JP6717213B2 - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP6717213B2
JP6717213B2 JP2017006715A JP2017006715A JP6717213B2 JP 6717213 B2 JP6717213 B2 JP 6717213B2 JP 2017006715 A JP2017006715 A JP 2017006715A JP 2017006715 A JP2017006715 A JP 2017006715A JP 6717213 B2 JP6717213 B2 JP 6717213B2
Authority
JP
Japan
Prior art keywords
battery
batteries
vertical direction
heat
facing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017006715A
Other languages
Japanese (ja)
Other versions
JP2018116832A (en
Inventor
知美 淺井
知美 淺井
雅貴 内山
雅貴 内山
保幸 大場
保幸 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017006715A priority Critical patent/JP6717213B2/en
Publication of JP2018116832A publication Critical patent/JP2018116832A/en
Application granted granted Critical
Publication of JP6717213B2 publication Critical patent/JP6717213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は、電池モジュールに関する。 The present invention relates to a battery module.

電池モジュールとして、例えば特許文献1に開示されたものがある。特許文献1に記載の電池モジュールは、一方向に並んで配された複数の電池と、複数の電池の並び方向に直交する上下方向の下側に配置された熱交換器とを有する。そして、特許文献1に記載された電池モジュールは、複数の電池と熱交換器との間の熱伝導性を向上させるべく、複数の電池と熱交換器との間に可撓性を有するゲルを介在させている。 As a battery module, there is one disclosed in Patent Document 1, for example. The battery module described in Patent Document 1 has a plurality of batteries arranged side by side in one direction and a heat exchanger arranged on the lower side in the vertical direction orthogonal to the direction in which the plurality of batteries are arranged. The battery module described in Patent Document 1 includes a flexible gel between the plurality of batteries and the heat exchanger in order to improve the thermal conductivity between the plurality of batteries and the heat exchanger. Intervenes.

特許文献1に記載の電池モジュールを組み付けるにあたっては、例えば、熱交換器の上面にゲルを塗布し、当該ゲルの上面に、並んで配された複数の電池を押し付けるように配置する。これにより、ゲルが変形しながら複数の電池のゲル側の面である密着面に確実に密着する。それゆえ、ゲルが電池の密着面に密着しないことに起因して各電池から熱交換器までの伝熱経路における熱抵抗が大きくなることを抑制できる。 In assembling the battery module described in Patent Document 1, for example, a gel is applied to the upper surface of the heat exchanger, and a plurality of batteries arranged side by side are pressed against the upper surface of the gel. As a result, the gel is deformed and surely adheres to the adhesion surface, which is the gel-side surface of the plurality of batteries. Therefore, it is possible to suppress an increase in thermal resistance in the heat transfer path from each battery to the heat exchanger due to the fact that the gel does not adhere to the contact surface of the battery.

特開2014−127321号公報JP, 2014-127321, A

しかしながら、電池モジュールにおいては、各電池の寸法誤差や複数の電池の組付誤差等に起因して、上下方向における複数の電池の前記密着面の位置にずれが生じる場合がある。この場合、各電池の密着面と熱交換器との上下方向の間隔にばらつきが生じ、各電池の密着面と熱交換器との間に配されているゲルの上下方向の厚みにもばらつきが生じる。これに伴い、各電池から熱交換器までの伝熱経路における熱抵抗にばらつきが生じてしまう。これは、各電池から熱交換器までの伝熱経路における熱抵抗が、各電池と熱交換器との間に配されたゲルの厚みに依存することによる。その結果、熱交換器によって各電池を均等に冷却することができず、複数の電池において温度ばらつきが発生してしまうおそれがある。 However, in the battery module, the position of the contact surface of the plurality of batteries in the vertical direction may be displaced due to a dimensional error of each battery or an assembly error of the plurality of batteries. In this case, the vertical distance between the contact surface of each battery and the heat exchanger varies, and the vertical thickness of the gel disposed between the contact surface of each battery and the heat exchanger also varies. Occurs. As a result, the thermal resistance in the heat transfer path from each battery to the heat exchanger varies. This is because the thermal resistance in the heat transfer path from each battery to the heat exchanger depends on the thickness of the gel arranged between each battery and the heat exchanger. As a result, it is not possible to uniformly cool each battery by the heat exchanger, and there is a risk that temperature variations will occur in a plurality of batteries.

本発明は、かかる課題に鑑みてなされたものであり、熱交換器による各電池の冷却性能にばらつきが生じることを抑制することができる電池モジュールを提供しようとするものである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a battery module that can suppress variations in cooling performance of each battery by a heat exchanger.

本発明の一態様は、熱交換器(2)と、
前記熱交換器に熱的に接触した熱拡散部(3)と、
前記熱拡散部の上面(31)に熱的に接触した熱伝導部(4)と、
前記熱伝導部の少なくとも上側から前記熱伝導部に熱的に接触するとともに、前記熱拡散部及び前記熱伝導部と上下方向(Z)に重なる位置に配された複数の電池(5)と、を有し、
前記熱拡散部は、前記熱伝導部よりも熱伝導率が高く、
前記電池の下側の面を基準面(51)と定義したとき、複数の前記電池の前記基準面は、上下方向の複数の位置に配されており、
前記熱拡散部の前記上面は、複数の前記電池の前記基準面と上下方向に対向する複数の対向部(311)を有し、
複数の前記電池のうち前記基準面が最下端に位置する前記電池を最下端電池(501)と定義したとき、複数の前記電池のうちの前記最下端電池以外の前記電池の前記基準面と上下方向に対向する前記対向部の少なくとも一つは、前記最下端電池の前記基準面と上下方向に対向する前記対向部よりも上側に位置しており、
前記熱拡散部は、金属製であり、
前記各電池の前記基準面は、前記熱拡散部に当接していない、電池モジュール(1)にある。
One aspect of the present invention is a heat exchanger (2),
A heat spreader (3) in thermal contact with the heat exchanger;
A heat conducting portion (4) that is in thermal contact with the upper surface (31) of the heat diffusion portion;
A plurality of batteries (5) arranged to be in thermal contact with the heat conducting portion from at least the upper side of the heat conducting portion and to be overlapped with the heat diffusion portion and the heat conducting portion in the vertical direction (Z); Have
The thermal diffusion portion has a higher thermal conductivity than the thermal conduction portion,
When the lower surface of the battery is defined as a reference surface (51), the reference surfaces of the plurality of batteries are arranged at a plurality of vertical positions,
The upper surface of the heat spreader has a plurality of facing portions (311) that vertically face the reference surfaces of the plurality of batteries,
When the battery whose reference surface is located at the lowermost end of the plurality of batteries is defined as the lowermost battery (501), the upper and lower sides of the reference surface of the batteries other than the lowermost battery of the plurality of batteries are defined. At least one of the facing portions facing each other in the direction is located above the facing portion facing in the vertical direction with the reference surface of the lowermost battery ,
The heat diffusion portion is made of metal,
The reference surface of each of the batteries is in the battery module (1) that is not in contact with the heat diffusion portion .

