JP6723858B2 - VIBRATION MOTOR CONTROL DEVICE, LENS DEVICE HAVING THE SAME, AND IMAGING DEVICE - Google Patents

VIBRATION MOTOR CONTROL DEVICE, LENS DEVICE HAVING THE SAME, AND IMAGING DEVICE Download PDF

Info

Publication number
JP6723858B2
JP6723858B2 JP2016149906A JP2016149906A JP6723858B2 JP 6723858 B2 JP6723858 B2 JP 6723858B2 JP 2016149906 A JP2016149906 A JP 2016149906A JP 2016149906 A JP2016149906 A JP 2016149906A JP 6723858 B2 JP6723858 B2 JP 6723858B2
Authority
JP
Japan
Prior art keywords
frequency
phase difference
speed
type motor
vibration type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016149906A
Other languages
Japanese (ja)
Other versions
JP2017042033A5 (en
JP2017042033A (en
Inventor
俊輔 宮嶋
俊輔 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US15/234,228 priority Critical patent/US9715162B2/en
Priority to EP16001794.3A priority patent/EP3136587A3/en
Priority to CN201610685344.XA priority patent/CN106469997B/en
Publication of JP2017042033A publication Critical patent/JP2017042033A/en
Publication of JP2017042033A5 publication Critical patent/JP2017042033A5/ja
Application granted granted Critical
Publication of JP6723858B2 publication Critical patent/JP6723858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は振動型モータの制御装置、及びそれを有するレンズ装置及び撮像装置に関する。 The present invention relates to a vibration motor control device, and a lens device and an imaging device having the same.

電気−機械エネルギー変換素子(圧電素子や電歪素子)が接合された金属弾性体等により形成された振動体と、該振動体に加圧接触する接触体とを有する振動型モータの制御方法として様々な提案がされている。特許文献1は、周波数を固定して位相差を変更する位相差制御を使用し、位相差が規定の値に達すると位相差を固定して周波数を変更させる周波数制御を使用し、振動型モータの速度のダイナミックレンジを広くする技術が開示されている。 As a control method of a vibration type motor having a vibrating body formed of a metal elastic body or the like to which an electro-mechanical energy conversion element (piezoelectric element or electrostrictive element) is bonded, and a contact body that makes pressure contact with the vibrating body Various proposals have been made. Patent Document 1 uses a phase difference control that fixes the frequency and changes the phase difference, and uses a frequency control that fixes the phase difference and changes the frequency when the phase difference reaches a prescribed value. A technique for widening the dynamic range of the speed is disclosed.

特開2011−067035号公報JP, 2011-067035, A

特許文献1に開示されている技術は、振動型モータの駆動速度のダイナミックレンジを広く使用する方法が開示されている。この場合、位相差制御から周波数制御に切替えた後は、周波数を一定量増減させても振動型モータの駆動速度の増減が一定ではなくなってしまい制御性が低下する。一方、周波数制御領域における周波数に対する駆動速度の非線形性の影響を低減するために位相差制御をする周波数を低い周波数にすると、低速度域において制御性が低下しやすい。これは、周波数−速度曲線の共振周波数より低周波数側においては、周波数変化に対する速度変化が大きいことと、小位相差での周波数−速度曲線の共振周波数は、大位相差での周波数−速度曲線に対して高くなるためである。すなわち、位相差制御時の周波数をより高周波に設定すると周波数制御領域の非線形性の影響を受けて制御性が低下し、周波数制御領域の非線形性の影響を低減するために位相差制御時の周波数を低周波数側に設定すると共振周波数より低周波側の周波数−速度曲線に従って制御するため不安定な動作となる。このように、振動型モータの制御性と低位相差時の安定性の両立が困難であった。 The technique disclosed in Patent Document 1 discloses a method of widely using the dynamic range of the driving speed of the vibration type motor. In this case, after switching from the phase difference control to the frequency control, even if the frequency is increased or decreased by a fixed amount, the increase or decrease in the driving speed of the vibration type motor is not constant, and the controllability deteriorates. On the other hand, if the frequency for performing the phase difference control is set to a low frequency in order to reduce the influence of the non-linearity of the driving speed on the frequency in the frequency control region, the controllability is likely to decrease in the low speed region. This is because on the lower frequency side than the resonance frequency of the frequency-speed curve, the speed change with respect to the frequency change is large, and the resonance frequency of the frequency-speed curve with a small phase difference is the frequency-speed curve with a large phase difference. This is because it becomes higher than That is, if the frequency during phase difference control is set to a higher frequency, the controllability is degraded due to the influence of the nonlinearity in the frequency control region, and the frequency during phase difference control is reduced to reduce the influence of the nonlinearity in the frequency control region. Is set to the low frequency side, control is performed according to the frequency-speed curve on the low frequency side of the resonance frequency, resulting in unstable operation. As described above, it is difficult to achieve both the controllability of the vibration motor and the stability when the phase difference is low.

そこで、本発明の目的は、駆動速度の広ダイナミックレンジを維持しつつ制御性と低位相差時の安定性を両立させた振動型モータ制御装置を提供することである。 Therefore, an object of the present invention is to provide a vibration type motor control device that maintains both a wide dynamic range of driving speed and controllability and stability at the time of low phase difference.

上記目的を達成するために、本発明の振動型モータ制御装置は、位相差を有する第1の周波信号および第2の周波信号が印加された電気−機械エネルギー変換素子により振動が励起される振動体と、前記振動体に接触する接触体を相対的に移動させる振動型モータの駆動速度を制御する振動型モータ制御装置は、前記第1及び第2の周波信号の周波数と位相差との間の関係を記憶し、該関係に基づいて前記周波数に対する前記位相差を決定する位相差決定手段と、前記第1及び第2の周波信号の周波数と、該周波数に基づき前記位相差決定手段により決定された位相差と、に基づいて、前記振動型モータの速度を制御する制御手段と、を有し、前記位相差決定手段が記憶す前記関係は、前記振動型モータの周波数−速度特性における共振周波数より低い周波数と前記位相差との間の関係を含まない、ことを特徴とする。
To achieve the above object, the vibration type motor control apparatus of the present invention, the first frequency signal Oyo electric beauty second frequency signal is applied having a phase difference - vibration is excited by the mechanical energy conversion element that a vibrator, the vibration type motor controller for controlling the driving speed of the vibration type motor relatively moving a contact member in contact with the vibrator, the frequency and the phase difference of the first and second frequency signal relationship storing a phase difference determining means for determining the phase difference for the frequency based on the relationship, the frequency of the first and second frequency signals, the phase difference determined on the basis of the frequency between a phase difference determined by the means, based on said control means for controlling the speed of the vibration type motor has, the relationship the phase difference determining means you store the frequency of the vibration type motor - It is characterized in that the relationship between the frequency lower than the resonance frequency in the velocity characteristic and the phase difference is not included.

