JP6718636B1 - Method for producing waste resin molded product containing inorganic substance powder - Google Patents

Method for producing waste resin molded product containing inorganic substance powder Download PDF

Info

Publication number
JP6718636B1
JP6718636B1 JP2019234006A JP2019234006A JP6718636B1 JP 6718636 B1 JP6718636 B1 JP 6718636B1 JP 2019234006 A JP2019234006 A JP 2019234006A JP 2019234006 A JP2019234006 A JP 2019234006A JP 6718636 B1 JP6718636 B1 JP 6718636B1
Authority
JP
Japan
Prior art keywords
waste material
resin
resin waste
inorganic substance
substance powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019234006A
Other languages
Japanese (ja)
Other versions
JP2021102286A (en
Inventor
中村 宏
宏 中村
愛璃奈 佐藤
愛璃奈 佐藤
敦 川上
敦 川上
宏成 坂井
宏成 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TBM Co Ltd
Original Assignee
TBM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TBM Co Ltd filed Critical TBM Co Ltd
Priority to JP2019234006A priority Critical patent/JP6718636B1/en
Application granted granted Critical
Publication of JP6718636B1 publication Critical patent/JP6718636B1/en
Publication of JP2021102286A publication Critical patent/JP2021102286A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

【課題】無機物質粉末を高充填した樹脂廃材を活用し、良好な樹脂廃材成形体が得られる製造方法を提供すること。【解決手段】本発明は、無機物質粉末配合樹脂廃材から熱可塑性樹脂と無機物質粉末とを含む樹脂廃材成形体を製造する方法において、無機物質粉末配合樹脂廃材を無機物質粉末の粒子径によって選別する選別工程、選別した無機物質粉末配合樹脂廃材を粉砕する粉砕工程、及び押出機により混練する混練工程を有することを特徴とする樹脂廃材成形体の製造方法を提供する。選別工程では、無機物質粉末の粒子径をX線小角散乱法により測定することが好ましい。【選択図】なしPROBLEM TO BE SOLVED: To provide a manufacturing method by which a good resin waste material molding can be obtained by utilizing a resin waste material highly filled with an inorganic substance powder. According to the present invention, in a method for producing a resin waste material molded body containing a thermoplastic resin and an inorganic substance powder from a resin waste material mixed with an inorganic substance powder, the resin waste material mixed with an inorganic substance powder is selected according to the particle diameter of the inorganic substance powder. The present invention provides a method for producing a resin waste material molded body, which comprises: a sorting step for crushing, a crushing step for crushing a selected resin waste material containing an inorganic substance powder, and a kneading step for kneading with an extruder. In the selection step, it is preferable to measure the particle size of the inorganic substance powder by the X-ray small angle scattering method. [Selection diagram] None

Description

本発明は、樹脂廃材成形体の製造方法に関する。詳しく述べると本発明は、無機物質粉末を含有する樹脂廃材のマテリアルリサイクル方法に関する。 The present invention relates to a method for manufacturing a resin waste material molded body. More specifically, the present invention relates to a material recycling method for waste resin material containing inorganic substance powder.

近年、環境問題等を踏まえ、樹脂廃材を始めとする資源の再生利用に関する関心が高まっている。一般廃棄物や産業廃棄物における多種類の樹脂廃材の処理は、社会問題となっており、燃料代替や油化を始めとする再生利用法の検討がなされている。中でもマテリアルリサイクルは、廃材を原料として使用することで環境問題を根本的に解決し得るため、技術面の確立が望まれている。特に、廃材を単に再利用するのではなく、商品としての価値を高めるような加工を施す、いわゆるアップサイクル技術が着目されている。 In recent years, in consideration of environmental problems and the like, there is an increasing interest in recycling resources such as resin waste materials. The treatment of various types of resin waste materials in general waste and industrial waste has become a social problem, and recycling methods such as fuel substitution and oil conversion have been studied. Among them, material recycling is desired to establish technical aspects because it can fundamentally solve environmental problems by using waste materials as raw materials. In particular, so-called up-cycle technology has been attracting attention, in which waste materials are not simply reused but are processed so as to enhance their value as products.

しかし、樹脂廃材の再生においては、溶融成形時の熱履歴や機械的な負荷により、得られる成形品の機械的強度が低くなる等の問題がある。特に、市場から回収された廃材はしばしば、製品として使用される間に酸素、熱、光等による劣化や不純物の混入を来している。そのため、物性が著しく低下した、アップサイクルとはとても言えない再生品しか得られない場合も珍しくない。樹脂廃材が多岐に渡ることも、マテリアルリサイクルを困難にしている。樹脂種が不明の複数の廃材を用いてリサイクルを試みる際、各廃材中の樹脂等の相違が原因で、得られる樹脂廃材成形体の外観や物性が悪化する場合がある。成形性が低下することもあり、極端な場合には成形自体が不可能となる。 However, in the recycling of resin waste materials, there is a problem that the mechanical strength of the obtained molded product becomes low due to the heat history and mechanical load during the melt molding. In particular, waste materials collected from the market are often deteriorated by oxygen, heat, light or the like and mixed with impurities while being used as products. Therefore, it is not rare that only recycled products whose physical properties are significantly deteriorated and which cannot be said to be up-cycled can be obtained. The wide variety of waste resin materials also makes material recycling difficult. When attempting to recycle using a plurality of waste materials of unknown resin type, the appearance and physical properties of the obtained resin waste material molded body may be deteriorated due to the difference in the resin in each waste material. Moldability may be reduced, and in extreme cases, molding itself becomes impossible.

そのため、マテリアルリサイクルに際して、樹脂廃材の比重等を測定し、あるいは廃材中のポリマー成分を分析して、廃材を選別した上で再成形する技術が検討されている。例えば特許文献1〜3では、赤外分光法や蛍光X線分析法、NMR等の分光分析手法を用いて廃材を分析する方法が提案され、実用化もされている。 Therefore, at the time of material recycling, a technique of measuring the specific gravity or the like of the resin waste material or analyzing the polymer component in the waste material to select the waste material and then remolding the material is being studied. For example, in Patent Documents 1 to 3, methods for analyzing waste materials by using a spectroscopic analysis method such as infrared spectroscopy, fluorescent X-ray analysis, and NMR have been proposed and put into practical use.

上記のようなリサイクルとは別の観点から環境問題に取り組んだ技術として、無機物質粉末を熱可塑性樹脂中に高充填してなる無機物質粉末配合熱可塑性樹脂組成物が提唱され、実用化されている(例えば、特許文献4等参照)。無機物質粉末として、特に、炭酸カルシウムは、自然界に豊富に存在する資源であり、環境保護といった観点からの要望に好ましく応えることができるものである。そして、この様な無機物質粉末配合熱可塑性樹脂組成物についても、上記した様な資源の再生利用は検討すべき課題である。例えば特許文献5には、フィラー含有プラスチックを含む原料プラスチックを混練及び押出によってシート状に成形する工程と、成形シートの内部に作用する応力を発生させて成形シートを処理する曲げ処理工程を有する、再生フィラー含有プラスチックシートの製造方法が開示されている。特許文献5記載の発明の好ましい態様においては、廃プラスチックは全質量に対しフィラーを40〜85質量%含有し、その成形シートの流れ方向に剪断応力が発生する結果、シート内部構造が弛緩して十分な強度及び破断伸びが得られると推定されている。特許文献6には、充填剤を10〜15質量%程度含有するリサイクルポリマーを射出成型に使用し、その際に炭酸カルシウム等のフィラーを10〜15質量%程度添加し、且つ充填剤入りポリマーのメルトフロー値等を特定範囲内に規定する技術が開示されている。 As a technique to tackle environmental problems from a viewpoint different from the above recycling, an inorganic substance powder-blended thermoplastic resin composition obtained by highly filling an inorganic substance powder in a thermoplastic resin has been proposed and put into practical use. (See, for example, Patent Document 4). As the inorganic substance powder, in particular, calcium carbonate is a resource that is abundant in nature and can preferably meet the demand from the viewpoint of environmental protection. Also for such a thermoplastic resin composition containing an inorganic substance powder, the recycling of resources as described above is an issue to be examined. For example, Patent Document 5 has a step of molding a raw material plastic containing a filler-containing plastic into a sheet by kneading and extrusion, and a bending treatment step of treating the molded sheet by generating stress acting inside the molded sheet. A method of making a recycled filler-containing plastic sheet is disclosed. In a preferred embodiment of the invention described in Patent Document 5, the waste plastic contains 40 to 85% by mass of the filler with respect to the total mass, and shear stress occurs in the flow direction of the molded sheet, so that the internal structure of the sheet relaxes. It is estimated that sufficient strength and elongation at break can be obtained. In Patent Document 6, a recycled polymer containing a filler in an amount of about 10 to 15% by mass is used for injection molding, a filler such as calcium carbonate is added in an amount of about 10 to 15% by mass, and a filler-containing polymer is used. A technique for defining the melt flow value and the like within a specific range is disclosed.

特開2003−11124号公報JP, 2003-11124, A 特開2004−122575号公報JP, 2004-122575, A 特開2016−49736号公報JP, 2016-49736, A 特開2013−10931号公報JP, 2013-10931, A 特開2015−212029号公報JP, 2015-212029, A 特表2018−519410号公報Japanese Patent Publication No. 2018-519410

上記のように樹脂廃材のマテリアルリサイクルにおいては、廃材中のポリマー成分を分析して成形前に廃材を選別することが重要である。そのため、従来より特許文献1〜3記載のような技術が開発され、実用化されて来た。 As described above, in material recycling of resin waste materials, it is important to analyze polymer components in the waste materials and select the waste materials before molding. Therefore, conventionally, the techniques described in Patent Documents 1 to 3 have been developed and put into practical use.

しかしながらこれらの技術は、無機物質粉末を高充填した樹脂廃材をリサイクルする場合には、必ずしも有効でないことも明らかとなり始めた。従来は無機物質粉末を高充填した樹脂を、あえて回収するようなことは殆どなく、そのため上記のような分析・選別さえ行っていれば、マテリアルリサイクルに支障を来すことはなかった。実際、無機物質粉末充填ポリマーのリサイクルに関する上記特許文献5や6においても、無機物質粉末の平均粒径等について言及はしているものの、その分析方法や粒径による廃材の選別については記載されていない。 However, it has become clear that these techniques are not necessarily effective in recycling a resin waste material highly filled with an inorganic substance powder. Heretofore, it has been rare to recover the resin highly filled with the inorganic substance powder, so that the material recycling will not be hindered as long as the above analysis and selection are performed. In fact, even in the above Patent Documents 5 and 6 regarding recycling of the polymer filled with the inorganic substance powder, although the average particle diameter of the inorganic substance powder and the like are referred to, the analysis method and the selection of the waste material by the particle diameter are described. Absent.

本発明者らは無機物質粉末高充填廃材のリサイクルにも積極的に取り組んでいるが、その過程で、こうした廃材のマテリアルリサイクルにおいては無機物質粉末の特性も大きく影響することが明らかとなった。例えば炭酸カルシウム等の無機物質粉末が多く配合された樹脂廃材を用いてリサイクルするに当たっては、単に樹脂の種類を選別しただけでは、含まれる無機物質粉末の粒子径のバラツキが大きく、リサイクル材を用いて成形品を製造した場合、均一な機械特性、良好な表面状態を得るのは困難である。特に、フィルム等の薄肉成形品を成形しようとする場合には、良好な成形を行うことが極めて困難となる。 The inventors of the present invention are actively working to recycle waste materials highly filled with an inorganic substance powder, and in the process, it became clear that the characteristics of the inorganic substance powder also greatly influence the material recycling of such waste materials. For example, when recycling a waste resin material containing a large amount of inorganic substance powder such as calcium carbonate, simply selecting the type of resin causes a large variation in the particle size of the included inorganic substance powder. It is difficult to obtain uniform mechanical properties and good surface condition when a molded product is manufactured by using the above method. In particular, when it is desired to form a thin molded product such as a film, it becomes extremely difficult to perform good molding.