前記電池モジュールにおいて、複数の電池のうちの最下端電池以外の電池の基準面と上下方向に対向する対向部の少なくとも一つは、最下端電池の基準面と上下方向に対向する対向部よりも上側に位置している。それゆえ、複数の電池の基準面と、熱拡散部の上面の複数の対向部との間の上下方向の間隔にばらつきが生じることを抑制することがきできる。これにより、熱伝導部における複数の電池の基準面と上下方向に重なる領域の厚みにばらつきが生じることを抑制することができる。それゆえ、各電池から熱拡散部までの伝熱経路における熱抵抗値に、ばらつきが生じることを抑制することができる。 In the battery module, at least one of the facing portions vertically facing a reference surface of a battery other than the lowermost battery among the plurality of batteries is more than the facing portion vertically facing the reference surface of the lowermost battery. It is located on the upper side. Therefore, it is possible to suppress variations in vertical intervals between the reference surfaces of the plurality of batteries and the plurality of facing portions on the upper surface of the heat diffusion portion. As a result, it is possible to suppress variations in the thickness of the regions of the heat conducting portion that vertically overlap the reference surfaces of the plurality of batteries. Therefore, it is possible to suppress variations in the thermal resistance value in the heat transfer path from each battery to the heat diffusion portion.

以上のごとく、前記態様によれば、熱交換器による各電池の冷却性能にばらつきが生じることを抑制することができる電池モジュールを提供することができる。
なお、特許請求の範囲及び課題を解決する手段に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本発明の技術的範囲を限定するものではない。
As described above, according to the above aspect, it is possible to provide the battery module capable of suppressing the variation in the cooling performance of each battery by the heat exchanger.
The reference numerals in parentheses described in the claims and the means for solving the problems indicate the corresponding relationship with the specific means described in the embodiments described later, and limit the technical scope of the present invention. Not a thing.

実施形態1における、電池モジュールの全体断面図。1 is an overall sectional view of a battery module in Embodiment 1. FIG. 実施形態1における、電池モジュールの上面図。FIG. 3 is a top view of the battery module according to the first embodiment. 図2の、III−III線矢視断面図。FIG. 3 is a sectional view taken along the line III-III of FIG. 図1の、一部拡大図。The partially expanded view of FIG. 実施形態1における、熱拡散部の斜視図。3 is a perspective view of a heat diffusion unit according to the first embodiment. FIG. 実施形態2における、電池モジュールの全体断面図。3 is an overall cross-sectional view of a battery module according to Embodiment 2. FIG. 実施形態3における、電池モジュールの全体断面図。The whole sectional view of the battery module in Embodiment 3. 実施形態3における、熱拡散部の斜視図。FIG. 6 is a perspective view of a heat diffusion unit according to the third embodiment. 実施形態4における、電池モジュールの全体断面図。The whole sectional view of the battery module in Embodiment 4. 図9の、A−A線矢視断面図。FIG. 10 is a sectional view taken along the line AA of FIG. 9. 実施形態4における、電池モジュールの製造方法を説明するための断面図であって、金属薄板変形前の状態の図。FIG. 11 is a cross-sectional view for explaining the method for manufacturing the battery module according to the fourth embodiment, which is a diagram before deformation of the thin metal plate. 実施形態4における、電池モジュールの製造方法を説明するための断面図であって、金属薄板変形後の状態の図。FIG. 12 is a cross-sectional view for explaining the method for manufacturing the battery module according to the fourth embodiment, which is a diagram in a state after the metal thin plate is deformed.

(実施形態1)
電池モジュールの実施形態につき、図1〜図5を用いて説明する。
本実施形態の電池モジュール1は、図1に示すごとく、熱交換器2と熱拡散部3と熱伝導部4と複数の電池5とを有する。熱拡散部3は、熱交換器2に熱的に接触している。熱拡散部3は、熱伝導部4よりも熱伝導率が高い。熱伝導部4は、熱拡散部3の上面31に熱的に接触している。複数の電池5は、熱伝導部4の少なくとも上側から熱伝導部4に熱的に接触している。図1、図3に示すごとく、熱拡散部3及び熱伝導部4と上下方向Zに重なる位置に配されている。なお、熱拡散部3と熱伝導部4とが並ぶ方向を上下方向Zとする。上下方向Zにおける熱拡散部3に対する熱伝導部4側を上側、その反対側を下側とする。
(Embodiment 1)
An embodiment of the battery module will be described with reference to FIGS. 1 to 5.
As shown in FIG. 1, the battery module 1 of the present embodiment has a heat exchanger 2, a heat diffusion portion 3, a heat conduction portion 4, and a plurality of batteries 5. The heat diffusion portion 3 is in thermal contact with the heat exchanger 2. The thermal diffusion section 3 has a higher thermal conductivity than the thermal conduction section 4. The heat conducting portion 4 is in thermal contact with the upper surface 31 of the heat diffusion portion 3. The plurality of batteries 5 are in thermal contact with the heat conducting unit 4 from at least the upper side of the heat conducting unit 4. As shown in FIGS. 1 and 3, the heat diffusion portion 3 and the heat conduction portion 4 are arranged at positions overlapping in the vertical direction Z. The direction in which the heat diffusion portion 3 and the heat conduction portion 4 are arranged is referred to as the vertical direction Z. The heat conducting portion 4 side with respect to the heat diffusing portion 3 in the vertical direction Z is the upper side, and the opposite side is the lower side.

