JP6719965B2 - Painting condition setting method and program - Google Patents

Painting condition setting method and program Download PDF

Info

Publication number
JP6719965B2
JP6719965B2 JP2016093051A JP2016093051A JP6719965B2 JP 6719965 B2 JP6719965 B2 JP 6719965B2 JP 2016093051 A JP2016093051 A JP 2016093051A JP 2016093051 A JP2016093051 A JP 2016093051A JP 6719965 B2 JP6719965 B2 JP 6719965B2
Authority
JP
Japan
Prior art keywords
color
film thickness
coating
base
arbitrary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016093051A
Other languages
Japanese (ja)
Other versions
JP2017200681A (en
Inventor
伊藤 修二
修二 伊藤
雅之 大住
雅之 大住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OFFICE COLOR SCIENCE CO., LTD.
Daihatsu Motor Co Ltd
Original Assignee
OFFICE COLOR SCIENCE CO., LTD.
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OFFICE COLOR SCIENCE CO., LTD., Daihatsu Motor Co Ltd filed Critical OFFICE COLOR SCIENCE CO., LTD.
Priority to JP2016093051A priority Critical patent/JP6719965B2/en
Publication of JP2017200681A publication Critical patent/JP2017200681A/en
Application granted granted Critical
Publication of JP6719965B2 publication Critical patent/JP6719965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、顔料及び光輝材を含む塗料を下地の上に塗装する際の、塗膜の膜厚及び下地色の最適条件をシミュレーションにより設定するための方法及びプログラムに関する。 The present invention relates to a method and a program for setting, by simulation, optimum conditions for a film thickness of a coating film and a base color when a paint containing a pigment and a bright material is applied on the base.

例えば自動車の外装部品の製造工程では、まず、デザイン段階で当該部品の塗色(以下、目標色)が決定され、この目標色を得るための塗料が試作される。そして、この試作塗料を下地の上に塗装して試作品を形成し、この試作品の塗色が目標色と一致するか否かを検証する。 For example, in the manufacturing process of automobile exterior parts, first, the coating color (hereinafter, target color) of the part is determined at the design stage, and a paint for obtaining this target color is prototyped. Then, the trial paint is applied on the base to form a trial product, and it is verified whether or not the coating color of the trial product matches the target color.

しかし、塗料は、下地の色を隠蔽する程度(隠蔽力)が十分で無いことが多く、特に、自動車の外装の塗料に多く適用されるメタリック塗料やパール塗料は、アルミフレークや干渉性光輝材等の光輝材を含むため、塗面に対する照明方向や観察方向により隠蔽力が大きく変化する。このため、デザイン段階で決定した目標色と、実際に塗装を施した試作品の外観色とが一致しないことが多い。 However, paints often do not have a sufficient degree of hiding the color of the base (hiding power). In particular, metallic paints and pearl paints, which are often applied to paints for automobile exteriors, include aluminum flakes and coherent glitters. Since such a bright material is included, the hiding power greatly changes depending on the illumination direction and the observation direction with respect to the coated surface. For this reason, the target color decided at the design stage often does not match the appearance color of the actually painted prototype.

この場合、塗膜の膜厚や下地の色を変えてさらに試作品を作製し、目標色と一致するように調整を行う。しかし、多数の試作品を作製すると、工数が増えてコスト高を招く。また、膜厚や下地色を調整しても、試作品の塗色と目標色とを一致させることが困難な場合は、試作塗料の成分を再調整したり、目標色を再検討する必要が生じる。この場合、工数がさらに増えるばかりか、デザインの自由度が狭まってしまう。 In this case, a trial product is prepared by changing the film thickness of the coating film and the color of the base, and adjustment is performed so as to match the target color. However, if a large number of prototypes are manufactured, the man-hour will increase and the cost will increase. In addition, if it is difficult to match the paint color of the prototype with the target color even after adjusting the film thickness or base color, it is necessary to readjust the components of the trial paint or reconsider the target color. Occurs. In this case, not only is the man-hour increased, but the degree of freedom in design is reduced.

そこで、目標色を得るための塗料の組成(顔料及び光輝材の配合比)をコンピュータシミュレーションにより算出する、いわゆるコンピュータ・カラーマッチングが検討されている(例えば、特許文献1参照)。 Therefore, so-called computer color matching, in which the composition of a coating material (mixing ratio of a pigment and a glittering material) for obtaining a target color is calculated by computer simulation, has been studied (for example, see Patent Document 1).

特開平10−310727号公報JP, 10-310727, A

しかし、上記のようなコンピュータ・カラーマッチングにより算出した組成の塗料を用いた場合でも、所望の外観色を得られないことがある。例えば、製品ごとの塗装条件の変動により塗膜の膜厚が変動し、これにより塗色が製品ごとに変動して、目標色と異なってしまうことがある。また、各製品の塗装中の塗装条件の変動や、スプレー安定性、スプレーパターンにより、各製品の塗膜の膜厚が部位ごとに微妙に変動し、塗色のムラ(塗装斑)を引き起こすことがある。特に、顔料及び光輝材を含む塗料を用いる場合、上記のように、塗面に対する照明方向や観察方向により隠蔽力が大きく変化するため、製品ごとあるいは部位ごとの塗色の変動が生じやすい。 However, even when a paint having a composition calculated by the above computer color matching is used, a desired appearance color may not be obtained. For example, the film thickness of the coating film may fluctuate due to fluctuations in the coating conditions for each product, which may cause the coating color to fluctuate for each product and be different from the target color. Also, the film thickness of the coating film of each product may vary slightly depending on the site due to changes in the coating conditions during coating of each product, spray stability, and spray pattern, causing uneven coating color (painting unevenness). There is. In particular, when a coating material containing a pigment and a glittering material is used, the hiding power greatly changes depending on the illumination direction and the observation direction with respect to the coated surface as described above, so that the coating color tends to vary from product to product or from site to site.

例えば、塗膜の膜厚を厚くすれば、隠蔽力が高くなるため、膜厚の微小変動に起因する塗色の変動が抑えられ、塗色を安定させることができる。しかし、膜厚を厚くすると、塗料の使用量の増大、塗装時間の増大、乾燥時間の増大、乾燥エネルギーの増大等に伴うコストの増大や、塗面の端部における塗料溜りによる外観品質の低下等が引き起こされる。従って、膜厚はできるだけ薄い方がよいが、目標色と一致し、且つ、塗装斑を防止できる最小の膜厚と、これに対応する下地色の組み合わせを、シミュレーションにより求める手法は確立されておらず、上記のように多数の試作品を作製せざるを得ないのが実情である。 For example, when the film thickness of the coating film is increased, the hiding power is increased, so that the variation of the coating color due to the minute variation of the film thickness can be suppressed and the coating color can be stabilized. However, if the film thickness is increased, the cost will increase due to an increase in the amount of paint used, an increase in coating time, an increase in drying time, an increase in drying energy, etc., and a deterioration in the appearance quality due to a paint pool at the edges of the coated surface. And so on. Therefore, it is better to make the film thickness as thin as possible, but a method for obtaining the minimum film thickness that matches the target color and that can prevent paint spots and the corresponding background color by simulation has been established. Instead, the reality is that many prototypes have to be produced as described above.

上記のような事情から、本発明は、目標色と一致し、且つ、均一な塗色を得るための最小の膜厚とこれに対応する下地色を、シミュレーションにより求めることを目的とする。 In view of the above-mentioned circumstances, the present invention has an object to obtain the minimum film thickness that is consistent with the target color and obtains a uniform coating color and the corresponding base color by simulation.

