JP6721349B2 - Pilot type solenoid valve - Google Patents

Pilot type solenoid valve Download PDF

Info

Publication number
JP6721349B2
JP6721349B2 JP2016015212A JP2016015212A JP6721349B2 JP 6721349 B2 JP6721349 B2 JP 6721349B2 JP 2016015212 A JP2016015212 A JP 2016015212A JP 2016015212 A JP2016015212 A JP 2016015212A JP 6721349 B2 JP6721349 B2 JP 6721349B2
Authority
JP
Japan
Prior art keywords
pilot
main
flow path
valve body
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016015212A
Other languages
Japanese (ja)
Other versions
JP2017133629A5 (en
JP2017133629A (en
Inventor
高史 山口
高史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP2016015212A priority Critical patent/JP6721349B2/en
Publication of JP2017133629A publication Critical patent/JP2017133629A/en
Publication of JP2017133629A5 publication Critical patent/JP2017133629A5/ja
Application granted granted Critical
Publication of JP6721349B2 publication Critical patent/JP6721349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding Valves (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

本発明は、電磁石駆動のパイロット弁を備え、パイロット弁により制御されるパイロット流体で主弁を切換えるパイロット形電磁弁に関する。 The present invention relates to a pilot-type solenoid valve that includes an electromagnet-driven pilot valve and that switches a main valve with a pilot fluid controlled by the pilot valve.

この種のパイロット形電磁弁は、電磁石の励磁によってばね力に抗してパイロット流路を切換えられるパイロット弁と、パイロット流路の切換えによって作用するパイロット流体の圧力で主流路を切換えられる主弁とを備えている。そして、パイロット弁は、パイロット弁体に絞り溝を設け、電磁石を非励磁にして主弁がばね力で中立位置に復帰する際に、低圧側に排出するパイロット流体を絞り制御して、主弁の主弁体の復帰速度を緩やかにし、復帰時のショックを低減している。 This type of pilot solenoid valve includes a pilot valve that can switch the pilot flow passage against the spring force by the excitation of an electromagnet, and a main valve that can switch the main flow passage by the pressure of the pilot fluid that acts by switching the pilot flow passage. Equipped with. The pilot valve is provided with a throttle groove in the pilot valve body, and when the electromagnet is de-excited to return the main valve to the neutral position by spring force, the pilot fluid discharged to the low pressure side is throttled to control the main valve. The main valve body's return speed is slowed down to reduce the shock at the time of return.

特開平11−257504Japanese Patent Laid-Open No. 11-257504

ところが、かかる従来のパイロット形電磁弁では、主弁を切換える際に、主流路を流れる流体の流速を緩やかにできないため、切換える際の切換ショックをいまだ十分に低減することができなかった。 However, in such a conventional pilot type solenoid valve, when switching the main valve, the flow velocity of the fluid flowing through the main flow path cannot be made gentle, and therefore the switching shock at the time of switching cannot be sufficiently reduced.

本発明の課題は、主弁を切換える際に、切換ショックを低減し得るパイロット形電磁弁を提供するものである。 An object of the present invention is to provide a pilot type solenoid valve capable of reducing switching shock when switching the main valve.

かかる課題を達成すべく、本発明は次の手段をとった。即ち、
電磁石の励磁、非励磁によってパイロット弁体を作動してパイロット流路を切換えるパイロット弁と、パイロット流路を流れるパイロット流体の作用、非作用により主弁体を作動して主流路を切換える主弁と、パイロット流路を流れるパイロット流体を絞り制御する絞り弁とを具備し、主弁の主弁体には、主流路を流れる流体を絞り制御する絞り部を設け、パイロット弁は、パイロット流路を圧力源からのパイロット圧力流体を供給するパイロット供給流路と、第1パイロット負荷流路と、第2パイロット負荷流路と、低圧側に接続するパイロット排出流路とから構成し、第1パイロット負荷流路をパイロット排出流路に切換連通して第2パイロット負荷流路をパイロット供給流路に切換連通する第1切換位置と、第1パイロット負荷流路をパイロット供給流路に切換連通して第2パイロット負荷流路をパイロット排出流路に切換連通する第2切換位置と、中立位置との3位置を有し、絞り弁は、第1パイロット負荷流路を流れるパイロット流体の一方向への流れを弁座から離脱して自由流れとすると共に、パイロット流体の他方向への流れを弁座に着座して絞り孔を流す制御流れとする円筒形状の第1逆止め弁体と、第1逆止め弁体に嵌合して回動操作による進退で第1逆止め弁体に形成した絞り孔の開度を調整自在に設定する第1絞り弁体と、第2パイロット負荷流路を流れるパイロット流体の一方向への流れを弁座から離脱して自由流れとすると共に、パイロット流体の他方向への流れを弁座に着座して絞り孔を流す制御流れとする円筒形状の第2逆止め弁体と、第2逆止め弁体に嵌合して回動操作による進退で第2逆止め弁体に形成した絞り孔の開度を調整自在に設定する第2絞り弁体とを備え、第1絞り弁体と第2絞り弁体には当接して軸方向移動量を規制する当接部を軸方向先端に設け、主弁は、主流路を圧力源からの圧力流体を供給する主供給流路と、負荷側に接続する第1主負荷流路と第2主負荷流路と、低圧側に接続する主排出流路から構成し、第1主負荷流路を主排出流路に切換連通して第2主負荷流路を主供給流路に切換連通する第1切換位置と、第1負荷流路を主供給流路に切換連通して第2主負荷流路を主排出流路に切換連通する第2切換位置と、中立位置との3位置を有し、主弁体に作用するパイロット流体を導入する第1作用室と第2作用室とを第1パイロット負荷流路と第2パイロット負荷流路とにそれぞれ接続し、第1作用室へのパイロット流体の導入で主弁体を第1切換位置に切換え、第2作用室へのパイロット流体の導入で主弁体を第2切換位置に切換え、両作用室からのパイロット流体の導出で主弁体を中立位置にし、主弁体の最大軸方向移動量を規定して、主供給流路から第1主負荷流路または第2主負荷流路に流れる最大流量を変更自在に設定するねじ部材を設け、絞り部は主弁体を中立位置から第1切換位置または第2切換位置に切換える切換過渡期に、第1主負荷流路または第2主負荷流路から主排出流路に流れる流体を絞り制御することを特徴とするパイロット形電磁弁がそれである。
In order to achieve this object, the present invention has taken the following means. That is,
A pilot valve that operates the pilot valve body by exciting or de-exciting the electromagnet to switch the pilot flow path, and a main valve that operates the main valve body by the action or non-action of the pilot fluid flowing in the pilot flow path to switch the main flow path. And a throttle valve for restricting control of the pilot fluid flowing through the pilot flow passage, and a main valve body of the main valve is provided with a throttle portion for restricting control of the fluid flowing through the main flow passage. A pilot supply flow path for supplying a pilot pressure fluid from a pressure source, a first pilot load flow path, a second pilot load flow path, and a pilot discharge flow path connected to the low pressure side. A first switching position for switching and communicating the flow passage to the pilot discharge flow passage and switching and communicating the second pilot load flow passage to the pilot supply flow passage; and a first switching position for switching and communicating the first pilot load flow passage to the pilot supply flow passage. The throttle valve has three positions, a second switching position for switching and communicating the two pilot load flow paths to the pilot discharge flow path, and a neutral position. The throttle valve is a unidirectional flow of the pilot fluid flowing through the first pilot load flow path. A first non-return valve body having a cylindrical shape that separates the valve from the valve seat to make it a free flow, and controls the flow of the pilot fluid in the other direction to sit on the valve seat and make the control flow to flow through the throttle hole; A first throttle valve body that is fitted to the stop valve body and that adjusts the opening degree of the throttle hole formed in the first check valve body by advancing and retracting by a turning operation, and a pilot that flows through the second pilot load flow path. Cylindrical second non-return valve that allows the flow of fluid in one direction to separate from the valve seat to be a free flow, and allows the flow of pilot fluid in the other direction to sit on the valve seat and flow through the throttle hole as a control flow A valve body and a second throttle valve body which is fitted to the second check valve body and which adjustably sets the opening degree of a throttle hole formed in the second check valve body by advancing and retracting by a turning operation, An abutting portion that comes into contact with the first throttle valve body and the second throttle valve body to regulate the axial movement amount is provided at the axial tip end, and the main valve uses a main flow path to supply a pressure fluid from a pressure source. It comprises a supply flow path, a first main load flow path connected to the load side, a second main load flow path, and a main discharge flow path connected to the low pressure side. The first main load flow path is used as the main discharge flow path. A first switching position for switching and communicating the second main load flow path with the main supply flow path; and a first switching path for communicating the first load flow path with the main supply flow path and the second main load flow path for main discharge flow. The first working chamber and the second working chamber, which have three positions, that is, a second switching position for switching and communicating with the passage and a neutral position, and which introduces a pilot fluid that acts on the main valve body, serve as a first pilot load flow path. Second pilot negative The main valve body is switched to the first switching position by introducing the pilot fluid into the first working chamber, and the main valve body is switched to the second switching position by introducing the pilot fluid into the second working chamber. The main valve body is set to the neutral position by drawing the pilot fluid from both working chambers, and the maximum axial movement amount of the main valve body is regulated. A screw member that sets the maximum flow rate flowing in the load passage is provided so that the throttle portion switches the main valve body from the neutral position to the first switching position or the second switching position. Alternatively, the pilot type solenoid valve is characterized in that the fluid flowing from the second main load flow passage to the main discharge flow passage is throttle-controlled.