本発明は以上の実情に鑑みてなされたものであり、樹脂廃材を用い、物性や外観が良好な樹脂廃材成形体が得られる製造方法を提供することを課題とする。本発明は特に、無機物質粉末を高充填した樹脂廃材から樹脂廃材成形体を製造するにあたっても、無機物質粉末の粒径が均一な樹脂廃材成形体を得ることができ、物性や外観のばらつきを抑えた良好な樹脂廃材成形体が得られる製造方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a manufacturing method using a resin waste material, which can obtain a resin waste material molded body having excellent physical properties and appearance. In particular, the present invention can obtain a resin waste material molded body having a uniform particle size of the inorganic material powder even when producing a resin waste material molded body from a resin waste material highly filled with an inorganic substance powder, and it is possible to obtain variations in physical properties and appearance. An object of the present invention is to provide a manufacturing method capable of obtaining a suppressed resin waste material molded article of good quality.

本発明者らは無機物質粉末高充填廃材のマテリアルリサイクルによる樹脂成形体の製造についてさらに検討し、特に無機物質粉末の粒径分布がコントロールされていないと良品が得られないこと;良物性の樹脂成形体を無機物質粉末高充填廃材から製造する上で、樹脂廃材の選別、目的に応じた粒径の無機物質粉末を含有する樹脂廃材の使用が重要であることを見出した。そしてこの知見から、無機物質粉末の粒子径によって樹脂廃材を選別する工程を設けることで、その樹脂廃材を用いた樹脂成形体として、均一な機械特性、良好な表面状態となる樹脂成形体を安定的に得ることができることがわかり、本発明を完成するに至った。具体的に、本発明は以下を提供する。 The present inventors further studied the production of a resin molded product by material recycling of waste materials highly filled with an inorganic substance powder, and in particular, a good product cannot be obtained unless the particle size distribution of the inorganic substance powder is controlled; a resin having good physical properties It has been found that it is important to select a resin waste material and to use a resin waste material containing an inorganic material powder having a particle diameter according to the purpose in manufacturing a molded product from a waste material highly filled with an inorganic material powder. Based on this knowledge, by providing a step of sorting resin waste materials according to the particle size of the inorganic substance powder, it is possible to stabilize the resin molded articles with uniform mechanical properties and good surface condition as resin molded articles using the resin waste materials. As a result, the present invention has been completed, and the present invention has been completed. Specifically, the present invention provides the following.

(1) 無機物質粉末配合樹脂廃材から熱可塑性樹脂と無機物質粉末とを含む樹脂廃材成形体を製造する方法において、前記無機物質粉末配合樹脂廃材を無機物質粉末の粒子径によって選別する選別工程、選別した無機物質粉末配合樹脂廃材を粉砕する粉砕工程、及び押出機により混練する混練工程を有することを特徴とする樹脂廃材成形体の製造方法。 (1) In a method for producing a resin waste material molded body containing a thermoplastic resin and an inorganic substance powder from a resin waste material containing an inorganic substance powder, a selection step of selecting the resin waste material containing an inorganic substance powder according to the particle diameter of the inorganic substance powder, A method for producing a resin waste material molding, comprising a crushing step of crushing the selected inorganic material powder-blended resin waste material and a kneading step of kneading with an extruder.

(2) 前記選別工程では、前記無機物質粉末の粒子径をX線小角散乱法により測定する、(1)に記載の樹脂廃材成形体の製造方法。 (2) The method for producing a resin waste material molding according to (1), wherein in the selecting step, the particle size of the inorganic substance powder is measured by the X-ray small angle scattering method.

(3) 前記熱可塑性樹脂が、ポリオレフィン樹脂を含む、(1)又は(2)に記載の樹脂廃材成形体の製造方法。 (3) The method for producing a resin waste material molding according to (1) or (2), wherein the thermoplastic resin contains a polyolefin resin.

(4) 前記熱可塑性樹脂が、ポリプロピレン系樹脂を含む、(1)〜(3)の何れかに記載の樹脂廃材成形体の製造方法。 (4) The method for producing a resin waste material molding according to any of (1) to (3), wherein the thermoplastic resin contains a polypropylene resin.

(5) 前記無機物質粉末が、炭酸カルシウムを含む、(1)〜(4)の何れかに記載の樹脂廃材成形体の製造方法。 (5) The method for producing a resin waste material molding according to any one of (1) to (4), wherein the inorganic substance powder contains calcium carbonate.

(6) 前記樹脂廃材成形体が、熱可塑性樹脂と無機物質粉末とを50:50〜10:90の質量比で含む、(1)〜(5)の何れかに記載の樹脂廃材成形体の製造方法。 (6) The resin waste material molded body according to any one of (1) to (5), wherein the resin waste material molded body contains a thermoplastic resin and an inorganic substance powder in a mass ratio of 50:50 to 10:90. Production method.

(7) 前記炭酸カルシウムの空気透過法による平均粒子径が、0.5μm以上13.5μm以下である、(5)に記載の樹脂廃材成形体の製造方法。 (7) The method for producing a resin waste material molding according to (5), wherein the calcium carbonate has an average particle diameter of 0.5 μm or more and 13.5 μm or less as measured by an air permeation method.

(8) 前記混練工程が、二軸混練押出機による混練工程を含む、(1)〜(7)の何れかに記載の樹脂廃材成形体の製造方法。 (8) The method for producing a resin waste material molding according to any one of (1) to (7), wherein the kneading step includes a kneading step using a twin-screw kneading extruder.

(9) 前記選別工程が、中赤外分光分析、近赤外分光分析、赤外分光分析、ラマン分光分析、蛍光X線分析、及びX線回折分析から選択される1種又は2種以上の分析法により樹脂及び/又は無機物質粉末の種別を選別することをさらに含む、(1)〜(8)の何れかに記載の樹脂廃材成形体の製造方法。 (9) The selection step is one or more selected from mid-infrared spectroscopic analysis, near-infrared spectroscopic analysis, infrared spectroscopic analysis, Raman spectroscopic analysis, fluorescent X-ray analysis, and X-ray diffraction analysis. The method for producing a resin waste material molded body according to any one of (1) to (8), further comprising selecting a type of resin and/or inorganic substance powder by an analysis method.

(10) 前記樹脂廃材成形体が樹脂ペレットである、(1)〜(9)の何れかに記載の樹脂廃材成形体の製造方法。 (10) The method for producing a resin waste material compact according to any one of (1) to (9), wherein the resin waste material compact is a resin pellet.

(11) 前記樹脂廃材成形体がインフレーションシート又はインフレーションフィルムである、(1)〜(9)の何れかに記載の樹脂廃材成形体の製造方法。 (11) The method for producing a resin waste material molded body according to any one of (1) to (9), wherein the resin waste material molded body is an inflation sheet or an inflation film.

本発明によれば、樹脂廃材を用いた、物性や外観が優れる成形体の製造方法が提供される。本発明の製造方法では、無機物質粉末が高充填された熱可塑性樹脂を含むリサイクル材からも、所望の成形体を、物性や成形性を犠牲にすることなく製造することができる。特に、フィルム等の薄肉成形品の製造においても、均一な機械特性や良好な表面状態の成形体を得ることが可能となる。 According to the present invention, there is provided a method for producing a molded article that is excellent in physical properties and appearance using a resin waste material. In the manufacturing method of the present invention, a desired molded product can be manufactured without sacrificing physical properties and moldability, even from a recycled material containing a thermoplastic resin highly filled with an inorganic substance powder. In particular, even in the production of thin-walled molded products such as films, it is possible to obtain molded products having uniform mechanical properties and good surface conditions.

以下、本発明の実施形態について詳細に説明するが、本発明はこれに特に限定されない。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not particularly limited thereto.

<1.樹脂廃材成形体の製造方法>
本発明に係る樹脂廃材成形体の製造方法(以下、単に「製造方法」ともいう。)は、無機物質粉末配合樹脂廃材(以下、単に「樹脂廃材」ともいう。)から、熱可塑性樹脂と無機物質粉末とを含む樹脂成形体を製造する方法である。なお、このように無機物質粉末配合樹脂廃材を用いた製造方法により得られる樹脂成形体を「樹脂廃材成形体」と称する。
<1. Manufacturing method of resin waste material molding>
A method for producing a resin waste material molded body according to the present invention (hereinafter, also simply referred to as “production method”) is a method for producing a thermoplastic resin and an inorganic material from a resin waste material containing an inorganic substance powder (hereinafter also simply referred to as “resin waste material”). It is a method for producing a resin molded body containing a substance powder. In addition, the resin molded product obtained by the manufacturing method using the inorganic material powder-blended resin waste material in this manner is referred to as a “resin waste material molded product”.

この製造方法において、原料とするのは廃材(リサイクル材)であり、無機物質粉末を配合した樹脂廃材である。無機物質粉末配合樹脂廃材には、種々の熱可塑性樹脂が含まれており、また、種々の無機物質粉末が含まれている。ここで、無機物質粉末配合樹脂廃材に含まれる無機物質粉末は、その種類だけでなく、含まれる無機物質粉末の粒子径も様々であり、使用する無機物質粉末配合樹脂廃材によって異なる。 In this manufacturing method, the raw material is a waste material (recycled material), which is a resin waste material mixed with an inorganic substance powder. Inorganic substance powder-containing resin waste materials include various thermoplastic resins and various inorganic substance powders. Here, not only the type of the inorganic substance powder contained in the resin waste containing the inorganic substance powder but also the particle size of the inorganic substance powder contained therein varies, and it varies depending on the used resin waste containing the inorganic substance powder.

具体的に、本発明に係る製造方法は、無機物質粉末配合樹脂廃材を無機物質粉末の粒子径によって選別する選別工程と、選別された無機物質粉末配合樹脂廃材を粉砕する粉砕工程と、押出機により混練する混練工程と、を有する。また、選別工程においては、好ましくは、無機物質粉末の粒子径を、X線小角散乱法により測定する。 Specifically, the manufacturing method according to the present invention includes a sorting step of sorting the inorganic material powder-containing resin waste material according to the particle size of the inorganic substance powder, a pulverizing step of pulverizing the selected inorganic material powder-containing resin waste material, and an extruder. And a kneading step of kneading. In the selection step, the particle size of the inorganic substance powder is preferably measured by the X-ray small angle scattering method.

このような無機物質粉末配合樹脂廃材を用いて樹脂廃材成形体を製造する方法において、本発明に係る製造方法によれば、選別工程において、原料とする無機物質粉末配合樹脂廃材を、無機物質粉末の粒子径によって選別していることから、例えば所望とする粒子径の範囲の無機物質粉末を含む無機物質粉末配合樹脂廃材のみを原料とすることができる。そしてこれにより、無機物質粉末配合樹脂廃材から樹脂廃材成形体を製造するにあたっても、無機物質粉末の粒径が均一な樹脂廃材成形体を得ることができ、物性や外観のばらつきを抑えた良好な樹脂廃材成形体を得ることができる。 In a method for producing a resin waste material molded body using such an inorganic substance powder-containing resin waste material, according to the production method of the present invention, in the sorting step, the inorganic substance powder-containing resin waste material used as a raw material is Since the particles are sorted according to the particle diameter of, the raw material can be, for example, only the inorganic material powder-blended resin waste material containing the inorganic material powder in the desired particle diameter range. Thus, even when a resin waste material molded body is manufactured from an inorganic material powder-blended resin waste material, it is possible to obtain a resin waste material molded body having a uniform particle size of the inorganic material powder, which suppresses variations in physical properties and appearance. A resin waste material molding can be obtained.

<2.樹脂廃材成形体について>
本発明に係る製造方法の各工程についての詳細な説明に先立ち、製造対象とする樹脂廃材成形体を構成する熱可塑性樹脂と、無機物質粉末とについて説明する。なお、上述したように、本発明に係る製造方法は、無機物質粉末配合樹脂廃材から熱可塑性樹脂と無機物質粉末とを含む樹脂廃材成形体を製造する方法であることから、製造して得られる樹脂廃材成形体を構成する熱可塑性樹脂と、無機物質粉末とは、原料となる無機物質粉末配合樹脂廃材においても少なくともその一部が含まれている。本発明に係る製造方法では、無機物質粉末配合樹脂廃材のみを使用してもよく、樹脂廃材と未使用原材料とを併用してもよい。複数の樹脂廃材を使用することも可能である。
<2. About waste resin moldings>
Prior to a detailed description of each step of the manufacturing method according to the present invention, the thermoplastic resin constituting the resin waste material molding to be manufactured and the inorganic substance powder will be described. As described above, the manufacturing method according to the present invention is a method for manufacturing a resin waste material molded body containing a thermoplastic resin and an inorganic material powder from an inorganic material powder-blended resin waste material, and thus is obtained by manufacturing. The thermoplastic resin forming the resin waste material molded body and the inorganic substance powder include at least a part of the resin waste material containing the inorganic substance powder as the raw material. In the production method according to the present invention, only the resin waste material containing the inorganic substance powder may be used, or the resin waste material and the unused raw material may be used in combination. It is also possible to use a plurality of resin waste materials.