前記課題を解決するために、本発明は、顔料及び光輝材を含む試作塗料を下地の上に塗装する際の、塗膜の膜厚及び下地色の最適条件をシミュレーションにより設定するための方法であって、任意の膜厚及び任意の下地色において、膜厚を微小変動させたときの塗色の変動を算出する工程と、前記塗色の変動が所定範囲内となる膜厚及び下地色の範囲を設定する工程と、前記膜厚及び下地色の範囲内における最小の膜厚、及びこれに対応する下地色を、膜厚及び下地色の最適値として設定する工程とを備えた塗装条件設定方法を提供する。 In order to solve the above problems, the present invention is a method for setting the optimum conditions of the film thickness and the base color of a coating film by simulation when coating a trial paint containing a pigment and a bright material on the base. Then, the step of calculating the variation of the coating color when the film thickness is slightly changed in an arbitrary film thickness and an arbitrary background color, and the film thickness and the background color of which the variation of the coating color is within a predetermined range. Setting coating conditions including a step of setting a range and a step of setting a minimum film thickness within the range of the film thickness and the base color and a base color corresponding thereto as an optimum value of the film thickness and the base color. Provide a way.

また、本発明は、顔料及び光輝材を含む試作塗料を下地の上に塗装する際の、塗膜の膜厚及び下地色の最適条件を、コンピュータに設定させるためのプログラムであって、任意の膜厚及び任意の下地色において、膜厚を微小変動させたときの塗色の変動を算出する工程と、前記塗色の変動が所定範囲内となる膜厚及び下地色の範囲を設定する工程と、前記膜厚及び下地色の範囲内における最小の膜厚、及びこれに対応する下地色を、膜厚及び下地色の最適値として設定する工程とを、コンピュータに実行させるためのプログラムを提供する。 Further, the present invention is a program for causing a computer to set the optimum conditions of the film thickness of the coating film and the base color when the trial paint containing the pigment and the luster color material is applied on the base. A step of calculating a change in coating color when the film thickness and an arbitrary base color are slightly changed, and a step of setting a range of the film thickness and the base color in which the change of the coating color is within a predetermined range. And a step of setting the minimum film thickness within the range of the film thickness and the background color and the background color corresponding thereto as the optimum value of the film thickness and the background color. To do.

上記のように、本発明では、シミュレーションにより、任意の膜厚及び任意の下地色において、膜厚を微小変動させたときの塗色の変動を算出し、この塗色の変動が所定範囲内となるように、塗膜の膜厚及び下地色の範囲を設定する。そして、この膜厚及び下地色の範囲内における最小の膜厚と、これに対応する下地色を、膜厚及び下地色の最適値とする。以上により、膜厚の微小変動が引き起こす塗色の変動を所定範囲内に抑えることができる最小の膜厚と、これに対応した下地色を取得できる。 As described above, in the present invention, the variation of the coating color when the thickness is slightly changed is calculated by the simulation in the arbitrary thickness and the arbitrary base color, and the variation of the coating color is within the predetermined range. The thickness of the coating film and the range of the base color are set so that Then, the minimum film thickness within the range of the film thickness and the background color and the corresponding background color are set as the optimum values of the film thickness and the background color. As described above, it is possible to acquire the minimum film thickness capable of suppressing the fluctuation of the coating color caused by the minute fluctuation of the film thickness within the predetermined range, and the base color corresponding to the minimum film thickness.

上記のような膜厚及び下地色の最適化は、任意の膜厚及び任意の下地色における塗膜の塗色を再現する再現計算手段(プログラム)を構築し、この再現計算手段を用いて反復計算することにより行われる。しかし、顔料と光輝材とでは光学モデルが全く異なるため、これらの双方を含む塗膜の塗色を再現する再現計算手段を構築することは極めて困難である。 The optimization of the film thickness and the base color as described above is repeated by using the reproduction calculation means by constructing a reproduction calculation means (program) for reproducing the coating color of the coating film with the arbitrary film thickness and the arbitrary base color. It is done by calculating. However, since the pigment and the luster material have completely different optical models, it is extremely difficult to construct a reproduction calculation means for reproducing the coating color of the coating film containing both of them.

そこで、上記の塗装条件設定方法は、各種顔料を単体で含む複数種の塗膜の、任意の膜厚及び任意の下地色における散乱係数及び吸収係数と、各種光輝材を単体で含む複数種の塗膜の、任意の膜厚及び任意の下地色における変角分光反射率係数とを含む材料データベースを作成する工程と、前記材料データベースと前記試作塗料の組成とから、前記試作塗料に含まれる顔料に起因する変角分光反射率係数と、前記試作塗料に含まれる光輝材に起因する変角分光反射率係数とを算出する工程と、前記試作塗料に含まれる顔料に起因する変角分光反射率係数と、前記試作塗料に含まれる光輝材に起因する変角分光反射率係数とを合成することにより、任意の膜厚及び任意の下地色における塗色を再現する再現計算手段を構築する工程とを有し、前記再現計算手段を用いて反復計算を行うことにより、膜厚及び下地色の最適値を求めることが好ましい。 Therefore, the above-mentioned coating condition setting method includes a plurality of types of coating films containing various pigments alone, a scattering coefficient and an absorption coefficient at an arbitrary film thickness and an arbitrary base color, and a plurality of types of glittering materials containing a single type. A step of creating a material database including a film thickness and an angle-varying spectral reflectance coefficient in an arbitrary background color of a coating film, and a pigment included in the trial paint from the material database and the composition of the trial paint And a step of calculating a gonio-spectral reflectance coefficient resulting from the above, and a gonio-spectral reflectance coefficient resulting from the glittering material included in the trial paint, and a gonio spectral reflectance due to the pigment included in the trial paint. A step of constructing a reproduction calculation means for reproducing a coating color with an arbitrary film thickness and an arbitrary base color by synthesizing a coefficient and a variable angle spectral reflectance coefficient due to the glittering material contained in the trial paint. It is preferable to obtain the optimum values of the film thickness and the background color by performing the iterative calculation using the reproduction calculation means.

このように、材料データベースと試作塗料の組成とに基づいて、試作塗料に含まれる顔料に起因する変角分光反射率係数と、試作塗料に含まれる光輝材に起因する変角分光反射率係数とを別個に算出する。これにより、顔料に起因する変角分光反射率係数は、顔料の光学モデルに基づいて算出することができ、光輝材に起因する変角分光反射率係数は、光輝材の光学モデルに基づいて算出することができるため、これらの変角分光反射率係数を合成することにより、任意の膜厚及び任意の下地色における塗色を正確に再現する再現計算手段を構築することができる。 As described above, based on the material database and the composition of the trial paint, the gonio-spectral reflectance coefficient due to the pigment contained in the trial paint and the gonio-spectral reflectance coefficient due to the luster material included in the trial paint. Is calculated separately. Thereby, the gonio spectral reflectance coefficient due to the pigment can be calculated based on the optical model of the pigment, and the gonio spectral reflectance coefficient due to the luster material is calculated based on the optical model of the luster material. Therefore, by combining these gonio-spectral reflectance coefficients, it is possible to construct a reproduction calculation unit that accurately reproduces a coating color with an arbitrary film thickness and an arbitrary background color.