図1に示すごとく、電池5の下側の面を基準面51と定義したとき、複数の電池5の基準面51は、上下方向Zの複数の位置に配されている。熱拡散部3の上面31は、複数の電池5の基準面51と上下方向Zに対向する複数の対向部311を有する。ここで、複数の電池5のうち基準面51が最下端に位置する電池5を最下端電池501と定義する。このとき、複数の電池5のうちの最下端電池501以外の電池5の基準面51と上下方向Zに対向する対向部311の少なくとも一つは、最下端電池501の基準面51と上下方向Zに対向する対向部311よりも上側に位置している。 As shown in FIG. 1, when the lower surface of the battery 5 is defined as the reference surface 51, the reference surfaces 51 of the plurality of batteries 5 are arranged at a plurality of positions in the vertical direction Z. The upper surface 31 of the heat diffusion portion 3 has a plurality of facing portions 311 facing the reference surfaces 51 of the plurality of batteries 5 in the vertical direction Z. Here, among the plurality of batteries 5, the battery 5 whose reference surface 51 is located at the bottom end is defined as the bottom end battery 501. At this time, at least one of the facing portions 311 facing the reference surface 51 of the batteries 5 other than the lowermost end battery 501 among the plurality of batteries 5 in the vertical direction Z has a lower surface than the reference surface 51 of the lowermost end battery 501 and the vertical direction Z. Is located above the facing portion 311 facing the.

電池モジュール1は、装置の電力源として用いられる。例えば、電池モジュール1を、内燃機関用の回転電機を駆動させるための動力源とすることができる。 The battery module 1 is used as a power source of the device. For example, the battery module 1 can be used as a power source for driving a rotating electric machine for an internal combustion engine.

本実施形態において、電池5は、リチウムイオン二次電池である。また、電池5は、外装が鉄やアルミニウム等の金属からなる、いわゆる缶型の電池である。図1〜図3に示すごとく、電池5は、電池本体50と、電池本体50から上側に突出した一対の端子52を有する。電池本体50の下面が基準面51である。本実施形態において、基準面51は、上下方向Zに直交する平面であり、下側を向く面である。 In the present embodiment, the battery 5 is a lithium ion secondary battery. The battery 5 is a so-called can-type battery whose outer package is made of metal such as iron or aluminum. As shown in FIGS. 1 to 3, the battery 5 has a battery main body 50 and a pair of terminals 52 protruding upward from the battery main body 50. The lower surface of the battery body 50 is the reference surface 51. In the present embodiment, the reference surface 51 is a plane orthogonal to the vertical direction Z and is a surface facing downward.

電池5は、上下方向Zに直交する方向の一つに厚みを有する扁平な板状を呈している。本実施形態において、複数の電池5は、上下方向Zの寸法を除いて互いに同等の形状を有する。図1、図2に示すごとく、複数の電池5は、上下方向Zに直交する並び方向Xに並んで電池構造体10を構成している。また、電池構造体10は、並び方向Xに拘束されている。複数の電池5は、電池5の厚み方向に並んで配されて電池構造体10を構成している。電池構造体10において、隣り合う電池5間には、電池本体50同士が電気的に接触することを防止するための絶縁材101が配されている。 The battery 5 has a flat plate shape having a thickness in one of the directions orthogonal to the vertical direction Z. In the present embodiment, the plurality of batteries 5 have the same shape except for the dimension in the vertical direction Z. As shown in FIG. 1 and FIG. 2, the plurality of batteries 5 are arranged in a line direction X orthogonal to the vertical direction Z to form a battery structure 10. Further, the battery structure 10 is constrained in the arrangement direction X. The plurality of batteries 5 are arranged side by side in the thickness direction of the batteries 5 to form the battery structure 10. In the battery structure 10, an insulating material 101 for preventing the battery bodies 50 from electrically contacting each other is arranged between the adjacent batteries 5.

電池構造体10は、並び方向Xの両側から、拘束部材100によって並び方向Xに拘束されている。拘束部材100は、電池構造体10の両側に配された一対のエンドプレート11と、一対のエンドプレート11を接続する接続部材12とを有する。接続部材12の両端は、エンドプレート11に固定されている。これにより、電池構造体10は、並び方向Xの両側から、拘束部材100によって並び方向Xに拘束されている。なお、エンドプレート11と並び方向Xの端部に配された電池5との間には、断熱材13が配されている。また、電池構造体10が並び方向Xに拘束されていれば、他の拘束手段を採用することも可能である。 The battery structure 10 is restrained in the arrangement direction X by the restraint members 100 from both sides in the arrangement direction X. The restraint member 100 includes a pair of end plates 11 arranged on both sides of the battery structure 10 and a connecting member 12 that connects the pair of end plates 11. Both ends of the connecting member 12 are fixed to the end plates 11. Thereby, the battery structure 10 is constrained in the arrangement direction X by the restraint members 100 from both sides in the arrangement direction X. A heat insulating material 13 is arranged between the end plate 11 and the battery 5 arranged at the end of the arrangement direction X. Further, if the battery structure 10 is restrained in the arranging direction X, another restraining means can be adopted.

図1に示すごとく、本実施形態において、複数の電池5は、上下方向Zにおける基準面51の位置がずれている。換言すると、複数の電池5は、上下方向Zにおける基準面51の位置が一致していない。本実施形態において、基準面51が最下端に位置する電池5は、複数ある。同様に、基準面51が最上端に位置する最上端電池502も複数ある。なお、複数の電池5は、電池構造体10を構成する際、各電池5の端子52の位置を互いに一致させるように構成される。すなわち、複数の電池5は、それぞれの上端の上下方向Zの位置を一致させるよう配される。そして、複数の電池5は、熱拡散部3の上面31に配された熱伝導部4の上面に配されている。 As shown in FIG. 1, in the present embodiment, the positions of the reference planes 51 in the vertical direction Z of the plurality of batteries 5 are displaced. In other words, the positions of the reference planes 51 in the vertical direction Z of the batteries 5 do not match. In the present embodiment, there are a plurality of batteries 5 whose reference plane 51 is located at the lowermost end. Similarly, there are a plurality of uppermost batteries 502 whose reference plane 51 is located at the uppermost end. It should be noted that the plurality of batteries 5 are configured such that the positions of the terminals 52 of each battery 5 are aligned with each other when the battery structure 10 is configured. That is, the plurality of batteries 5 are arranged so that the positions of the upper ends of the batteries 5 are aligned in the vertical direction Z. The plurality of batteries 5 are arranged on the upper surface of the heat conducting portion 4 arranged on the upper surface 31 of the heat diffusion portion 3.