[熱可塑性樹脂]
熱可塑性樹脂としては、特に限定されるものではなく、樹脂廃材成形体の用途、機能、樹脂廃材の回収状況等に応じて、各種のものを使用することができる。例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリメチル−1−ペンテン、エチレン−環状オレフィン共重合体等のポリオレフィン系樹脂;エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸共重合体の金属塩(アイオノマー)、エチレン−アクリル酸アルキルエステル共重合体、エチレン−メタクリル酸アルキルエステル共重合体、マレイン酸変性ポリエチレン、マレイン酸変性ポリプロピレン等の官能基含有ポリオレフィン系樹脂;ナイロン−6、ナイロン−6,6、ナイロン−6,10、ナイロン−6,12等のポリアミド系樹脂;ポリエチレンテレフタレート及びその共重合体、ポリエチレンナフタレート、ポリブチレンテレフタレート等の芳香族ポリエステル系樹脂、ポリブチレンサクシネート、ポリ乳酸等の脂肪族ポリエステル系樹脂等の熱可塑性ポリエステル系樹脂;芳香族ポリカーボネート、脂肪族ポリカーボネート等のポリカーボネート樹脂;アタクティックポリスチレン、シンジオタクティックポリスチレン、アクリロニトリル−スチレン(AS)共重合体、アクリロニトリル−ブタジエン−スチレン(ABS)共重合体等のポリスチレン系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン等のポリ塩化ビニル系樹脂;ポリフェニレンスルフィド;ポリエーテルスルフォン、ポリエーテルケトン、ポリエーテルエーテルケトン等のポリエーテル系樹脂等が挙げられる。これらを、1種を単独で又は2種以上を組み合わせて含有していてもよい。
[Thermoplastic resin]
The thermoplastic resin is not particularly limited, and various types can be used depending on the use and function of the resin waste material molded body, the recovery status of the resin waste material, and the like. For example, polyethylene resin, polypropylene resin, polymethyl-1-pentene, polyolefin resin such as ethylene-cyclic olefin copolymer; ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer Functional groups such as polymers, ethylene-methacrylic acid copolymer metal salts (ionomers), ethylene-acrylic acid alkyl ester copolymers, ethylene-methacrylic acid alkyl ester copolymers, maleic acid-modified polyethylene, and maleic acid-modified polypropylene Polyolefin resin containing; polyamide resin such as nylon-6, nylon-6,6, nylon-6,10, nylon-6,12; aroma such as polyethylene terephthalate and its copolymer, polyethylene naphthalate, polybutylene terephthalate Polyester resins, thermoplastic polyester resins such as aliphatic polyester resins such as polybutylene succinate and polylactic acid; polycarbonate resins such as aromatic polycarbonate and aliphatic polycarbonate; atactic polystyrene, syndiotactic polystyrene, acrylonitrile- Polystyrene resins such as styrene (AS) copolymer and acrylonitrile-butadiene-styrene (ABS) copolymer; polyvinyl chloride resins such as polyvinyl chloride and polyvinylidene chloride; polyphenylene sulfide; polyether sulfone, polyether ketone , And polyether resins such as polyether ether ketone. You may contain these individually by 1 type or in combination of 2 or more type.

本発明においては、上記のような種々の熱可塑性樹脂を用いることができるが、その原料となる樹脂廃材の供給量、すなわち市場での使用量の多さから、ポリオレフィン系樹脂を含む熱可塑性樹脂の使用が好ましい。市場で多用されるポリオレフィン系樹脂のリサイクルは、環境問題の解決に大きく貢献し得る。上記のように本発明の製造方法では、樹脂廃材のみを原料とする他に、樹脂廃材に未使用樹脂等をブレンドした原料を用いても良いが、ポリオレフィン系樹脂原料は概して低コストなので、未使用原料をブレンドする場合は特に経済面でも有利となる。尚、目的とする樹脂廃材成形体の物性に応じ、ポリオレフィン系の樹脂廃材と他種の未使用樹脂原料、又はポリオレフィン系の樹脂廃材と他樹脂の廃材とをブレンドして用いることもできるが、樹脂同士の相溶性や経済性を考慮すると、ポリオレフィン系樹脂を専ら使用するのが好ましい。ポリオレフィン系樹脂はまた、成形が容易であり、性能面からも本発明での使用に好適である。 In the present invention, various thermoplastic resins such as those described above can be used. However, due to the large amount of resin waste material used as the raw material, that is, the large amount used in the market, a thermoplastic resin containing a polyolefin resin is used. Is preferably used. Recycling of polyolefin resins, which are frequently used in the market, can greatly contribute to solving environmental problems. As described above, in the production method of the present invention, in addition to using only the resin waste material as a raw material, a raw material obtained by blending an unused resin or the like with the resin waste material may be used, but since the polyolefin resin raw material is generally low cost, When the raw materials used are blended, it is particularly advantageous in terms of economy. Incidentally, depending on the physical properties of the target resin waste material molded body, it is also possible to use a blend of a polyolefin-based resin waste material and another type of unused resin raw material, or a polyolefin-based resin waste material and another resin waste material, Considering compatibility between resins and economic efficiency, it is preferable to exclusively use a polyolefin resin. The polyolefin resin is also easy to mold and is suitable for use in the present invention in terms of performance.

ここで、ポリオレフィン系樹脂とは、オレフィン成分単位を主成分とするポリオレフィン系樹脂であり、具体的には、上記したようにポリプロピレン系樹脂やポリエチレン系樹脂、その他、ポリメチル−1−ペンテン、エチレン−環状オレフィン共重合体など、さらにそれらの2種以上の混合物などが挙げられる。なお、上記「主成分とする」とは、オレフィン成分単位がポリオレフィン系樹脂中に50質量%以上含まれることを意味し、その含有量は好ましくは75質量%以上であり、より好ましくは85質量%以上であり、さらに好ましくは90質量%以上である。なお、本発明に使用されるポリオレフィン系樹脂の製造方法は特に制限はなく、チーグラー・ナッタ系触媒、メタロセン系触媒、酸素、過酸化物等のラジカル開始剤等を用いる方法等のいずれによって得られたものであってもよい。 Here, the polyolefin-based resin is a polyolefin-based resin containing an olefin component unit as a main component, and specifically, as described above, polypropylene-based resin or polyethylene-based resin, polymethyl-1-pentene, ethylene- Examples thereof include cyclic olefin copolymers and the like, as well as mixtures of two or more thereof. The above-mentioned "main component" means that the olefin component unit is contained in the polyolefin resin in an amount of 50% by mass or more, and the content thereof is preferably 75% by mass or more, more preferably 85% by mass. % Or more, more preferably 90% by mass or more. The method for producing the polyolefin resin used in the present invention is not particularly limited, and can be obtained by any of a method using a Ziegler-Natta catalyst, a metallocene catalyst, oxygen, a radical initiator such as peroxide, and the like. It may be one.

ポリプロピレン系樹脂としては、プロピレン成分単位が50質量%以上の樹脂が挙げられ、例えば、プロピレン単独重合体、又はプロピレンと共重合可能な他のα−オレフィンとの共重合体等が挙げられる。プロピレンと共重合可能な他のα−オレフィンとしては、例えば、エチレンや、1−ブテン、イソブチレン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、3,4−ジメチル−1−ブテン、1−ヘプテン、3−メチル−1−ヘキセンなどの炭素数4〜10のα−オレフィンが例示される。プロピレン単独重合体としては、アイソタクティック、シンジオタクティック、アタクチック、ヘミアイソタクチック及び種々の程度の立体規則性を示す直鎖又は分枝状ポリプロピレン等のいずれもが包含される。また共重合体は、ランダム共重合体であってもブロック共重合体であってもよく、さらに二元共重合体のみならず三元共重合体であってもよい。具体的には、例えば、エチレン−プロピレンランダム共重合体、ブテン−1−プロピレンランダム共重合体、エチレン−ブテン−1−プロピレンランダム3元共重合体、エチレン−プロピレンブロック共重合体などを例示できる。なお、共重合体中のプロピレンと共重合可能な他のオレフィンは、無機物質粉末充填樹脂組成物全体の質量を100質量%とした場合に、25質量%以下、特に15質量%以下の割合で含有されていることが好ましく、下限値は例えば0.3質量%とすることができる。また、これらのポリプロピレン系樹脂は、単独又は2種以上の混合物であっても良い。 Examples of the polypropylene-based resin include a resin having a propylene component unit of 50% by mass or more, and examples thereof include a propylene homopolymer and a copolymer with another α-olefin copolymerizable with propylene. Other α-olefins copolymerizable with propylene include, for example, ethylene, 1-butene, isobutylene, 1-pentene, 3-methyl-1-butene, 1-hexene, 3,4-dimethyl-1-butene. And α-olefins having 4 to 10 carbon atoms such as 1-heptene and 3-methyl-1-hexene. The propylene homopolymer includes any of isotactic, syndiotactic, atactic, hemiisotactic and linear or branched polypropylene having various degrees of stereoregularity. The copolymer may be a random copolymer or a block copolymer, and may be not only a binary copolymer but also a ternary copolymer. Specifically, for example, ethylene-propylene random copolymer, butene-1-propylene random copolymer, ethylene-butene-1-propylene random terpolymer, ethylene-propylene block copolymer, and the like can be exemplified. .. In addition, other olefins copolymerizable with propylene in the copolymer are 25% by mass or less, particularly 15% by mass or less, based on 100% by mass of the entire inorganic material powder-filled resin composition. It is preferably contained, and the lower limit can be set to 0.3% by mass, for example. Further, these polypropylene resins may be used alone or as a mixture of two or more kinds.

また、ポリエチレン系樹脂としては、エチレン成分単位が50質量%以上の樹脂が挙げられ、例えば、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、中密度ポリエチレン、直鎖状低密度ポリエチレン(LLDPE)、エチレン−酢酸ビニル共重合体、エチレン−プロピレン共重合体、エチレン−プロピレン−ブテン1共重合体、エチレン−ブテン1共重合体、エチレン−ヘキセン1共重合体、エチレン−4メチルペンテン1共重合体、エチレン−オクテン1共重合体等、さらにそれらの2種以上の混合物が挙げられる。 Examples of the polyethylene-based resin include resins having an ethylene component unit of 50% by mass or more, and examples thereof include high-density polyethylene (HDPE), low-density polyethylene (LDPE), medium-density polyethylene, and linear low-density polyethylene (LLDPE). ), ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, ethylene-propylene-butene 1 copolymer, ethylene-butene 1 copolymer, ethylene-hexene 1 copolymer, ethylene-4 methylpentene 1 copolymer Examples thereof include polymers, ethylene-octene 1 copolymers, and the like, and also a mixture of two or more thereof.

なお、0.942g/cm以上の密度を有するポリエチレンは通常、「高密度ポリエチレン(HDPE)」、0.930g/cm以上0.942g/cm未満の密度を有するポリエチレンは通常、「中密度ポリエチレン」、0.910g/cm以上0.930g/cm未満の密度を有するポリエチレンは通常、「低密度ポリエチレン(LDPE)」、0.910g/cm未満の密度を有するポリエチレンは通常、「超低密度ポリエチレン(ULDPE)」と称される。また、「直鎖状低密度ポリエチレン(LLDPE)」は、通常、0.911g/cm以上0.940g/cm未満の密度、好ましくは0.912g/cm以上0.928g/cm未満の密度を有する。 In addition, polyethylene having a density of 0.942 g/cm 3 or more is usually “high density polyethylene (HDPE)”, and polyethylene having a density of 0.930 g/cm 3 or more and less than 0.942 g/cm 3 is usually “medium”. "Density polyethylene", polyethylene having a density of 0.910 g/cm 3 or more and less than 0.930 g/cm 3 is usually "low density polyethylene (LDPE)", polyethylene having a density of less than 0.910 g/cm 3 is usually It is called "ultra low density polyethylene (ULDPE)". Further, "linear low density polyethylene (LLDPE)" is usually a density of less than 0.911 g / cm 3 or more 0.940 g / cm 3, preferably 0.912 g / cm 3 or more 0.928 g / cm less than 3 Has a density of.