例えば、材料データベースに含まれる各種顔料及び各種光輝材の塗膜の変角分光反射率係数と、試作塗料の塗膜の変角分光反射率係数とから、試作塗料の組成を定量することができる。具体的には、材料データベースに含まれる、各種顔料を単体で含む複数種の塗膜の変角分光反射率係数、及び、各種光輝材を単体で含む複数種の塗膜の変角分光反射率係数と、試作塗料の塗膜の変角分光反射率係数とから、試作塗料に含まれる顔料及び光輝材の種類及び配合比を算出することができる。 For example, the composition of the trial paint can be quantified from the goniospectral reflectance coefficient of the coating film of various pigments and various luster materials contained in the material database and the goniospectral reflectance coefficient of the coating film of the trial paint. .. Specifically, included in the material database, the gonio-spectral reflectance coefficient of a plurality of types of coating films containing various pigments alone, and the gonio-spectral reflectance of a plurality of types of coating films containing various luster materials alone. From the coefficient and the gonio-spectral reflectance coefficient of the coating film of the trial paint, it is possible to calculate the types and blending ratios of the pigment and the luster material contained in the trial paint.

上記のように、本発明によれば、目標色と一致し、且つ、均一な塗色を得るための最小の膜厚とこれに対応する下地色を、シミュレーションにより求めることができる。 As described above, according to the present invention, it is possible to obtain the minimum film thickness that matches the target color and obtains a uniform coating color and the corresponding base color by simulation.

本発明の一実施形態に係る塗装条件設定装置の模式図である。It is a schematic diagram of the coating condition setting device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る塗装条件設定方法における、材料データベースの作成手順を示すフロー図である。It is a flowchart which shows the creation procedure of a material database in the coating condition setting method which concerns on one Embodiment of this invention. 材料データベースの一例を示す図である。It is a figure which shows an example of a material database. 上記塗装条件設定方法における、再現計算手段による塗色の算出手順を示すフロー図である。It is a flowchart which shows the calculation procedure of the coating color by the reproduction calculation means in the said coating condition setting method. 上記塗装条件設定方法における、膜厚及び下地色の最適化計算の手順を示すフロー図である。It is a flowchart which shows the procedure of the optimization calculation of a film thickness and a base color in the said coating condition setting method. 上記塗装条件設定装置の表示部の画面の一例を示す図である。It is a figure which shows an example of the screen of the display part of the said coating condition setting apparatus.

本発明の一実施形態に係る塗装条件設定装置1は、図1に示すように、測定部2とコンピュータ3とを有する。 The coating condition setting device 1 according to an embodiment of the present invention includes a measuring unit 2 and a computer 3, as shown in FIG.

測定部2は、被測定物(塗膜等)の可視光領域における変角分光反射率係数を測定するものである。変角分光反射率係数は、照射方向に対する受光角度が異なる複数方向における、波長ごとの反射率の、硫酸バリウムの完全拡散面の反射率を100とした場合の係数である。測定部2としては、市販の変角分光光度計を用いることができる。測定部2は、例えば、被測定面に対して垂直な方向に対して所定の角度傾けた方向から光を照射し、この照射方向の鏡面反射方向を起点として複数の異なる角度で反射光を受光する。具体的には、鏡面反射方向を起点として、照射方向側を正としたときの受光角度が、−15°〜110℃の範囲内の6つの方向(例えば、−15°、+15°、+25°、+45°、+75°、+110°)で反射光を受光する。そして、各受光角度θにおける受光量から、可視光領域の波長(400〜700nm)間の所定波長毎(例えば10nm毎)の反射率を計測する。 The measuring unit 2 measures a gonio-spectral reflectance coefficient in a visible light region of an object to be measured (coating film or the like). The gonio-spectral reflectance coefficient is a coefficient of reflectance for each wavelength in a plurality of directions having different light receiving angles with respect to the irradiation direction, when the reflectance of the perfect diffusion surface of barium sulfate is 100. As the measuring unit 2, a commercially available goniospectrophotometer can be used. The measurement unit 2 emits light from a direction inclined by a predetermined angle with respect to a direction perpendicular to the surface to be measured, and receives reflected light at a plurality of different angles with the specular reflection direction of the irradiation direction as a starting point. To do. Specifically, the light receiving angle when the specular reflection direction is the starting point and the irradiation direction side is positive is six directions within a range of -15° to 110°C (for example, -15°, +15°, +25°). , +45°, +75°, +110°) to receive the reflected light. Then, the reflectance at each predetermined wavelength (for example, every 10 nm) between the wavelengths (400 to 700 nm) in the visible light region is measured from the received light amount at each light receiving angle θ.

コンピュータ3は、入力部4、記憶部5、演算部6、及び表示部7を有する。入力部4は、測定部2のデータ等を入力するものであり、例えば測定部2とデータ通信可能とする端子や、手動でデータを入力するためのキーボード等を含む。記憶部5は、入力部4から入力されたデータや、演算部6による演算結果等を記憶するものである。演算部6は、所定のプログラムにより、入力部4から入力されたデータや、記憶部5で記憶されたデータを用いて演算を行うものである。演算部6の具体的な機能は後述する。表示部7は、例えばモニタであり、入力部4から入力されたデータや、演算部6による演算結果等を表示する。 The computer 3 has an input unit 4, a storage unit 5, a calculation unit 6, and a display unit 7. The input unit 4 is for inputting data and the like of the measurement unit 2, and includes, for example, a terminal that enables data communication with the measurement unit 2, a keyboard for manually inputting data, and the like. The storage unit 5 stores the data input from the input unit 4, the calculation result of the calculation unit 6, and the like. The arithmetic unit 6 performs an arithmetic operation using the data input from the input unit 4 and the data stored in the storage unit 5 according to a predetermined program. The specific function of the arithmetic unit 6 will be described later. The display unit 7 is, for example, a monitor, and displays the data input from the input unit 4, the calculation result by the calculation unit 6, and the like.

次に、上記塗装条件設定装置1を用いて、塗装条件を設定する方法を説明する。この塗装条件設定方法は、材料データベースを作成する工程と、再現計算手段を構築する工程と、膜厚及び下地色を最適化する工程とを有する。 Next, a method of setting the coating conditions using the coating condition setting device 1 will be described. This coating condition setting method includes a step of creating a material database, a step of constructing a reproduction calculation means, and a step of optimizing a film thickness and a base color.

[材料データベースの作成]
材料データベースは、各種顔料あるいは各種光輝材を単体で含む塗膜の光学特性に関する情報である。材料データベースは、図2に示す手順を経て作成される。以下、各手順を詳しく説明する。
[Creation of material database]
The material database is information on the optical characteristics of a coating film containing various pigments or various luster pigments alone. The material database is created through the procedure shown in FIG. Hereinafter, each procedure will be described in detail.

(ステップS1)
まず、明度の異なる複数の下地を用意し、測定部2により、各下地の表面の変角分光反射率係数を測定する。本実施形態では、白色の下地(以下、白下地W)および黒色の下地(以下、黒下地B)の表面の変角分光反射率係数R、Rを測定する。白下地W及び黒下地Bは、例えば図1に示すように矩形の平板からなる。図示例では、白下地W及び黒下地Bが一体化されているが、これらを別体に設けてもよい。
(Step S1)
First, a plurality of bases having different brightness are prepared, and the measuring unit 2 measures the gonio-spectral reflectance coefficient of the surface of each base. In the present embodiment, the goniospectral reflectance coefficients R W and R B of the surfaces of a white background (hereinafter, white background W) and a black background (hereinafter, black background B) are measured. The white base W and the black base B are rectangular flat plates as shown in FIG. 1, for example. In the illustrated example, the white base W and the black base B are integrated, but they may be provided separately.