熱拡散部3は、例えばアルミニウムからなる。なお、これに限られず、熱拡散部3は、後述の熱伝導部4よりも熱伝導率が高ければ、他の材料を採用することも可能である。熱拡散部3の複数の対向部311のうち、最上端電池502の基準面51と上下方向Zに対向する対向部311は、最下端電池501の基準面51と上下方向Zに対向する対向部311よりも上側に位置している。さらに、本実施形態においては、熱拡散部3の複数の対向部311と、複数の電池5の基準面51との上下方向Zの間隔は、互いに同等である。 The heat diffusion portion 3 is made of aluminum, for example. Note that the heat diffusion portion 3 is not limited to this, and another material may be used as long as it has a higher thermal conductivity than the heat conduction portion 4 described later. Of the plurality of facing portions 311 of the heat diffusion portion 3, the facing portion 311 facing the reference surface 51 of the uppermost end battery 502 in the vertical direction Z is the facing portion facing the reference surface 51 of the lowermost end battery 501 in the vertical direction Z. It is located above 311. Furthermore, in the present embodiment, the intervals in the vertical direction Z between the plurality of facing portions 311 of the heat diffusion portion 3 and the reference surfaces 51 of the plurality of batteries 5 are equal to each other.

図1、図5に示すごとく、熱拡散部3は、基部32と小面積部33とを有する。基部32は、複数の電池5のすべてと上下方向Zに重なるよう形成されている。小面積部33は、基部32の上面に配されるとともに、上下方向Zから見たときの面積が基部32よりも小さい。基部32と小面積部33とは、溶接等によって互いに熱伝導可能に接合されている。 As shown in FIGS. 1 and 5, the heat diffusion portion 3 has a base portion 32 and a small area portion 33. The base portion 32 is formed so as to overlap all of the plurality of batteries 5 in the vertical direction Z. The small area portion 33 is arranged on the upper surface of the base portion 32 and has an area smaller than that of the base portion 32 when viewed in the vertical direction Z. The base portion 32 and the small area portion 33 are joined to each other in a heat conductive manner by welding or the like.

基部32は、上下方向Zに厚みを有する平板状を呈している。上下方向Zから見たときの基部32の面積は、上下方向Zから見たときの電池構造体10の面積と同等或いはそれ以上である。そして、基部32は、少なくとも一部に、電池構造体10の全体が上下方向Zに重なる位置に配されている。 The base 32 has a flat plate shape having a thickness in the vertical direction Z. The area of the base 32 when viewed in the vertical direction Z is equal to or larger than the area of the battery structure 10 when viewed in the vertical direction Z. Then, the base 32 is arranged at least in a position where the entire battery structure 10 overlaps in the vertical direction Z.

図1に示すごとく、本実施形態において、小面積部33は、1つの電池5の基準面51と上下方向Zに重なるよう配されている。本実施形態において、上下方向Zからみた小面積部33の面積は、基準面51の面積と同等になるよう形成されているが、これに限られず、基準面51の面積よりも大きくなっても小さくなってもよい。 As shown in FIG. 1, in the present embodiment, the small area portion 33 is arranged so as to overlap the reference surface 51 of one battery 5 in the vertical direction Z. In the present embodiment, the area of the small area portion 33 when viewed in the vertical direction Z is formed to be equal to the area of the reference surface 51, but the present invention is not limited to this, and even if it is larger than the area of the reference surface 51. May be smaller.

小面積部33は、複数の電池5の基準面51の上下方向Zのずれ方に応じて適宜配置される。つまり、小面積部33は、熱拡散部3の各対向部311と、各電池5の基準面51との上下方向Zの間隔が同等となるよう配置される。本実施形態において、小面積部33は、複数の電池5のうち最下端電池501以外の電池5の下側にそれぞれ配されている。上下方向Zにおける各電池5と基部32との間の領域のうち、電池5と基部32との間の上下方向Zの寸法が比較的大きい領域には、複数の小面積部33が厚さ方向に積み重ねられている。これにより、上下方向Zにおける熱拡散部3の上面31の位置が調整される。本実施形態においては、上下方向Zにおける最上端電池502と基部32との間に、複数の小面積部33が積み重ねられている。本実施形態において、すべての小面積部33は、互いに同じ形状を有する。なお、複数の小面積部33は、すべての形状が互いに同じものに限られない。例えば、上下方向Zから見たときの各小面積部33の面積を互いに同等としつつ、少なくとも1つの小面積部33と、他の小面積部33のうちの少なくとも1つの小面積部33との間において、上下方向Zの寸法を互いに異ならせても良い。また、複数の小面積部33は、上下方向Zから見たときの各小面積部33の面積が、互いに同じものに限られない。以後、熱拡散部3の複数の対向部311と各電池5の基準面51との上下方向Zの間隔を、上下間隔ということもある。 The small area portions 33 are appropriately arranged according to how the reference surfaces 51 of the plurality of batteries 5 are displaced in the vertical direction Z. That is, the small area portion 33 is arranged such that the facing portions 311 of the heat diffusion portion 3 and the reference surface 51 of each battery 5 have the same vertical interval Z. In the present embodiment, the small area portions 33 are arranged below the batteries 5 other than the lowest end battery 501 among the plurality of batteries 5. In the region between the batteries 5 and the base 32 in the vertical direction Z, a plurality of small area portions 33 are formed in the thickness direction in a region where the dimension between the batteries 5 and the base 32 in the vertical direction Z is relatively large. Are stacked in. As a result, the position of the upper surface 31 of the heat diffusion portion 3 in the vertical direction Z is adjusted. In the present embodiment, a plurality of small area portions 33 are stacked between the uppermost battery 502 and the base portion 32 in the vertical direction Z. In this embodiment, all the small area portions 33 have the same shape as each other. It should be noted that the plurality of small area portions 33 are not limited to all having the same shape. For example, at least one small area portion 33 and at least one small area portion 33 of the other small area portions 33 while making the areas of the small area portions 33 when viewed in the vertical direction Z equal to each other. In the interval, the dimension in the vertical direction Z may be different from each other. Moreover, the area of each of the plurality of small area portions 33 when viewed in the vertical direction Z is not limited to the same area. Hereinafter, the gap in the vertical direction Z between the plurality of facing portions 311 of the heat diffusion portion 3 and the reference surface 51 of each battery 5 may be referred to as the vertical gap.