ポリオレフィン系樹脂の中でも、機械的強度と耐熱性とのバランスに特に優れることからポリプロピレン系樹脂が好ましい。 Among the polyolefin resins, polypropylene resins are preferable because they have a particularly good balance between mechanical strength and heat resistance.

[無機物質粉末]
無機物質粉末としては、特に限定されず、例えば、カルシウム、マグネシウム、アルミニウム、チタン、鉄、亜鉛などの炭酸塩、硫酸塩、珪酸塩、リン酸塩、ホウ酸塩、酸化物、若しくはこれらの水和物の粉末状のものが挙げられ、具体的には、例えば、炭酸カルシウム、炭酸マグネシウム、酸化亜鉛、酸化チタン、シリカ、アルミナ、クレー、タルク、カオリン、水酸化アルミニウム、水酸化マグネシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ酸カルシウム、硫酸アルミニウム、硫酸マグネシウム、硫酸カルシウム、リン酸マグネシウム、硫酸バリウム、珪砂、カーボンブラック、ゼオライト、モリブデン、珪藻土、セリサイト、シラス、亜硫酸カルシウム、硫酸ナトリウム、チタン酸カリウム、ベントナイト、ウォラストナイト、ドロマイト、黒鉛等が挙げられる。これらは合成のものであっても天然鉱物由来のものであってもよく、また、これらは単独で2種類以上併用して含有されても良い。
[Inorganic substance powder]
The inorganic substance powder is not particularly limited, and examples thereof include carbonates such as calcium, magnesium, aluminum, titanium, iron and zinc, sulfates, silicates, phosphates, borates, oxides, or water of these. Examples include powders of Japanese products, specifically, calcium carbonate, magnesium carbonate, zinc oxide, titanium oxide, silica, alumina, clay, talc, kaolin, aluminum hydroxide, magnesium hydroxide, silicic acid. Aluminum, magnesium silicate, calcium silicate, aluminum sulfate, magnesium sulfate, calcium sulfate, magnesium phosphate, barium sulfate, silica sand, carbon black, zeolite, molybdenum, diatomaceous earth, sericite, shirasu, calcium sulfite, sodium sulfate, titanic acid Examples thereof include potassium, bentonite, wollastonite, dolomite and graphite. These may be synthetic or derived from natural minerals, and these may be contained alone or in combination of two or more kinds.

さらに、無機物質粉末の形状としても、特に限定されるわけではなく、粒子状、フレーク状、顆粒状、繊維状等のいずれであってもよい。また、粒子状としても、一般的に合成法により得られるような球形のものであっても、あるいは、採集した天然鉱物を粉砕にかけることにより得られるような不定形状のものであっても良い。 Furthermore, the shape of the inorganic substance powder is not particularly limited, and may be any of particles, flakes, granules, fibers, and the like. Further, the particles may have a spherical shape generally obtained by a synthetic method, or may have an irregular shape obtained by crushing a collected natural mineral. ..

これらの無機物質粉末として、好ましくは炭酸カルシウム、炭酸マグネシウム、酸化亜鉛、酸化チタン、シリカ、アルミナ、クレー、タルク、カオリン、水酸化アルミニウム、水酸化マグネシウム等であり、特に炭酸カルシウムが好ましい。さらに炭酸カルシウムとしては、合成法により調製されたもの、いわゆる軽質炭酸カルシウムと、石灰石などCaCOを主成分とする天然原料を機械的に粉砕分級して得られる、いわゆる重質炭酸カルシウムとのいずれであっても良く、これらを組合わせたものであっても良い。 As the inorganic substance powder, calcium carbonate, magnesium carbonate, zinc oxide, titanium oxide, silica, alumina, clay, talc, kaolin, aluminum hydroxide, magnesium hydroxide and the like are preferable, and calcium carbonate is particularly preferable. Further, as the calcium carbonate, either one prepared by a synthetic method, so-called light calcium carbonate, or so-called heavy calcium carbonate obtained by mechanically pulverizing and classifying a natural raw material mainly composed of CaCO 3 , such as limestone, is used. Or a combination of these may be used.

ここで、重質炭酸カルシウムとは、天然の石灰石などを機械的に粉砕・加工して得られるものであって、化学的沈殿反応等によって製造される合成炭酸カルシウムとは明確に区別される。なお、粉砕方法には乾式法と湿式法とがあるが、乾式法によるものが好ましい。 Here, the heavy calcium carbonate is obtained by mechanically crushing and processing natural limestone or the like, and is clearly distinguished from synthetic calcium carbonate produced by a chemical precipitation reaction or the like. The pulverization method includes a dry method and a wet method, but the dry method is preferable.

重質炭酸カルシウム粒子は、例えば、合成法による軽質炭酸カルシウムとは異なり、粒子形成が粉砕処理によって行われたことに起因する、表面の不定形性、比表面積の大きさに特徴を有する。重質炭酸カルシウム粒子がこの様に不定形性、比表面積の大きさを有するため、熱可塑性樹脂中に配合した場合に重質炭酸カルシウム粒子は、熱可塑性樹脂に対してより多くの接触界面を有し、均一分散に効果がある。 The heavy calcium carbonate particles are, for example, different from the light calcium carbonate produced by the synthetic method, and are characterized by the irregularity of the surface and the size of the specific surface area due to the fact that the particles are formed by the pulverization process. Since the heavy calcium carbonate particles have such an irregular shape and a large specific surface area, the heavy calcium carbonate particles have a larger contact interface with the thermoplastic resin when compounded in the thermoplastic resin. It has an effect on uniform dispersion.

特に限定されるわけではないが、重質炭酸カルシウム粒子の比表面積としては、その平均粒子径によっても左右されるが、3,000cm/g以上35,000m/g以下程度であることが望まれる。ここでいう比表面積は空気透過法によるものである。比表面積がこの範囲内にあると、得られる成形品の加工性低下が抑制される傾向がある。 The specific surface area of the heavy calcium carbonate particles is not particularly limited, but is about 3,000 cm 2 /g or more and 35,000 m 2 /g or less, although it depends on the average particle diameter. desired. The specific surface area here is based on the air permeation method. When the specific surface area is within this range, deterioration of processability of the obtained molded article tends to be suppressed.

また、重質炭酸カルシウム粒子の不定形性は、粒子形状の球形化の度合いが低いことで表わすことが出来、特に限定されるわけではないが、具体的には、真円度が0.50以上0.95以下、より好ましくは0.55以上0.93以下、さらに好ましくは0.60以上0.90以下である。重質炭酸カルシウム粒子の真円度が範囲内にあると、成形品の強度や成形加工性も適度なものとなる。なお、ここで、真円度とは、(粒子の投影面積)/(粒子の投影周囲長と同一周囲長を持つ円の面積)で表せるものである。真円度の測定方法は特に限定されず、例えば顕微鏡写真から粒子の投影面積と粒子の投影周囲長とを測定しても良く、一般に商用されている画像解析ソフトを用いても良い。 Further, the amorphousness of the heavy calcium carbonate particles can be represented by the low degree of spheroidization of the particle shape and is not particularly limited, but specifically, the roundness is 0.50. Or more and 0.95 or less, more preferably 0.55 or more and 0.93 or less, and still more preferably 0.60 or more and 0.90 or less. If the roundness of the heavy calcium carbonate particles is within the range, the strength and molding processability of the molded product will be appropriate. Here, the roundness can be represented by (projected area of particles)/(area of a circle having the same perimeter as the projected perimeter of particles). The method for measuring the roundness is not particularly limited, and for example, the projected area of the particles and the projected perimeter of the particles may be measured from a micrograph, and generally commercially available image analysis software may be used.

また、無機物質粉末の分散性又は反応性を高めるために、表面が常法に従い表面改質されていてもよい。表面改質法としては、プラズマ処理等の物理的な方法や、カップリング剤や界面活性剤で表面を化学的に表面処理するものなどが例示できる。カップリング剤としては、例えば、シランカップリング剤やチタンカップリング剤等が挙げられる。界面活性剤としては、アニオン性、カチオン性、ノニオン性及び両性のいずれのものであってもよく、例えば、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸塩等が挙げられる。これらとは逆に、表面処理のされていない無機物質粉末が含有されていても構わない。 Further, the surface may be surface-modified according to a conventional method in order to enhance the dispersibility or reactivity of the inorganic substance powder. Examples of the surface modification method include a physical method such as plasma treatment and a method in which the surface is chemically surface-treated with a coupling agent or a surfactant. Examples of the coupling agent include silane coupling agents and titanium coupling agents. The surfactant may be anionic, cationic, nonionic or amphoteric, and examples thereof include higher fatty acids, higher fatty acid esters, higher fatty acid amides and higher fatty acid salts. On the contrary to these, the inorganic substance powder which is not surface-treated may be contained.

上記のように本発明の樹脂廃材成形体の製造方法には、種々の公知の無機物質粉末配合樹脂廃材を用いることができるが、製造する樹脂廃材成形体中に含まれる熱可塑性樹脂と無機物質粉末との質量比が50:50〜10:90である場合に、本発明の効果が特に顕著となる。無機物質粉末を高充填した樹脂複合材では、無機物質粉末が成形品の物性に及ぼす影響が無視できず、特に粒径の管理が重要となるからである。本発明の効果は、熱可塑性樹脂と無機物質粉末との質量比が40:60〜20:80、特に40:60〜25:75の樹脂廃材成形体で、さらに顕著となる。 As described above, in the method for producing a resin waste material molding of the present invention, various known inorganic material powder-containing resin waste materials can be used, but the thermoplastic resin and the inorganic substance contained in the resin waste material molding to be produced The effect of the present invention becomes particularly remarkable when the mass ratio to the powder is 50:50 to 10:90. This is because, in the resin composite material highly filled with the inorganic substance powder, the influence of the inorganic substance powder on the physical properties of the molded article cannot be ignored, and it is particularly important to control the particle size. The effect of the present invention becomes more prominent in the resin waste material molded body in which the mass ratio of the thermoplastic resin and the inorganic substance powder is 40:60 to 20:80, particularly 40:60 to 25:75.

<3.製造方法の各工程について>
上述したように、本発明に係る製造方法は、無機物質粉末配合樹脂廃材を無機物質粉末の粒子径によって選別する選別工程と、無機物質粉末配合樹脂廃材を粉砕する粉砕工程と、押出機により混練する混練工程と、を有する。また、成形工程を後段に付して、選別から成形までを連続的に行っても良い。
<3. About each step of the manufacturing method>
As described above, the manufacturing method according to the present invention includes a selection step of selecting the inorganic material powder-containing resin waste material according to the particle size of the inorganic material powder, a pulverizing step of crushing the inorganic material powder-containing resin waste material, and a kneading by an extruder. And a kneading step of In addition, the molding process may be provided in a subsequent stage, and the processes from selection to molding may be continuously performed.

<3−1.選別工程>
選別工程では、無機物質粉末の粒子径によって無機物質粉末配合樹脂廃材を選別する。
<3-1. Sorting process>
In the selection step, the resin waste material containing the inorganic substance powder is selected according to the particle size of the inorganic substance powder.