(ステップS2)
次に、白下地Wおよび黒下地B上に、各種顔料を単体で含む複数種の塗料を塗布し、塗膜を形成する。顔料は、一般に赤、青、黄、黒、白といった色彩を付与する為に、塗料中に分散されている微粒子である。本実施形態では、まず、白下地W及び黒下地Bの上に、顔料P1、P2、P3・・・をそれぞれ単体で所定の濃度で含む塗料を所定の膜厚(例えば15μm)で塗布する。尚、塗膜の表面は光沢が不足し、表面の散乱が後の反射率の計測に悪影響を及ぼすことがあるので、例えばクリアコートを所定の膜厚(例えば数十μm)で塗装してもよい。そして、測定部2により、各下地W,B上の、各種顔料P1、P2・・・を単体で含む塗膜の表面の変角分光反射率係数(RP1,W、RP1,B)、(RP2,W、RP2,B)・・・を測定すると共に、当該塗膜の膜厚XP1、XP2・・・を測定する。
(Step S2)
Next, a plurality of types of paints containing various pigments alone are applied on the white base W and the black base B to form a coating film. Pigments are generally fine particles dispersed in a paint in order to impart colors such as red, blue, yellow, black and white. In the present embodiment, first, a coating material containing each of the pigments P1, P2, P3,... At a predetermined concentration is applied onto the white background W and the black background B in a predetermined film thickness (for example, 15 μm). Since the surface of the coating film lacks gloss and scattering of the surface may adversely affect the subsequent measurement of reflectance, for example, even if a clear coat is applied with a predetermined film thickness (for example, several tens of μm). Good. Then, by the measuring unit 2, the goniospectral reflectance coefficients (R P1,W , R P1,B ) of the surface of the coating film containing the various pigments P1, P2,... (R P2, W , R P2, B ), and the film thicknesses X P1 , X P2, ... Of the coating film are measured.

(ステップS3)
次に、白下地Wおよび黒下地B上に、各種光輝材を単体で含む複数種の塗料を塗布し、塗膜を形成する。光輝材は、メタリック系塗料に含まれる金属光輝材と、パール系塗料に含まれる干渉性光輝材とに大別される。金属光輝材は、一般にアルミ等の金属のフレークで、鱗状を成し、平均径は数μm〜100μm程度である。金属光輝材は光を透過しない。一方、干渉性光輝材は、パール色を呈する材料で、微粉砕された雲母(マイカ)の表面に、屈折率の異なる酸化金属を1層〜多層コーティングされたものである。屈折率の異なる複数層間の界面でFresnelの反射が生じ、これにより生じる光の干渉を利用して、パール色(照明と受光の角度によって色相が異なる)を呈する。
(Step S3)
Next, a plurality of types of paints containing various glitters alone are applied on the white base W and the black base B to form a coating film. The glitter material is roughly classified into a metallic glitter material included in the metallic paint and an interference glitter material included in the pearl paint. The metallic luster color material is generally a flake of a metal such as aluminum, has a scaly shape, and has an average diameter of about several μm to 100 μm. Metallic luster does not transmit light. On the other hand, the coherent luster material is a material exhibiting a pearl color, and is one in which metal oxides having different refractive indexes are coated on the surface of finely pulverized mica (mica) in one to multiple layers. Fresnel reflection occurs at the interface between multiple layers with different refractive indices, and the interference of light caused by this causes a pearl color (hue differs depending on the angle of illumination and light reception).

本実施形態では、まず、白下地W及び黒下地Bの上に、各種光輝材E1、E2・・・を単体で所定の濃度で含む塗料を、所定の膜厚(例えば15μm)で塗布する。尚、塗膜の表面に、クリアコートを所定の膜厚(例えば数十μm)で塗装してもよい。そして、測定部2により、各下地W,B上の、各種光輝材E1、E2・・・を単体で含む塗膜の表面の変角分光反射率係数(RE1,W、RE1,B)、(RE2,W、RE2,B)・・・を測定すると共に、当該塗膜の膜厚XE1、XE2・・・を測定する。 In the present embodiment, first, the white base material W and the black base material B are each coated with a coating material containing each of the glittering materials E1, E2,... at a predetermined concentration by a predetermined thickness (for example, 15 μm). The surface of the coating film may be coated with a clear coat in a predetermined film thickness (for example, several tens of μm). Then, by the measuring unit 2, the gonio-spectral reflectance coefficient (R E1,W , R E1,B ) of the surface of the coating film containing the various bright materials E1, E2,... , (R E2, W , R E2, B ), and the film thicknesses X E1 , X E2, ... Of the coating film are measured.

(ステップS4)
次に、各下地W,Bの変角分光反射率係数R、R、顔料P1のみを有する塗膜の変角分光反射率係数(RP1,W、RP1,B)及び膜厚XP1から、顔料P1のみを有する塗膜の、任意の膜厚及び任意の下地色(明度)における、受光角度θごと、波長λごとの散乱係数SP1及び吸収係数KP1を算出する。この散乱係数SP1及び吸収係数KP1は、顔料の光学モデル(クベルカ・ムンク理論)に基づいて算出することができる。散乱係数SP1及び吸収係数KP1の算出は、測定部2に内蔵された演算部(図示省略)、あるいはコンピュータ3の演算部6で行われる。同様に、顔料P2、P3・・・を単体で含む各塗膜の、任意の膜厚及び任意の下地色(明度)における、受光角度θごと、波長λごとの散乱係数SP2、SP3・・・及び吸収係数KP2、KP3・・・を算出する。尚、計測した変角分光反射率係数は、表面のクリア層と空気との界面で生じるFresnelの反射によって引き起こされる、表面での鏡面反射及び内部の鏡面反射の影響を受けることがある。従って、計測した変角分光反射率係数を、Saundersonの補正方法等により、上記の鏡面反射の影響を受けない理想的な反射の状態に補正してもよい。
(Step S4)
Next, each base W, variable angle spectroscopic reflectance factor R W of B, R B, variable angle spectroscopic reflectance factor of the coating film having only pigment P1 (R P1, W, R P1, B) and a thickness X From P1 , the scattering coefficient S P1 and the absorption coefficient K P1 are calculated for each light receiving angle θ and each wavelength λ in the coating film having only the pigment P1 in the arbitrary film thickness and the arbitrary background color (brightness). The scattering coefficient S P1 and the absorption coefficient K P1 can be calculated based on the optical model of pigment (Kuberka-Munk theory). The calculation of the scattering coefficient S P1 and the absorption coefficient K P1 is performed by a calculation unit (not shown) built in the measurement unit 2 or the calculation unit 6 of the computer 3. Similarly, the scattering coefficients S P2 and S P3 for each light receiving angle θ and each wavelength λ of each coating film containing the pigments P2, P3,... .. and absorption coefficients K P2 , K P3, ... The measured goniospectral reflectance coefficient may be affected by specular reflection on the surface and internal specular reflection caused by Fresnel reflection generated at the interface between the clear layer on the surface and air. Therefore, the measured gonio-spectral reflectance coefficient may be corrected to an ideal reflection state that is not affected by the specular reflection by the Saunderson correction method or the like.

(ステップS5)
次に、各下地W,Bの変角分光反射率係数R、R、光輝材E1のみを有する塗膜の変角分光反射率係数(RE1,W、RE1,B)及び膜厚XE1から、光輝材E1のみを有する塗膜の被覆率PE1を算出する。この被覆率PE1に基づいて、任意の膜厚及び任意の下地色(明度)における、受光角度θごと、波長λごとの変角分光反射率係数RE1を算出する。被覆率PE1及び変角分光反射率係数RE1の算出は、測定部2に内蔵された演算部(図示省略)、あるいはコンピュータ3の演算部6で行われる。同様に、光輝材E2、E3・・・を単体で含む各塗膜の被覆率PE2、PE3・・・、及び、任意の膜厚及び任意の下地色(明度)における、受光角度θごと、波長λごとの変角分光反射率係数RE2、RE3・・・を算出する。
(Step S5)
Next, the gonio-spectral reflectance coefficients R W and RB of the bases W and B , the gonio-spectral reflectance coefficients (R E1,W , R E1,B ) and the film thickness of the coating film having only the glitter material E1. From X E1 , the coverage P E1 of the coating film having only the glitter material E1 is calculated. Based on this coverage P E1 , the goniospectral reflectance coefficient R E1 for each light receiving angle θ and each wavelength λ in an arbitrary film thickness and an arbitrary base color (brightness) is calculated. The calculation of the coverage P E1 and the gonio-spectral reflectance coefficient R E1 is performed by a calculation unit (not shown) built in the measurement unit 2 or the calculation unit 6 of the computer 3. Similarly, the coverage P E2 , P E3, ... Of each coating film containing the glittering materials E2, E3,... Independently, and for each light receiving angle θ at any film thickness and any background color (brightness) , And the goniospectral reflectance coefficients R E2 , R E3 ... For each wavelength λ.

