same manner as in Example 1 except that the heating temperature in the heating step was changed to 50 ° C. during the production of the non-aqueous secondary battery. A secondary battery was manufactured. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例3)
非水溶性重合体の調製時に、スチレンの量を29.5部とし、1.3−ブタジエンの量を47.5部とし、イタコン酸の量を3部とし、t−ドデシルメルカプタンの量を1.3部とし、更にその他の単量体としてのアクリロニトリル20部を混合物に追加した。また、スラリー組成物の調製時に、水溶性重合体の種類をカルボキシメチルセルロースのナトリウム塩(ダイセルファインケム社製、品名:CMCダイセル2200)に変更した。更に、非水系二次電池の製造時に、組立工程において、負極合材層にセパレータの接着層が接触するようにし、セパレータの、負極と接していない側の面(接着層が設けられていない側の面)上に正極を重ね、更に、ヒートシールにてアルミ包材外装の開口を密封閉口した後に、25℃環境下で5秒間、圧力10MPaのプレスを行って負極とセパレータとを加圧接着して未充電非水系二次電池を得た。上記以外は実施例1と同様にして、非水溶性重合体、負極活物質、スラリー組成物、負極、正極および非水系二次電池を製造した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Example 3)
In preparing the water-insoluble polymer, the amount of styrene is 29.5 parts, the amount of 1.3-butadiene is 47.5 parts, the amount of itaconic acid is 3 parts, and the amount of t-dodecyl mercaptan is 1 3 parts, and 20 parts of acrylonitrile as another monomer was added to the mixture. Moreover, at the time of preparation of the slurry composition, the kind of the water-soluble polymer was changed to a sodium salt of carboxymethyl cellulose (manufactured by Daicel Finechem, product name: CMC Daicel 2200). Furthermore, when manufacturing the non-aqueous secondary battery, in the assembly process, the adhesive layer of the separator is in contact with the negative electrode mixture layer, and the side of the separator that is not in contact with the negative electrode (the side where the adhesive layer is not provided) After the positive electrode is stacked on top of the other and the opening of the aluminum packaging material exterior is hermetically closed by heat sealing, the negative electrode and the separator are pressure-bonded by pressing at a pressure of 10 MPa for 5 seconds in a 25 ° C. environment. Thus, an uncharged non-aqueous secondary battery was obtained. Except for the above, a water-insoluble polymer, a negative electrode active material, a slurry composition, a negative electrode, a positive electrode, and a nonaqueous secondary battery were produced in the same manner as Example 1. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例4)
負極活物質の調製時に、ハイブリダイゼーションシステムの条件を、回転数(ローター周速度):40m/秒、回転滞留時間:10分間に調整することにより、非晶質コートされた負極活物質のタップ密度を0.86g/cm3に変更し、更に、スラリー組成物の調製時に、水溶性重合体の種類をカルボキシメチルセルロースのナトリウム塩(ダイセルファインケム社製、品名:CMCダイセル2200)に変更した以外は実施例1と同様にして、非水溶性重合体、負極活物質、スラリー組成物、負極、正極および非水系二次電池を製造した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
Example 4
When preparing the negative electrode active material, the tap density of the amorphous coated negative electrode active material was adjusted by adjusting the conditions of the hybridization system to a rotation speed (rotor peripheral speed): 40 m / second and a rotation residence time: 10 minutes. change to 0.86 g / cm 3, further, during the preparation of the slurry composition, the kind of the water-soluble polymer sodium salt of carboxymethyl cellulose (Daicel Finechem Corporation, product name: CMC Daicel 2200) was changed to an In the same manner as in Example 1, a water-insoluble polymer, a negative electrode active material, a slurry composition, a negative electrode, a positive electrode, and a non-aqueous secondary battery were produced. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例5)
スラリー組成物の調製時に、水溶性重合体の種類をカルボキシメチルセルロースのナトリウム塩(ダイセルファインケム社製、品名:CMCダイセル2200)に変更し、非水溶性重合体の配合量を1質量部に変更した以外は実施例1と同様にして、非水溶性重合体、負極活物質、スラリー組成物、負極、正極および非水系二次電池を製造した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Example 5)
At the time of preparing the slurry composition, the type of the water-soluble polymer was changed to a sodium salt of carboxymethyl cellulose (manufactured by Daicel Finechem, product name: CMC Daicel 2200), and the amount of the water-insoluble polymer was changed to 1 part by mass. Except for the above, a water-insoluble polymer, a negative electrode active material, a slurry composition, a negative electrode, a positive electrode, and a nonaqueous secondary battery were produced in the same manner as in Example 1. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例6)
スラリー組成物の調製時に、水溶性重合体の種類をカルボキシメチルセルロースのナトリウム塩(ダイセルファインケム社製、品名:CMCダイセル2200)に変更した。更に、非水系二次電池の製造時に、組立工程において、負極合材層にセパレータの接着層が接触するようにし、セパレータの、負極と接していない側の面(接着層が設けられていない側の面)上に正極を重ね、更に、ヒートシールにてアルミ包材外装の開口を密封閉口した後に、50℃環境下で5秒間、圧力10MPaのプレスを行って負極とセパレータとを加圧接着して未充電非水系二次電池を得た。上記以外は実施例1と同様にして、非水溶性重合体、負極活物質、スラリー組成物、負極、正極および非水系二次電池を製造した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Example 6)