この場合、前記絞り部は主弁体を中立位置から第1切換位置または第2切換位置に切換える切換過渡期に、主供給流路から第1主負荷流路または第2主負荷流路に流れる流体を絞り制御してもよい。また、前記主弁と前記パイロット弁と前記絞り弁は、前記主弁を最下方にして前記絞り弁と前記パイロット弁とを順次積層配設してもよい。 In this case, the throttle portion flows from the main supply flow passage to the first main load flow passage or the second main load flow passage during a switching transition period in which the main valve body is switched from the neutral position to the first switching position or the second switching position. The fluid may be throttle-controlled. Further, the main valve, the pilot valve, and the throttle valve may be arranged such that the main valve is at the lowest position and the throttle valve and the pilot valve are sequentially stacked.

以上詳述したように、請求項1に記載の発明は、主弁を中立位置から第1切換位置または第2切換位置に切換える際に、絞り弁の第1絞り弁体または第2絞り弁体でパイロット流路を流れるパイロット流体を絞り制御すると共に、主弁体に設けた絞り部で、第1主負荷流路または第2主負荷流路から主排出流路に流れる流体を絞り制御する。このため、絞り弁の第1絞り弁体または第2絞り弁体によるパイロット流体の絞り制御で主弁体の切換速度を緩やかにできると共に、絞り部により主弁体の切換過渡期における第1主負荷流路または第2主負荷流路から主排出流路に流れる流体の流速を緩やかにできるから、主弁の切換ショックを低減することができる。 As described above in detail, in the invention described in claim 1, when the main valve is switched from the neutral position to the first switching position or the second switching position, the first throttle valve body or the second throttle valve body of the throttle valve is provided. Restricts the pilot fluid flowing through the pilot flow passage, and restricts the fluid flowing from the first main load flow passage or the second main load flow passage to the main discharge flow passage by the throttle portion provided in the main valve body. Therefore, the switching speed of the main valve body can be moderated by the throttle control of the pilot fluid by the first throttle valve body or the second throttle valve body of the throttle valve , and the first main body in the transitional transition period of the main valve body can be provided by the throttle portion. Since the flow velocity of the fluid flowing from the load passage or the second main load passage to the main discharge passage can be made gentle, the switching shock of the main valve can be reduced.

また、請求項2に記載の発明は、主弁を中立位置から第1切換位置または第2切換位置に切換える際に、絞り弁の第1絞り弁体または第2絞り弁体でパイロット流路を流れるパイロット流体を絞り制御すると共に、主弁体に設けた絞り部で、主供給流路から第1主負荷流路または第2主負荷流路に流れる流体を絞り制御する。このため、絞り弁の第1絞り弁体または第2絞り弁体によるパイロット流体の絞り制御で主弁体の切換速度を緩やかにできると共に、絞り部により主弁体の切換過渡期における主供給流路から第1主負荷流路または第2主負荷流路に流れる流体の流速を緩やかにできるから、主弁の切換ショックを低減することができる。 Further, in the invention described in claim 2, when the main valve is switched from the neutral position to the first switching position or the second switching position, the pilot flow path is formed by the first throttle valve body or the second throttle valve body of the throttle valve. The throttle control provided on the main valve body controls the flow of the pilot fluid, and also controls the flow of the fluid flowing from the main supply passage to the first main load passage or the second main load passage. Therefore, the switching speed of the main valve body can be moderated by the throttle control of the pilot fluid by the first throttle valve body or the second throttle valve body of the throttle valve, and the main supply flow in the transitional transition period of the main valve body can be controlled by the throttle portion. Since the flow velocity of the fluid flowing from the passage to the first main load passage or the second main load passage can be made gentle, the switching shock of the main valve can be reduced.

また、請求項3に記載の発明は、主弁とパイロット弁と絞り弁は、主弁を最下方にして絞り弁とパイロット弁とを順次積層配設している。このため、主弁とパイロット弁と絞り弁をそれぞれ個別に取り替えることができ、用途に応じて簡単に変更することができる。 In the invention according to claim 3, in the main valve, the pilot valve and the throttle valve, the throttle valve and the pilot valve are sequentially stacked so that the main valve is at the lowest position. Therefore, the main valve, the pilot valve, and the throttle valve can be individually replaced, and can be easily changed according to the application.

本発明の一実施形態を示したパイロット形電磁弁の縦断面図である。It is a longitudinal cross-sectional view of the pilot type solenoid valve showing one embodiment of the present invention. 一実施形態の油圧回路図である。It is a hydraulic circuit diagram of one embodiment. 図1の線A−Aに沿った断面図である。2 is a cross-sectional view taken along the line AA of FIG. 1. (A)は図1の線B−Bに沿った断面図、(B)は図1の線C−Cに沿った断面図である。1A is a cross-sectional view taken along the line BB of FIG. 1, and FIG. 1B is a cross-sectional view taken along the line CC of FIG. (A)は図1の線D−Dに沿った断面図、(B)は図1の線E−Eに沿った断面図である。1A is a cross-sectional view taken along the line DD of FIG. 1, and FIG. 1B is a cross-sectional view taken along the line EE of FIG. 本発明の他実施形態の縦断面図である。It is a longitudinal section of other embodiments of the present invention. 他実施形態の油圧回路図である。It is a hydraulic circuit diagram of other embodiment.

以下、本発明の一実施形態を図面に基づき説明する。
図1および図2において、パイロット形電磁弁はパイロット弁1と主弁2と絞り弁3とから構成し、主弁2を最下方にして絞り弁3とパイロット弁1とを順次積層配設している。パイロット弁1は電磁操作の4ポート3位置方向制御弁で、弁本体4の両端に2個の電磁石4A、4Bを備え、弁本体4に穿設の摺動孔4Cへスプール状のパイロット弁体5を軸方向へ摺動自在に嵌装している。パイロット弁体5は2個のばね6A、6B力で中立位置Z1に保持し、一方の電磁石4Aへの励磁によりばね6B力に抗して第1切換位置X1へ切換えると共に、他方の電磁石4Bへの励磁によりばね6A力に抗して第2切換位置Y1へ切換自在に設けている。中立位置Z1では圧力源Pからのパイロット圧力流体を供給するパイロット供給流路P1を遮断し、第1パイロット負荷流路A1と第2パイロット負荷流路B1とを低圧側としてのタンクTに接続するパイロット排出流路R1に連通している。第1切換位置X1では第1パイロット負荷流路A1をパイロット排出流路R1に切換連通すると共に、第2パイロット負荷流路B1をパイロット供給流路P1に切換連通する。第2切換位置Y1では第1パイロット負荷流路A1をパイロット供給流路P1に切換連通すると共に、第2パイロット負荷流路B1をパイロット排出流路R1に切換連通する。
An embodiment of the present invention will be described below with reference to the drawings.
1 and 2, the pilot type solenoid valve is composed of a pilot valve 1, a main valve 2 and a throttle valve 3, and the main valve 2 is at the lowermost position and the throttle valve 3 and the pilot valve 1 are sequentially stacked. ing. The pilot valve 1 is an electromagnetically operated 4-port 3-position directional control valve, which is provided with two electromagnets 4A and 4B at both ends of the valve body 4, and has a spool-shaped pilot valve body to a sliding hole 4C formed in the valve body 4. 5 is slidably fitted in the axial direction. The pilot valve body 5 is held at the neutral position Z1 by the force of two springs 6A and 6B, and is switched to the first switching position X1 against the force of the spring 6B by exciting one electromagnet 4A, and at the same time to the other electromagnet 4B. It is provided so as to be freely switchable to the second switching position Y1 against the force of the spring 6A by the excitation. At the neutral position Z1, the pilot supply passage P1 for supplying the pilot pressure fluid from the pressure source P is cut off, and the first pilot load passage A1 and the second pilot load passage B1 are connected to the tank T on the low pressure side. It communicates with the pilot discharge flow path R1. At the first switching position X1, the first pilot load flow passage A1 is switched and communicated with the pilot discharge flow passage R1, and the second pilot load flow passage B1 is switched and communicated with the pilot supply flow passage P1. At the second switching position Y1, the first pilot load flow passage A1 is switched and communicated with the pilot supply flow passage P1, and the second pilot load flow passage B1 is switched and communicated with the pilot discharge flow passage R1.