(ステップS6)
以上のステップS1〜S5で得られた各データが、入力部4を介してコンピュータ3の記憶部5に伝達され、材料データベースとして記憶される(図3参照)。各データは、測定あるいは算出後すぐにコンピュータ3の記憶部5に転送してもよいし、測定部2内のメモリに一旦格納した後、最後にまとめて記憶部5に転送してもよい。
(Step S6)
Each data obtained in the above steps S1 to S5 is transmitted to the storage unit 5 of the computer 3 via the input unit 4 and stored as a material database (see FIG. 3). Each data may be transferred to the storage unit 5 of the computer 3 immediately after measurement or calculation, or may be temporarily stored in the memory in the measurement unit 2 and then collectively transferred to the storage unit 5.

[再現計算手段の構築]
次に、図4に示す手順を経て塗色を再現する再現計算手段を構築し、この再現計算手段をコンピュータ3にインストールする。以下、塗色の算出の各手順を詳しく説明する。
[Construction of reproduction calculation means]
Next, a reproduction calculation means for reproducing the paint color is constructed through the procedure shown in FIG. 4, and this reproduction calculation means is installed in the computer 3. Hereinafter, each procedure for calculating the paint color will be described in detail.

(ステップS7)
まず、塗装対象物(例えば自動車のボデー)のデザイン段階において、当該塗装対象物の塗色を決定すると共に、その塗色を出すための試作塗料を作製する。そして、白下地W及び黒下地Bの上に、所定の膜厚(例えば15μm)で試作塗料を塗布して塗膜を形成する。尚、塗膜の表面に、クリアコートを所定の膜厚(例えば数十μm)で塗装してもよい。そして、測定部2により、白下地W及び黒下地B上に形成された試作塗料の塗膜の表面の変角分光反射率係数RC,W、RC,Bを測定すると共に、当該塗膜の膜厚Xを測定する。
(Step S7)
First, in the design stage of an object to be coated (for example, a car body), the coating color of the object to be coated is determined, and a trial paint for producing the coating color is prepared. Then, a trial paint is applied on the white base W and the black base B with a predetermined film thickness (for example, 15 μm) to form a coating film. The surface of the coating film may be coated with a clear coat in a predetermined film thickness (for example, several tens of μm). Then, the measuring unit 2 measures the gonio-spectral reflectance coefficients R C,W , R C,B of the surface of the coating film of the trial paint formed on the white base W and the black base B, and the coating film concerned. The film thickness X C of is measured.

(ステップS8)
次に、試作塗料の組成を定量する。具体的には、ステップS7で測定した試作塗料の塗膜の変角分光反射率係数RC,W、RC,Bと、記憶部5に記憶された材料データベースとから、試作塗料の組成を定量する。詳しくは、試作塗料の塗膜の変角分光反射率係数RC,W、RC,Bと、材料データベースに含まれる、各下地W,B上の各種顔料P1、P2・・・の変角分光反射率係数(RP1,W、RP1,B)、(RP2,W、RP2,B)・・・、及び各種光輝材E1、E2・・・の変角分光反射率係数(RE1,W、RE1,B)、(RE2,W、RE2,B)・・・とを比較することで、試作塗料に含まれる顔料及び光輝材の種類及び配合比を算出する。尚、試作資料の組成が予め分かっている場合は、ステップS7(白下地W及び黒下地B上への試作塗料の塗布、及び変角分光反射率係数RC,W、RC,Bの測定)及びステップS8(試作塗料の定量)を省略することもできる。
(Step S8)
Next, the composition of the trial paint is quantified. Specifically, the composition of the trial paint is determined from the variable angle spectral reflectance coefficients R C,W , R C,B of the coating film of the trial paint measured in step S7 and the material database stored in the storage unit 5. Quantify. Specifically, the gonio-spectral reflectance coefficients R C, W , R C, B of the coating film of the trial paint and the gonio-angles of the various pigments P1, P2,... Spectral reflectance coefficients (R P1,W , R P1,B ), (R P2,W , R P2,B )... And various eccentric spectral reflectance coefficients (R E1,W , R E1,B ), (R E2,W , R E2,B )... are compared to calculate the types and blending ratios of the pigment and the luster color material contained in the trial paint. If the composition of the trial material is known in advance, step S7 (application of the trial paint on the white base W and the black base B, and measurement of the goniospectral reflectance coefficients R C,W , R C,B ) ) And step S8 (quantity of trial paint) can be omitted.

(ステップS9)
次に、試作塗料の塗膜に含まれた顔料に起因する散乱係数及び吸収係数を算出する。具体的には、材料データベースのうち、試作塗料に含まれた顔料(例えばP1及びP3)の散乱係数SP1、SP3に、試作塗料における各顔料の配合比を掛けた上で、これらを合成することにより、試作塗料に含まれる顔料に起因する散乱係数Sが算出される。同様に、選択した顔料P1,P3の吸収係数KP1、KP3に、試作塗料における各顔料の配合比を掛けた上で、これらを合成することにより、試作塗料に含まれる顔料に起因する吸収係数Kが算出される。こうして得られた散乱係数S及び吸収係数Kから、任意の膜厚及び任意の下地色における、試作塗料に含まれる顔料に起因する変角分光反射率係数Rが算出される。尚、ステップS4で、理想状態の変角分光反射率係数に補正した場合、その逆関数を用いて、実際の状態の変角分光反射率係数に補正してもよい。
(Step S9)
Next, the scattering coefficient and the absorption coefficient due to the pigment contained in the coating film of the trial paint are calculated. Specifically, in the material database, the scattering coefficients S P1 and S P3 of the pigments (for example, P1 and P3) contained in the trial paint are multiplied by the compounding ratio of each pigment in the trial paint, and then these are synthesized. By doing so, the scattering coefficient S P due to the pigment contained in the trial paint is calculated. Similarly, the absorption coefficients K P1 and K P3 of the selected pigments P1 and P3 are multiplied by the compounding ratio of each pigment in the trial paint, and these are synthesized to obtain the absorption caused by the pigment contained in the trial paint. The coefficient K P is calculated. From the scattering coefficient S P and the absorption coefficient K P thus obtained, the gonio-spectral reflectance coefficient R P due to the pigment contained in the trial paint in an arbitrary film thickness and an arbitrary base color is calculated. When the gonio-spectral reflectance coefficient in the ideal state is corrected in step S4, the inverse function may be used to correct the gonio-spectral reflectance coefficient in the actual state.