本発明によれば駆動速度の広ダイナミックレンジを維持しつつ、制御性と低位相差時の安定性を両立させる事が可能となる。 According to the present invention, it is possible to achieve both controllability and stability at the time of low phase difference while maintaining a wide dynamic range of drive speed.

本発明の振動型モータ制御装置の実施例の構成図Configuration diagram of an embodiment of a vibration type motor control device of the present invention 本発明の振動型モータ制御装置の第1の実施例のF−V特性曲線とF−V制御線FV characteristic curve and FV control line of the first embodiment of the vibration type motor control device of the present invention 本発明の振動型モータ制御装置の第1の実施例の(A)F−V特性曲線とF−V制御線、及び(B)周波数と位相差との関係(A) F-V characteristic curve and F-V control line of the first embodiment of the vibration type motor control device of the present invention, and (B) relationship between frequency and phase difference. 本発明の振動型モータ制御装置の第1の実施例の(A)F−V特性曲線とF−V制御線、及び(B)周波数と位相差との関係(A) F-V characteristic curve and F-V control line of the first embodiment of the vibration type motor control device of the present invention, and (B) relationship between frequency and phase difference. 本発明の振動型モータ制御装置の第2の実施例の(A)F−V特性曲線とF−V制御線、及び(B)周波数と位相差との関係(A) F-V characteristic curve and F-V control line of the second embodiment of the vibration type motor control device of the present invention, and (B) relationship between frequency and phase difference. 振動型モータの速度特性Vibration type motor speed characteristics 各起動周波数に対する速度軌跡Velocity locus for each starting frequency 本発明の各実施例における線形の定義を示す図The figure which shows the linear definition in each Example of this invention.

以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

(従来の振動型モータの制御の概略)
振動型モータは、電気−機械エネルギー変換素子(圧電素子や電歪素子)が接合された金属弾性体等により形成された振動体と、該振動体に加圧接触する接触体とを有する。位相差を有する複数の周波信号を圧電素子に印加すると、振動体に振動が励起され、該振動体と接触体とが相対移動して駆動力が発生する。振動型モータは、圧電素子に印加する周波信号の周波数(以下、単に周波数とも記載する)を変化させる方法(以下、周波数制御と記載する)や、圧電素子に印加する複数の周波信号の位相差(以下、単に位相差とも記載する)を変化させる方法(以下、位相差制御と記載する)で駆動制御される。周波数制御と位相差制御は公知のため詳細は省略する。
(Outline of conventional vibration motor control)
The vibration-type motor has a vibrating body formed of a metal elastic body or the like to which an electro-mechanical energy conversion element (piezoelectric element or electrostrictive element) is bonded, and a contact body that comes into pressure contact with the vibrating body. When a plurality of frequency signals having a phase difference are applied to the piezoelectric element, vibration is excited in the vibrating body, and the vibrating body and the contact body move relatively to generate a driving force. The vibration type motor has a method of changing a frequency (hereinafter, also simply referred to as frequency) of a frequency signal applied to the piezoelectric element (hereinafter, referred to as frequency control) and a phase difference between a plurality of frequency signals applied to the piezoelectric element. The drive is controlled by a method of changing (hereinafter, also referred to as a phase difference) (hereinafter, referred to as phase difference control). Since the frequency control and the phase difference control are known, the details are omitted.

制御性を確保するとともにダイナミックレンジを広くする方法として、従来、周波数を固定して位相差を変更する位相差制御を使用し、位相差が規定の値に達した後に、位相差を固定して周波数を変更する周波数制御を使用する技術が知られている。振動型モータにおける、周波数と位相差に対する駆動速度の関係(以後、F−V特性曲線とも記載する)を図6に示す。横軸に周波数、縦軸に駆動速度を示し、各曲線は位相差を10°から90°に固定して周波数を変えた場合の振動型モータのF−V特性曲線を表す。各位相差において最高速度が得られる周波数(以下、共振周波数とも記載する)より低周波側は周波数に対する駆動速度の変化が急激であるので、制御性を良くするため、一般にこの領域を振動型モータの制御に用いることは避ける傾向にある。 As a method of ensuring controllability and widening the dynamic range, conventionally, phase difference control that fixes the frequency and changes the phase difference is used, and after the phase difference reaches a specified value, the phase difference is fixed. Techniques using frequency control to change the frequency are known. FIG. 6 shows the relationship between the driving speed and the frequency and the phase difference in the vibration type motor (hereinafter also referred to as an FV characteristic curve). The horizontal axis represents frequency and the vertical axis represents drive speed. Each curve represents an FV characteristic curve of the vibration type motor when the phase difference is fixed from 10° to 90° and the frequency is changed. In order to improve the controllability, this region is generally set in order to improve controllability because the drive speed changes drastically on the low frequency side below the frequency at which the maximum speed is obtained in each phase difference (hereinafter also referred to as the resonance frequency). There is a tendency to avoid using it for control.

図7に振動型モータの速度特性において、起点となる周波数(以下、起動周波数)を変えた場合における位相差制御と周波数制御両方を使用した場合の駆動速度の軌跡を示す。図7は図6と同様に記載した。まず、位相差制御時の周波数を位相差10°の共振周波数Fresより高周波である周波数FresHとし、位相差90°で周波数制御に切替える場合を考える。この場合、破線の矢印に示す周波数−速度の軌跡をたどる。破線の矢印は位相差10°においても共振周波数Fresより高周波であるため制御は安定する。しかし、位相差90°以降の周波数制御では、破線の矢印が非線形な軌跡をたどる。つまり、周波数制御領域では、周波数を一定量増減させても振動型モータの駆動速度の増減が一定ではなくなり制御性が低下してしまう。周波数制御領域における非線形性による制御性の悪化の影響を低減するために位相差制御の周波数を周波数FresHより低周波な周波数FresLとすると、実線の矢印に示す駆動速度の軌跡をたどる。実線の矢印は破線の矢印に対して周波数制御の領域が狭くなり、周波数制御の非線形性の影響を低減する事が可能となる。しかし、位相差制御時の周波数FresLは位相差10°の共振周波数Fresより低周波側となり、位相差制御時に周波数をFresLとすると低位相差時に振動型モータの動作が不安定となる場合がある。一般に、振動型モータの周波数−速度特性における共振周波数は、高速度が出る位相差(図7の位相差90°)より、低速度が出る位相差(図7中位相差10°)の方が高い。このため、起動周波数を低周波数域に設定すると、F−V特性曲線の共振周波数より低周波数側の領域を制御に使用しなければならない場合がある。 FIG. 7 shows a locus of the driving speed when both the phase difference control and the frequency control are used in the case where the frequency serving as the starting point (hereinafter, the starting frequency) is changed in the speed characteristics of the vibration type motor. FIG. 7 is described similarly to FIG. 6. First, consider a case where the frequency during phase difference control is set to a frequency FresH, which is higher than the resonance frequency Fres with a phase difference of 10°, and frequency control is switched at a phase difference of 90°. In this case, the trajectory of frequency-velocity indicated by the dashed arrow is followed. The dashed arrow has a higher frequency than the resonance frequency Fres even when the phase difference is 10°, so that the control is stable. However, in frequency control after the phase difference of 90° or more, the dashed arrow follows a non-linear locus. That is, in the frequency control region, even if the frequency is increased or decreased by a certain amount, the increase or decrease in the drive speed of the vibration motor is not constant, and the controllability is deteriorated. When the frequency of the phase difference control is set to a frequency FresL that is lower than the frequency FresH in order to reduce the influence of deterioration of controllability due to the non-linearity in the frequency control region, the locus of the driving speed indicated by the solid arrow is traced. The solid arrow makes the frequency control area narrower than the broken arrow, and it is possible to reduce the influence of the nonlinearity of the frequency control. However, the frequency FresL during the phase difference control is lower than the resonance frequency Fres with the phase difference of 10°, and if the frequency is FresL during the phase difference control, the operation of the vibration motor may become unstable at the low phase difference. In general, the resonance frequency in the frequency-speed characteristics of the vibration type motor is lower in the phase difference (phase difference 10° in FIG. 7) in which the speed is lower than in the phase difference (phase difference 90° in FIG. 7) where the high speed is generated. high. For this reason, when the starting frequency is set to a low frequency range, it may be necessary to use a region on the low frequency side of the resonance frequency of the FV characteristic curve for control.