各パイロット流路P1、A1、B1、R1は、摺動孔4Cの軸方向中央部にパイロット供給流路P1を接続し、パイロット供給流路P1接続箇所の軸方向両端に間隙を有して第1パイロット負荷流路A1と第2パイロット負荷流路B1とを接続し、第1パイロット負荷流路A1接続箇所と第2パイロット負荷流路B1接続箇所の軸方向外側にそれぞれ間隙を有して二股状に形成したパイロット排出流路R1を接続している。そして、図3に示す如く、各パイロット流路P1、A1、B1、R1は、弁本体4の下面にそれぞれ規格化して開口している。 Each of the pilot flow paths P1, A1, B1, and R1 has a pilot supply flow path P1 connected to the axial center of the sliding hole 4C, and a gap is provided at both axial ends of the pilot supply flow path P1 connection point. The first pilot load flow passage A1 and the second pilot load flow passage B1 are connected to each other, and the first and second pilot load flow passages A1 and B1 are connected in a bifurcated manner with a gap on each axial outer side. The pilot discharge flow path R1 formed in a shape is connected. Then, as shown in FIG. 3, the respective pilot flow paths P1, A1, B1, R1 are standardized and opened on the lower surface of the valve body 4.

主弁2はパイロット操作の4ポート3位置方向制御弁で、略直方体形状の主弁本体7の両端に略直方体形状の2個の副主弁本体7A、7Bを備え、主弁本体7に穿設の摺動孔7Cへスプール状の主弁体8を軸方向へ摺動自在に嵌装している。副主弁本体7A、7Bには主弁体8の両端部を収容する第1作用室9A、第2作用室9Bを形成し、第1作用室9A、第2作用室9Bには主弁本体7、副主弁本体7A、7Bに穿設の第1パイロット負荷流路A2、第2パイロット負荷流路B2よりパイロット流体を導入すると共に、ばね10A、10Bを収装している。主弁体8は2個のばね10A、10B力で中立位置Zに保持し、第1作用室9Aへのパイロット流体の導入によりばね10B力に抗して第1切換位置Xへ切換えると共に、第2作用室9Bへのパイロット流体の導入によりばね10A力に抗して第2切換位置Yへ切換自在に設けている。中立位置Zでは圧力源Pからの圧力流体を供給する主供給流路P2を遮断し、負荷側としてのアクチュエータに接続する第1主負荷流路Aと第2主負荷流路BとをタンクTに接続する主排出流路Rに連通している。第1切換位置Xでは第1主負荷流路Aを主排出流路Rに切換連通すると共に、第2主負荷流路Bを主供給流路P2に切換連通する。第2切換位置Yでは第1主負荷流路Aを主供給流路P2に切換連通すると共に、第2主負荷流路Bを主排出流路Rに切換連通する。 The main valve 2 is a pilot operated 4-port 3-position directional control valve, which is provided with two substantially rectangular parallelepiped-shaped auxiliary valve main bodies 7A and 7B at both ends thereof. The spool-shaped main valve body 8 is fitted in the provided sliding hole 7C so as to be slidable in the axial direction. A first working chamber 9A and a second working chamber 9B for accommodating both ends of the main valve body 8 are formed in the sub-main valve main bodies 7A and 7B, and the main valve main body is provided in the first working chamber 9A and the second working chamber 9B. 7, the pilot fluid is introduced from the first pilot load passage A2 and the second pilot load passage B2 provided in the auxiliary main valve bodies 7A and 7B, and the springs 10A and 10B are housed therein. The main valve body 8 is held in the neutral position Z by the force of the two springs 10A and 10B, and is switched to the first switching position X against the force of the spring 10B by the introduction of the pilot fluid into the first working chamber 9A. By introducing the pilot fluid into the second working chamber 9B, it is possible to switch to the second switching position Y against the force of the spring 10A. At the neutral position Z, the main supply passage P2 for supplying the pressure fluid from the pressure source P is shut off, and the first main load passage A and the second main load passage B connected to the actuator on the load side are connected to the tank T. To the main discharge flow path R connected to the. At the first switching position X, the first main load passage A is switched and communicated with the main discharge passage R, and the second main load passage B is switched and communicated with the main supply passage P2. At the second switching position Y, the first main load passage A is switched and communicated with the main supply passage P2, and the second main load passage B is switched and communicated with the main discharge passage R.

各主流路P2、A、B、Rは、摺動孔7Cの軸方向中央部に主供給流路P2を接続し、主供給流路P2接続箇所の軸方向両端に間隙を有して第1主負荷流路Aと第2主負荷流路Bとを接続し、第1主負荷流路A接続箇所と第2主負荷流路B接続箇所の軸方向外側にそれぞれ間隙を有して二股状に形成した主排出流路Rを接続している。そして、図4(A)に示す如く、各主流路P2、A、B、Rは、主弁本体7の下面にそれぞれ規格化して開口している。また、図4(B)に示す如く、主供給流路P2に接続するパイロット供給流路P3、主排出流路Rに接続するパイロット排出流路R2、第1作用室9Aに接続する第1パイロット負荷流路A2、第2作用室9Bに接続する第2パイロット負荷流路B2を主弁本体7の上面にそれぞれ規格化して開口している。 Each of the main flow passages P2, A, B, and R connects the main supply flow passage P2 to the central portion in the axial direction of the sliding hole 7C, and has a gap at both axial ends of the main supply flow passage P2 connecting portion to form a first gap. The main load flow path A and the second main load flow path B are connected to each other, and a bifurcated shape is formed with a gap on each axial outer side of the first main load flow path A connection point and the second main load flow path B connection point. The main discharge flow path R formed in the above is connected. Then, as shown in FIG. 4(A), the respective main flow paths P2, A, B, R are standardized and opened on the lower surface of the main valve body 7. Further, as shown in FIG. 4B, a pilot supply passage P3 connected to the main supply passage P2, a pilot discharge passage R2 connected to the main discharge passage R, and a first pilot connected to the first action chamber 9A. A second pilot load flow passage B2 connected to the load flow passage A2 and the second action chamber 9B is standardized and opened on the upper surface of the main valve body 7.

主弁体8には、中立位置Zで摺動孔7Cの第1主負荷流路A接続箇所に重合する第1ランド8Aと第2主負荷流路B接続箇所に重合する第2ランド8Bとを軸方向に間隙を有して備えている。第1ランド8Aには軸方向外側に絞り部としてのテーパ部8AAを形成し、テーパ部8AAは軸方向外側に向けて順次縮径し、中立位置Zから第1切換位置Xに切換える切換過渡期に、第1主負荷流路Aから主排出流路Rに流れる流体を絞り制御し、第1主負荷流路Aから主排出流路Rに流れる流量を漸増する。第2ランド8Bには軸方向外側に絞り部としてのテーパ部8BBを形成し、テーパ部8BBは軸方向外側に向けて順次縮径し、中立位置Zから第2切換位置Yに切換える切換過渡期に、第2主負荷流路Bから主排出流路Rに流れる流体を絞り制御し、第2主負荷流路Bから主排出流路Rに流れる流量を漸増する。そして、テーパ部8AAは第1切換位置Xで、テーパ部8BBは第2切換位置Yでそれぞれメータアウト制御を行う。 In the main valve body 8, at the neutral position Z, a first land 8A that overlaps with the first main load flow path A connection point of the sliding hole 7C and a second land 8B that overlaps with the second main load flow path B connection point. Is provided with a gap in the axial direction. The first land 8A is formed with a tapered portion 8AA as a narrowed portion on the outer side in the axial direction, and the tapered portion 8AA is gradually reduced in diameter toward the outer side in the axial direction to switch from the neutral position Z to the first switching position X. First, the fluid flowing from the first main load passage A to the main discharge passage R is throttle-controlled to gradually increase the flow rate of the first main load passage A to the main discharge passage R. A tapered portion 8BB as a narrowed portion is formed on the second land 8B on the outer side in the axial direction, and the tapered portion 8BB is gradually reduced in diameter toward the outer side in the axial direction to switch from the neutral position Z to the second switching position Y. First, the fluid flowing from the second main load flow passage B to the main discharge flow passage R is throttle-controlled to gradually increase the flow rate flowing from the second main load flow passage B to the main discharge flow passage R. Then, the taper portion 8AA performs the meter-out control at the first switching position X and the taper portion 8BB at the second switching position Y, respectively.

副主弁本体7A、7Bには主弁体8の最大軸方向移動量を規定するねじ部材11A、11Bを螺合し、ねじ部材11A、11Bは回動操作により進退自在に設け、第1主負荷流路Aまたは第2主負荷流路Bから主排出流路Rに流れる最大流量を変更自在に設定している。12A、12Bはねじ部材11A、11Bの回動を規制するロックナット部材である。
Secondary main valve body 7A, a screw member 11A is in 7B defining the maximum axial movement of the main valve body 8, screwed 11B, screw members 11A, the 11B provided retractably by rotational operation, first main The maximum flow rate flowing from the load flow path A or the second main load flow path B to the main discharge flow path R is set to be changeable. Reference numerals 12A and 12B are lock nut members that restrict the rotation of the screw members 11A and 11B.