(ステップS10)
次に、試作塗料の塗膜に含まれた光輝材に起因する変角分光反射率係数を算出する。具体的には、材料データベースのうち、試作塗料に含まれた光輝材(例えばE2及びE4)の変角分光反射率係数RE2、RE4に、試作塗料における各光輝材の配合比を掛けた上で、これらを合成することにより、任意の膜厚及び任意の下地色における、試作塗料に含まれる光輝材に起因する変角分光反射率係数Rが算出される。
(Step S10)
Next, the goniospectral reflectance coefficient due to the glittering material contained in the coating film of the trial paint is calculated. Specifically, in the material database, the goniospectral reflectance coefficients R E2 and R E4 of the luster pigments (for example, E2 and E4) contained in the trial paint were multiplied by the compounding ratio of each luster pigment in the trial paint. By synthesizing the above, the goniospectral reflectance coefficient R E due to the glittering material contained in the trial paint is calculated for an arbitrary film thickness and an arbitrary base color.

(ステップS11)
次に、ステップS9で求めた、試作塗料に含まれる顔料に起因する変角分光反射率係数Rと、ステップS10で求めた、試作塗料に含まれる光輝材に起因する変角分光反射率係数Rとを合成することにより、試作塗料の塗膜の、任意の膜厚及び任意の下地色における変角分光反射率係数Rを算出する。そして、この変角分光反射率係数Rに基づいて、任意の膜厚及び任意の下地色における、試作塗料の塗膜の塗色(例えば、三刺激値XYZやL値)を算出する。以上のステップS8〜S11により試作塗料を用いた塗膜の塗色を再現する再現計算手段(プログラム)が、コンピュータ3の演算部6に予めインストールされる。
(Step S11)
Then, obtained in step S9, the variable angle spectroscopic reflectance factor R P due to pigment contained in the prototype coating was determined in step S10, variable angle spectroscopic reflectance factor due to the luminous material contained in the prototype paint By combining with R E , the gonio-spectral reflectance coefficient R of the coating film of the trial paint in an arbitrary film thickness and an arbitrary base color is calculated. Then, based on the gonio-spectral reflectance coefficient R, the coating color (for example, tristimulus value XYZ or L * a * b * value) of the coating film of the trial paint at an arbitrary film thickness and an arbitrary base color is determined. calculate. Reproduction calculation means (program) that reproduces the coating color of the coating film using the trial paint by the above steps S8 to S11 is installed in advance in the calculation unit 6 of the computer 3.

[膜厚及び下地色の最適化]
(ステップS12)
次に、再現計算手段がインストールされた演算部6により、膜厚及び下地色の最適値を設定する。具体的には、図5に示すように、まず、再現計算手段を用いて、膜厚及び下地色(例えば明度L)を変動させながら反復計算を行い、設定された範囲内における任意の膜厚及び任意の下地色において、塗膜の膜厚を微小変動させたときの塗色の変動を算出する。例えば、膜厚が10〜20μm、下地の明度Lが2〜90の範囲内のあらゆる膜厚及び下地の明度において、膜厚を±1μm変動させたときの塗色の変動を算出する。
[Optimization of film thickness and base color]
(Step S12)
Next, the calculation unit 6 in which the reproduction calculation means is installed sets the optimum values of the film thickness and the background color. Specifically, as shown in FIG. 5, first, the reproduction calculation means is used to repeatedly perform the calculation while varying the film thickness and the base color (for example, the brightness L * ), and an arbitrary film within the set range is calculated. With respect to the thickness and an arbitrary base color, the fluctuation of the coating color when the film thickness of the coating film is slightly changed is calculated. For example, the variation of the coating color when the film thickness is changed by ±1 μm is calculated for all the film thicknesses and the lightness of the base in which the film thickness is 10 to 20 μm and the base lightness L * is in the range of 2 to 90.

図6は、任意の膜厚及び下地色における、膜厚の微小変動に伴う塗色の変動を表すグラフである。同図のグラフは、受光角度θ(−15°、+15°、+25°、+45°、+75°、+110°)ごとに、膜厚を微小変動させたときの塗色の変動を色の濃淡で表したものである。色が濃いほど塗色の変動が小さく、色が薄いほど塗色の変動が大きい。各グラフの横軸は膜厚(μm)であり、縦軸は下地の明度Lである。 FIG. 6 is a graph showing fluctuations in the coating color due to minute fluctuations in the film thickness for arbitrary film thicknesses and base colors. The graph in the figure shows the variation of the coating color when the film thickness is slightly changed for each light receiving angle θ (−15°, +15°, +25°, +45°, +75°, +110°) as a shade of color. It is a representation. The darker the color, the smaller the variation in the coating color, and the lighter the color, the greater the variation in the coating color. The horizontal axis of each graph is the film thickness (μm), and the vertical axis is the lightness L * of the base.

(ステップS13)
次に、膜厚を微小変動させたときの塗色の変動が所定範囲内となる、膜厚及び下地色の許容範囲が設定される。これにより、この許容範囲内の膜厚及び下地色であれば、塗装条件の変動等により膜厚が製品ごとあるいは部位ごとに微妙に変動した場合でも、この膜厚変動が引き起こす塗色の変動を抑えて、目標色と一致し、且つ、均一な塗色を得ることができる。図6のグラフでは、全ての受光角度θにおいて、塗色の変動が所定値以下の領域(色が所定よりも濃い領域。図中に散点で囲まれた領域。)が、膜厚及び下地色の許容範囲となる。
(Step S13)
Next, the allowable range of the film thickness and the base color is set so that the fluctuation of the coating color when the film thickness is slightly changed is within a predetermined range. As a result, if the film thickness and base color are within this allowable range, even if the film thickness slightly changes for each product or part due to changes in coating conditions, etc. By suppressing, it is possible to obtain a uniform paint color that matches the target color. In the graph of FIG. 6, in all the light receiving angles θ, the region where the variation of the coating color is equal to or less than a predetermined value (the region where the color is darker than a predetermined amount, the region surrounded by the dots in the figure) is the film thickness and the base The color is within the allowable range.

(ステップS14)
上記で設定した膜厚及び下地色の範囲内において、最小の膜厚と、これに対応する下地色とが、膜厚及び下地色の最適値となる。図6では、散点で囲まれた許容範囲のうち、膜厚が最小となる点(×印)の膜厚及び下地色が最適値となる。
(Step S14)
Within the range of the film thickness and the background color set above, the minimum film thickness and the corresponding background color are the optimum values of the film thickness and the background color. In FIG. 6, the film thickness and the base color at the point where the film thickness is the minimum (x mark) in the allowable range surrounded by the scattered points are the optimum values.

以上により、膜厚の微小変動に伴う塗色の変動を所定以下とするために必要最小限の膜厚と、それに対応した下地色(下地の明度)を、最適値として取得することができる。これにより、製品ごとあるいは部位ごとの塗色の変動を抑えて、目標色と一致し、且つ、均一な塗色を得ることができると共に、膜厚をできる限り薄くすることで、塗料の使用量の低減、塗装時間の低減、乾燥時間の低減、乾燥エネルギーの低減による低コスト化や、塗面の端部における塗料溜りの低減による外観品質の向上等が図られる。 As described above, it is possible to acquire the minimum film thickness necessary for keeping the variation of the coating color due to the slight variation of the film thickness to be equal to or less than the predetermined value, and the corresponding background color (brightness of the background) as the optimum value. As a result, it is possible to obtain a uniform coating color that matches the target color by suppressing the variation in the coating color for each product or part, and to reduce the film thickness as much as possible to reduce the amount of paint used. , Reduction of coating time, reduction of drying time, reduction of drying energy to reduce cost, and reduction of paint accumulation at the end of the coated surface to improve appearance quality.

こうして算出された膜厚及び下地色の最適値が、表示部7に出力される。この他、表示部7には、図6に示す膜厚及び下地色の許容範囲及び最適値を示すグラフや、試作塗料の組成、再現計算手段により算出した塗色の実色等を表示してもよい。 The optimum values of the film thickness and the base color calculated in this way are output to the display unit 7. In addition, the display unit 7 displays a graph showing the allowable range and the optimum value of the film thickness and the base color shown in FIG. 6, the composition of the trial paint, the actual color of the paint color calculated by the reproduction calculation means, and the like. Good.