本実施例における振動型モータ制御装置の構成を図1に示す。以下の説明では、本発明をわかりやすくするために本発明の主要な部位のみ図示し、本発明の特徴ではない部位は省略した。 The configuration of the vibration type motor control device in this embodiment is shown in FIG. In the following description, in order to make the present invention easy to understand, only the main parts of the present invention are shown, and the parts that are not the features of the present invention are omitted.

振動型モータ制御装置100は振動型モータ103の駆動制御を行う。
周波数決定部101は振動型モータ103に入力する複数の周波信号の周波数を決定する。決定方法としては、例えば、振動型モータ103の位置を検出する位置検出部105の出力と目標入力部106の出力との差に応じて決定する。また、周波数は起動周波数記憶部107にて記憶されている起動周波数から低周波側を決定する。位相差決定部102は周波数決定部101にて決定された周波数に応じて複数の周波信号の位相差を決定する。詳細な決定方法は後述する。出力部104(制御手段)は周波数決定部101にて決定された周波数と位相差決定部102にて決定された位相差に基づいて複数の周波信号を振動型モータ103に出力する。
The vibration type motor control device 100 controls driving of the vibration type motor 103.
The frequency determination unit 101 determines the frequencies of a plurality of frequency signals input to the vibration motor 103. As a determination method, for example, it is determined according to the difference between the output of the position detection unit 105 that detects the position of the vibration motor 103 and the output of the target input unit 106. Further, the frequency determines the low frequency side from the starting frequency stored in the starting frequency storage unit 107. The phase difference determination unit 102 determines the phase difference of the plurality of frequency signals according to the frequency determined by the frequency determination unit 101. The detailed determination method will be described later. The output unit 104 (control unit) outputs a plurality of frequency signals to the vibration type motor 103 based on the frequency determined by the frequency determination unit 101 and the phase difference determined by the phase difference determination unit 102.

次に、図2乃至5を使用して位相差決定部102における位相差の決定方法を説明する。図2は図7と同様の、振動型モータに与える2つの周波信号の周波数と駆動速度の関係を、位相差をパラメータとして表した図である。 Next, a method of determining the phase difference in the phase difference determining unit 102 will be described with reference to FIGS. FIG. 2 is a view similar to FIG. 7, showing the relationship between the frequencies of the two frequency signals applied to the vibration type motor and the drive speed, using the phase difference as a parameter.

振動型モータのF−V特性では前述したように共振周波数より低周波数側では周波数に対する駆動速度の傾きが大きいため、制御性を考慮し駆動制御には使用しない領域とする。また、位相差がある程度大きくなると、図2に例示するように高周波数側の端部で急激に駆動速度が低下する特性(以後、「崖落ち」とも記載する)を示すので、この領域も制御性を考慮し駆動制御には使用しない領域とする。このように、周波数の変化に対して駆動速度の変化が大きくないF−V特性曲線の領域を制御に使用することにより、制御性の良好な制御を可能とする。 In the FV characteristic of the vibration type motor, since the slope of the drive speed with respect to the frequency is large on the lower frequency side than the resonance frequency as described above, the controllability is taken into consideration and the region is not used for drive control. Further, when the phase difference becomes large to some extent, the driving speed rapidly decreases at the end on the high frequency side as shown in FIG. 2 (hereinafter, also referred to as “cliff drop”). In consideration of the characteristics, the area is not used for drive control. As described above, by using the region of the FV characteristic curve in which the change of the driving speed is not large with respect to the change of the frequency for the control, it is possible to perform the control with good controllability.

最初に、制御に使用する位相差の範囲を決定する。ここでは制御の位相差の範囲として0゜から90゜を使用する場合を例示して説明する。ある所定の位相差(ここでは90゜)のF−V特性曲線上で、ターゲットとする制御速度範囲の最高速度V0を示す周波数(F0’、F0)の内、共振周波数より高い周波数F0を示す点P0を特定する(図3(A))。いずれの位相差のF−V特性の共振周波数より高周波側であり、崖落ちを示す高周波数側よりも低周波数側である起動周波数Fa2を設定し、起動周波数Fa2で駆動速度0の点P1と、前記所定の位相差(90゜)のF−V特性曲線上の点P0とを結ぶ。なお、直線P0〜P1がどの位相差のF−V特性曲線とも、共振周波数より低周波数側の領域で交差する(例:周波数Fa1を選択した場合)ことがなく、かつ、最高速度Vmaxを呈する位相差(ここでは90゜)のF−V特性曲線とも交わる(例:周波数Fa3を選択した場合)ことがないように、起動周波数Fa2を設定する。 First, the range of phase difference used for control is determined. Here, a case where 0° to 90° is used as the control phase difference range will be described as an example. On the FV characteristic curve having a certain phase difference (here, 90°), the frequency F0 higher than the resonance frequency is shown among the frequencies (F0′, F0) showing the maximum speed V0 in the target control speed range. The point P0 is specified (FIG. 3(A)). A starting frequency Fa2, which is higher than the resonance frequency of the FV characteristic of any phase difference and lower than the high frequency side indicating a cliff, is set, and a point P1 at a driving speed of 0 at the starting frequency Fa2 is set. , And the point P0 on the FV characteristic curve having the predetermined phase difference (90°). It should be noted that the straight lines P0 to P1 do not intersect with the F-V characteristic curve of any phase difference in the region on the lower frequency side than the resonance frequency (for example, when the frequency Fa1 is selected), and the maximum speed Vmax is exhibited. The starting frequency Fa2 is set so as not to intersect with the FV characteristic curve of the phase difference (here, 90°) (for example, when the frequency Fa3 is selected).