絞り弁3は、第1パイロット負荷流路A3を流れるパイロット流体および第2パイロット負荷流路B3を流れるパイロット流体を絞り制御し、第1パイロット負荷流路A3は主弁2の第1パイロット負荷流路A2とパイロット弁1の第1パイロット負荷流路A1との間を接続し、第2パイロット負荷流路B3は主弁2の第2パイロット負荷流路B2とパイロット弁1の第2パイロット負荷流路B1との間を接続する。図5(A)(B)に示す如く、絞り弁3は略直方体形状の絞り弁本体13を備え、絞り弁本体13にはパイロット供給流路P4、パイロット排出流路R3、第1パイロット負荷流路A3、第2パイロット負荷流路B3をそれぞれ上下方向に貫通形成し、上面および下面に規格化して開口している。そして、パイロット供給流路P4、パイロット排出流路R3、第1パイロット負荷流路A3、第2パイロット負荷流路B3は、絞り弁本体13上面への開口部をパイロット弁1のパイロット供給流路P1、第1パイロット負荷流路A1、第2パイロット負荷流路B1、パイロット排出流路R1にそれぞれ接続すると共に、絞り弁本体13下面への開口部を主弁2のパイロット供給流路P3、パイロット排出流路R2、第1パイロット負荷流路A2、第2パイロット負荷流路B2にそれぞれ接続する。 The throttle valve 3 throttle-controls the pilot fluid flowing through the first pilot load flow passage A3 and the pilot fluid flowing through the second pilot load flow passage B3, and the first pilot load flow passage A3 is the first pilot load flow passage of the main valve 2. The path A2 is connected to the first pilot load flow path A1 of the pilot valve 1, and the second pilot load flow path B3 is the second pilot load flow path B2 of the main valve 2 and the second pilot load flow path of the pilot valve 1. Connect to the road B1. As shown in FIGS. 5A and 5B, the throttle valve 3 includes a throttle valve body 13 having a substantially rectangular parallelepiped shape, and the throttle valve body 13 has a pilot supply passage P4, a pilot discharge passage R3, and a first pilot load flow. The path A3 and the second pilot load flow path B3 are formed so as to penetrate in the vertical direction, and are standardized and opened on the upper surface and the lower surface. The pilot supply flow passage P4, the pilot discharge flow passage R3, the first pilot load flow passage A3, and the second pilot load flow passage B3 have an opening to the upper surface of the throttle valve body 13 and a pilot supply flow passage P1 of the pilot valve 1. , The first pilot load flow passage A1, the second pilot load flow passage B1, and the pilot discharge flow passage R1, respectively, and the opening to the lower surface of the throttle valve body 13 is connected to the pilot supply flow passage P3 of the main valve 2 and the pilot discharge flow passage. The flow path R2, the first pilot load flow path A2, and the second pilot load flow path B2 are respectively connected.

絞り弁本体13には、第1パイロット負荷流路A3に接続して絞り弁本体13の一側面に開口する有底の第1収装孔14Aと、第2パイロット負荷流路B3に接続して絞り弁本体13の一側面と対向する他側面に開口する有底の第2収装孔14Bを穿設し、第1収装孔14Aの開口を第1蓋部材15Aで、第2収装孔14Bの開口を第2蓋部材15Bでそれぞれ閉塞している。第1収装孔14Aには第1逆止め弁体16Aと第1絞り弁体17Aとを収装し、第2収装孔14Bには第2逆止め弁体16Bと第2絞り弁体17Bとを収装している。第1逆止め弁体16Aは円筒形状で径方向に絞り孔18Aを貫通形成し、第1収装孔14Aに形成の弁座19Aに着座離脱自在に設けている。そして、第1逆止め弁体16Aは、パイロット弁1の第1パイロット負荷流路A1から主弁2の第1パイロット負荷流路A2に向けてのパイロット流体の流れを弁座19Aから離脱して自由流れとすると共に、主弁2の第1パイロット負荷流路A2からパイロット弁1の第1パイロット負荷流路A1に向けてのパイロット流体の流れを弁座19Aに着座して絞り孔18Aを流す制御流れとしている。同様に、第2逆止め弁体16Bは、円筒形状で絞り孔18Bを貫通形成し、第2収装孔14Bの弁座19Bに着座離脱自在に設け、パイロット弁1の第2パイロット負荷流路B1から主弁2の第2パイロット負荷流路B2に向けてのパイロット流体の流れを弁座19Bから離脱して自由流れとすると共に、主弁2の第2パイロット負荷流路B2からパイロット弁1の第2パイロット負荷流路B1に向けてのパイロット流体の流れを弁座19Bに着座して絞り孔18Bを流す制御流れとしている。 The throttle valve main body 13 is connected to the first pilot load flow passage A3 and is connected to the second pilot load flow passage B3 and the bottomed first mounting hole 14A which is opened on one side surface of the throttle valve main body 13. A second bottomed storage hole 14B is formed in the other side surface of the throttle valve body 13 that faces the one side surface, and a bottomed second storage hole 14A is formed in the first cover member 15A. The openings of 14B are closed by the second lid member 15B. The first check valve body 16A and the first throttle valve body 17A are housed in the first storage hole 14A, and the second check valve body 16B and the second throttle valve body 17B are stored in the second storage hole 14B. And are housed. The first non-return valve body 16A has a cylindrical shape and has a throttle hole 18A formed through it in the radial direction, and is provided so as to be freely seated and detachable on a valve seat 19A formed in the first housing hole 14A. The first check valve body 16A separates the flow of the pilot fluid from the first pilot load passage A1 of the pilot valve 1 toward the first pilot load passage A2 of the main valve 2 from the valve seat 19A. The flow of the pilot fluid from the first pilot load flow passage A2 of the main valve 2 to the first pilot load flow passage A1 of the pilot valve 1 is seated on the valve seat 19A and flows through the throttle hole 18A while allowing free flow. It is a control flow. Similarly, the second non-return valve body 16B has a cylindrical shape and has a throttle hole 18B formed therethrough. The second non-return valve body 16B is detachably mounted on the valve seat 19B of the second storage hole 14B so as to be detachable from the second pilot load passage of the pilot valve 1. The flow of the pilot fluid from B1 toward the second pilot load flow passage B2 of the main valve 2 is separated from the valve seat 19B to be a free flow, and at the same time, from the second pilot load flow passage B2 of the main valve 2 to the pilot valve 1 The flow of the pilot fluid toward the second pilot load flow path B1 is a control flow in which the valve seat 19B is seated and the throttle hole 18B is caused to flow.

第1絞り弁体17Aは、第1蓋部材15Aに螺合して第1逆止め弁体16Aに嵌合し、回動操作による進退で絞り孔18Aの開度を調整自在に設定している。また、第1絞り弁体17Aは、軸方向先端に当接部20Aを設け、当接部20Aが第1収装孔14Aの底面に当接して軸方向移動量を規制し、螺合したロックナット部材21Aを第1蓋部材15Aの外面に当接して固定する。第2絞り弁体17Bは、第2蓋部材15Bに螺合して第2逆止め弁体16Bに嵌合し、回動操作による進退で絞り孔18Bの開度を調整自在に設定している。また、第2絞り弁体17Bは、軸方向先端に当接部20Bを設け、当接部20Bが第2収装孔14Bの底面に当接して軸方向移動量を規制し、螺合したロックナット部材21Bを第1蓋部材15Bの外面に当接して固定する。 The first throttle valve body 17A is screwed to the first lid member 15A and fitted to the first check valve body 16A, and the opening degree of the throttle hole 18A is set to be adjustable by advancing and retreating by a rotating operation. .. Further, the first throttle valve body 17A is provided with an abutting portion 20A at the tip in the axial direction, and the abutting portion 20A abuts the bottom surface of the first housing hole 14A to regulate the axial movement amount and to be screwed into the lock. 21 A of nut members contact|abut on the outer surface of 15 A of 1st lid members, and are fixed. The second throttle valve body 17B is screwed to the second lid member 15B and fitted into the second check valve body 16B, and the opening degree of the throttle hole 18B is set to be adjustable by advancing and retracting by a turning operation. .. In addition, the second throttle valve body 17B is provided with an abutting portion 20B at the tip in the axial direction, and the abutting portion 20B abuts the bottom surface of the second housing hole 14B to regulate the axial movement amount and to be screwed into the lock. The nut member 21B is brought into contact with and fixed to the outer surface of the first lid member 15B.

次に、かかる構成の作動を説明する。
図1および図2は、パイロット弁1は、電磁石4A、4Bが非励磁で、パイロット弁体5をばね6A、6B力で中立位置Z1に保持し、パイロット供給流路P1を遮断し、第1パイロット負荷流路A1と第2パイロット負荷流路B1とをパイロット排出流路R1に連通している。主弁2は、両作用室9A、9BがタンクTに連通し、主弁体8をばね10A、10B力で中立位置Zに保持し、主供給流路P2を遮断し、第1主負荷流路Aと第2主負荷流路Bとを主排出流路Rに連通している。
Next, the operation of such a configuration will be described.
1 and 2, in the pilot valve 1, the electromagnets 4A and 4B are not excited, the pilot valve body 5 is held at the neutral position Z1 by the force of the springs 6A and 6B, and the pilot supply passage P1 is shut off. The pilot load flow passage A1 and the second pilot load flow passage B1 communicate with the pilot discharge flow passage R1. The main valve 2, both working chambers 9A, 9B communicates with the tank T, a main valve body 8 is held in a neutral position Z by the spring 10 A, 10 B forces, blocking the main supply passage P2, the first main The load flow passage A and the second main load flow passage B communicate with the main discharge flow passage R.