以上より、材料データベースが記憶されたコンピュータ3に、上記のステップS8〜S14を実行するプログラムをインストールしておけば、ステップS7で測定した試作塗料の塗膜の変角分光反射率係数RC,W、RC,B及び膜厚Xをコンピュータ3に入力するだけで、目標色と一致し、且つ、均一な塗色が得られる最小の膜厚及びこれに対応した下地色を自動的に求めることができる。 From the above, if the program for executing the above steps S8 to S14 is installed in the computer 3 in which the material database is stored, the variable angle spectral reflectance coefficient R C, of the coating film of the trial paint measured in step S7 , Only by inputting W , R C, B and the film thickness X C into the computer 3, the minimum film thickness that matches the target color and obtains a uniform coating color and the background color corresponding thereto are automatically obtained. You can ask.

本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と重複する点については説明を省略する。 The present invention is not limited to the above embodiment. Hereinafter, other embodiments of the present invention will be described, but the description of the points overlapping the above embodiments will be omitted.

例えば、上記の実施形態では、塗膜の膜厚を微小変動させたときの塗色の変動に基づいて、膜厚及び下地色の許容範囲を設定したが、これに加えて、隠蔽力に基づいて膜厚及び下地色の許容範囲を設定してもよい。具体的には、例えば、再現計算手段により、白下地W及び黒下地B上の試作塗料の塗膜の変角分光反射率係数RC,W、RC,Bに基づいて、任意の膜厚及び下地色における試作塗料の隠蔽力を算出し、所定範囲の隠蔽力が得られるように膜厚及び下地色の許容範囲を設定することができる。そして、膜厚の微小変動に伴う塗色の変動に基づいた膜厚及び下地色の許容範囲と、隠蔽力に基づいた膜厚及び下地色の許容範囲との重複部分のうち、最小の膜厚及びこれに対応した下地色が最適値となる。 For example, in the above-described embodiment, the allowable range of the film thickness and the base color is set based on the change of the coating color when the film thickness of the coating film is slightly changed, but in addition to this, it is based on the hiding power. The allowable range of film thickness and base color may be set. Specifically, for example, the reproduction calculation means calculates an arbitrary film thickness based on the goniospectral reflectance coefficients R C,W , R C,B of the coating film of the trial paint on the white background W and the black background B. Also, the hiding power of the trial paint in the base color can be calculated, and the allowable range of the film thickness and the base color can be set so that the hiding power of a predetermined range can be obtained. Then, the minimum film thickness of the overlapping portion of the film thickness and the base color permissible range based on the variation of the coating color due to the slight fluctuation of the film thickness and the film thickness and the base color permissible range based on the hiding power. And the base color corresponding to this becomes the optimum value.

また、上記の実施形態では、ステップS7及びS8において、目標色を得るための塗料そのものを試作塗料として使用した場合を示したが、これに限られない。例えば、目標色を得るための塗料に含まれる顔料と同濃度の顔料のみを含む第一の試作塗料と、目標色を得るための塗料に含まれる光輝材と同濃度の光輝材のみを含む第二の試作塗料とを使用してもよい。この場合、第一の試作塗料及び第二の試作塗料を、それぞれ白下地W及び黒下地Bの上に塗布し、各塗膜の変角分光反射率係数を測定する。そして、第一の試作塗料の変角分光反射率係数と、材料データベースに含まれた、各下地W,B上の各種顔料の変角分光反射率係数(RP1,W、RP1,B)、(RP2,W、RP2,B)・・・とを比較することで、試作塗料に含まれる顔料の種類及び配合比を算出する。また、第二の試作塗料の変角分光反射率係数と、材料データベースに含まれた、各種光輝材の変角分光反射率係数(RE1,W、RE1,B)、(RE2,W、RE2,B)・・・とを比較することで、試作塗料に含まれる光輝材の種類及び配合比を算出する。このように、顔料のみを含む第一の試作塗料と、光輝材のみを含む第二の試作塗料に分けて変角分光反射率係数を測定することで、試作塗料の組成をより正確に定量することが可能となる。 Further, in the above embodiment, the case where the paint itself for obtaining the target color is used as the trial paint in steps S7 and S8 is shown, but the present invention is not limited to this. For example, a first trial paint containing only a pigment having the same concentration as the pigment contained in the paint for obtaining the target color, and a first trial paint containing only the glitter material having the same concentration as the glittering material contained in the paint for obtaining the target color. Two trial paints may be used. In this case, the first trial paint and the second trial paint are applied on the white base W and the black base B, respectively, and the goniospectral reflectance coefficient of each coating is measured. Then, the gonio-spectral reflectance coefficient of the first trial paint and the gonio-spectral reflectance coefficients (R P1,W , R P1,B ) of the various pigments on the bases W and B included in the material database. , (R P2, W , R P2, B ) , the type and blending ratio of the pigment contained in the trial paint are calculated. In addition, the gonio-spectral reflectance coefficients of the second trial paint and the gonio-spectral reflectance coefficients (R E1,W , R E1,B ), (R E2,W ) of various luster materials included in the material database. , R E2, B ), and the like, the type and mixing ratio of the glittering material contained in the trial paint are calculated. In this way, the composition of the trial paint can be quantified more accurately by measuring the gonio-spectral reflectance coefficient separately for the first trial paint containing only the pigment and the second trial paint containing only the luster color material. It becomes possible.

また、上記の実施形態では、試作塗料を塗布する下地が白色及び黒色である場合を示したが、これに限らず、少なくとも明度差のある複数色の下地を用いればよい。ただし、黒色と白色の組み合わせが、明度差が最も大きく、下地の色が塗色に及ぼす影響(隠蔽力等)が現れやすいため、最も好ましい。また、試作塗料を塗布する下地は2色に限らず、3色以上としてもよい。 Further, in the above embodiment, the case where the base material to which the trial paint is applied is white and black is shown, but the present invention is not limited to this, and a base material of a plurality of colors having at least a difference in lightness may be used. However, the combination of black and white is the most preferable because the difference in brightness is the largest and the effect of the underlying color on the coating color (hiding power etc.) is likely to appear. Further, the base material to which the trial paint is applied is not limited to two colors and may be three or more colors.

また、上記の実施形態では、試作塗料の塗膜の膜厚が1水準である場合を示したが、これに限らず、複数水準(例えば3水準)の塗膜を作成し、各塗膜の変角分光反射率係数を測定してもよい。 Further, in the above-described embodiment, the case where the coating film thickness of the trial paint is one level is shown, but the present invention is not limited to this, and a plurality of levels (for example, three levels) of coating film are prepared and The goniospectral reflectance coefficient may be measured.

本発明の塗装条件設定方法は、自動車の塗装に限らず、顔料及び光輝材を含む塗料を用いたあらゆる製品の塗装に適用することが可能である。 The coating condition setting method of the present invention can be applied not only to coating of automobiles but also to coating of any product using a coating material containing a pigment and a luster color material.