このようにして決定した直線P1〜P0は、周波数と駆動速度の関係が線形となっているため、この関係に基づいて、周波数を変化させて駆動速度を制御することにより、周波数に対する駆動速度の高い制御性を実現することができる。ここで、周波数の変化に対して、制御線である直線P1〜P0で駆動速度を変化させるためには、図2、3の直線に例示する周波数と位相差との関係を満たすように、周波数の変化に応じて位相差を変化させる制御が必要である。そのため、制御線である直線P1〜P0の関係を満たす、周波数Fa2から周波数F0(駆動速度0からV0)の範囲の周波数と位相差の関係(図3(B))を位相差決定部102に保持しておく。この図3(B)の周波数と位相差の関係を位相差決定部102にテーブル、数式等の関係として保持し、位相差決定部102が周波数に応じて振動型モータに出力する位相差を決定することにより、周波数の入力に対して、駆動速度を線形に制御することができる。 The straight lines P1 to P0 thus determined have a linear relationship between the frequency and the driving speed. Therefore, by changing the frequency and controlling the driving speed based on this relationship, High controllability can be realized. Here, in order to change the drive speed on the straight lines P1 to P0 which are the control lines with respect to the change of the frequency, the frequency is adjusted so as to satisfy the relationship between the frequency and the phase difference illustrated in the straight lines of FIGS. It is necessary to control the phase difference in accordance with the change of. Therefore, the relationship between the frequency and the phase difference in the range from the frequency Fa2 to the frequency F0 (driving speed 0 to V0) that satisfies the relationship of the straight lines P1 to P0 that are the control lines (FIG. 3B) is given to the phase difference determining unit 102. Keep it. The relationship between the frequency and the phase difference in FIG. 3B is held in the phase difference determining unit 102 as a relationship such as a table or a mathematical expression, and the phase difference determining unit 102 determines the phase difference output to the vibration type motor according to the frequency. By doing so, the drive speed can be linearly controlled with respect to the frequency input.

なお、図3中に示した周波数−速度の制御線として示した直線P1〜P0は、どの位相差のF−V特性曲線とも、共振周波数より低周波数側の領域とは交差することがなく、かつ、最高速度を呈する位相差のF−V特性曲線とも交わることがないように、設定されれば良い。駆動速度と周波数が線形の関係であるので、最高速度に対応する周波数は制御周波数範囲の中では最低の周波数であるが、最高速度に対応する位相差については必ずしも、図3(B)で例示したように最大の位相差とは限らない。例えば図4(A)に例示するように、最高速度を示すF−V特性曲線の位相差(図4(A)では70゜)が、制御範囲として使用する位相差範囲内で最高速度を示すF−V特性曲線の位相差(図4(A)では90゜)でない場合は、図4(B)のように制御範囲の最高速度V0の時が最大の位相差であるとは限らない。図4(B)の場合では、起動周波数から周波数を低下させるにつれ、一端、位相差は大きくなり、その後、小さくなって最高速度に対応する、周波数、位相差となる。このようなF−V制御線に基づいても、周波数と駆動速度を線形の関係で制御性良く制御することができるという効果を奏することができる。 It should be noted that the straight lines P1 to P0 shown as the frequency-speed control line in FIG. 3 do not intersect the FV characteristic curve of any phase difference with the region on the lower frequency side than the resonance frequency, Moreover, it may be set so as not to intersect with the FV characteristic curve of the phase difference exhibiting the maximum speed. Since the drive speed and the frequency have a linear relationship, the frequency corresponding to the maximum speed is the lowest frequency in the control frequency range, but the phase difference corresponding to the maximum speed is not necessarily illustrated in FIG. 3(B). As described above, it is not always the maximum phase difference. For example, as illustrated in FIG. 4A, the phase difference of the FV characteristic curve showing the maximum speed (70° in FIG. 4A) shows the maximum speed within the phase difference range used as the control range. If the phase difference of the F-V characteristic curve is not 90° in FIG. 4A, the maximum phase difference does not always occur at the maximum speed V0 in the control range as shown in FIG. 4B. In the case of FIG. 4B, as the frequency is lowered from the starting frequency, the phase difference increases once and then decreases to become the frequency and phase difference corresponding to the maximum speed. Even based on such an FV control line, it is possible to achieve an effect that the frequency and the driving speed can be controlled with a linear relationship with good controllability.

本発明の第2の実施例に係る振動型モータ103について、図5を参照しながら説明する。本実施例は、振動型モータ103のF−V特性によって、所望の最高速度V0から最低速度までを、周波数に対し線形に速度制御することができない場合の実施例である。
本実施例の振動型モータの装置の構成は実施例1の構成と同様であるので、省略する。
A vibration type motor 103 according to a second embodiment of the present invention will be described with reference to FIG. This embodiment is an embodiment in which the desired maximum speed V0 to the minimum speed cannot be linearly controlled with respect to the frequency due to the FV characteristic of the vibration motor 103.
The configuration of the vibration motor device according to the present embodiment is the same as that of the first embodiment, and therefore will be omitted.

ここでも位相差の範囲として0゜から90゜を使用する場合を例示して説明する。必要となる制御範囲の最高速度V0に対して、最高速度を示す位相差(ここでは90゜)のF−V特性曲線上で最高速度V0を示す周波数(F0’,F0)の内、共振周波数より高い周波数F0を示す点P0を特定する。次に、共振周波数より高周波側であり、崖落ちを示す高周波数側よりも低周波数側である起動周波数を設定する。ここで、起動周波数で駆動速度0の点P1と、位相差90゜のF−V特性曲線上の点P0とを結ぶ直線P0〜P1は、次のような場合に、駆動速度0から最高速度V0までの間を周波数に対して線形に制御することができる。すなわち、直線P0〜P1が、どの位相差のF−V特性曲線とも、共振周波数より低周波数側の領域とは交差する(周波数Fb2を選択した場合)ことがなく、かつ、最高速度を呈する位相差のF−V特性曲線とも交わる(周波数Fb3を選択した場合)ことがない場合である。しかし、図5(A)のF−V特性を有する振動モータの場合には、上記の条件を満たす直線P0〜P1が存在しないため、次のような周波数−速度制御線を採用する。 Here, the case where 0° to 90° is used as the range of the phase difference will be described as an example. Of the frequencies (F0', F0) showing the maximum speed V0 on the FV characteristic curve of the phase difference showing the maximum speed (here, 90°) with respect to the maximum speed V0 of the required control range, the resonance frequency A point P0 indicating a higher frequency F0 is identified. Next, the starting frequency, which is higher than the resonance frequency and lower than the high frequency indicating the cliff, is set. Here, the straight lines P0 to P1 connecting the point P1 at the driving frequency of 0 at the starting frequency and the point P0 on the F-V characteristic curve with the phase difference of 90° are from the driving speed 0 to the maximum speed in the following cases. It is possible to control linearly with respect to the frequency up to V0. That is, the straight lines P0 to P1 do not intersect the FV characteristic curve of any phase difference with the region on the lower frequency side of the resonance frequency (when the frequency Fb2 is selected) and exhibit the maximum speed. This is a case where the F-V characteristic curve of the phase difference does not intersect (when the frequency Fb3 is selected). However, in the case of the vibration motor having the FV characteristic of FIG. 5A, since there are no straight lines P0 to P1 that satisfy the above condition, the following frequency-speed control line is adopted.