ここで、複数の上下間隔が互いに同等、とは、複数の上下間隔が互いに同一ではないものの、略同一である場合を含む。例えば、複数の上下間隔が互いに略同一である場合とは、各上下方向の設計値を互いに同じ値d1とした場合において、各上下間隔と設計値d1との差の絶対値が、それぞれ、設計値d1の10%の値以下である場合とすることができる。 Here, the plurality of vertical intervals being equal to each other includes the case where the plurality of vertical intervals are not the same but substantially the same. For example, when the plurality of vertical intervals are substantially the same as each other, and when the design values in the vertical directions are the same value d1, the absolute value of the difference between each vertical interval and the design value d1 is It may be the case where it is 10% or less of the value d1.

熱拡散部3の上面31と各電池5の基準面51との間に熱伝導部4が配されている。熱伝導部4は、熱拡散部3の上面31及び各電池5の基準面51に密着している。本実施形態において、熱伝導部4は、1つの板をその厚み方向に複数回折り曲げたような形状を有する。熱伝導部4は、弾性変形可能であることが好ましい。また、熱伝導部4は、電気的絶縁性を有することが好ましい。熱伝導部4は、例えばシリコーンにより構成することができる。 The heat conducting portion 4 is arranged between the upper surface 31 of the heat diffusion portion 3 and the reference surface 51 of each battery 5. The heat conduction part 4 is in close contact with the upper surface 31 of the heat diffusion part 3 and the reference surface 51 of each battery 5. In the present embodiment, the heat conducting portion 4 has a shape in which one plate is bent several times in its thickness direction. The heat conducting portion 4 is preferably elastically deformable. Further, the heat conducting portion 4 preferably has electrical insulation. The heat conducting portion 4 can be made of, for example, silicone.

なお、電池モジュール1を組み立てる際は、例えば、まず熱拡散部3の上面31に熱伝導部4を配置する。次いで、電池構造体10における複数の電池5の基準面51を熱伝導部4に押し付ける。これにより、熱伝導部4を弾性変形させつつ、複数の電池5の基準面51及び熱拡散部3の上面31に密着させる。 When assembling the battery module 1, for example, the heat conducting portion 4 is first arranged on the upper surface 31 of the heat diffusion portion 3. Next, the reference surfaces 51 of the plurality of batteries 5 in the battery structure 10 are pressed against the heat conducting section 4. As a result, the heat conducting portion 4 is elastically deformed and brought into close contact with the reference surfaces 51 of the plurality of batteries 5 and the upper surface 31 of the heat diffusion portion 3.

図4に示すごとく、熱伝導部4における複数の電池5の基準面51と上下方向Zに重なる領域を重なり領域41と定義する。熱伝導部4における複数の重なり領域41は、互いに厚みTが同等である。ここで、複数の重なり領域41は、互いに厚みTが同等とは、複数の重なり領域41の厚みTが互いに同一ではないものの、略同一である場合を含む。複数の重なり領域41の厚みTが互いに略同一である場合とは、各重なり領域41の上下方向Zの寸法の設計値を互いに同じ値d2とした場合において、各重なり領域41の上下方向Zの寸法と設計値d2との差の絶対値が、それぞれ、設計値d2の10%の値以下である場合とすることができる。 As shown in FIG. 4, a region of the heat conducting unit 4 that overlaps the reference planes 51 of the plurality of batteries 5 in the vertical direction Z is defined as an overlapping region 41. The plurality of overlapping regions 41 in the heat conducting portion 4 have the same thickness T. Here, the plurality of overlapping regions 41 having the same thickness T includes the case where the plurality of overlapping regions 41 have substantially the same thickness T, although they are not the same. When the thicknesses T of the plurality of overlapping regions 41 are substantially the same as each other, when the design values of the dimensions of the overlapping regions 41 in the vertical direction Z are set to the same value d2, the vertical direction Z of each overlapping region 41 is The absolute value of the difference between the dimension and the design value d2 may be 10% or less of the design value d2.

図1に示すごとく、熱伝導部4における重なり領域41同士は、連結領域42によって連結されている。連結領域42には、上下方向Zに直交する面上に形成されたものと、上下方向Zに直交する面に対して傾斜するよう形成されたものがある。連結領域42が連結する重なり領域41の上下方向Zの位置が互いに同じである場合、連結領域42は、上下方向Zに直交する面上に形成される。一方、連結領域42が連結する重なり領域41の上下方向Zの位置が互いに異なれば、連結領域42は、上下方向Zに直交する面に対して傾斜するよう形成される。 As shown in FIG. 1, the overlapping regions 41 in the heat conducting portion 4 are connected by the connecting region 42. The connecting region 42 includes one formed on a surface orthogonal to the vertical direction Z and one formed so as to be inclined with respect to the surface orthogonal to the vertical direction Z. When the positions of the overlapping regions 41 connected by the connecting regions 42 in the vertical direction Z are the same, the connecting regions 42 are formed on a plane orthogonal to the vertical direction Z. On the other hand, if the positions of the overlapping regions 41 connected to the connecting regions 42 in the vertical direction Z are different from each other, the connecting regions 42 are formed to be inclined with respect to the plane orthogonal to the vertical direction Z.

熱拡散部3の下面に、熱交換器2が面接触している。図3に示すごとく、本実施形態において、熱交換器2は、内部に冷却媒体を流通させるための冷媒流路21を備える。しかし、これに限られず、熱交換器2は、内部に冷媒流路21を備えないものであってもよい。また、熱交換器2は、熱拡散部3に接触していればよく、例えば熱拡散部3の側面等に接触していてもよい。 The heat exchanger 2 is in surface contact with the lower surface of the heat diffusion portion 3. As shown in FIG. 3, in the present embodiment, the heat exchanger 2 includes a refrigerant passage 21 for circulating a cooling medium inside. However, the present invention is not limited to this, and the heat exchanger 2 may not have the refrigerant passage 21 inside. The heat exchanger 2 may be in contact with the heat diffusion portion 3, and may be in contact with, for example, the side surface of the heat diffusion portion 3.