この状態で、一方の電磁石4Aを励磁すると、パイロット弁体5がばね6B力に抗して第1切換位置X1に切換り、パイロット供給流路P1のパイロット圧力流体が第2パイロット負荷流路B1より、絞り弁3の第2逆止め弁体16Bを自由流れで流れ、第2パイロット負荷流路B3、B2を経て第2作用室9Bに導入される。主弁体8は第2作用室9Bに導入されたパイロット流体の圧力に基づく作用力でばね10A力に抗して図1の左方向へ摺動する。このとき、第1作用室9Aのパイロット流体は第1パイロット負荷流路A2より、絞り弁3の弁座19Aに着座して閉じている第1逆止め弁体16Aの絞り孔18Aを制御流れで流れ、第1パイロット負荷流路A3、A1を経てパイロット排出流路R1、R3、R2よりタンクTに導出される。このため、主弁体8は絞り孔18Aでの制御流れにより緩速で摺動して第2切換位置Yに切換る。 When one of the electromagnets 4A is excited in this state, the pilot valve body 5 switches to the first switching position X1 against the force of the spring 6B, and the pilot pressure fluid in the pilot supply passage P1 becomes the second pilot load passage B1. As a result, it flows through the second check valve body 16B of the throttle valve 3 in a free flow and is introduced into the second working chamber 9B via the second pilot load flow paths B3 and B2. The main valve body 8 slides leftward in FIG. 1 against the force of the spring 10A by the action force based on the pressure of the pilot fluid introduced into the second action chamber 9B. At this time, the pilot fluid in the first working chamber 9A is controlled to flow from the first pilot load passage A2 through the throttle hole 18A of the first check valve body 16A which is seated on the valve seat 19A of the throttle valve 3 and closed. After passing through the first pilot load flow paths A3 and A1, the flow is led out to the tank T from the pilot discharge flow paths R1, R3 and R2. Therefore, the main valve body 8 slides at a slow speed by the control flow in the throttle hole 18A and switches to the second switching position Y.

主弁体8が第2切換位置Yに切換った状態では、第1主負荷流路Aを主供給流路P2に切換連通すると共に、第2主負荷流路Bを主排出流路Rに切換連通する。主供給流路P2の圧力流体は第1主負荷流路Aから図示しないアクチュエータに供給され、アクチュエータからの流体は第2主負荷流路Bを流れ主弁体8のテーパ部8BBによりメータアウト制御で絞り制御され、主排出流路RよりタンクTに排出される。 In a state where the main valve body 8 is switched to the second switching position Y, the first main load flow passage A is switched and communicated with the main supply flow passage P2, and the second main load flow passage B is connected to the main discharge flow passage R. Switch communication. The pressure fluid in the main supply passage P2 is supplied to the actuator (not shown) from the first main load passage A, and the fluid from the actuator flows in the second main load passage B to control the meter-out by the taper portion 8BB of the main valve body 8. It is controlled to be throttled by and is discharged to the tank T from the main discharge passage R.

この状態で、パイロット弁1の電磁石4Aを非励磁にすると、パイロット弁1は中立位置Z1に復帰し、主弁2の第2作用室9BをタンクTに切換連通する。主弁体8はばね10A力により図1の右方向へ復帰摺動し、第2作用室9Bのパイロット流体は、絞り弁3の弁座19Bに着座して閉じている第2逆止め弁体16Bの絞り孔18Bを制御流れで流れ、タンクTに導出される。このため、主弁体8は絞り孔18Bでの制御流れにより緩速で摺動して中立位置Zに復帰する。 When the electromagnet 4A of the pilot valve 1 is de-energized in this state, the pilot valve 1 returns to the neutral position Z1 and the second working chamber 9B of the main valve 2 is switched to the tank T for communication. The main valve body 8 slides back to the right in FIG. 1 by the force of the spring 10A, and the pilot fluid in the second working chamber 9B is seated on the valve seat 19B of the throttle valve 3 and is closed. It flows in a controlled flow through the throttle hole 18B of 16B and is led to the tank T. Therefore, the main valve body 8 slides at a slow speed by the control flow in the throttle hole 18B and returns to the neutral position Z.

また、パイロット弁1が中立位置Zの状態で、他方の電磁石4Bを励磁すると、パイロット弁体5がばね6A力に抗して第2切換位置Y1に切換り、パイロット供給流路P1のパイロット圧力流体が第1パイロット負荷流路A1より、第1逆止め弁体16Aを自由流れで流れ、第1パイロット負荷流路A3、A2を経て第1作用室9Aに導入され、主弁体8は第1作用室9Aのパイロット流体の圧力に基づく作用力でばね10B力に抗して図1の右方向へ摺動する。このとき、第1作用室9Bのパイロット流体は第2パイロット負荷流路B2より、弁座19Bに着座して閉じている第2逆止め弁体16Bの絞り孔18Bを制御流れで流れ、第2パイロット負荷流路B3、B1を経てパイロット排出流路R1よりタンクTに導出される。このため、主弁体8は絞り孔18Bでの制御流れにより緩速で摺動して第1切換位置Xに切換る。 When the pilot valve 1 is in the neutral position Z 1 and the other electromagnet 4B is excited, the pilot valve body 5 switches to the second switching position Y1 against the force of the spring 6A, and the pilot of the pilot supply flow path P1. The pressure fluid flows from the first pilot load flow passage A1 through the first check valve body 16A as a free flow, is introduced into the first working chamber 9A via the first pilot load flow passages A3 and A2, and the main valve body 8 is The action force based on the pressure of the pilot fluid in the first action chamber 9A slides to the right in FIG. 1 against the force of the spring 10B. At this time, the pilot fluid in the first working chamber 9B flows from the second pilot load flow passage B2 through the throttle hole 18B of the second check valve body 16B, which is seated on the valve seat 19B and closed, in a control flow, It is led to the tank T from the pilot discharge flow path R1 through the pilot load flow paths B3 and B1. Therefore, the main valve body 8 slides at a slow speed by the control flow in the throttle hole 18B and switches to the first switching position X.

主弁体8が第1切換位置Xに切換った状態では、第1主負荷流路Aを主排出流路Rに切換連通すると共に、第2主負荷流路Bを主供給流路P2に切換連通する。主供給流路P2の圧力流体は第2主負荷流路Bから図示しないアクチュエータに供給され、アクチュエータからの流体は第1主負荷流路Aを流れ主弁体8のテーパ部8AAによりメータアウト制御で絞り制御され、主排出流路RよりタンクTに排出される。 In a state where the main valve body 8 is switched to the first switching position X, the first main load passage A is switched to the main discharge passage R and the second main load passage B is connected to the main supply passage P2. Switch communication. The pressure fluid in the main supply passage P2 is supplied from the second main load passage B to an actuator (not shown), and the fluid from the actuator flows in the first main load passage A and is metered out by the taper portion 8AA of the main valve body 8. It is controlled to be throttled by and is discharged to the tank T from the main discharge passage R.

そして、パイロット弁1の電磁石4Bを非励磁にすると、パイロット弁1は中立位置Z1に復帰し、主弁2の第1作用室9AをタンクTに切換連通する。主弁体8はばね10B力により図1の左方向へ復帰摺動し、第1作用室9Aのパイロット流体は、弁座19に着座して閉じている第1逆止め弁体16Aの絞り孔18Aを制御流れで流れ、タンクTに導出される。このため、主弁体8は絞り孔18Aでの制御流れにより緩速で摺動して中立位置Zに復帰する。 When the electromagnet 4B of the pilot valve 1 is de-excited, the pilot valve 1 returns to the neutral position Z1 and the first working chamber 9A of the main valve 2 is switched and communicated with the tank T. The main valve body 8 returns slid to the left in FIG. 1 by the spring 10B forces, pilot fluid in the first working chamber 9A is squeezed in the first check valve body 16A is closed and seated on the valve seat 19 A It flows through the hole 18A in a controlled flow and is led to the tank T. Therefore, the main valve body 8 slides at a slow speed by the control flow in the throttle hole 18A and returns to the neutral position Z.