During the preparation of the slurry composition, the type of the water-soluble polymer was changed to a sodium salt of carboxymethyl cellulose (manufactured by Daicel Finechem, product name: CMC Daicel 2200). Furthermore, when manufacturing the non-aqueous secondary battery, in the assembly process, the adhesive layer of the separator is in contact with the negative electrode mixture layer, and the side of the separator that is not in contact with the negative electrode (the side where the adhesive layer is not provided) After the positive electrode is stacked on top of the other, and the opening of the aluminum packaging material is hermetically sealed by heat sealing, the negative electrode and the separator are pressure-bonded by pressing at a pressure of 10 MPa for 5 seconds in a 50 ° C. environment. Thus, an uncharged non-aqueous secondary battery was obtained. Except for the above, a water-insoluble polymer, a negative electrode active material, a slurry composition, a negative electrode, a positive electrode, and a nonaqueous secondary battery were produced in the same manner as Example 1. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例1)
非水溶性重合体の調製時に、t−ドデシルメルカプタンの量を3.0部に変更した以外は、実施例3と同様にして、非水溶性重合体、負極活物質、スラリー組成物、負極、正極および非水系二次電池を製造した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative Example 1)
Except that the amount of t-dodecyl mercaptan was changed to 3.0 parts during the preparation of the water-insoluble polymer, the same procedure as in Example 3 was followed, except that the water-insoluble polymer, the negative electrode active material, the slurry composition, the negative electrode, A positive electrode and a non-aqueous secondary battery were manufactured. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例2)
スラリー組成物の調製時に、水溶性重合体の種類をカルボキシメチルセルロースのナトリウム塩(ダイセルファインケム社製、品名:CMCダイセル2200)に変更し、更に、非水系二次電池の製造時に、加熱工程における加熱温度を25℃に変更した以外は、実施例1と同様にして、非水溶性重合体、負極活物質、スラリー組成物、負極、正極および非水系二次電池を製造した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative Example 2)
During the preparation of the slurry composition, the type of the water-soluble polymer was changed to a sodium salt of carboxymethyl cellulose (manufactured by Daicel Finechem Co., Ltd., product name: CMC Daicel 2200), and further, the heating in the heating step was performed during the production of the non-aqueous secondary battery. A water-insoluble polymer, a negative electrode active material, a slurry composition, a negative electrode, a positive electrode, and a nonaqueous secondary battery were produced in the same manner as in Example 1 except that the temperature was changed to 25 ° C. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例3)
スラリー組成物の調製時に、水溶性重合体の種類をアクリル酸エチル単位(EA)/アクリル酸ブチル単位(BA)/メタクリルアミド単位(MAA)=40/30/30(質量比)の共重合体に変更した。更に、非水系二次電池の製造時に、組立工程において、負極合材層にセパレータの接着層が接触するようにし、セパレータの、負極と接していない側の面(接着層が設けられていない側の面)上に正極を重ね、更に、ヒートシールにてアルミ包材外装の開口を密封閉口した後に、30℃環境下で5秒間、圧力10MPaのプレスを行って負極とセパレータとを加圧接着して未充電非水系二次電池を得た。上記以外は実施例1と同様にして、非水溶性重合体、負極活物質、スラリー組成物、負極、正極および非水系二次電池を製造した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative Example 3)
Copolymer of ethyl acrylate unit (EA) / butyl acrylate unit (BA) / methacrylamide unit (MAA) = 40/30/30 (mass ratio) at the time of preparing the slurry composition Changed to Furthermore, when manufacturing the non-aqueous secondary battery, in the assembly process, the adhesive layer of the separator is in contact with the negative electrode mixture layer, and the side of the separator that is not in contact with the negative electrode (the side where the adhesive layer is not provided) After the positive electrode is stacked on top of the other, and the opening of the aluminum packaging exterior is hermetically sealed by heat sealing, the negative electrode and the separator are pressure-bonded by pressing at a pressure of 10 MPa for 5 seconds in a 30 ° C. environment. Thus, an uncharged non-aqueous secondary battery was obtained. Except for the above, a water-insoluble polymer, a negative electrode active material, a slurry composition, a negative electrode, a positive electrode, and a nonaqueous secondary battery were produced in the same manner as Example 1. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例4)
スラリー組成物の調製時に、水溶性重合体の種類をカルボキシメチルセルロースのナトリウム塩(ダイセルファインケム社製、品名:CMCダイセル2200)に変更した。更に、非水系二次電池の製造時に、組立工程で得られた未充電非水系二次電池を、加熱工程を施すことなく、0.1Cで充電深度20%まで充電し、その後60℃環境下で15時間加熱し、更に0.2Cで4.2Vまで定電流定電圧充電法(カットオフ条件:0.02C)によって充電して非水系二次電池を製造した。上記以外は実施例1と同様にして、非水溶性重合体、負極活物質、スラリー組成物、負極、正極および非水系二次電池を製造した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative Example 4)
During the preparation of the slurry composition, the type of the water-soluble polymer was changed to a sodium salt of carboxymethyl cellulose (manufactured by Daicel Finechem, product name: CMC Daicel 2200). Furthermore, when the non-aqueous secondary battery is manufactured, the non-charged non-aqueous secondary battery obtained in the assembly process is charged to a charging depth of 20% at 0.1 C without performing a heating process, and then in a 60 ° C. environment. For 15 hours, and further charged at 0.2 C to 4.2 V by a constant current constant voltage charging method (cut-off condition: 0.02 C) to produce a non-aqueous secondary battery. Except for the above, a water-insoluble polymer, a negative electrode active material, a slurry composition, a negative electrode, a positive electrode, and a nonaqueous secondary battery were produced in the same manner as Example 1. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