まず、いずれの位相差のF−V特性曲線の共振周波数より高周波数側で、かつ、崖落ちを示す高周波数側よりも低周波数側に、起動周波数Fb3を設定し、起動周波数Fb3の点P1からの直線が、最高速度を示す位相差90゜のF−V特性曲線と交差せずに接触する最高速度の点P2を求める。大抵の場合は、この点P2において、直線P1〜P2は最高速度を示す位相差90゜のF−V特性曲線の接線となる。 First, the starting frequency Fb3 is set on the higher frequency side than the resonance frequency of the FV characteristic curve of any phase difference and on the lower frequency side than the high frequency side indicating the cliff drop, and the point P1 of the starting frequency Fb3 is set. The point P2 of the maximum speed at which the straight line from is in contact with the F-V characteristic curve showing the maximum speed and having a phase difference of 90° without crossing is obtained. In most cases, at this point P2, the straight lines P1 and P2 are tangents to the FV characteristic curve showing the maximum speed and having a phase difference of 90°.

点P1の周波数Fb3から点P2の周波数Fb1まではこの直線をF−V制御線として速度制御が実施され、周波数Fb1から制御の最高速度V0を示す周波数F0までは、位相差90゜のF−V特性曲線を制御線として位相差一定(ここでは90゜)で周波数を変更する制御がなされる。 From the frequency Fb3 at the point P1 to the frequency Fb1 at the point P2, speed control is performed using this straight line as the FV control line, and from the frequency Fb1 to the frequency F0 indicating the maximum control speed V0, a phase difference of 90° is applied. The V characteristic curve is used as a control line to control the frequency with a constant phase difference (here, 90°).

このようにして決定したF−V制御線(直線P1〜P2、曲線P2〜P0)は、周波数Fb3からFb1までの間では周波数と駆動速度の関係が線形である。周波数Fb1からF0まで(駆動速度V1(第1の速度)からV0まで)の間では周波数と駆動速度の関係が線形ではないが、直線P1〜P2の区間での線形に近い制御性を実現可能とする。また、直線P1〜P2と曲線P2〜P0との乗り移りも、直線P1〜P2と曲線P2〜P0とが接線の関係にあるため、乗り移り時に急激な加減速が発生することはなく、制御領域間の滑らかな移行が可能となる。なお、図5(A)に示した制御線P1〜P0に例示する周波数と位相差との関係を満たすように、周波数の変化に応じて位相差を変化させる制御が必要である。そのため、制御線P1〜P0の関係を満たす、周波数Fb3から周波数F0(駆動速度0からV0)の範囲の周波数と位相差の関係(図5(B))を位相差決定部102にテーブル、数式等の関係として保存しておく。この図5(B)の周波数と位相差の関係を位相差決定部102に保持し、位相差決定部102が周波数に応じて振動型モータに出力する位相差を決定することにより、周波数の入力に対して、低速度側については駆動速度を線形に、高速度側についてもほぼ線形に近い制御をすることができる。 The FV control line (straight lines P1 and P2, curves P2 and P0) determined in this way has a linear relationship between frequency and drive speed between frequencies Fb3 and Fb1. The relationship between the frequency and the driving speed is not linear between the frequencies Fb1 and F0 (driving speed V1 (first speed) to V0), but it is possible to realize the controllability close to linear in the section of the straight lines P1 and P2. And In addition, the transition between the straight lines P1 and P2 and the curves P2 and P0 is also tangential to the straight lines P1 and P2 and the curves P2 and P0. It enables a smooth transition of. Note that control is required to change the phase difference in accordance with the change in frequency so that the relationship between the frequency and the phase difference illustrated in the control lines P1 to P0 illustrated in FIG. 5A is satisfied. Therefore, the relationship between the frequency and the phase difference (FIG. 5B) in the range from the frequency Fb3 to the frequency F0 (driving speed 0 to V0) that satisfies the relationship between the control lines P1 to P0 is stored in the phase difference determination unit 102 as a table and mathematical expressions. Save as a relationship. The relationship between the frequency and the phase difference in FIG. 5B is held in the phase difference determining unit 102, and the phase difference determining unit 102 determines the phase difference output to the vibration type motor according to the frequency, thereby inputting the frequency. On the other hand, it is possible to control the driving speed linearly on the low speed side and almost linearly on the high speed side.

この構成により、本発明の制御装置は、駆動速度の広いダイナミックレンジを維持しつつ、制御性と低位相差時の安定性を両立させることができる。 With this configuration, the control device of the present invention can achieve both controllability and stability at the time of low phase difference while maintaining a wide dynamic range of driving speed.

なお、本実施例の直線P1〜P2の範囲のF−V制御線として、実施例1の図4に示したような制御線を採用してもよい。 As the FV control line in the range of the straight lines P1 and P2 of this embodiment, a control line as shown in FIG. 4 of the first embodiment may be adopted.

以上、説明した構成により周波数に応じて位相差を決定する事で、低位相差時も共振周波数より高周波数側でのF−V特性を使用しつつ、速度制御範囲の全域において、周波数に対する駆動速度の線形制御、もしくは、ほぼ線形特性を呈する制御を実現することが可能となる。よって、制御性と低位相差時の安定性を両立させる事が可能となる。また、周波数を起動周波数から低周波側に変更しつつ位相差を変更する事で駆動速度のダイナミックレンジを広く使用する事が可能である。 As described above, by determining the phase difference according to the frequency by the configuration described above, the FV characteristic on the high frequency side of the resonance frequency is used even when the phase difference is low, and the drive speed with respect to the frequency is used in the entire speed control range. It is possible to realize the linear control of, or the control exhibiting a substantially linear characteristic. Therefore, it becomes possible to achieve both controllability and stability at the time of low phase difference. Further, it is possible to widely use the dynamic range of the driving speed by changing the phase difference while changing the frequency from the starting frequency to the low frequency side.