次に、本実施形態の作用効果につき説明する。
電池モジュール1において、複数の電池5のうちの最下端電池501以外の電池5の基準面51と上下方向Zに対向する対向部311の少なくとも一つは、最下端電池501の基準面51と上下方向Zに対向する対向部311よりも上側に位置している。それゆえ、複数の電池5の基準面51と、熱拡散部3の上面31の複数の対向部311との間の上下方向Zの間隔にばらつきが生じることを抑制することがきできる。これにより、熱伝導部4における複数の電池5の基準面51と上下方向Zに重なる領域の厚みにばらつきが生じることを抑制することができる。それゆえ、各電池5から熱拡散部3までの伝熱経路における熱抵抗値に、ばらつきが生じることを抑制することができる。
Next, the function and effect of this embodiment will be described.
In the battery module 1, at least one of the facing portions 311 facing the reference surface 51 of the batteries 5 other than the lowermost battery 501 among the plurality of batteries 5 in the up-down direction Z is located above and below the reference surface 51 of the lowermost battery 501. It is located above the facing portion 311 facing the direction Z. Therefore, it is possible to suppress variations in the intervals in the vertical direction Z between the reference surfaces 51 of the plurality of batteries 5 and the plurality of facing portions 311 of the upper surface 31 of the heat diffusion portion 3. As a result, it is possible to suppress variations in the thickness of the regions of the heat conduction unit 4 that overlap the reference planes 51 of the plurality of batteries 5 in the vertical direction Z. Therefore, it is possible to suppress variations in the thermal resistance value in the heat transfer path from each battery 5 to the heat diffusion portion 3.

また、熱拡散部3の複数の対向部311のうち、最上端電池502の基準面51と上下方向Zに対向する対向部311は、最下端電池501の基準面51と上下方向Zに対向する対向部311よりも上側に位置している。それゆえ、熱抵抗値の差が大きくなることが懸念される重なり領域41間の熱抵抗値の差を小さくしやすい。 Further, among the plurality of facing portions 311 of the heat diffusion portion 3, the facing portion 311 facing the reference surface 51 of the uppermost end battery 502 in the vertical direction Z faces the reference surface 51 of the lowermost end battery 501 in the vertical direction Z. It is located above the facing portion 311. Therefore, it is easy to reduce the difference in thermal resistance between the overlapping regions 41, which is likely to increase in thermal resistance.

また、熱拡散部3の複数の対向部311と、複数の電池5の基準面51との上下方向Zの間隔は、互いに同等である。それゆえ、熱伝導部4における複数の重なり領域41の厚みTを互いに同等にしやすい。これにより、一層、各電池5から熱拡散部3までの伝熱経路における熱抵抗値にばらつきが生じることを抑制することができる。 Further, the intervals in the vertical direction Z between the plurality of facing portions 311 of the heat diffusion portion 3 and the reference surfaces 51 of the plurality of batteries 5 are equal to each other. Therefore, it is easy to make the thicknesses T of the plurality of overlapping regions 41 in the heat conducting portion 4 equal to each other. As a result, it is possible to further suppress variation in the thermal resistance value in the heat transfer path from each battery 5 to the heat diffusion portion 3.

また、熱拡散部3は、基部32と小面積部33とを有する。これにより、複数の電池5の基準面51の上下方向Zのずれ方に応じて、適宜熱拡散部3を構成しやすい。すなわち、基部32の上面に、適宜、小面積部33を配置することにより、熱拡散部3の上面31の対向部311と複数の電池5の基準面51との上下方向Zの間隔を、互いに同等にすることができる。それゆえ、電池モジュール1の生産性向上を図ることができる。 Further, the heat diffusion portion 3 has a base portion 32 and a small area portion 33. Thereby, it is easy to appropriately configure the thermal diffusion unit 3 depending on how the reference planes 51 of the plurality of batteries 5 are displaced in the vertical direction Z. That is, by appropriately arranging the small area portion 33 on the upper surface of the base portion 32, the interval in the vertical direction Z between the facing portion 311 of the upper surface 31 of the heat diffusion portion 3 and the reference surface 51 of the plurality of batteries 5 is set to be mutually different. Can be equivalent. Therefore, the productivity of the battery module 1 can be improved.

また、複数の電池5は、電池構造体10を構成している。そして、電池構造体10は、並び方向Xに拘束されている。それゆえ、電池モジュール1の使用時に電池モジュール1に生じる振動や衝撃等により、複数の電池5の上下方向Zの位置が、使用前の状態からずれることを防止することができる。これにより、各電池5の基準面51と熱拡散部3の上面31の対向部311との上下方向Zの間隔が、経時的に変化することに起因する各電池5から熱拡散部3までの伝熱経路における熱抵抗値の変動を防止することができる。また、各電池5の性能が経時的に変化することを抑制しやすい。 The plurality of batteries 5 form a battery structure 10. The battery structure 10 is constrained in the arrangement direction X. Therefore, it is possible to prevent the positions of the plurality of batteries 5 in the vertical direction Z from deviating from the pre-use state due to vibrations or shocks generated in the battery module 1 when the battery module 1 is used. As a result, the interval between the reference surface 51 of each battery 5 and the facing portion 311 of the upper surface 31 of the heat diffusion portion 3 in the up-down direction Z changes from time to time from each battery 5 to the heat diffusion portion 3. It is possible to prevent the fluctuation of the thermal resistance value in the heat transfer path. In addition, it is easy to prevent the performance of each battery 5 from changing with time.

以上のごとく、本実施形態によれば、熱交換器による各電池の冷却性能にばらつきが生じることを抑制することができる電池モジュールを提供することができる。 As described above, according to the present embodiment, it is possible to provide the battery module that can suppress the variation in the cooling performance of each battery by the heat exchanger.

(実施形態2)
本実施形態は、図6に示すごとく、実施形態1に対して、小面積部33の形状を変更した実施形態である。小面積部33は、上下方向Zの寸法が、基部32の上面と、熱伝導部4の重なり領域41の下面と、の間の上下方向Zの寸法と同じになるよう形成されている。すなわち、本実施形態においては、小面積部33の上下方向Zの寸法を調整することにより、上下方向Zにおける熱拡散部3の上面31の対向部311位置を調整している。
(Embodiment 2)
As shown in FIG. 6, the present embodiment is an embodiment in which the shape of the small area portion 33 is changed from that of the first embodiment. The small area portion 33 is formed such that the dimension in the vertical direction Z is the same as the dimension in the vertical direction Z between the upper surface of the base portion 32 and the lower surface of the overlapping region 41 of the heat conducting portion 4. That is, in the present embodiment, by adjusting the size of the small area portion 33 in the vertical direction Z, the position of the facing portion 311 of the upper surface 31 of the thermal diffusion portion 3 in the vertical direction Z is adjusted.