粒子径の測定方法に特に制限はなく、種々の公知の手法を用いることができる。例えば、樹脂廃材のロットごとに少量のサンプルを抜き取り、必要に応じて樹脂を加熱除去した後、SEM、TEM、又は光学顕微鏡等で観察することによって測定しても良く、同様に樹脂を除去して得られた無機物質粉末の粒子径を市販の粒度分布計を用いて測定することもできる。樹脂廃材の断面SEM観察から粒子径を測定することも可能である。しかしながら本発明においては、無機物質粉末の粒子径を、X線小角散乱法により測定することが好ましい。小角散乱法では連続的な選別作業が可能となる上、樹脂の加熱除去等の前処理なしでも試料内部の無機物質粉末の粒子径を測定でき、しかも顕微鏡観察におけるようなサンプリング箇所による誤差が生じるおそれも低いので、本発明における選別工程での使用に最適である。 The method for measuring the particle size is not particularly limited, and various known methods can be used. For example, a small amount of sample may be drawn from each lot of waste resin material, the resin may be removed by heating if necessary, and then the measurement may be performed by observing with an SEM, TEM, or an optical microscope, and the resin may be removed in the same manner. The particle size of the obtained inorganic substance powder can also be measured using a commercially available particle size distribution meter. It is also possible to measure the particle size by observing the cross section SEM of the resin waste material. However, in the present invention, it is preferable to measure the particle size of the inorganic substance powder by the X-ray small angle scattering method. The small-angle scattering method allows continuous selection work, and the particle size of the inorganic substance powder inside the sample can be measured without pretreatment such as heat removal of the resin, and there are errors due to sampling points as in microscope observation. Since it is less likely to occur, it is most suitable for use in the selection step in the present invention.

[X線小角散乱法]
X線小角散乱法自体は公知である。X線小角散乱(小角X線散乱とも呼ばれ、SAXSと略記される)は、散乱角が数度以下、概ね5°以下の散乱X線を測定する手法であり、一般に1〜1000nm、極小角での散乱によれば10μm程度までの大きさの構造パラメーター分析に威力を発揮する(例えば、放射光、第19巻、338〜348頁、2006年を参照)。一般に散乱角度が小さくなるほど大きな構造体のサイズを求めることができ、極小角でのX線散乱は本発明に係る製造方法において特に有用である。尚、上記したような極小角での散乱を特に極小角X線散乱又は超小角X線散乱(USAXS)と呼んでSAXSと区別する場合もあるが、本発明においては、X線小角散乱又はSAXはUSAXSをも包含する測定法として区別せずに扱う。
[X-ray small angle scattering method]
The X-ray small angle scattering method itself is known. X-ray small-angle scattering (also called small-angle X-ray scattering, abbreviated as SAXS) is a method for measuring scattered X-rays with a scattering angle of several degrees or less, generally 5° or less, and generally 1 to 1000 nm, and extremely small angle. Scattering at 10°C is effective for structural parameter analysis up to about 10 μm (see, for example, synchrotron radiation, vol. 19, 338-348, 2006). Generally, the smaller the scattering angle, the larger the size of the structure can be obtained, and the X-ray scattering at a very small angle is particularly useful in the manufacturing method according to the present invention. In addition, although there is a case where the above-mentioned scattering at the minimum angle is particularly called as a minimum angle X-ray scattering or an ultra small angle X-ray scattering (USAXS) to distinguish it from SAXS, in the present invention, the X-ray small angle scattering or SAX is used. Treats as a measurement method that also includes USAXS without distinction.

X線小角散乱法では、X線回折法に比べて比較的構造規則性の低い物質も解析することができ、ミリ秒単位の時間分割測定を行うことも可能である。しかもX線の高い透過力によってバルクの構造を調べることができるため、厚みのある試料でも非破壊の状態で、内部に含まれている粉末を分析することができる。また、粉末の形状が既知の場合、特に球状に近い場合には、散乱強度の極大点や傾きから粉末の粒径が測定できる他、極大ピークの広がり具合から粒径分布を求めることも可能である。そのため、本発明の方法のようなリサイクルやアップサイクルにおける選別工程での使用に最適である。 The X-ray small angle scattering method can analyze a substance having a relatively low structural regularity as compared with the X-ray diffraction method, and can also perform time-division measurement in milliseconds. Moreover, since the bulk structure can be examined by the high penetrating power of X-rays, the powder contained inside can be analyzed in a non-destructive state even with a thick sample. In addition, when the shape of the powder is known, particularly when it is close to a sphere, the particle size of the powder can be measured from the maximum point or slope of the scattering intensity, and the particle size distribution can be obtained from the extent of the maximum peak. is there. Therefore, it is most suitable for use in the sorting step in recycling or up cycle as in the method of the present invention.

X線小角散乱の測定方法に特に制限はなく、種々の公知の装置を使用することができる。例えばSPring−8のビームラインを用いた装置を用いても良く、X線の代わりに中性子線を用いることも可能であるが、コスト面から計器メーカーの汎用機の使用が推奨される。例として株式会社リガク製のSmartLabやNANOPIXmini等が挙げられるが、これらに限定されない。 There is no particular limitation on the method for measuring the X-ray small angle scattering, and various known devices can be used. For example, an apparatus using a SPring-8 beam line may be used, and neutron rays may be used instead of X-rays, but it is recommended to use a general-purpose machine of an instrument maker from the viewpoint of cost. Examples include SmartLab and NANOPIXmini manufactured by Rigaku Co., Ltd., but are not limited thereto.

選別工程では、無機物質粉末配合樹脂廃材を無機物質粉末の粒子径によって選別することに加えて、無機物質粉末配合樹脂廃材を構成するその無機物質粉末及び/又は熱可塑性樹脂の種別を選別する処理を含んでいてもよい。例えば、X線小角散乱法による分析と別に、中赤外分光分析、近赤外分光分析、赤外分光分析、ラマン分光分析、蛍光X線分析、X線回折分析等、さらには熱分解GC/MS分析やTG/DTA分析等の1種又は2種以上の分析を行い、樹脂及び/又は無機物質粉末の組成ごとに選別することが好ましい。こうした分析を行うことにより、樹脂廃材中の成分の種類、含有量、さらには劣化状態等を把握し、製造する樹脂廃材成形体の物性や成形性をより良好なものとすることができる。特に、これら分析をX線小角散乱分析と併用すると、樹脂廃材の組成や状態、含まれる粉末のサイズ等を総合的に把握することができ、廃材のより有効なリサイクル・アップサイクルへと繋げることが可能となる。 In the sorting step, in addition to sorting the waste resin containing inorganic substance powder by particle size of the powder of inorganic substance, processing for sorting the type of the inorganic substance powder and/or the thermoplastic resin constituting the waste material containing inorganic substance powder-containing resin May be included. For example, apart from analysis by the small angle X-ray scattering method, mid-infrared spectroscopic analysis, near-infrared spectroscopic analysis, infrared spectroscopic analysis, Raman spectroscopic analysis, fluorescent X-ray analysis, X-ray diffraction analysis, etc., and thermal decomposition GC/ It is preferable to perform one kind or two or more kinds of analyzes such as MS analysis and TG/DTA analysis, and select each composition of the resin and/or the inorganic substance powder. By carrying out such an analysis, it is possible to grasp the type and content of the components in the resin waste material, the deterioration state, etc., and to improve the physical properties and moldability of the resin waste material molded body to be manufactured. In particular, if these analyzes are used in combination with X-ray small angle scattering analysis, it is possible to comprehensively understand the composition and condition of resin waste materials, the size of powder contained, etc., leading to a more effective recycling/up cycle of waste materials. Is possible.

[選別対象について]
本発明の樹脂廃材成形体の製造方法においては、無機物質粉末配合樹脂廃材を、含まれる無機物質粉末の粒子径に基いて上記のようにして選別する。どのような粒子径の無機物質粉末を含有する樹脂廃材を選別するかは、特に制限はなく、目的とする樹脂廃材成形体の物性や成形性、入手可能な樹脂廃材の種類に応じて任意に設定することができる。例えば、平均粒子径が0.1μm以上、特に0.5μm以上、さらには0.7μm以上の無機物質粉末を含有する樹脂廃材を選定することにより、原料とする樹脂廃材が極微細粉末を殆ど含まなくなる結果、後の混練工程におけるトルクの上昇やそれに伴う発熱による樹脂の劣化等を防ぐことができる。無機物質粉末の中でも炭酸カルシウム等では、極微細粉末が高分子の補強・増粘効果を示すので、こうした選別は特に重要である。あるいは、平均粒子径が13.5μm以下、特に10.0μm以下の無機物質粉末を含有する樹脂廃材を選別することによって、粗大粉末不含の樹脂廃材成形体を得ることができる。こうした選別は、薄物成形品、特にインフレーションシートやインフレーションフィルムを製造する際に重要となる。
[About selection target]
In the method for producing a resin waste material molding of the present invention, the inorganic material powder-blended resin waste material is selected as described above based on the particle size of the inorganic material powder contained therein. The particle size of the resin waste material containing the inorganic substance powder is not particularly limited, and the physical properties and moldability of the target resin waste material molded body and the kind of the available resin waste material are arbitrarily selected. Can be set. For example, by selecting a resin waste material containing an inorganic substance powder having an average particle diameter of 0.1 μm or more, particularly 0.5 μm or more, and further 0.7 μm or more, the resin waste material as a raw material contains almost ultrafine powder. As a result, the increase in torque in the subsequent kneading step and the deterioration of the resin due to the heat generation accompanying it can be prevented. Among the inorganic substance powders, in the case of calcium carbonate or the like, such a selection is particularly important because the ultrafine powder has the effect of reinforcing and thickening the polymer. Alternatively, a resin waste material compact containing no coarse powder can be obtained by selecting a resin waste material containing an inorganic substance powder having an average particle diameter of 13.5 μm or less, particularly 10.0 μm or less. Such selection is important when manufacturing a thin molded product, particularly an inflation sheet or an inflation film.

尚、本明細書において平均粒子径とは、特記しない限りJIS M−8511に準じた空気透過法による比表面積の測定結果から計算した値をいう。平均粒子径の測定値は測定法によってばらつくことも多いので、使用頻度の高い樹脂廃材中の無機物質粉末、例えば汎用の無機物質粉末については、標準試料を用意し、その平均粒径毎にX線小角散乱法や電子顕微鏡観察による測定と前記空気透過法による測定とを行い、それぞれの測定値を対照させておくと良いであろう。空気透過法を用いた測定機器としては、例えば、島津製作所社製の比表面積測定装置SS−100型を好ましく用いることができる。 In the present specification, the average particle diameter means a value calculated from the measurement result of the specific surface area by the air permeation method according to JIS M-8511 unless otherwise specified. Since the measured value of the average particle size often varies depending on the measuring method, a standard sample is prepared for an inorganic substance powder in a resin waste material that is frequently used, for example, a general-purpose inorganic substance powder, and X is measured for each average particle size. It is advisable to perform the measurement by the small angle scattering method or the electron microscope observation and the measurement by the air permeation method, and compare the respective measured values. As a measuring instrument using the air permeation method, for example, a specific surface area measuring device SS-100 type manufactured by Shimadzu Corporation can be preferably used.

<3−2.粉砕工程>
こうして選別された樹脂廃材は、次に数mm角程度のサイズに粉砕される。どの程度のサイズに粉砕するかについては特に制限はなく、例えば1〜10mm角、1〜5mm角、2〜3mm角、5〜8mm角等、目的とする成形品の種類や形状、使用する廃材や装置の特性に応じて、所望のサイズへと粉砕することができる。粉砕機に関しても特に限定されるものではなく、衝撃式粉砕機、振動ボールミルや遊星型ボールミルに代表されるボールミル等の粉砕メディアを用いた粉砕機、ローラーミル、ジェットミル、ディスク型やピン型等に代表されるビーズミル、高圧ホモジェナイザー、超音波分散機等に代表されるメディアレス分散機等が使用出来る。
<3-2. Crushing process>
The resin waste material thus selected is then crushed into a size of about several mm square. There is no particular limitation on the size to be crushed, for example, 1 to 10 mm square, 1 to 5 mm square, 2 to 3 mm square, 5 to 8 mm square, the type and shape of the target molded product, and the waste material to be used. It can be crushed to a desired size depending on the characteristics of the machine. The crusher is also not particularly limited, and a crusher using a crushing medium such as an impact crusher, a vibration ball mill or a ball mill typified by a planetary ball mill, a roller mill, a jet mill, a disc type or a pin type, etc. A bead mill typified by, a high pressure homogenizer, a medialess disperser typified by an ultrasonic disperser, or the like can be used.