Figure 2017050112
TDM:t−ドデシルメルカプタン
THF:テトラヒドロフラン
AA/Aam:アクリル酸/アクリルアミド共重合体
CMC:カルボキシメチルセルロースのナトリウム塩
EA/BA/MAA:アクリル酸エチル/アクリル酸ブチル/メタクリルアミド共重合体
Figure 2017050112
TDM: t-dodecyl mercaptan THF: tetrahydrofuran AA / Aam: acrylic acid / acrylamide copolymer CMC: sodium salt of carboxymethyl cellulose EA / BA / MAA: ethyl acrylate / butyl acrylate / methacrylamide copolymer

表1より、初期充電工程前に加熱工程を施した実施例1〜6では、初期充電後に加熱処理を施した比較例4と比較し、初期充放電直後のレート特性が優れた非水系二次電池が得られることが分かる。
しかし、初期充電工程前に加熱工程を施したとしても、加熱温度が25℃である比較例2では、加熱温度が40℃以上である実施例1〜6と比較し、初期充放電直後のレート特性が著しく悪化してしまうことが分かる。
また、電解液膨潤度が4.0倍超、かつ、ゲル量が80質量%未満である非水溶性重合体を用いた比較例1では、電解液膨潤度が1.0倍超4.0倍以下、かつ、ゲル量が80質量%以上95質量%以下である非水溶性重合体を用いた実施例1〜6と比較し、初期充電後の負極合材層の欠損が著しく進み、また初期充放電直後のレート特性も著しく悪化していることが分かる。
さらに、電解液膨潤度が2.0倍超の水溶性重合体を用いた比較例3では、電解液膨潤度が1.0倍超2.0倍以下の水溶性重合体を用いた実施例1〜6と比較し、初期充電後の負極合材層の欠損が著しく進み、また初期充放電直後のレート特性も著しく悪化していることが分かる。
なお、密度1.70g/cm3以上の負極合材層を用いている実施例1〜6において、初期充電後の負極合材層の欠損も程度も低く、かつ良好な初期充放電直後のレートを維持していることから、本発明の製造方法は、高密度電極を用いた場合であっても、高い電池性能を維持した非水系二次電池の製造に適していることが分かる。
From Table 1, in Examples 1-6 which performed the heating process before the initial charge process, compared with the comparative example 4 which performed the heat treatment after the initial charge, the non-aqueous secondary with excellent rate characteristics immediately after the initial charge / discharge. It can be seen that a battery is obtained.
However, even if the heating step is performed before the initial charging step, in Comparative Example 2 in which the heating temperature is 25 ° C., the rate immediately after the initial charge / discharge is compared with Examples 1 to 6 in which the heating temperature is 40 ° C. or higher. It turns out that a characteristic deteriorates remarkably.
Further, in Comparative Example 1 using a water-insoluble polymer having an electrolyte solution swelling degree of more than 4.0 times and a gel amount of less than 80% by mass, the electrolyte solution swelling degree of more than 1.0 times is 4.0. In comparison with Examples 1 to 6 using a water-insoluble polymer having a gel amount of 80% by mass or more and 95% by mass or less, the loss of the negative electrode mixture layer after the initial charge is remarkably advanced. It can be seen that the rate characteristics immediately after the initial charge / discharge are also significantly deteriorated.
Further, in Comparative Example 3 using a water-soluble polymer having an electrolyte solution swelling degree exceeding 2.0 times, an example using a water-soluble polymer having an electrolyte solution swelling degree exceeding 1.0 times and 2.0 times or less Compared with 1-6, it turns out that the defect | deletion of the negative mix layer after initial charge progresses remarkably, and the rate characteristic immediately after initial charge / discharge is also getting worse remarkably.
In Examples 1 to 6 using a negative electrode mixture layer having a density of 1.70 g / cm 3 or more, the negative electrode mixture layer after initial charge has low defects and a good rate immediately after initial charge / discharge. Thus, it can be seen that the manufacturing method of the present invention is suitable for manufacturing a non-aqueous secondary battery that maintains high battery performance even when a high-density electrode is used.