かかる作動で、主弁2を中立位置Xから第1切換位置Yまたは第2切換位置Zに切換える際に、絞り弁3で第1パイロット負荷流路A3または第2パイロット負荷流路B3を流れるパイロット流体を絞り制御すると共に、主弁体8に設けたテーパ部8AAまたは8BBで、第1主負荷流路Aまたは第2主負荷流路Bから主排出流路Rに流れる流体を絞り制御する。このため、絞り弁3によるパイロット流体の絞り制御で主弁体8の切換速度を緩やかにできると共に、テーパ部8AAまたは8BBにより主弁体8の切換過渡期における第1主負荷流路Aまたは第2主負荷流路Bから主排出流路Rに流れる流体の流速を緩やかにできるから、主弁2の切換ショックを低減することができる。 With such operation, when the main valve 2 is switched from the neutral position X to the first switching position Y or the second switching position Z, the pilot flowing through the first pilot load passage A3 or the second pilot load passage B3 by the throttle valve 3 The fluid is throttle-controlled, and the taper portion 8AA or 8BB provided in the main valve body 8 throttle-controls the fluid flowing from the first main load passage A or the second main load passage B to the main discharge passage R. Therefore, the switching speed of the main valve body 8 can be moderated by the throttle control of the pilot fluid by the throttle valve 3, and the taper portion 8AA or 8BB allows the first main load passage A or the first main load passage A in the transitional transition period of the main valve body 8 to be switched. 2 Since the flow velocity of the fluid flowing from the main load flow passage B to the main discharge flow passage R can be made gentle, the switching shock of the main valve 2 can be reduced.

また、主弁2とパイロット弁1と絞り弁3は、主弁2を最下方にして絞り弁3とパイロット弁1とを順次積層配設している。このため、主弁2とパイロット弁1と絞り弁3をそれぞれ個別に取り替えることができ、用途に応じて簡単に変更することができる。 The main valve 2, the pilot valve 1, and the throttle valve 3 are formed by sequentially stacking the throttle valve 3 and the pilot valve 1 with the main valve 2 at the bottom. Therefore, the main valve 2, the pilot valve 1, and the throttle valve 3 can be individually replaced, and can be easily changed according to the application.

図6および図7は本発明の他実施形態を示し、一実施形態と同一個所には同符号を付して説明を省略し、異なる個所についてのみ説明する。
主弁体8の第1ランド8Aには、軸方向内側に絞り部としてのテーパ部8CCを形成し、テーパ部8CCは軸方向内側に向けて順次縮径し、中立位置Zから第2切換位置Yに切換える切換過渡期に、主供給流路P2から第1主負荷流路Aに流れる流体を絞り制御し、主供給流路P2から第1主負荷流路Aに流れる流量を漸増する。主弁体8の第2ランド8Bには、軸方向内側に絞り部としてのテーパ部8DDを形成し、テーパ部8DDは軸方向内側に向けて順次縮径し、中立位置Zから第1切換位置Xに切換える切換過渡期に、主供給流路P2から第2主負荷流路Bに流れる流体を絞り制御し、主供給流路P2から第2主負荷流路Bに流れる流量を漸増する。そして、テーパ部8CCは第2切換位置Yで、テーパ部8DDは第1切換位置Xでそれぞれメータイン制御を行う。
6 and 7 show another embodiment of the present invention. The same parts as those of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted. Only different parts will be described.
The first land 8A of the main valve body 8 is formed with a tapered portion 8CC as a throttle portion on the inner side in the axial direction, and the tapered portion 8CC is gradually reduced in diameter toward the inner side in the axial direction, so that the neutral position Z changes to the second switching position. During the transitional transition period when switching to Y, the fluid flowing from the main supply passage P2 to the first main load passage A is throttle-controlled to gradually increase the flow rate of the main supply passage P2 to the first main load passage A. The second land 8B of the main valve body 8 is formed with a tapered portion 8DD as a throttle portion on the inner side in the axial direction, and the tapered portion 8DD is gradually reduced in diameter toward the inner side in the axial direction, so that the neutral position Z changes to the first switching position. During the transitional period of switching to X, the fluid flowing from the main supply passage P2 to the second main load passage B is throttle-controlled to gradually increase the flow rate of the main supply passage P2 to the second main load passage B. The taper portion 8CC performs the meter-in control at the second switching position Y and the taper portion 8DD performs the meter-in control at the first switching position X, respectively.

作動は、パイロット弁1が中立位置Z1の状態で、一方の電磁石4Aを励磁すると、パイロット弁1は第1切換位置X1に切換り、パイロット流体を主弁2の第2作用室9Bに導入する。主弁2は第2作用室9Bへのパイロット流体の導入で第2切換位置Yに切換り、第1主負荷流路Aを主供給流路P2に切換連通すると共に、第2主負荷流路Bを主排出流路Rに切換連通する。主供給流路P2の圧力流体は主弁体8のテーパ部8CCによりメータイン制御で絞り制御され、第1主負荷流路Aから図示しないアクチュエータに供給され、アクチュエータからの流体は第2主負荷流路Bを流れ主排出流路RよりタンクTに排出される。そして、一方の電磁石4Aを非励磁にすると、パイロット弁1は中立位置Z1に復帰して、主弁2の第2作用室9BをタンクTに切換連通し、主弁2はばね10A力により中立位置Zに復帰する。 In operation, when one electromagnet 4A is excited with the pilot valve 1 in the neutral position Z1, the pilot valve 1 switches to the first switching position X1 and introduces the pilot fluid into the second working chamber 9B of the main valve 2. .. The main valve 2 is switched to the second switching position Y by introducing the pilot fluid into the second working chamber 9B to switch the first main load passage A to the main supply passage P2 and to communicate with the second main load passage. B is switched and communicated with the main discharge flow path R. The pressure fluid in the main supply passage P2 is throttle-controlled by meter-in control by the taper portion 8CC of the main valve body 8 and is supplied to the actuator (not shown) from the first main load passage A, and the fluid from the actuator is the second main load flow. It flows through the path B and is discharged from the main discharge flow path R to the tank T. When one of the electromagnets 4A is de-excited, the pilot valve 1 returns to the neutral position Z1, the second working chamber 9B of the main valve 2 is switched and communicated with the tank T, and the main valve 2 is neutralized by the force of the spring 10A. Return to position Z.

パイロット弁1が中立位置Z1の状態で、他方の電磁石4Bを励磁すると、パイロット弁1は第2切換位置Y1に切換り、パイロット流体を主弁2の第1作用室9Aに導入する。主弁2は第1作用室9Aへのパイロット流体の導入で第1切換位置Xに切換り、第1主負荷流路Aを主排出流路Rに切換連通すると共に、第2主負荷流路Bを主供給流路P2に切換連通する。主供給流路P2の圧力流体は主弁体8のテーパ部8DDによりメータイン制御で絞り制御され、第2主負荷流路Bから図示しないアクチュエータに供給され、アクチュエータからの流体は第1主負荷流路Aを流れ主排出流路RよりタンクTに排出される。そして、他方の電磁石4Bを非励磁にすると、パイロット弁1は中立位置Z1に復帰して、主弁2の第1作用室9AをタンクTに切換連通し、主弁2はばね10B力により中立位置Zに復帰する。 When the other electromagnet 4B is excited while the pilot valve 1 is in the neutral position Z1, the pilot valve 1 switches to the second switching position Y1 and introduces the pilot fluid into the first working chamber 9A of the main valve 2. The main valve 2 is switched to the first switching position X by the introduction of the pilot fluid into the first working chamber 9A, the first main load passage A is switched to the main discharge passage R, and the second main load passage is connected. B is switched and communicated with the main supply flow path P2. The pressure fluid in the main supply passage P2 is throttle-controlled by meter-in control by the taper portion 8DD of the main valve body 8 and is supplied to the actuator (not shown) from the second main load passage B, and the fluid from the actuator is the first main load flow. It flows through the path A and is discharged to the tank T from the main discharge flow path R. Then, when the other electromagnet 4B is de-excited, the pilot valve 1 returns to the neutral position Z1, and the first working chamber 9A of the main valve 2 is switched and communicated with the tank T, and the main valve 2 is neutralized by the force of the spring 10B. Return to position Z.

かかる作動で、主弁2を中立位置Xから第1切換位置Yまたは第2切換位置Zに切換える際に、絞り弁3で第1パイロット負荷流路A3または第2パイロット負荷流路B3を流れるパイロット流体を絞り制御すると共に、主弁体8に設けたテーパ部8CCまたは8DDで、主供給流路P2から第1主負荷流路Aまたは第2主負荷流路Bに流れる流体を絞り制御する。このため、絞り弁3によるパイロット流体の絞り制御で主弁体8の切換速度を緩やかにできると共に、テーパ部8CCまたは8DDにより主弁体8の切換過渡期における主供給流路P2から第1主負荷流路Aまたは第2主負荷流路Bに流れる流体の流速を緩やかにできるから、主弁2の切換ショックを低減することができる。 With such operation, when the main valve 2 is switched from the neutral position X to the first switching position Y or the second switching position Z, the pilot flowing through the first pilot load passage A3 or the second pilot load passage B3 by the throttle valve 3 The fluid is throttle-controlled, and the taper portion 8CC or 8DD provided in the main valve body 8 throttle-controls the fluid flowing from the main supply passage P2 to the first main load passage A or the second main load passage B. For this reason, the switching speed of the main valve body 8 can be made slower by the throttle control of the pilot fluid by the throttle valve 3, and the taper portion 8CC or 8DD allows the main supply passage P2 to flow from the main supply passage P2 in the transitional transition period of the main valve body 8. Since the flow velocity of the fluid flowing through the load passage A or the second main load passage B can be made gentle, the switching shock of the main valve 2 can be reduced.