その他は、実施形態1と同様である。
なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
Others are the same as in the first embodiment.
In addition, among the reference numerals used in the second and subsequent embodiments, the same reference numerals as those used in the already-described embodiments represent the same components and the like as those in the already-described embodiments, unless otherwise specified.

本実施形態においても、実施形態1と同様の作用効果を有する。 Also in the present embodiment, the same operational effect as that of the first embodiment is obtained.

(実施形態3)
本実施形態は、図7、図8に示すごとく、熱拡散部3が、一部材からなる実施形態である。例えば、熱拡散部3は、1つの金属を切削加工等することにより一体的に形成されている。換言すれば、熱拡散部3は、複数の部材を接合して構成されない。
その他は、実施形態1と同様である。
(Embodiment 3)
In this embodiment, as shown in FIGS. 7 and 8, the heat diffusion portion 3 is made of one member. For example, the heat diffusion portion 3 is integrally formed by cutting one metal. In other words, the heat diffusion portion 3 is not configured by joining a plurality of members.
Others are the same as in the first embodiment.

本実施形態においては、熱拡散部3の熱伝導率を向上させいやすい。これにより、一層、熱交換器2による電池5の冷却性能を向上させることができる。
その他、実施形態1と同様の作用効果を有する。
In the present embodiment, it is easy to improve the thermal conductivity of the thermal diffusion portion 3. Thereby, the cooling performance of the battery 5 by the heat exchanger 2 can be further improved.
Other than that, the same effects as those of the first embodiment are obtained.

(実施形態4)
本実施形態は、図9〜図12に示すごとく、熱拡散部3が、厚み方向を上下方向Zとしつつ上下方向Zに積層された複数の金属薄板34を有する実施形態である。金属薄板34は、上下方向Zに可撓性を有する。金属薄板34は、外部から上下方向Zの力が作用した場合に、容易に撓む程度の可撓性を有する。上下方向Zに可撓性を有する金属薄板34の厚みは、金属薄板34を構成する金属の硬度に応じて適宜選択される。本実施形態において、金属薄板34は、上下方向Zの厚みが、熱伝導部4よりも小さい。
(Embodiment 4)
As shown in FIGS. 9 to 12, the present embodiment is an embodiment in which the heat diffusion portion 3 has a plurality of metal thin plates 34 stacked in the vertical direction Z with the thickness direction being the vertical direction Z. The thin metal plate 34 has flexibility in the vertical direction Z. The thin metal plate 34 is flexible enough to be easily bent when a force in the vertical direction Z is applied from the outside. The thickness of the metal thin plate 34 having flexibility in the vertical direction Z is appropriately selected according to the hardness of the metal that constitutes the metal thin plate 34. In the present embodiment, the metal thin plate 34 has a thickness in the up-down direction Z smaller than that of the heat conducting portion 4.

本実施形態において、熱交換器2は、熱拡散部3の側面に接触している。
その他、実施形態1と同様の構造を有する。
In this embodiment, the heat exchanger 2 is in contact with the side surface of the heat diffusion portion 3.
In addition, it has the same structure as that of the first embodiment.

次に、本実施形態の電池モジュール1の製造方法の一例につき説明する。
まず、図11に示すごとく、複数の平坦な金属の薄板(以後、平坦薄板340という)をその厚み方向に積層する。そして、積層した複数の平坦薄板340の最上面に、厚みが一定の熱伝導部4を配置する。この状態において、熱伝導部4は、平坦薄板340の最上面に沿った平坦な形状を有する。そして、積層した複数の平坦薄板340の最下面に、弾性変形可能な弾性部材15を配置する。そして、弾性部材15の下面に変形し難い高剛性プレート16を配置する。ここで、熱伝導部4と複数の平坦薄板340と弾性部材15と高剛性プレート16からなる構造体を、変形前アッシー17とよぶ。
Next, an example of a method of manufacturing the battery module 1 of this embodiment will be described.
First, as shown in FIG. 11, a plurality of flat metal thin plates (hereinafter referred to as flat thin plates 340) are laminated in the thickness direction. Then, the heat conducting portion 4 having a constant thickness is arranged on the uppermost surface of the plurality of laminated flat thin plates 340. In this state, the heat conducting portion 4 has a flat shape along the uppermost surface of the flat thin plate 340. Then, the elastically deformable elastic member 15 is arranged on the lowermost surface of the plurality of laminated flat thin plates 340. Then, a high-rigidity plate 16 that is difficult to deform is arranged on the lower surface of the elastic member 15. Here, the structure including the heat conducting portion 4, the plurality of flat thin plates 340, the elastic member 15, and the high-rigidity plate 16 is referred to as a pre-deformation assembly 17.

そして、複数の電池5を並び方向Xに並べ、電池構造体10を構成し、拘束部材100により並び方向Xに拘束する。そして、変形前アッシー17と電池構造体10とを近付け、変形前アッシー17の熱伝導部4の上面を、電池構造体10の複数の電池5の基準面51に接触させる。この状態から、変形前アッシー17を更に上側、つまり電池構造体10側に押し込む。これにより、変形前アッシー17を上側に押し込む力が、高剛性プレート16及び弾性部材15を介して平坦薄板340に作用する。これにより、図12に示すごとく、複数の平坦薄板340が電池構造体10の複数の電池5の基準面51に沿うような形状に変形し、最終形状、すなわち前述した金属薄板34の形状となる。このとき、弾性部材15の上面は、複数の平坦薄板340の下面の形状変化に応じて変形する。これにより、平坦薄板340の全体に、均等に力を作用しやすい。また、平坦薄板340の形状変化に伴い、熱伝導部4の形状も、平坦薄板340の上面に沿う形状に変形する。
以上により、電池モジュール1を製造することができる。
Then, the plurality of batteries 5 are arranged in the arranging direction X to form the battery structure 10, and are constrained in the arranging direction X by the constraining member 100. Then, the pre-deformation assembly 17 and the battery structure 10 are brought close to each other, and the upper surface of the heat conducting portion 4 of the pre-deformation assembly 17 is brought into contact with the reference surfaces 51 of the plurality of batteries 5 of the battery structure 10. From this state, the pre-deformation assembly 17 is pushed further upward, that is, toward the battery structure 10. As a result, the force that pushes the pre-deformation assembly 17 upward acts on the flat thin plate 340 via the high-rigidity plate 16 and the elastic member 15. As a result, as shown in FIG. 12, the plurality of flat thin plates 340 are deformed into a shape along the reference planes 51 of the plurality of batteries 5 of the battery structure 10, and become the final shape, that is, the shape of the metal thin plate 34 described above. .. At this time, the upper surface of the elastic member 15 is deformed according to the shape change of the lower surfaces of the plurality of flat thin plates 340. As a result, it is easy to uniformly apply a force to the entire flat thin plate 340. Further, as the shape of the flat thin plate 340 changes, the shape of the heat conducting portion 4 also changes to a shape along the upper surface of the flat thin plate 340.
Through the above, the battery module 1 can be manufactured.