本発明によれば、電池性能の低下を抑制しつつ、負極合材層上にSEI皮膜を形成した非水系二次電池を効率的に製造する方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the method of manufacturing efficiently the non-aqueous secondary battery which formed the SEI membrane | film | coat on the negative mix layer can be provided, suppressing the fall of battery performance.

Claims (5)

正極と、負極と、電解液とを電池容器に収容して未充電非水系二次電池を組み立てる組立工程と、
前記未充電非水系二次電池を40℃以上に加熱する加熱工程と、
前記加熱工程後に前記未充電非水系二次電池を充電する初期充電工程と、
を含み、
前記負極は、負極活物質と、非水溶性重合体と、水溶性重合体とを含有する負極合材層を備え、
前記非水溶性重合体は、電解液膨潤度が1.0倍超4.0倍以下、かつ、ゲル量が80質量%以上95質量%以下であり、
前記水溶性重合体は、電解液膨潤度が1.0倍超2.0倍以下である、
非水系二次電池の製造方法。
An assembly process for assembling an uncharged non-aqueous secondary battery by containing a positive electrode, a negative electrode, and an electrolyte in a battery container;
A heating step of heating the uncharged non-aqueous secondary battery to 40 ° C. or higher;
An initial charging step of charging the uncharged non-aqueous secondary battery after the heating step;
Including
The negative electrode includes a negative electrode mixture layer containing a negative electrode active material, a water-insoluble polymer, and a water-soluble polymer,
The water-insoluble polymer has an electrolyte swelling degree of more than 1.0 times and 4.0 times or less, and a gel amount of 80% by mass or more and 95% by mass or less,
The water-soluble polymer has an electrolyte swelling degree of more than 1.0 times and not more than 2.0 times.
A method for producing a non-aqueous secondary battery.
前記負極活物質のタップ密度が0.8g/cm3以上1.2g/cm3以下である、請求項1に記載の非水系二次電池の製造方法。 The method for producing a non-aqueous secondary battery according to claim 1, wherein the negative electrode active material has a tap density of 0.8 g / cm 3 or more and 1.2 g / cm 3 or less. 前記負極合材層の密度が1.60g/cm3以上である、請求項1または2に記載の非水系二次電池の製造方法。 The manufacturing method of the non-aqueous secondary battery according to claim 1 or 2, wherein the density of the negative electrode mixture layer is 1.60 g / cm 3 or more. 前記負極合材層は、前記負極活物質100質量部当たり、前記非水溶性重合体を0.5質量部以上4質量部以下の割合で含有し、前記水溶性重合体を0.5質量部以上3質量部以下の割合で含有する、請求項1から3のいずれか1項に記載の非水系二次電池の製造方法。   The negative electrode mixture layer contains the water-insoluble polymer in a proportion of 0.5 parts by mass or more and 4 parts by mass or less per 100 parts by mass of the negative electrode active material, and 0.5 parts by mass of the water-soluble polymer. The manufacturing method of the non-aqueous secondary battery of any one of Claim 1 to 3 contained in the ratio of 3 mass parts or less above. 前記未充電非水系二次電池は、前記負極と前記正極との間にセパレータを更に備え、
前記未充電非水系二次電池を温度60℃で15時間放置した際の前記負極と前記セパレータとの接着力が1.0N/m以下である、請求項1から4のいずれか1項に記載の非水系二次電池の製造方法。
The uncharged non-aqueous secondary battery further includes a separator between the negative electrode and the positive electrode,
5. The adhesive force between the negative electrode and the separator when the uncharged non-aqueous secondary battery is left at a temperature of 60 ° C. for 15 hours is 1.0 N / m or less. Of manufacturing a non-aqueous secondary battery.
JP2015171310A 2015-08-31 2015-08-31 Method for manufacturing non-aqueous secondary battery Active JP6724311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015171310A JP6724311B2 (en) 2015-08-31 2015-08-31 Method for manufacturing non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015171310A JP6724311B2 (en) 2015-08-31 2015-08-31 Method for manufacturing non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2017050112A true JP2017050112A (en) 2017-03-09
JP6724311B2 JP6724311B2 (en) 2020-07-15

Family