粉砕方法としても、乾式法と湿式法のいずれを用いることもでき、経済的には乾式法が、水洗浄も同時に行える点では湿式法が好ましい。樹脂廃材のリサイクルにおいては、廃材を洗浄することが好ましいが、湿式法で粉砕すると、同時に水洗浄することも可能となる。尚、洗浄は粉砕後又は粉砕中に洗浄脱水機等で撹拌しながら水洗浄することが、洗浄効率の点から好ましい。例えば乾式法と湿式法とを組み合わせ、粗粉砕を乾式法で行った後、湿式法で微粉砕することにより、リサイクル効率を改善することができる。粉砕後、市販の異物除去装置等を用いて、異物を除去しても良い。 As the pulverizing method, either a dry method or a wet method can be used, and the economical method is preferable from the viewpoint of the dry method and the fact that washing with water can be simultaneously performed. In recycling the resin waste material, it is preferable to wash the waste material, but if the waste material is pulverized by a wet method, it is possible to simultaneously wash with water. From the viewpoint of cleaning efficiency, it is preferable that the cleaning is performed with water after stirring or during grinding with a washing dehydrator or the like while stirring. For example, the recycling efficiency can be improved by combining the dry method and the wet method, performing coarse pulverization by the dry method, and then finely pulverizing by the wet method. After crushing, the foreign matter may be removed using a commercially available foreign matter removing device or the like.

<3−3.混練工程>
上記のようにして粉砕した樹脂廃材を、次に混練工程に付す。樹脂廃材は入手先やロット毎の成分バラツキ等が多く、良物性の樹脂廃材成形体を製造し、品質の安定化を図る上で、複数の樹脂廃材を、それらの組成や含有される無機物質粉末の粒径、さらには樹脂の劣化度等を加味して組み合わせ、混練することが好ましい。この過程で、未使用の樹脂及び/又は無機物質粉末原材料を添加・混練することもできる。滑剤や可塑剤、分散剤等の加工助剤、老化防止剤、酸化防止剤、紫外線劣化防止剤、軟化オイル、カップリング剤、顔料等の汎用薬剤を添加することも可能である。
<3-3. Kneading process>
The resin waste material crushed as described above is then subjected to a kneading step. There are many variations in the composition of resin waste materials from suppliers and lots, and in order to produce a resin waste material molded product with good physical properties and to stabilize the quality, multiple resin waste materials are made up of their composition and the inorganic substances contained in them. It is preferable to combine and knead in consideration of the particle size of the powder, the deterioration degree of the resin, and the like. In this process, it is also possible to add and knead the unused resin and/or the inorganic substance powder raw material. It is also possible to add processing aids such as lubricants, plasticizers and dispersants, antiaging agents, antioxidants, UV deterioration inhibitors, softening oils, coupling agents, pigments and other general-purpose agents.

樹脂廃材の溶融、混練及び成形は、従来知られる任意の方法で行うことができる。例えば、樹脂廃材の溶融から成形までを連続的に行う方法であってもよく、各工程の一部又は全てを非連続的に行っても良い。しかしながら本発明においては、押出機を用いて溶融、混練、及び成形又は予備成形を、連続的に行うことが、製造効率の観点から実用的である。例えば上記のようにして選別・粉砕した樹脂廃材を押出機に投入し、所望により未使用原材料も添加し、任意の条件でペレットやシート、フィルム等に成形する。 Melting, kneading, and molding of the resin waste material can be performed by any conventionally known method. For example, it may be a method of continuously performing from melting to molding of the resin waste material, or a part or all of each step may be performed discontinuously. However, in the present invention, it is practical from the viewpoint of production efficiency to carry out melting, kneading, and molding or preforming continuously using an extruder. For example, the resin waste material selected and crushed as described above is charged into an extruder, and if necessary, unused raw materials are added, and molded into pellets, sheets, films and the like under arbitrary conditions.

押出機としては、二軸混練押出機(同方向回転二軸混練押出機、異方向回転二軸混練押出機)、ニーダー式押出機、単軸押出機等が挙げられる。これらのうち、樹脂廃材の混練時のメルトマスフローレイトが高くなり易く、かつ、メルトマスフローレイトのばらつきが抑えられ、成形性が良好となる観点から、ニーダー式押出機及び二軸混練押出機、特に二軸混練押出機が好ましい。 Examples of the extruder include a twin-screw kneading extruder (same-direction rotating twin-screw kneading extruder, different-direction rotating twin-screw kneading extruder), a kneader type extruder, and a single-screw extruder. Among these, the melt mass flow rate at the time of kneading the resin waste material is likely to be high, and the dispersion of the melt mass flow rate is suppressed, and from the viewpoint of good moldability, a kneader type extruder and a twin-screw kneading extruder, particularly A twin-screw kneading extruder is preferred.

<3−4.成形工程>
本発明においては、混練と成形又は予備成形とを別工程で行うことも可能である。例えば二軸混練押出機を用いて上記のようにして調製したペレットを、別の二軸押出機、一軸押出機、射出成形機等に投入して種々の形状に成形することができる。勿論、上記二軸混練押出機で混練後、連続的にシートやフィルム等の形状へと成形することも可能である。
<3-4. Molding process>
In the present invention, it is possible to perform kneading and molding or preforming in separate steps. For example, the pellets prepared as described above using a twin-screw kneading extruder can be put into another twin-screw extruder, a single-screw extruder, an injection molding machine or the like to be molded into various shapes. Of course, after kneading with the above-mentioned twin-screw kneading extruder, it is also possible to continuously form a sheet, a film or the like.

特に、成形品の形態が、シートである場合には、より好ましくは、肉厚50μm〜1,000μm、さらに好ましくは肉厚50μm〜400μmであることが望ましい。このような範囲内の肉厚を有するシートであれば、一般的な印刷・情報用、及び包装用の用途の紙あるいは合成紙に代えて、好適に使用できるものである。 In particular, when the shape of the molded product is a sheet, it is more preferable that the wall thickness is 50 μm to 1,000 μm, and further preferably 50 μm to 400 μm. A sheet having a wall thickness within such a range can be suitably used in place of paper or synthetic paper for general printing/information and packaging purposes.

本発明に係る製造方法においては、樹脂廃材成形体がインフレーション法による押出成形(ブローフィルム成形)により成形されたシート又はフィルム、いわゆるインフレーションシート又はインフレーションフィルムである態様が望ましい。先に記載したように、樹脂廃材が粒径の大きな無機物質粉末を含有している場合、成形品の表面状態が悪化し、物性バラツキも無視できなくなる。これらの傾向は、薄肉のインフレーションシートやインフレーションフィルムで特に顕著であるが、本発明においては選別工程でこうした粗大粉末を含有する樹脂廃材が除外されるので、表面外観に優れ、極めて安定した機械特性(引張強度、伸び等)を有するシートやフィルムを製造することができる。 In the production method according to the present invention, it is desirable that the resin waste material molded body is a sheet or film formed by extrusion molding (blow film molding) by an inflation method, that is, a so-called inflation sheet or inflation film. As described above, when the resin waste material contains the inorganic substance powder having a large particle diameter, the surface condition of the molded product is deteriorated and the physical property variation cannot be ignored. These tendencies are particularly remarkable in a thin inflation sheet or inflation film, but in the present invention, since the resin waste material containing such coarse powder is excluded in the sorting step, the surface appearance is excellent, and the mechanical properties are extremely stable. A sheet or film having (tensile strength, elongation, etc.) can be manufactured.

なお、本発明に係る成形品がインフレーションフィルムである態様の場合、当該フィルムとしては、緻密なフィルムとすることも可能であるし、無機物質粉末の高い含有量と、インフレーション成形のエアブローによる延伸を受けることで、フィルム層内に微細孔が形成され、ガス透過性を有する通気性フィルムとすることも可能である。 In the case where the molded article according to the present invention is an inflation film, as the film, it is possible to use a dense film, and a high content of the inorganic substance powder, and stretching by air blow of inflation molding. By receiving the fine pores in the film layer, it is possible to obtain a gas permeable gas permeable film.

インフレーションフィルムが通気性フィルムである場合、特に限定されるものではないが、透気度が、5,000秒以上85,000秒以下であることが望ましい。なお、ここで言う「透気度」は、JIS P8117(JIS P8117:2009 「紙及び板紙−透気度及び透気抵抗度試験方法(中間領域)−ガーレー法」)により測定された値であり、より具体的には、JIS P8117準拠のガーレー式透気度計を用い、23℃で大気雰囲気中にて、2,500mmの面積の通気性フィルムを空気100ccが通過する時間(秒)を測定し、これを透気度(秒)としたものである。秒数はデジタルオートカウンターで測定したものである。透気度の値が小さいほど空気の透過性が高いことを示す。 When the inflation film is a breathable film, the air permeability is preferably 5,000 seconds or more and 85,000 seconds or less, although not particularly limited. The "air permeability" referred to here is a value measured by JIS P8117 (JIS P8117:2009 "Paper and board-Air permeability and air resistance test method (intermediate region)-Gurley method"). More specifically, using a Gurley type air permeability meter conforming to JIS P8117, the time (second) for passing 100 cc of air through the breathable film having an area of 2,500 mm 2 in the atmosphere at 23° C. It was measured, and this was taken as the air permeability (second). The number of seconds is measured by a digital auto counter. The smaller the value of air permeability, the higher the air permeability.

インフレーションシート及びインフレショーンフィルムの用途として特に限定されるものではなく、多くの異なる用途で使用出来る。特に限定されるものではないが、例えば、衛生用途、医療用途、ヘルスケア用途、ろ過材料、ジオテキスタイル製品、農業用途、園芸用途、衣類、履物製品、鞄製品、家庭用途、工業用途、包装用途、建築用途、又は建設等で使用される。 The use of the inflation sheet and the inflation sean film is not particularly limited and can be used in many different uses. Although not particularly limited, for example, hygiene applications, medical applications, healthcare applications, filtration materials, geotextile products, agricultural applications, gardening applications, clothing, footwear products, bag products, household applications, industrial applications, packaging applications, It is used for construction purposes or construction.

以下本発明を、実施例に基づきより具体的に説明するが、本発明はこれらの実施例に何ら限定される訳ではない。 Hereinafter, the present invention will be described more specifically based on Examples, but the present invention is not limited to these Examples.

[実施例1]
無機物質粉末配合樹脂廃材として、「LIMEX」(株式会社TBM製:登録商標)及びその類似品を試作した際の端材(以下、「樹脂廃材No.1〜18」という。)を用い、樹脂廃材成形体を製造した。これら樹脂廃材No.1〜18はいずれも、熱可塑性樹脂としてのポリプロピレンと、無機物質粉末としての重質炭酸カルシウムとを40:60の質量比で押出機にて混練・押出した際の成形不良品である。成形試作後、自社工場内の1箇所に集められ、約1〜6箇月間溜め置かれていた端材の内、比較的サイズの大きな18種を、樹脂廃材原料として使用した。尚、いずれの樹脂廃材についても別途、赤外分光分析、X線回折分析、及び焼成(500℃×1時間)時の重量減少率測定を行い、ポリプロピレン:炭酸カルシウム質量比が40:60前後の複合材であることを確認した。
[Example 1]
As a resin waste material containing an inorganic substance powder, a resin scrap "LIMEX" (manufactured by TBM Co., Ltd.) and a similar product (hereinafter, referred to as "resin waste material Nos. 1 to 18") is used as a resin. A waste material compact was manufactured. These resin waste materials No. Nos. 1 to 18 are defective products when polypropylene as a thermoplastic resin and ground calcium carbonate as an inorganic substance powder were kneaded and extruded by an extruder at a mass ratio of 40:60. After the trial molding, 18 types of relatively large size scraps collected in one place in our own factory and stored for about 1 to 6 months were used as raw materials for resin waste materials. For each of the resin waste materials, infrared spectroscopic analysis, X-ray diffraction analysis, and weight reduction rate measurement during firing (500° C.×1 hour) were separately performed, and the polypropylene:calcium carbonate mass ratio was about 40:60. It was confirmed to be a composite material.

樹脂廃材No.1〜18について、X線小角散乱測定を行い、含有されている炭酸カルシウムの平均粒径を求めた。装置としては、株式会社リガク製のNANOPIXminiを使用し、測定値のGuinierプロットから平均粒径を算出した。参考のため、「LIMEX」(登録商標)及びその類似品の試作に用いた炭酸カルシウム原料粉末の幾つかについても同一の測定を行い、平均粒径を求めた。樹脂廃材No.1〜18についての測定結果、並びにそれらに近い値を示した炭酸カルシウム原料粉末についての測定値及びカタログ値を、表1に示す。 Resin waste material No. The X-ray small angle scattering measurement was carried out for 1 to 18 to determine the average particle size of the contained calcium carbonate. NANOPIXmini manufactured by Rigaku Corporation was used as an apparatus, and the average particle size was calculated from the Guinier plot of the measured values. For reference, the same measurement was performed for some of the calcium carbonate raw material powders used for the trial production of "LIMEX" (registered trademark) and its similar products, and the average particle diameter was obtained. Resin waste material No. Table 1 shows the measurement results for Nos. 1 to 18, and the measurement values and catalog values for the calcium carbonate raw material powder showing values close to those.