本実施例では、使用する位相差を90°(0゜〜90゜)としたが、本発明はこれに限定されることはない。例えば、80°や70°としても本発明の効果を得る事が出来る。 In this embodiment, the phase difference used is 90° (0° to 90°), but the present invention is not limited to this. For example, the effect of the present invention can be obtained even at 80° or 70°.

本実施例では、位相差を0°から90°の間で変更するとしたが、位相差を変更する事で低速から高速まで得ることができればこれに限らない。例えば、90°〜180°や、−90゜〜0゜としても本発明の効果を得ることができる。 In the present embodiment, the phase difference is changed from 0° to 90°, but the invention is not limited to this as long as the phase difference can be obtained from low speed to high speed. For example, the effect of the present invention can be obtained even at 90° to 180° or −90° to 0°.

本実施例では、図5において周波数Fb3の位相差は0°としたが、制御装置として必要な最低速度が得られればこれに限らず、必ずしも本発明の効果を狙う制御速度が0を含まなければならないことはない。例えば、周波数Fb3において位相差10°として、点P2と結んだ直線に基づいて図5(A)と同様な曲線または直線を取得しても本発明の効果を得ることができる。 In the present embodiment, the phase difference of the frequency Fb3 is set to 0° in FIG. 5, but the present invention is not limited to this as long as the minimum speed required for the control device can be obtained, and the control speed aiming at the effect of the present invention does not necessarily include 0. There is nothing you have to do. For example, the effect of the present invention can be obtained even if the same curve or straight line as in FIG. 5A is acquired based on the straight line connecting the point P2 with the phase difference of 10° at the frequency Fb3.

本実施例では、起動周波数はFb3としたが、上記の条件をみたすことができればこれに限定されることはない。例えば、位相差10°の共振周波数と周波数Fb3の中間の周波数を起動周波数とし、上記の条件のように、点P2と結んだ直線が振動型モータのF−V特性上、各位相差の共振周波数より高周波側を通る直線であれば本発明の効果を得ることができる。 In this embodiment, the starting frequency is Fb3, but the starting frequency is not limited to this as long as the above conditions can be satisfied. For example, the intermediate frequency between the resonance frequency of the phase difference of 10° and the frequency Fb3 is set as the starting frequency, and the straight line connecting to the point P2 is the resonance frequency of each phase difference due to the FV characteristic of the vibration motor as in the above condition. The effect of the present invention can be obtained as long as it is a straight line passing through the higher frequency side.

実施例1又は2で説明した振動型モータ制御装置を、可動光学部材と該可動光学部材を駆動する振動型モータを駆動手段として備えるレンズ装置の、駆動制御装置として適用することができる。可動光学部材が可動レンズ群である場合、操作リングや操作つまみ等が目標入力部106に対応し、目標入力部106からの目標値と可動レンズ群の位置を検出する検出部105からの検出値との差分に基づいて、周波数決定部101で周波数が決定される。決定された周波数が位相差決定部102に入力され、記憶されている周波数と位相差との関係から位相差が決定され、この周波数と位相差に基づいて、振動型モータ103が制御されることになる。これにより、本発明の効果である、駆動速度の広ダイナミックレンジを維持しつつ、制御性と低位相差時の安定性を両立させることが可能となるレンズ装置を実現できる。 The vibration type motor control device described in the first or second embodiment can be applied as a drive control device for a lens device including a movable optical member and a vibration type motor for driving the movable optical member as driving means. When the movable optical member is the movable lens group, the operation ring, the operation knob, and the like correspond to the target input unit 106, and the target value from the target input unit 106 and the detection value from the detection unit 105 that detects the position of the movable lens group. The frequency is determined by the frequency determination unit 101 based on the difference between and. The determined frequency is input to the phase difference determination unit 102, the phase difference is determined from the stored relationship between the frequency and the phase difference, and the vibration type motor 103 is controlled based on the frequency and the phase difference. become. As a result, it is possible to realize a lens device that can achieve both controllability and stability at the time of low phase difference while maintaining a wide dynamic range of drive speed, which is an effect of the present invention.

更に、実施例1又は2で説明した振動型モータ制御装置を、可動光学部材と該可動光学部材を駆動する振動型モータを駆動手段として備えるレンズ装置と該レンズ装置で形成された光学像を撮像する撮像素子とを有する撮像装置の、駆動制御装置として用いることができる。この場合も、上記のレンズ装置に本発明の制御装置を適用した場合と同様に、本発明の効果である、駆動速度の広ダイナミックレンジを維持しつつ、制御性と低位相差時の安定性を両立させることが可能となる撮像装置を実現できる。 Furthermore, the vibrating motor control device described in the first or second embodiment is used to capture a lens device including a movable optical member and a vibrating motor that drives the movable optical member as driving means, and an optical image formed by the lens device. It can be used as a drive control device of an image pickup device having an image pickup element that operates. Also in this case, similarly to the case where the control device of the present invention is applied to the above lens device, the controllability and the stability at the time of the low phase difference are maintained while maintaining the wide dynamic range of the driving speed, which is the effect of the present invention. It is possible to realize an imaging device that can achieve both.

(線形の定義について)
図8を用いて本発明の各実施例における駆動速度の線形制御について、より詳細に説明する。本発明の各実施例において駆動速度の線形制御とは、厳密に数学的に線形である必要はなく、図8に両矢印及び斜線で示す範囲内で位相差制御と周波数制御を繰り返すような制御であってもよい。
(About the definition of linearity)
The linear control of the drive speed in each embodiment of the present invention will be described in more detail with reference to FIG. In each embodiment of the present invention, the linear control of the drive speed does not need to be strictly mathematically linear, and control for repeating the phase difference control and the frequency control within the range shown by the double-headed arrow and the diagonal line in FIG. May be

図8に示す範囲は、P0とP1を結ぶ直線を中心として低周波数側と高周波数側に所定の幅を持つ範囲である。この範囲は例えばP0とP1を結ぶ直線を中心として使用する周波数領域の幅の±10%以下の範囲、より好ましくは±6%以下の範囲である。より詳細には、起動周波数が94kHzであり、最高速度が得られる周波数が90kHzである場合には、図8に示す範囲はP0とP1を結ぶ直線を中心として±0.4kHzの範囲である。さらに、図8に示す範囲は、P0とP1を結ぶ直線を中心として高速側と低速側に所定の幅を持つ範囲としてもよい。例えば、P0とP1を結ぶ直線を中心として最高速度の±10%以下の範囲、より好ましくは±6%以下の範囲である。 The range shown in FIG. 8 is a range having a predetermined width on the low frequency side and the high frequency side with the straight line connecting P0 and P1 as the center. This range is, for example, a range of ±10% or less of the width of the frequency region used around the straight line connecting P0 and P1, and more preferably a range of ±6% or less. More specifically, when the starting frequency is 94 kHz and the frequency at which the maximum speed is obtained is 90 kHz, the range shown in FIG. 8 is a range of ±0.4 kHz around the straight line connecting P0 and P1. Further, the range shown in FIG. 8 may be a range having a predetermined width on the high speed side and the low speed side with the straight line connecting P0 and P1 as the center. For example, it is within a range of ±10% or less of the maximum speed, and more preferably within a range of ±6% or less around the straight line connecting P0 and P1.