ID=58279523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015171310A Active JP6724311B2 (en) 2015-08-31 2015-08-31 Method for manufacturing non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP6724311B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021891A1 (en) 2017-07-28 2019-01-31 日本ゼオン株式会社 Electrochemical element electrode, electrochemical element, and manufacturing method for electrochemical element electrode
JP2019160684A (en) * 2018-03-15 2019-09-19 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
CN110710043A (en) * 2017-05-05 2020-01-17 罗伯特·博世有限公司 Lithium ion battery and method for prelithiation of anode
WO2021256467A1 (en) * 2020-06-16 2021-12-23 株式会社クラレ Binder suitable for electricity storage device electrodes, binder solution for electricity storage device electrodes, electricity storage device electrode slurry, electricity storage device electrode, and electricity storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161784A (en) * 2012-02-06 2013-08-19 Samsung Sdi Co Ltd Lithium secondary battery
JPWO2012057324A1 (en) * 2010-10-28 2014-05-12 日本ゼオン株式会社 Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery
JPWO2012090669A1 (en) * 2010-12-28 2014-06-05 Jsr株式会社 Electrode binder composition and method for producing the same, electrode slurry, electrode, and electrochemical device
WO2015033827A1 (en) * 2013-09-03 2015-03-12 日本ゼオン株式会社 Slurry composition for negative electrode for lithium ion secondary battery, manufacturing method for negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2015064465A1 (en) * 2013-10-28 2015-05-07 日本ゼオン株式会社 Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery and production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012057324A1 (en) * 2010-10-28 2014-05-12 日本ゼオン株式会社 Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery
JPWO2012090669A1 (en) * 2010-12-28 2014-06-05 Jsr株式会社 Electrode binder composition and method for producing the same, electrode slurry, electrode, and electrochemical device
JP2013161784A (en) * 2012-02-06 2013-08-19 Samsung Sdi Co Ltd Lithium secondary battery
WO2015033827A1 (en) * 2013-09-03 2015-03-12 日本ゼオン株式会社 Slurry composition for negative electrode for lithium ion secondary battery, manufacturing method for negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2015064465A1 (en) * 2013-10-28 2015-05-07 日本ゼオン株式会社 Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery and production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110710043A (en) * 2017-05-05 2020-01-17 罗伯特·博世有限公司 Lithium ion battery and method for prelithiation of anode
JP2020518991A (en) * 2017-05-05 2020-06-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Lithium ion battery and method for prelithiation of anode
US11769900B2 (en) 2017-05-05 2023-09-26 Robert Bosch Gmbh Lithium ion battery and prelithiation method of anode
WO2019021891A1 (en) 2017-07-28 2019-01-31 日本ゼオン株式会社 Electrochemical element electrode, electrochemical element, and manufacturing method for electrochemical element electrode
JP2019160684A (en) * 2018-03-15 2019-09-19 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JP7022325B2 (en) 2018-03-15 2022-02-18 トヨタ自動車株式会社 Manufacturing method of non-aqueous electrolyte secondary battery
WO2021256467A1 (en) * 2020-06-16 2021-12-23 株式会社クラレ Binder suitable for electricity storage device electrodes, binder solution for electricity storage device electrodes, electricity storage device electrode slurry, electricity storage device electrode, and electricity storage device