上記とは別に、樹脂廃材No.1〜18のそれぞれから約1gを採取し、空気中、500℃で1時間焼成し、得られた粉末の電子顕微鏡(SEM)画像を用い、各樹脂廃材中の炭酸カルシウムの平均粒径を測定した。SEM観察は5か所について倍率×5,000で行い、撮影した画像から画像解析装置を用いて平均粒径を求めた。参考のため、「LIMEX」(登録商標)及びその類似品の試作に用いた炭酸カルシウム原料粉末の幾つかについても、SEMにより平均粒径を測定した。測定結果を、表1に併せて示す。尚、樹脂廃材No.2の焼成物についてはTEM観察による平均粒径測定も行い、SEM観察と同様の結果が得られている。 Separately from the above, the resin waste material No. Approximately 1 g was taken from each of 1 to 18 and calcined in air at 500° C. for 1 hour, and the average particle size of calcium carbonate in each resin waste material was measured using an electron microscope (SEM) image of the obtained powder. did. SEM observation was carried out at 5 places at a magnification of 5,000, and the average particle size was determined from the photographed image using an image analyzer. For reference, the average particle size of some of the calcium carbonate raw material powders used for trial production of "LIMEX" (registered trademark) and its similar products was measured by SEM. The measurement results are also shown in Table 1. In addition, the resin waste material No. The average particle diameter of the fired product of No. 2 was also measured by TEM observation, and the same result as that of SEM observation was obtained.

Figure 0006718636
Figure 0006718636

空気透過法による平均粒径は、他の方法での測定値に比べて小さくなる場合が多いが、今回の測定においても同様の結果となった。尚、炭酸カルシウム原料粉末bの平均粒径が、SEM観察においてカタログ値の10倍近い値となったのは、凝集した二次粒子の径が計測されたためと考えられる。 The average particle size by the air permeation method is often smaller than the measured values by other methods, but the same result was obtained in this measurement. The reason why the average particle size of the calcium carbonate raw material powder b became a value close to 10 times the catalog value in the SEM observation is considered to be that the diameter of the agglomerated secondary particles was measured.

以上の測定結果から、樹脂廃材No.1、4、5、7、9、10、及び15〜17は、平均粒径が同等の炭酸カルシウム原料粉末を含有していると推定されたため、これらを選別して同一質量で使用し、後の粉砕工程及び混練工程に供した。上記樹脂廃材を遊星型ボールミル中で乾式粉砕して、次いで湿式ビーズミルで2mm角以下のサイズに微粉砕した。これを乾燥後、同方向回転小型二軸混練押出機(φ25mm、L/D=41)を用い200℃で混練、水中にストランドで押出し、冷却、カットしてペレットを作製した。 From the above measurement results, the resin waste material No. Since 1, 4, 5, 7, 9, 10, and 15 to 17 were presumed to contain calcium carbonate raw material powders having the same average particle size, these were selected and used at the same mass. Was subjected to the crushing step and the kneading step. The resin waste material was dry-pulverized in a planetary ball mill and then finely pulverized by a wet bead mill to a size of 2 mm square or less. After this was dried, it was kneaded at 200° C. using a co-rotating small biaxial kneading extruder (φ25 mm, L/D=41), extruded into strands in water, cooled and cut to produce pellets.

得られたペレットを用い、インフレーションフィルム押出ライン(60mmの円形ダイ、1.2mmのダイギャップ、30mmのネジ直径、L/D比=30)にてフィルムを作製した。フィルムは3.0のBUR(ブローアップ比)で処理し、フロストライン高さを16cmの高さ(ダイからの距離)に保った。なお、押出機において、各区域の温度は、190℃〜230℃に設定した。押出機の回転数は60rpmで常に維持し、フィルムの坪量は、ライン速度の適切な調整によって35g/mに設定した。また、冷却空気流は同じ位置にフロストラインを維持するためにそれに応じて調整した。作製されたインフレーションフィルムは、外観が平滑で変色や肉厚バラツキのない良品であった。 Using the pellets thus obtained, a film was produced on an inflation film extrusion line (60 mm circular die, 1.2 mm die gap, 30 mm screw diameter, L/D ratio=30). The film was treated with a BUR (blow-up ratio) of 3.0 to keep the frost line height at a height of 16 cm (distance from the die). In the extruder, the temperature of each area was set to 190°C to 230°C. The extruder speed was always maintained at 60 rpm and the basis weight of the film was set at 35 g/m 2 by appropriate adjustment of the line speed. Also, the cooling air flow was adjusted accordingly to keep the frost line in the same position. The produced blown film was a good product with a smooth appearance and no discoloration or thickness variation.

[比較例1]
上記の樹脂廃材No.1〜18を選別せずに全て同一質量で使用し、実施例1と同様にしてペレットを作製した。混練の際、押出機の温度が200℃程度となるよう制御に努めたが、混練時のトルク上昇・発熱が著しく、一時的に240℃を超える温度も観測された。
[Comparative Example 1]
The above resin waste material No. Pellets were prepared in the same manner as in Example 1 except that 1 to 18 were used in the same mass without selection. At the time of kneading, an effort was made to control the temperature of the extruder to be about 200°C, but the torque rise and heat generation during kneading were remarkable, and a temperature temporarily exceeding 240°C was also observed.

得られたペレットを実施例1と同様に成形したところ、赤みを帯びた肉厚バラツキのあるインフレーションフィルムが生じた。平均粒径が0.1μm以下となるような極微細炭酸カルシウムはポリマーの補強効果を示し、溶融混練物の粘度上昇を引き起こすことが知られている。樹脂廃材を無機物質粉末の粒子径によって選別せずに、樹脂廃材No.1〜18を全て用いた本比較例では、極微細炭酸カルシウムの作用によって押出機のトルクが上昇し、それに伴う発熱によるポリプロピレン成分の劣化、それに起因するフィルムの赤化、さらには溶融物の増粘による肉厚バラツキがもたらされたと考えられる。 When the obtained pellets were molded in the same manner as in Example 1, an inflation film having a reddish and uneven thickness was produced. It is known that ultrafine calcium carbonate having an average particle diameter of 0.1 μm or less has a reinforcing effect on the polymer and causes an increase in viscosity of the melt-kneaded product. The resin waste material No. 1 was not sorted according to the particle size of the inorganic substance powder. In this comparative example using all 1 to 18, the torque of the extruder was increased by the action of the ultrafine calcium carbonate, the polypropylene component was deteriorated due to the heat generated thereby, the film was reddened, and the viscosity of the melt was increased. It is thought that this caused the variation in the wall thickness.

[実施例2]
比較例1で、今回使用した小型押出機による混練では、極微細炭酸カルシウムによるトルクや溶融樹脂温度が上昇する可能性のあることが示されたので、そうした炭酸カルシウムを含有する樹脂廃材を除外して、インフレーションフィルムの作製を試みた。実施例1での測定結果に基づく選別を行い、樹脂廃材No.2、6、11〜13、及び18を除外し、それ以外の樹脂廃材を同一質量で用いて、実施例1と同様にしてインフレーションフィルムを作製した。得られたインフレーションフィルムは、外観が平滑で変色や肉厚バラツキのない良品であった。尚、本実施例で得られたインフレーションフィルムは、実施例1のインフレーションフィルムに比べ、多少腰のない触感であった。本実施例で用いた無機物質粉末配合樹脂廃材では、実施例1の樹脂廃材に比べて含有する炭酸カルシウムの粒径分布が広く、且つ粒径の細かい炭酸カルシウムの含有率が相対的に小さいため、フィラー充填による補強効果が大きくは現れなかった可能性がある。
[Example 2]
In Comparative Example 1, it was shown that the kneading by the small-sized extruder used this time may increase the torque and the molten resin temperature due to the ultrafine calcium carbonate. Therefore, such resin waste material containing calcium carbonate was excluded. Then, the production of an inflation film was tried. Screening was performed based on the measurement results in Example 1, and the resin waste material No. An inflation film was produced in the same manner as in Example 1 except that 2, 6, 11 to 13 and 18 were excluded, and the other resin waste materials were used in the same mass. The blown film obtained was a good product with a smooth appearance and no discoloration or thickness variation. In addition, the inflation film obtained in this example had a slightly flatter feel than the inflation film of Example 1. In the resin waste material containing the inorganic substance powder used in this example, the particle size distribution of calcium carbonate contained therein is wider than that of the resin waste material of Example 1, and the content ratio of calcium carbonate having a small particle size is relatively small. It is possible that the reinforcing effect of the filler filling did not appear to be large.

以上より、無機物質粉末配合樹脂廃材をリサイクルし、熱可塑性樹脂と無機物質粉末とを含む樹脂廃材成形体を製造する際に、無機物質粉末配合樹脂廃材を無機物質粉末の粒子径によって選別することの重要性が示された。特に、X線小角散乱法による測定では、極微細粉末の有無を、その凝集に妨害されることなく適確に判定することができた。同法では焼成等の測定前処理が不要で、前処理に伴う無機物質粉末の凝集等を来すことがない上、電子顕微鏡に比べて広範囲の領域を分析できる利点があるので、本発明での選別工程において極めて有用と考えられる。尚、今回使用したX線小角散乱装置NANOPIXminiは、測定可能粒子サイズが最大で1μmであるが、超小角散乱測定も可能な装置を用いれば、樹脂廃材No.3等に含まれる炭酸カルシウムについても、平均粒径が測定できたと考えられる。参考のため、各分析法及び得られたフィルムの特性を、表2にまとめて示す。 From the above, when the resin waste material mixed with the inorganic substance powder is recycled and the resin waste material molded body containing the thermoplastic resin and the inorganic substance powder is manufactured, the resin waste material mixed with the inorganic substance powder is selected according to the particle diameter of the inorganic substance powder. Was shown to be important. In particular, in the measurement by the X-ray small angle scattering method, it was possible to accurately determine the presence or absence of the ultrafine powder without being disturbed by the agglomeration. This method does not require measurement pretreatment such as firing, does not cause aggregation of the inorganic substance powder accompanying pretreatment, and has the advantage of being able to analyze a wide range of areas as compared with an electron microscope. It is considered to be extremely useful in the selection process of. The X-ray small-angle scattering device NANOPIXmini used this time has a maximum measurable particle size of 1 μm, but if a device capable of ultra-small-angle scattering measurement is used, the resin waste material No. It is considered that the average particle size of calcium carbonate contained in 3 etc. could be measured. For reference, Table 2 shows the characteristics of each analysis method and the obtained film.

Figure 0006718636
Figure 0006718636

[実施例3、比較例2]
上記樹脂廃材No.1〜18とは別の箇所に3箇月間程度溜め置かれていた樹脂廃材No.19〜24を使用し、樹脂廃材成形体を製造した。これら樹脂廃材No.19〜24はいずれも、熱可塑性樹脂としてのポリエチレンと、無機物質粉末としての重質炭酸カルシウムとを20:80の質量比で押出機にて混練・押出した際の成形不良品である。各廃材の組成は、実施例1と同様にして赤外分光分析等により確認した。
[Example 3 and Comparative Example 2]
The above resin waste material No. Resin waste material No. 1 stored in a place different from 1 to 18 for about 3 months. 19 to 24 were used to produce a resin waste material molded body. These resin waste materials No. Nos. 19 to 24 are defective products when polyethylene as a thermoplastic resin and heavy calcium carbonate as an inorganic substance powder were kneaded and extruded by an extruder at a mass ratio of 20:80. The composition of each waste material was confirmed by infrared spectroscopic analysis or the like as in Example 1.