なお、本発明の各実施例における駆動速度の線形制御は、定性的には次のことをいう。すなわち、振動型モータをフォーカスレンズの駆動に用い、周波数決定部が決定できる最小分解能で周波数を変更した場合に、フォーカスレンズの合焦位置が振動型モータの速度変動によってフォーカスレンズが理想的に駆動した場合の焦点深度を逸脱しないことをいう。 The linear control of the drive speed in each embodiment of the present invention qualitatively means the following. That is, when the vibration type motor is used to drive the focus lens and the frequency is changed with the minimum resolution that can be determined by the frequency determination unit, the focus lens ideally drives the focus lens due to the speed fluctuation of the vibration type motor. It means not to deviate from the depth of focus in the case of doing.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist thereof.

100 :振動型モータ制御装置
102 :位相差決定部
100: Vibration type motor control device 102: Phase difference determination unit

Claims (13)

位相差を有する第1の周波信号および第2の周波信号が印加された電気−機械エネルギー変換素子により振動が励起される振動体と、前記振動体に接触する接触体を相対的に移動させる振動型モータの駆動速度を制御する振動型モータ制御装置であって、
前記第1および第2の周波信号の周波数と位相差との間の関係を記憶し、該関係に基づいて前記周波数に対する前記位相差を決定する位相差決定手段と、
前記第1および第2の周波信号の周波数と、該周波数に基づき前記位相差決定手段により決定された位相差と、に基づいて、前記振動型モータの速度を制御する制御手段と、
を有し、
前記位相差決定手段が記憶す前記関係は、前記振動型モータの周波数−速度特性における共振周波数より低い周波数と前記位相差との間の関係を含まない、
ことを特徴とする振動型モータ制御装置。
First frequency signal and the electric second frequency signal is applied having a phase difference - and the vibrating body vibrated by mechanical energy conversion element is excited, a relatively a contact body in contact with said vibration member A vibration type motor control device for controlling the drive speed of a vibration type motor to be moved,
Storing a relationship between the frequency and the phase difference between the first and second frequency signals, a phase difference determining means for determining the phase difference for the frequency based on the relationship,
And the frequency of the first and second frequency signals, the control means and the phase difference determined by the phase difference determining means based on the frequency, based on the, to control the speed of the vibration type motor,
Have
The relationship the phase difference determining means you store the frequency of the vibration type motor - not including the relationship between the phase difference and a frequency lower than the resonant frequency in the velocity profile,
A vibration type motor control device characterized by the above.
前記位相差決定手段が記憶す前記関係に基づく前記振動型モータの速度は、制御範囲における周波数に対して速度が線形となる範囲を有すことを特徴とする請求項1に記載の振動型モータ制御装置。 Speed of the vibration type motor the phase difference determining means is based on the relationship you store the vibration of claim 1 speed against frequency, characterized in that that have a range of linear in the control range Type motor controller. 前記線形となる範囲は、前記制御範囲における最低速度を含ことを特徴とする請求項2に記載の振動型モータ制御装置。 Range of said linear vibration motor control device according to claim 2, characterized in including that the minimum speed in the control range. 前記線形となる範囲は、前記制御範囲における最高速度から該最高速度より低い第1の速度までの範囲を含まなことを特徴とする請求項2または請求項3に記載の振動型モータ制御装置。 Range of said linear vibration motor controller according possible not including the range from the maximum speed to less than the outermost speed first speed to claim 2 or claim 3, characterized in the said control range .. 前記位相差決定手段は、前記制御範囲における前記最高速度から前記第1の速度までの範囲における前記周波数と前記位相差と間の関係として、一定の位相差に対して周波数が変化する関係を記憶ことを特徴とする請求項4に記載の振動型モータ制御装置。 The phase difference determining means, as the relationship between the phase difference and the frequency in the range up to the first speed from the maximum speed in the control range, the relationship whose frequency varies for a constant phase difference vibration type motor control apparatus according to claim 4, characterized in that you store. 前記線形となる範囲は、前記制御範囲における最高速度を含ことを特徴とする請求項2または請求項3に記載の振動型モータ制御装置。 Range of said linear vibration motor control device according to the maximum speed to claim 2 or claim 3, characterized in including it in the control range. 前記振動型モータの周波数−速度特性における前記共振周波数は、前記位相差一定に保たれている条件において最大の速度が得られる周波数であことを特徴とする請求項2に記載の振動型モータ制御装置。 Frequency of the vibration type motor - the resonant frequency in the rate characteristic, the vibration type according to claim 2, wherein the phase difference is equal to or maximum speed Ru frequency der obtained in conditions that are held constant Motor control device. 可動光学部材と、
前記光学部材を駆動する振動型モータと、
前記振動型モータの駆動速度を制御する請求項1ないし請求項7のうちいずれか1項に記載の振動型モータ制御装置と、
有することを特徴とするレンズ装置。
An optical member movable,
A vibration type motor for driving the optical member,
The vibration type motor control device according to any one of claims 1 to 7, which controls a driving speed of the vibration type motor ,
Lens apparatus characterized by having a.
位相差を有する第1の周波信号および第2の周波信号が印加される振動型モータの移動部材の速度を制御する振動型モータ制御装置であって、 A vibration type motor control device for controlling the speed of a moving member of a vibration type motor to which a first frequency signal and a second frequency signal having a phase difference are applied,
前記第1および第2の周波信号の周波数と前記位相差との間の関係を記憶し、前記周波数と前記関係とに基づいて前記周波数に対する前記位相差を決定し、 Storing a relationship between the frequencies of the first and second frequency signals and the phase difference, determining the phase difference with respect to the frequency based on the frequency and the relationship,
前記周波数と決定された前記位相差とに基づいて前記速度を制御し、 Controlling the speed based on the frequency and the determined phase difference,
前記関係は、前記関係に基づいて前記周波数とともに前記位相差が変更されつつ、前記周波数とともに前記速度が線形に変化するように構成されている、 The relationship is configured such that the speed changes linearly with the frequency while the phase difference is changed with the frequency based on the relationship.
ことを特徴とする振動型モータ制御装置。A vibration type motor control device characterized by the above.
前記移動部材の位置と前記移動部材の目標位置とに基づいて、前記周波数を決定することを特徴とする請求項9に記載の振動型モータ制御装置。 The vibration type motor control device according to claim 9, wherein the frequency is determined based on a position of the moving member and a target position of the moving member. 前記関係は、前記関係に基づいて前記周波数とともに前記位相差が変更されつつ、離散的に変更された前記周波数とともに前記速度が線形に変化するように構成されていることを特徴とする請求項9または請求項10に記載の振動型モータ制御装置。 10. The relationship is configured such that the phase difference changes with the frequency based on the relationship, and the speed changes linearly with the discretely changed frequency. Alternatively, the vibration type motor control device according to claim 10. 光学部材と、 An optical member,
前記光学部材を移動させる振動型モータと、 A vibration type motor for moving the optical member,
前記振動型モータに含まれる移動部材の速度を制御する請求項9ないし請求項11のうちいずれか1項に記載の振動型モータ制御装置と、 The vibration type motor control device according to any one of claims 9 to 11, which controls the speed of a moving member included in the vibration type motor,
を有することを特徴とするレンズ装置。A lens device comprising:
請求項8または請求項12に記載のレンズ装置と、
前記レンズ装置によって形成された像を受ける撮像素子と
を有することを特徴とする撮像装置。
The lens device according to claim 8 or 12 ,
An imaging element Ru receiving an image formed by the lens apparatus,
An imaging device comprising:
JP2016149906A 2015-08-19 2016-07-29 VIBRATION MOTOR CONTROL DEVICE, LENS DEVICE HAVING THE SAME, AND IMAGING DEVICE Active JP6723858B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/234,228 US9715162B2 (en) 2015-08-19 2016-08-11 Vibration motor controller, and lens apparatus and image pickup apparatus that include the same
EP16001794.3A EP3136587A3 (en) 2015-08-19 2016-08-12 Vibration motor controller, and lens apparatus and image pickup apparatus that include the same
CN201610685344.XA CN106469997B (en) 2015-08-19 2016-08-18 Vibrating motor controller and lens devices and image pick-up device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015161869 2015-08-19
JP2015161869 2015-08-19