Also Published As

Publication number Publication date
JP6724311B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
US10044026B2 (en) Paste composition for lithium ion secondary battery negative electrode-use, composite particles for lithium ion secondary battery negative electrode-use, slurry composition for lithium ion secondary battery negative electrode-use, negative electrode for lithium ion secondary battery-use, and lithium ion secondary battery
JP5761197B2 (en) Secondary battery negative electrode binder composition, secondary battery negative electrode slurry composition, secondary battery negative electrode, secondary battery, and method for producing secondary battery negative electrode binder composition
JP6589857B2 (en) Method for producing positive electrode for lithium ion secondary battery provided with electrolytic solution
WO2017094252A1 (en) Composition for non-aqueous secondary cell adhesive layer, adhesive layer for non-aqueous secondary cell, laminate body, and non-aqueous secondary cell
CN105814718B (en) Conductive material paste for electrode, method for producing positive electrode slurry, method for producing positive electrode, and secondary battery
US11807698B2 (en) Binder for non-aqueous secondary battery porous membrane-use, composition for non-aqueous secondary battery porous membrane-use, porous membrane for non-aqueous secondary battery-use, and non-aqueous secondary battery
CN110383546B (en) Conductive material dispersion for electrochemical element electrode, slurry composition and method for producing same, electrode, and electrochemical element
JP6398191B2 (en) Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP6645101B2 (en) Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2016170768A1 (en) Binder composition for lithium ion secondary battery electrodes, slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
JPWO2017141791A1 (en) Non-aqueous secondary battery electrode binder composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, and non-aqueous secondary battery
JP6724311B2 (en) Method for manufacturing non-aqueous secondary battery
KR102407600B1 (en) Binder composition for a non-aqueous secondary battery electrode, a slurry composition for a non-aqueous secondary battery electrode, an electrode for a non-aqueous secondary battery, and a non-aqueous secondary battery
US10784502B2 (en) Slurry composition for secondary battery negative electrode, negative electrode for secondary battery, and secondary battery
JP2017033871A (en) Negative electrode and lithium ion secondary battery, and manufacturing method of the same
US20190273261A1 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR102369487B1 (en) Binder composition for a non-aqueous secondary battery electrode, a slurry composition for a non-aqueous secondary battery electrode, an electrode for a non-aqueous secondary battery, and a non-aqueous secondary battery
JP6938919B2 (en) Manufacturing method of lithium ion secondary battery
KR102661643B1 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP7405081B2 (en) Binder composition for all-solid-state secondary batteries, slurry composition for all-solid-state secondary battery electrode composite layer, slurry composition for all-solid-state secondary battery solid electrolyte layer, and all-solid-state secondary battery
WO2012043763A1 (en) Electrode mixture for electricity-storage device, method for manufacturing said electrode mixture, and electricity-storage-device electrode and lithium-ion secondary battery using said electrode mixture
JP6759566B2 (en) Non-aqueous secondary battery
JP7371497B2 (en) Adhesive composition for power storage device, functional layer for power storage device, power storage device, and manufacturing method of power storage device
JP7192774B2 (en) Electrochemical element electrode slurry composition, electrochemical element electrode, electrochemical element, and method for producing slurry composition for electrochemical element electrode
WO2023074502A1 (en) Slurry composition for nonaqueous secondary battery functional layers, separator for nonaqueous secondary batteries, and nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200608

R150 Certificate of patent or registration of utility model

Ref document number: 6724311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250