上記樹脂廃材について、実施例1と同様にしてSEM画像を用いた平均粒子測定を行った。各樹脂廃材についての測定結果、並びにそれらに近い値を示した炭酸カルシウム原料粉末についての測定値及びカタログ値を、表3に示す。 With respect to the resin waste material, the average particle size was measured using an SEM image in the same manner as in Example 1. Table 3 shows the measurement results of the respective resin waste materials, and the measurement values and catalog values of the calcium carbonate raw material powder showing values close to those.

Figure 0006718636
Figure 0006718636

以上の分析結果から、樹脂廃材No.19、21、22、及び24は、平均粒径が同等の炭酸カルシウム原料粉末を含有していると推定されたため、これらを選別して同一質量で使用した。これら樹脂廃材合計100質量部に対し、20質量部の未使用ポリエチレン樹脂(日本ポリエチレン株式会社製のノバテックHD−HY420)を添加して実施例1と同様に混練し、ポリエチレン:炭酸カルシウムの質量比が1:2のペレットを作製した(実施例3)。 From the above analysis results, the resin waste material No. Since it was estimated that 19, 21, 22, and 24 contained calcium carbonate raw material powders having the same average particle diameter, these were selected and used in the same mass. To 100 parts by mass of these resin waste materials, 20 parts by mass of an unused polyethylene resin (Novatech HD-HY420 manufactured by Nippon Polyethylene Co., Ltd.) was added and kneaded in the same manner as in Example 1 to obtain a mass ratio of polyethylene:calcium carbonate. 1:2 was produced (Example 3).

比較のため、樹脂廃材No.19〜24を選別せずに全て同一質量で使用し、実施例3と同様にしてペレットを作製した(比較例2)。 For comparison, the resin waste material No. The pellets were produced in the same manner as in Example 3 by using 19 to 24 in the same mass without selection (Comparative Example 2).

これらペレットを用い、実施例1と同様にしてインフレーションフィルムを製造した。本発明に従い、含有される無機物質(炭酸カルシウム)粉末の粒子径に基いて樹脂廃材を選別して作製したペレットからは、外観が良好で肉厚バラツキのないインフレーションフィルムが得られた。一方、樹脂廃材を無機物質粉末の粒子径によって選別せずに製造した比較例2では、未使用のポリエチレンを添加したにも関わらず表面状態が悪く、部位ごとに触感が異なるフィルムが生じた。樹脂廃材の選別を行わなかった結果、成形体中に粒子径の著しく異なる炭酸カルシウムが混入し、局所的な表面状態の悪化がもたらされたと推定される。このフィルムを手で引っ張ると、一部の箇所に容易に亀裂が入った。樹脂廃材No.20及び23中の平均粒径13.5μmを超える粗大な炭酸カルシウム粒子が、表面状態の悪化や亀裂の開始点を生じていると考えられる。熱可塑性樹脂と無機物質粉末とを含む樹脂廃材成形体を製造する際に、無機物質粉末配合樹脂廃材を無機物質粉末の粒子径によって選別することの重要性が、再び示された。 An inflation film was produced in the same manner as in Example 1 using these pellets. According to the present invention, an inflation film having a good appearance and no variation in thickness was obtained from the pellets produced by selecting the resin waste material based on the particle size of the inorganic substance (calcium carbonate) powder contained. On the other hand, in Comparative Example 2 in which the resin waste material was manufactured without being sorted according to the particle size of the inorganic substance powder, the surface condition was poor despite the addition of the unused polyethylene, and a film having a different tactile sensation for each site was produced. It is presumed that, as a result of not selecting the resin waste material, calcium carbonate having a remarkably different particle diameter was mixed into the molded body, which locally deteriorated the surface condition. When the film was pulled by hand, some parts were easily cracked. Resin waste material No. It is considered that the coarse calcium carbonate particles in 20 and 23 having an average particle size of more than 13.5 μm cause the deterioration of the surface state and the starting point of cracking. When manufacturing a resin waste material molded body containing a thermoplastic resin and an inorganic material powder, the importance of selecting the resin waste material mixed with the inorganic material powder according to the particle diameter of the inorganic material powder was shown again.

Claims (10)

炭酸カルシウムを含む無機物質粉末配合樹脂廃材から熱可塑性樹脂と炭酸カルシウムとを含む樹脂廃材成形体を製造する方法において、前記無機物質粉末配合樹脂廃材を該無機物質粉末配合樹脂廃材に含まれる前記炭酸カルシウムの粒子径によって選別する選別工程、選別した無機物質粉末配合樹脂廃材を粉砕する粉砕工程、及び押出機により混練する混練工程を有することを特徴とする樹脂廃材成形体の製造方法。 A method for producing a resin waste material molded body comprising inorganic material powder blending resin waste material and a thermoplastic resin and calcium carbonate comprising calcium carbonate, the carbonate contained the inorganic substance powder compounded resin waste material to inorganic material powder blended resin waste material A method for producing a resin waste material molded article, comprising: a selection step of selecting according to the particle size of calcium , a pulverization step of crushing the selected inorganic material powder-blended resin waste material, and a kneading step of kneading with an extruder. 前記選別工程では、前記無機物質粉末の粒子径をX線小角散乱法により測定する、請求項1に記載の樹脂廃材成形体の製造方法。 The method for producing a resin waste material molding according to claim 1, wherein the particle diameter of the inorganic substance powder is measured by the X-ray small angle scattering method in the sorting step. 前記熱可塑性樹脂が、ポリオレフィン樹脂を含む、請求項1又は2に記載の樹脂廃材成形体の製造方法。 The method for producing a resin waste material molded body according to claim 1, wherein the thermoplastic resin contains a polyolefin resin. 前記熱可塑性樹脂が、ポリプロピレン系樹脂を含む、請求項1〜3の何れかに記載の樹脂廃材成形体の製造方法。 The method for producing a resin waste material molding according to claim 1, wherein the thermoplastic resin contains a polypropylene resin. 前記樹脂廃材成形体が、熱可塑性樹脂と無機物質粉末とを50:50〜10:90の質量比で含む、請求項1〜の何れかに記載の樹脂廃材成形体の製造方法。 The resin waste material molded product, a thermoplastic resin and an inorganic material powder and 50: 50-10: including in a weight ratio of 90, the production method of the resin waste material molded article according to any one of claims 1-4. 前記樹脂廃材成形体に含まれる前記炭酸カルシウムの空気透過法による平均粒子径が、0.5μm以上13.5μm以下である、請求項1〜5の何れかに記載の樹脂廃材成形体の製造方法。 The method for producing a resin waste material compact according to any one of claims 1 to 5, wherein the calcium carbonate contained in the resin waste material compact has an average particle diameter of 0.5 µm or more and 13.5 µm or less by an air permeation method. .. 前記混練工程が、二軸混練押出機による混練工程を含む、請求項1〜の何れかに記載の樹脂廃材成形体の製造方法。 The kneading step comprises the step of kneading twin-screw extruder, the production method of the resin waste material molded article according to any one of claims 1-6. 前記選別工程が、中赤外分光分析、近赤外分光分析、赤外分光分析、ラマン分光分析、蛍光X線分析、及びX線回折分析から選択される1種又は2種以上の分析法により樹脂及び/又は無機物質粉末の種別を選別することをさらに含む、請求項1〜の何れかに記載の樹脂廃材成形体の製造方法。 The screening step is performed by one or more analysis methods selected from mid-infrared spectroscopy, near-infrared spectroscopy, infrared spectroscopy, Raman spectroscopy, fluorescent X-ray analysis, and X-ray diffraction analysis. further comprising selecting the type of resin and / or an inorganic material powder, method for producing a resin waste material molded article according to any one of claims 1-7. 前記樹脂廃材成形体が樹脂ペレットである、請求項1〜の何れかに記載の樹脂廃材成形体の製造方法。 The resin waste material molded product is a resin pellet manufacturing method of the resin waste material molded article according to any one of claims 1-8. 前記樹脂廃材成形体がインフレーションシート又はインフレーションフィルムである、請求項1〜の何れかに記載の樹脂廃材成形体の製造方法。 The resin waste material molded body is blown sheet or blown film, method for producing a resin waste material molded article according to any one of claims 1-8.
JP2019234006A 2019-12-25 2019-12-25 Method for producing waste resin molded product containing inorganic substance powder Active JP6718636B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019234006A JP6718636B1 (en) 2019-12-25 2019-12-25 Method for producing waste resin molded product containing inorganic substance powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019234006A JP6718636B1 (en) 2019-12-25 2019-12-25 Method for producing waste resin molded product containing inorganic substance powder

Publications (2)

Publication Number Publication Date
JP6718636B1 true JP6718636B1 (en) 2020-07-08
JP2021102286A JP2021102286A (en) 2021-07-15

Family

ID=71402361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019234006A Active JP6718636B1 (en) 2019-12-25 2019-12-25 Method for producing waste resin molded product containing inorganic substance powder

Country Status (1)

Country Link
JP (1) JP6718636B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7441562B1 (en) 2023-03-22 2024-03-01 岐阜プラスチック工業株式会社 Manufacturing method of recycled plastic material and recycled plastic material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166032A (en) * 1992-11-30 1994-06-14 Nippon Polyester Kk Production of frp molding material reclaimed from frp waste
JPH10202660A (en) * 1997-01-23 1998-08-04 Misawa Homes Co Ltd Manufacture of mosaic pattern product, mosaic pattern product and material for mosaic pattern product
JPH11254439A (en) * 1998-03-12 1999-09-21 Yamasho:Kk Industrial waste treatment system
JP2004243554A (en) * 2003-02-12 2004-09-02 Matsushita Electric Ind Co Ltd Urethane powder, method for manufacturing raw material for hard urethane foam, refrigerator manufacturing method and refrigerator
JP2004352762A (en) * 2003-05-27 2004-12-16 Idemitsu Petrochem Co Ltd Recycled aromatic polycarbonate resin composition and method for producing the same and injection-molded article
PL2537883T3 (en) * 2011-06-20 2014-08-29 Imerys Minerals Ltd Methods and compositions related to recycling polymer waste

Also Published As

Publication number Publication date
JP2021102286A (en) 2021-07-15

Similar Documents

Publication Publication Date Title
JP6661152B1 (en) Thermoplastic resin composition containing inorganic substance powder and molded article
JP6782505B1 (en) A resin composition for producing a stretched sheet, a stretched sheet, and a method for producing a stretched sheet.
JP5482061B2 (en) Resin composition containing talc powder
KR101737654B1 (en) Process for manufacturing a surface-treated compacted material processable on a single screw plastics conversion equipment
Istrate et al. Structure and properties of clay/recycled plastic composites
JP6919954B1 (en) Resin composition and molded product
WO2021192427A1 (en) Eggshell powder-containing thermoplastic resin composition and molded article
JP6718636B1 (en) Method for producing waste resin molded product containing inorganic substance powder
Sahebian et al. Role of surface active agent on dimensional stability of HDPE/CaCO3 nanocomposites
JP2021006612A (en) Resin composition, film and method for producing by-product calcium carbonate
JP7079543B1 (en) Laminated sheets and food packaging containers
JP6758692B1 (en) Method for manufacturing polyolefin resin molded product containing inorganic substance powder
JP6762632B1 (en) Method for manufacturing polyolefin resin molded product containing inorganic substance powder
KR101312570B1 (en) Pellet-type calcium carbonate and hdpe with synthetic resin film and its manufacturing method
JP6727674B1 (en) Method for producing molded resin waste material
JP2004189814A (en) Thermoplastic resin composition and method for producing the same
JP7332834B1 (en) Sheets and laminated sheets
JP7468954B1 (en) Resin composition and molded article
Mubarak Effects of biodegradable polypropylene additive on the impact strength and spherulites growth rate of isotactic polypropylene
Mustaffa Properties And Characterization Of Low Density Polyethylene/Modified Cockle Shell Composite Films
JP2024083039A (en) Method for producing recycled resin composition, recycled resin composition, and recycled resin molded product
WO2023187059A1 (en) Calcium carbonate for improving the mechanical properties of thermoplastic polymer compositions
CA3188647A1 (en) Surface-treated ultrafine calcium carbonate for improving the mechanical properties of polyethylene/polypropylene compositions
JP2023128224A (en) Laminated sheet and food packaging container
KR20080078756A (en) Recycle technology of anti-static(shielding film or bag)film or bag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200221

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200608

R150 Certificate of patent or registration of utility model

Ref document number: 6718636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250