Publications (3)

Publication Number Publication Date
JP2017042033A JP2017042033A (en) 2017-02-23
JP2017042033A5 JP2017042033A5 (en) 2019-09-12
JP6723858B2 true JP6723858B2 (en) 2020-07-15

Family

ID=58206780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016149906A Active JP6723858B2 (en) 2015-08-19 2016-07-29 VIBRATION MOTOR CONTROL DEVICE, LENS DEVICE HAVING THE SAME, AND IMAGING DEVICE

Country Status (2)

Country Link
JP (1) JP6723858B2 (en)
CN (1) CN106469997B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114002803A (en) * 2020-07-28 2022-02-01 上海艾为电子技术股份有限公司 Driving chip and driving method of motor and electronic equipment
CN113188649B (en) * 2021-04-30 2023-11-14 歌尔股份有限公司 Method and device for detecting resonant frequency of vibration motor, terminal equipment and storage medium

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE522024C2 (en) * 1999-03-17 2004-01-07 Ericsson Telefon Ab L M Vibrator and a method for controlling a vibrator as well as mobile phone and pager with such vibrator
JP2002199758A (en) * 2000-12-28 2002-07-12 Canon Inc Vibration type actuator controller
JP4541785B2 (en) * 2003-09-01 2010-09-08 キヤノン株式会社 Vibration type actuator drive control device and vibration type actuator drive control method
JP4314088B2 (en) * 2003-09-25 2009-08-12 キヤノン株式会社 Control device and control method for vibration actuator, device using vibration actuator as drive source
JP2008067441A (en) * 2006-09-05 2008-03-21 Mizoue Project Japan:Kk Ultrasonic motor controller and its method, program, recording medium, and ultrasonic motor system
JP5328259B2 (en) * 2007-09-12 2013-10-30 キヤノン株式会社 Control device for vibration wave driving device and control method for vibration wave driving device
JP2010183816A (en) * 2009-02-09 2010-08-19 Olympus Corp Ultrasonic motor
JP5553564B2 (en) * 2009-09-18 2014-07-16 キヤノン株式会社 Vibration type motor control device and imaging device
JP5506552B2 (en) * 2010-06-07 2014-05-28 キヤノン株式会社 Control device for vibration actuator and control method for vibration actuator

Also Published As

Publication number Publication date
CN106469997A (en) 2017-03-01
CN106469997B (en) 2019-05-07
JP2017042033A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6324817B2 (en) Optical scanner and optical deflector control method
JP6579778B2 (en) Vibration type driving device, replacement lens including vibration type driving device, imaging device, and method of manufacturing vibration type driving device
US8526130B2 (en) Oscillating actuator drive unit, lens barrel, optical apparatus, method for adjusting a voltage, and computer-readable recording medium
US20120019185A1 (en) Methods for controlling one or more positioning actuators and devices thereof
JP6723858B2 (en) VIBRATION MOTOR CONTROL DEVICE, LENS DEVICE HAVING THE SAME, AND IMAGING DEVICE
US20170214340A1 (en) Driving apparatus of vibration-type actuator method of controlling driving vibration-type actuator and image pickup apparatus
JP2010233443A (en) Driving device, lens barrel, and camera
JP6591662B2 (en) Lens drive control method for fast autofocus and apparatus therefor
JP2009089586A (en) Device and method for controlling oscillatory wave-drive device
JP6478680B2 (en) Control device, lens device, and imaging device
JP2011259618A5 (en)
US10447176B2 (en) Vibration type actuator control apparatus, apparatus having the same, and storage medium storing vibration type actuator control program
US20150180373A1 (en) Driver of vibrator, method of driving the same, lens driver, vibration device, and imaging device
JP2016126263A (en) Imaging device and control method of imaging device
JP5110826B2 (en) Vibration wave motor control device, vibration wave motor control method, and program
JP2009240043A (en) Drive controller of vibrating actuator, lens barrel equipped with the same, camera, and drive control method of the vibrating actuator
JP6055700B2 (en) Optical deflection module
US20150249809A1 (en) Projection apparatus and projection method
KR101137463B1 (en) Driving method of reciprocal lens actuator
US9715162B2 (en) Vibration motor controller, and lens apparatus and image pickup apparatus that include the same
JP5874462B2 (en) Drive unit for vibration actuator, lens barrel
JP6378609B2 (en) Vibration type motor control device, lens device having the same, imaging device, and method for controlling vibration type motor
JP5843911B2 (en) Device and driving method of vibration actuator
JP2017042033A5 (en)
JP2008141950A (en) Driving apparatus for piezo-electric device and optimal driving frequency calculation method of piezo-electric device

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200624

R151 Written notification of patent or utility model registration

Ref document number: 6723858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151