また、一実施形態と同様に、主弁2を最下方にして絞り弁3とパイロット弁1とを順次積層配設しているため、主弁2とパイロット弁1と絞り弁3をそれぞれ個別に取り替えることができ、用途に応じて簡単に変更することができる。 Further, as in the case of the one embodiment, the main valve 2 is located at the lowermost position and the throttle valve 3 and the pilot valve 1 are sequentially stacked. Therefore, the main valve 2, the pilot valve 1 and the throttle valve 3 are individually provided. It can be replaced and can be easily changed according to the application.

なお、前述の各実施形態では、絞り部として主弁体8のランド8A、8Bにテーパ部8AA、8BB、8CC、8DDを形成したが、これに限定されるものではなく、ランド8A、8Bに溝や切欠きを形成してもよい。また、主弁2とパイロット弁1と絞り弁3を積層配設したが、一つの弁本体に主弁とパイロット弁と絞り弁とを配設してもよいことは勿論である。 In addition, in each of the above-described embodiments, the tapered portions 8AA, 8BB, 8CC, and 8DD are formed on the lands 8A and 8B of the main valve body 8 as the throttle portions. However, the present invention is not limited to this and the lands 8A and 8B are Grooves or notches may be formed. Further, although the main valve 2, the pilot valve 1 and the throttle valve 3 are arranged in a laminated manner, it goes without saying that the main valve, the pilot valve and the throttle valve may be arranged in one valve body.

1:パイロット弁
2:主弁
3:絞り弁
4A、4B:電磁石
5:パイロット弁体
8:主弁体
8AA、8BB、8CC、8DD:テーパ部(絞り部)
9A:第1作用室
9B:第2作用室
P2:主供給流路
A:第1主負荷流路
B:第2主負荷流路
R:主排出流路
P1:パイロット供給流路
A1:第1パイロット負荷流路
B1:第2パイロット負荷流路
R1:パイロット排出流路
X、X1:第1切換位置
Y、Y1:第2切換位置
Z、Z1:中立位置
P:圧力源
T:タンク(低圧側)
1: Pilot valve 2: Main valve 3: Throttle valve 4A, 4B: Electromagnet
5: Pilot valve body 8: Main valve body 8AA, 8BB, 8CC, 8DD: Taper part (throttle part)
9A: First working chamber 9B: Second working chamber P2: Main supply flow path A: First main load flow path B: Second main load flow path R: Main discharge flow path P1: Pilot supply flow path A1: First Pilot load flow path B1: Second pilot load flow path R1: Pilot discharge flow path X, X1: First switching position Y, Y1: Second switching position Z, Z1: Neutral position P: Pressure source T: Tank (low pressure side )

Claims (3)