1 塗装条件設定装置
2 測定部
3 コンピュータ
4 入力部
5 記憶部
6 演算部
7 表示部
W 白下地
B 黒下地
1 coating condition setting device 2 measuring unit 3 computer 4 input unit 5 storage unit 6 computing unit 7 display unit W white background B black background

Claims (3)

顔料及び光輝材を含む試作塗料を下地の上に塗装する際の、塗膜の膜厚及び下地色の最適条件をシミュレーションにより設定するための方法であって、
任意の膜厚及び任意の下地色において、膜厚を微小変動させたときの塗色の変動を算出する工程と、
前記塗色の変動が所定範囲内となる膜厚及び下地色の範囲を設定する工程と、
前記膜厚及び下地色の範囲内における最小の膜厚、及びこれに対応する下地色を、膜厚及び下地色の最適値として設定する工程とを備えた塗装条件設定方法。
A method for setting the optimum conditions of the film thickness of the coating film and the base color by simulation when coating a trial paint containing a pigment and a bright material on the base,
A step of calculating a change in the coating color when the film thickness is slightly changed in an arbitrary film thickness and an arbitrary base color,
A step of setting the range of the film thickness and the base color in which the variation of the coating color is within a predetermined range,
A coating condition setting method comprising the steps of setting a minimum film thickness within the range of the film thickness and the base color and a base color corresponding thereto as an optimum value of the film thickness and the base color.
各種顔料を単体で含む複数種の塗膜の、任意の膜厚及び任意の下地色における散乱係数及び吸収係数と、各種光輝材を単体で含む複数種の塗膜の、任意の膜厚及び任意の下地色における変角分光反射率係数とを含む材料データベースを作成する工程と、
前記材料データベースと前記試作塗料の組成とから、前記試作塗料に含まれる顔料に起因する変角分光反射率係数と、前記試作塗料に含まれる光輝材に起因する変角分光反射率係数とを算出する工程と、
前記試作塗料に含まれる顔料に起因する変角分光反射率係数と、前記試作塗料に含まれる光輝材に起因する変角分光反射率係数とを合成することにより、任意の膜厚及び任意の下地色における塗色を再現する再現計算手段を構築する工程とを有し、
前記再現計算手段を用いて反復計算を行うことにより、膜厚及び下地色の最適値を求める請求項1に記載の塗装条件設定方法。
Scattering coefficient and absorption coefficient in arbitrary film thickness and arbitrary background color of plural kinds of coating film containing various pigments alone, and arbitrary film thickness and arbitrary of plural kinds of coating film containing various luster pigments alone Creating a material database including the goniospectral reflectance coefficient in the background color of
From the material database and the composition of the trial paint, the goniospectral reflectance coefficient due to the pigment contained in the trial paint and the goniospectral reflectance coefficient due to the glitter material contained in the trial paint are calculated. The process of
By combining the gonio-spectral reflectance coefficient due to the pigment contained in the trial paint and the gonio spectral reflectance coefficient due to the luster material contained in the trial paint, an arbitrary film thickness and an arbitrary substrate are obtained. And a step of constructing a reproduction calculation means for reproducing the paint color in the color,
The coating condition setting method according to claim 1, wherein the optimum values of the film thickness and the base color are obtained by performing repeated calculations using the reproduction calculation means.
顔料及び光輝材を含む試作塗料を下地の上に塗装する際の、塗膜の膜厚及び下地色の最適条件を、コンピュータに設定させるためのプログラムであって、
任意の膜厚及び任意の下地色において、膜厚を微小変動させたときの塗色の変動を算出する工程と、
前記塗色の変動が所定範囲内となる膜厚及び下地色の範囲を設定する工程と、
前記膜厚及び下地色の範囲内における最小の膜厚、及びこれに対応する下地色を、膜厚及び下地色の最適値として設定する工程とを、コンピュータに実行させるためのプログラム。
A program for causing a computer to set optimum conditions of a film thickness and a base color of a coating film when a trial paint containing a pigment and a luster color material is coated on the base,
A step of calculating a change in the coating color when the film thickness is slightly changed in an arbitrary film thickness and an arbitrary base color,
A step of setting the range of the film thickness and the base color in which the variation of the coating color is within a predetermined range,
A program for causing a computer to execute a step of setting a minimum film thickness within the range of the film thickness and the background color and a background color corresponding thereto as an optimum value of the film thickness and the background color.
JP2016093051A 2016-05-06 2016-05-06 Painting condition setting method and program Active JP6719965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016093051A JP6719965B2 (en) 2016-05-06 2016-05-06 Painting condition setting method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016093051A JP6719965B2 (en) 2016-05-06 2016-05-06 Painting condition setting method and program

Publications (2)

Publication Number Publication Date
JP2017200681A JP2017200681A (en) 2017-11-09
JP6719965B2 true JP6719965B2 (en) 2020-07-08

Family

ID=60264539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016093051A Active JP6719965B2 (en) 2016-05-06 2016-05-06 Painting condition setting method and program

Country Status (1)

Country Link
JP (1) JP6719965B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262615A1 (en) * 2019-06-28 2020-12-30 関西ペイント株式会社 Glossy-pigment determination method, glossy-pigment determination device, and glossy-pigment determination program
CN117529370A (en) * 2021-06-21 2024-02-06 日本涂料控股有限公司 Method and system for predicting variation in properties of coating film, method and system for predicting variation in conditions for producing coated article, and method for producing coated article

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1217346A1 (en) * 2000-12-19 2002-06-26 Akzo Nobel N.V. Method for selecting a formulation for one or more layers of a multi-layer coating
JP3871887B2 (en) * 2001-02-13 2007-01-24 日本ペイント株式会社 Server apparatus, terminal apparatus, and paint and paint information providing method using communication terminal
JP4284954B2 (en) * 2002-09-26 2009-06-24 トヨタ自動車株式会社 Calculation method of “paint composition and coating conditions”
JP2008307476A (en) * 2007-06-14 2008-12-25 Nippon Paint Co Ltd Coating color determination method of primer surfacer and repaired coating film forming method
JP2008307477A (en) * 2007-06-14 2008-12-25 Nippon Paint Co Ltd Concealment test paper and color tone confirming method of repairing color coating

Also Published As

Publication number Publication date
JP2017200681A (en) 2017-11-09

Similar Documents

Publication Publication Date Title
US8760654B2 (en) Method for color matching
JP4912888B2 (en) Computer-implemented method for adapting paints
US10269173B2 (en) Layer data creation device and method, and design simulation device
CA2627045A1 (en) Realistic video display of gonioapparent color
CN104114985A (en) Method for matching color and appearance of coatings containing effect pigments
JP2021107781A (en) Production method of coating material and prediction method of color data
CA2426437A1 (en) Color matching and simulation of multicolor surfaces
JP2010501854A (en) Color matching method
JP6719965B2 (en) Painting condition setting method and program
JP2921365B2 (en) Paint color reproduction method and paint color selection method
JPH11269411A (en) Method for presuming paint formulation from computer graphics image
JP4500498B2 (en) Method and apparatus for generating and displaying changed color
WO2021132654A1 (en) Method for producing paint material, method for predicting hue data, and computer color-mixing system
JP2004271467A (en) Method of evaluating design property in metallic paint color, and painted article
JP6316050B2 (en) Method for color matching of glittering material-containing coating film and structural member provided with glittering material-containing coating
JP2021188046A (en) Production method of coating material and prediction method of color data
JP2022543462A (en) Method and system for robust color matching and adjustment process of effect colors
KR20110003527A (en) Method for producing color formulas comprising effect pigments
JPH08221560A (en) Method for accurately reproducing metallic particle feeling
CN100468416C (en) Generation of changeable colour and displaying method and apparatus thereof
JP7417789B2 (en) Fully integrated digital color management system
JP2010003326A (en) Device for generating and displaying changed color
JP2004118580A (en) Method of calculating "paint composition and painting conditions" and database therefor
JPH10246671A (en) Method for creating painted plate for colorimetry and painted plate for colorimetry
JP2005200590A (en) Method for color-matching of coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200617

R150 Certificate of patent or registration of utility model

Ref document number: 6719965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250