電磁石の励磁、非励磁によってパイロット弁体を作動してパイロット流路を切換えるパイロット弁と、パイロット流路を流れるパイロット流体の作用、非作用により主弁体を作動して主流路を切換える主弁と、パイロット流路を流れるパイロット流体を絞り制御する絞り弁とを具備し、主弁の主弁体には、主流路を流れる流体を絞り制御する絞り部を設け、パイロット弁は、パイロット流路を圧力源からのパイロット圧力流体を供給するパイロット供給流路と、第1パイロット負荷流路と、第2パイロット負荷流路と、低圧側に接続するパイロット排出流路とから構成し、第1パイロット負荷流路をパイロット排出流路に切換連通して第2パイロット負荷流路をパイロット供給流路に切換連通する第1切換位置と、第1パイロット負荷流路をパイロット供給流路に切換連通して第2パイロット負荷流路をパイロット排出流路に切換連通する第2切換位置と、中立位置との3位置を有し、絞り弁は、第1パイロット負荷流路を流れるパイロット流体の一方向への流れを弁座から離脱して自由流れとすると共に、パイロット流体の他方向への流れを弁座に着座して絞り孔を流す制御流れとする円筒形状の第1逆止め弁体と、第1逆止め弁体に嵌合して回動操作による進退で第1逆止め弁体に形成した絞り孔の開度を調整自在に設定する第1絞り弁体と、第2パイロット負荷流路を流れるパイロット流体の一方向への流れを弁座から離脱して自由流れとすると共に、パイロット流体の他方向への流れを弁座に着座して絞り孔を流す制御流れとする円筒形状の第2逆止め弁体と、第2逆止め弁体に嵌合して回動操作による進退で第2逆止め弁体に形成した絞り孔の開度を調整自在に設定する第2絞り弁体とを備え、第1絞り弁体と第2絞り弁体には当接して軸方向移動量を規制する当接部を軸方向先端に設け、主弁は、主流路を圧力源からの圧力流体を供給する主供給流路と、負荷側に接続する第1主負荷流路と第2主負荷流路と、低圧側に接続する主排出流路から構成し、第1主負荷流路を主排出流路に切換連通して第2主負荷流路を主供給流路に切換連通する第1切換位置と、第1負荷流路を主供給流路に切換連通して第2主負荷流路を主排出流路に切換連通する第2切換位置と、中立位置との3位置を有し、主弁体に作用するパイロット流体を導入する第1作用室と第2作用室とを第1パイロット負荷流路と第2パイロット負荷流路とにそれぞれ接続し、第1作用室へのパイロット流体の導入で主弁体を第1切換位置に切換え、第2作用室へのパイロット流体の導入で主弁体を第2切換位置に切換え、両作用室からのパイロット流体の導出で主弁体を中立位置にし、主弁体の最大軸方向移動量を規定して、主供給流路から第1主負荷流路または第2主負荷流路に流れる最大流量を変更自在に設定するねじ部材を設け、絞り部は主弁体を中立位置から第1切換位置または第2切換位置に切換える切換過渡期に、第1主負荷流路または第2主負荷流路から主排出流路に流れる流体を絞り制御することを特徴とするパイロット形電磁弁。 A pilot valve that operates the pilot valve body by exciting or de-exciting the electromagnet to switch the pilot flow path, and a main valve that operates the main valve body by the action or non-action of the pilot fluid flowing in the pilot flow path to switch the main flow path. And a throttle valve for restricting control of the pilot fluid flowing through the pilot flow passage, and a main valve body of the main valve is provided with a throttle portion for restricting control of the fluid flowing through the main flow passage. A pilot supply flow path for supplying a pilot pressure fluid from a pressure source, a first pilot load flow path, a second pilot load flow path, and a pilot discharge flow path connected to the low pressure side. A first switching position for switching and communicating the flow passage to the pilot discharge flow passage and switching and communicating the second pilot load flow passage to the pilot supply flow passage; and a first switching position for switching and communicating the first pilot load flow passage to the pilot supply flow passage. The throttle valve has three positions, a second switching position for switching and communicating the two pilot load flow paths to the pilot discharge flow path, and a neutral position. The throttle valve is a unidirectional flow of the pilot fluid flowing through the first pilot load flow path. A first non-return valve body having a cylindrical shape that separates the valve from the valve seat to make it a free flow, and controls the flow of the pilot fluid in the other direction to sit on the valve seat and make the control flow to flow through the throttle hole; A first throttle valve body that is fitted to the stop valve body and that adjusts the opening degree of the throttle hole formed in the first check valve body by advancing and retracting by a turning operation, and a pilot that flows through the second pilot load flow path. Cylindrical second non-return valve that allows the flow of fluid in one direction to separate from the valve seat to be a free flow, and allows the flow of pilot fluid in the other direction to sit on the valve seat and flow through the throttle hole as a control flow A valve body and a second throttle valve body which is fitted to the second check valve body and which adjustably sets the opening degree of a throttle hole formed in the second check valve body by advancing and retracting by a turning operation, An abutting portion that comes into contact with the first throttle valve body and the second throttle valve body to regulate the axial movement amount is provided at the axial tip end, and the main valve uses a main flow path to supply a pressure fluid from a pressure source. It comprises a supply flow path, a first main load flow path connected to the load side, a second main load flow path, and a main discharge flow path connected to the low pressure side. The first main load flow path is used as the main discharge flow path. A first switching position for switching and communicating the second main load flow path with the main supply flow path; and a first switching path for communicating the first load flow path with the main supply flow path and the second main load flow path for main discharge flow. The first working chamber and the second working chamber, which have three positions, that is, a second switching position for switching and communicating with the passage and a neutral position, and which introduces a pilot fluid that acts on the main valve body, serve as a first pilot load flow path. Second pilot negative The main valve body is switched to the first switching position by introducing the pilot fluid into the first working chamber, and the main valve body is switched to the second switching position by introducing the pilot fluid into the second working chamber. The main valve body is set to the neutral position by drawing the pilot fluid from both working chambers, and the maximum axial movement amount of the main valve body is regulated. A screw member that sets the maximum flow rate flowing in the load passage is provided so that the throttle portion switches the main valve body from the neutral position to the first switching position or the second switching position. Alternatively, a pilot type solenoid valve is characterized in that the fluid flowing from the second main load passage to the main discharge passage is throttled. 電磁石の励磁、非励磁によってパイロット弁体を作動してパイロット流路を切換えるパイロット弁と、パイロット流路を流れるパイロット流体の作用、非作用により主弁体を作動して主流路を切換える主弁と、パイロット流路を流れるパイロット流体を絞り制御する絞り弁とを具備し、主弁の主弁体には、主流路を流れる流体を絞り制御する絞り部を設け、パイロット弁は、パイロット流路を圧力源からのパイロット圧力流体を供給するパイロット供給流路と、第1パイロット負荷流路と、第2パイロット負荷流路と、低圧側に接続するパイロット排出流路とから構成し、第1パイロット負荷流路をパイロット排出流路に切換連通して第2パイロット負荷流路をパイロット供給流路に切換連通する第1切換位置と、第1パイロット負荷流路をパイロット供給流路に切換連通して第2パイロット負荷流路をパイロット排出流路に切換連通する第2切換位置と、中立位置との3位置を有し、絞り弁は、第1パイロット負荷流路を流れるパイロット流体の一方向への流れを弁座から離脱して自由流れとすると共に、パイロット流体の他方向への流れを弁座に着座して絞り孔を流す制御流れとする円筒形状の第1逆止め弁体と、第1逆止め弁体に嵌合して回動操作による進退で第1逆止め弁体に形成した絞り孔の開度を調整自在に設定する第1絞り弁体と、第2パイロット負荷流路を流れるパイロット流体の一方向への流れを弁座から離脱して自由流れとすると共に、パイロット流体の他方向への流れを弁座に着座して絞り孔を流す制御流れとする円筒形状の第2逆止め弁体と、第2逆止め弁体に嵌合して回動操作による進退で第2逆止め弁体に形成した絞り孔の開度を調整自在に設定する第2絞り弁体とを備え、第1絞り弁体と第2絞り弁体には当接して軸方向移動量を規制する当接部を軸方向先端に設け、主弁は、主流路を圧力源からの圧力流体を供給する主供給流路と、負荷側に接続する第1主負荷流路と第2主負荷流路と、低圧側に接続する主排出流路から構成し、第1主負荷流路を主排出流路に切換連通して第2主負荷流路を主供給流路に切換連通する第1切換位置と、第1負荷流路を主供給流路に切換連通して第2主負荷流路を主排出流路に切換連通する第2切換位置と、中立位置との3位置を有し、主弁体に作用するパイロット流体を導入する第1作用室と第2作用室とを第1パイロット負荷流路と第2パイロット負荷流路とにそれぞれ接続し、第1作用室へのパイロット流体の導入で主弁体を第1切換位置に切換え、第2作用室へのパイロット流体の導入で主弁体を第2切換位置に切換え、両作用室からのパイロット流体の導出で主弁体を中立位置にし、主弁体の最大軸方向移動量を規定して、主供給流路から第1主負荷流路または第2主負荷流路に流れる最大流量を変更自在に設定するねじ部材を設け、絞り部は主弁体を中立位置から第1切換位置または第2切換位置に切換える切換過渡期に、主供給流路から第1主負荷流路または第2主負荷流路に流れる流体を絞り制御することを特徴とするパイロット形電磁弁。 A pilot valve that operates the pilot valve body by exciting or de-exciting the electromagnet to switch the pilot flow path, and a main valve that operates the main valve body by the action or non-action of the pilot fluid flowing in the pilot flow path to switch the main flow path. And a throttle valve for restricting control of the pilot fluid flowing through the pilot flow passage, and a main valve body of the main valve is provided with a throttle portion for restricting control of the fluid flowing through the main flow passage. A pilot supply flow path for supplying a pilot pressure fluid from a pressure source, a first pilot load flow path, a second pilot load flow path, and a pilot discharge flow path connected to the low pressure side. A first switching position for switching and communicating the flow passage to the pilot discharge flow passage and switching and communicating the second pilot load flow passage to the pilot supply flow passage; and a first switching position for switching and communicating the first pilot load flow passage to the pilot supply flow passage. The throttle valve has three positions, a second switching position for switching and communicating the two pilot load flow paths to the pilot discharge flow path, and a neutral position. The throttle valve is a unidirectional flow of the pilot fluid flowing through the first pilot load flow path. A first non-return valve body having a cylindrical shape that separates the valve from the valve seat to make it a free flow, and controls the flow of the pilot fluid in the other direction to sit on the valve seat and make the control flow to flow through the throttle hole; A first throttle valve body that is fitted to the stop valve body and that adjusts the opening degree of the throttle hole formed in the first check valve body by advancing and retracting by a turning operation, and a pilot that flows through the second pilot load flow path. Cylindrical second non-return valve that allows the flow of fluid in one direction to separate from the valve seat to be a free flow, and allows the flow of pilot fluid in the other direction to sit on the valve seat and flow through the throttle hole as a control flow A valve body and a second throttle valve body which is fitted to the second check valve body and which adjustably sets the opening degree of a throttle hole formed in the second check valve body by advancing and retracting by a turning operation, An abutting portion that comes into contact with the first throttle valve body and the second throttle valve body to regulate the axial movement amount is provided at the axial tip end, and the main valve uses a main flow path to supply a pressure fluid from a pressure source. It comprises a supply flow path, a first main load flow path connected to the load side, a second main load flow path, and a main discharge flow path connected to the low pressure side. The first main load flow path is used as the main discharge flow path. A first switching position for switching and communicating the second main load flow path with the main supply flow path; and a first switching path for communicating the first load flow path with the main supply flow path and the second main load flow path for main discharge flow. The first working chamber and the second working chamber, which have three positions, that is, a second switching position for switching and communicating with the passage and a neutral position, and which introduces a pilot fluid that acts on the main valve body, serve as a first pilot load flow path. Second pilot negative The main valve body is switched to the first switching position by introducing the pilot fluid into the first working chamber, and the main valve body is switched to the second switching position by introducing the pilot fluid into the second working chamber. The main valve body is set to the neutral position by drawing the pilot fluid from both working chambers, and the maximum axial movement amount of the main valve body is regulated. A screw member that sets the maximum flow rate flowing in the load flow passage is provided so that it can be freely changed, and the throttle portion changes from the main supply flow passage to the first feed position during the transition transition period when the main valve body is switched from the neutral position to the first switching position or the second switching position. A pilot-type solenoid valve which controls the flow of a fluid flowing through a first main load passage or a second main load passage. 前記主弁と前記パイロット弁と前記絞り弁は、前記主弁を最下方にして前記絞り弁と前記パイロット弁とを順次積層配設したことを特徴とする請求項1ないし2に記載のパイロット形電磁弁。 3. The pilot type according to claim 1, wherein the main valve, the pilot valve, and the throttle valve are arranged such that the main valve is located at a lowermost position and the throttle valve and the pilot valve are sequentially stacked. solenoid valve.
JP2016015212A 2016-01-29 2016-01-29 Pilot type solenoid valve Active JP6721349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016015212A JP6721349B2 (en) 2016-01-29 2016-01-29 Pilot type solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016015212A JP6721349B2 (en) 2016-01-29 2016-01-29 Pilot type solenoid valve

Publications (3)

Publication Number Publication Date
JP2017133629A JP2017133629A (en) 2017-08-03
JP2017133629A5 JP2017133629A5 (en) 2019-02-07
JP6721349B2 true JP6721349B2 (en) 2020-07-15

Family

ID=59504323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016015212A Active JP6721349B2 (en) 2016-01-29 2016-01-29 Pilot type solenoid valve

Country Status (1)

Country Link
JP (1) JP6721349B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116892228B (en) * 2023-06-30 2024-08-23 江苏汇智高端工程机械创新中心有限公司 Hydraulic excavator work allies oneself with and heavy load mining hydraulic excavator

Also Published As

Publication number Publication date
JP2017133629A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
US9810243B2 (en) Switching valve
JP6663197B2 (en) Suspension device
JPH02134402A (en) Hydraulic control valve
US20060249016A1 (en) Hydraulic circuit and its valve gear
TW200813339A (en) Hydraulic control apparatus
JP2014181802A (en) Cushion valve
US4461314A (en) Electrohydraulic valve
US3216443A (en) Multiple spool valve assembly
JP6721349B2 (en) Pilot type solenoid valve
JP2007263142A (en) Hydraulic control device
JP2019056464A (en) Flow control valve
CN109538556B (en) System for controlling double-pump confluence and engineering machinery
JP2004019873A (en) Hydraulic control device and industrial vehicle with the hydraulic control device
JPH02248702A (en) Hydraulic pressure valve with pressure compensation
WO2022107430A1 (en) Multi-control valve
CN214577994U (en) Load-sensitive multi-way valve reversing linkage
JP4719450B2 (en) Hydraulic control device and hydraulic circuit
JP2020133695A (en) Solenoid valve and work machine
JP4578207B2 (en) Valve device
JPH02248701A (en) Hydraulic pressure valve with pressure compensation
JP3634412B2 (en) Fluid control device
JP2013040639A (en) Hydraulic circuit
JP3981671B2 (en) Hydraulic control device
JP2019196777A (en) Spool valve
JP7123011B2 (en) control valve

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200618

R150 Certificate of patent or registration of utility model

Ref document number: 6721349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350