本実施形態においては、電池モジュール1の生産性を向上させやすい。すなわち、前述のように、平坦薄板340を複数の電池5の基準面51に向かって押し付けることにより、容易に熱拡散部3を構成することができる。
その他、実施形態1と同様の作用効果を有する。
In this embodiment, it is easy to improve the productivity of the battery module 1. That is, as described above, by pressing the flat thin plate 340 toward the reference surfaces 51 of the plurality of batteries 5, the thermal diffusion unit 3 can be easily configured.
Other than that, the same effects as those of the first embodiment are obtained.

本発明は、前記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。 The present invention is not limited to the above-described embodiments, and can be applied to various embodiments without departing from the spirit of the invention.

例えば、前記各実施形態において、電池はリチウムイオン二次電池としたが、これに限られず、種々の電池を採用することが可能である。例えば、電池をニッケル水素電池等とすることも可能である。また、電池は、缶型の電池に限られず、例えばラミネートフィルム等により外装を構成した、いわゆるラミネート型の電池としてもよい。また、電池は、複数の単電池をパックケース内に収容してなる電池パックとすることも可能である。 For example, in each of the above embodiments, the battery is a lithium ion secondary battery, but the battery is not limited to this, and various batteries can be adopted. For example, the battery may be a nickel hydrogen battery or the like. Further, the battery is not limited to the can type battery, and may be a so-called laminated type battery having an exterior formed of, for example, a laminated film. Further, the battery may be a battery pack in which a plurality of unit cells are housed in a pack case.

また、前記各実施形態においては、各電池における端子側と反対側の面を、熱伝導部に接触させる構成を示したが、これに限られない。例えば、電池における、端子の突出方向及び電池の厚み方向との双方に直交する方向を向く面である側面を基準面とし、当該基準面を熱伝導部に接触させてもよい。 Further, in each of the above-described embodiments, the configuration in which the surface on the side opposite to the terminal side of each battery is brought into contact with the heat conducting portion is shown, but the present invention is not limited to this. For example, in the battery, a side surface, which is a surface that is orthogonal to both the protruding direction of the terminal and the thickness direction of the battery, may be used as a reference surface, and the reference surface may be in contact with the heat conducting portion.

1 電池モジュール
2 熱交換器
3 熱拡散部
31 熱拡散部の上面
311 対向部
4 熱伝導部
5 電池
501 最下端電池
51 基準面
Z 上下方向
DESCRIPTION OF SYMBOLS 1 Battery module 2 Heat exchanger 3 Thermal diffusion part 31 Upper surface of thermal diffusion part 311 Opposing part 4 Thermal conduction part 5 Battery 501 Bottommost battery 51 Reference plane Z Vertical direction

Claims (7)

熱交換器(2)と、
前記熱交換器に熱的に接触した熱拡散部(3)と、
前記熱拡散部の上面(31)に熱的に接触した熱伝導部(4)と、
前記熱伝導部の少なくとも上側から前記熱伝導部に熱的に接触するとともに、前記熱拡散部及び前記熱伝導部と上下方向(Z)に重なる位置に配された複数の電池(5)と、を有し、
前記熱拡散部は、前記熱伝導部よりも熱伝導率が高く、
前記電池の下側の面を基準面(51)と定義したとき、複数の前記電池の前記基準面は、上下方向の複数の位置に配されており、
前記熱拡散部の前記上面は、複数の前記電池の前記基準面と上下方向に対向する複数の対向部(311)を有し、
複数の前記電池のうち前記基準面が最下端に位置する前記電池を最下端電池(501)と定義したとき、複数の前記電池のうちの前記最下端電池以外の前記電池の前記基準面と上下方向に対向する前記対向部の少なくとも一つは、前記最下端電池の前記基準面と上下方向に対向する前記対向部よりも上側に位置しており、
前記熱拡散部は、金属製であり、
前記各電池の前記基準面は、前記熱拡散部に当接していない、電池モジュール(1)。
A heat exchanger (2),
A heat spreader (3) in thermal contact with the heat exchanger;
A heat conducting portion (4) that is in thermal contact with the upper surface (31) of the heat diffusion portion;
A plurality of batteries (5) arranged to be in thermal contact with the heat conducting portion from at least the upper side of the heat conducting portion and to be overlapped with the heat diffusion portion and the heat conducting portion in the vertical direction (Z); Have
The thermal diffusion portion has a higher thermal conductivity than the thermal conduction portion,
When the lower surface of the battery is defined as a reference surface (51), the reference surfaces of the plurality of batteries are arranged at a plurality of vertical positions,
The upper surface of the heat spreader has a plurality of facing portions (311) that vertically face the reference surfaces of the plurality of batteries,
When the battery whose reference surface is located at the lowermost end of the plurality of batteries is defined as the lowermost battery (501), the upper and lower sides of the reference surface of the batteries other than the lowermost battery of the plurality of batteries are defined. At least one of the facing portions facing each other in the direction is located above the facing portion facing in the vertical direction with the reference surface of the lowermost battery ,
The heat diffusion portion is made of metal,
The battery module (1) , wherein the reference surface of each battery is not in contact with the heat diffusion portion .
複数の前記電池のうち前記基準面が最上端に位置する前記電池を最上端電池(502)と定義したとき、前記熱拡散部の複数の前記対向部のうち、前記最上端電池の前記基準面と上下方向に対向する前記対向部は、前記最下端電池の前記基準面と上下方向に対向する前記対向部よりも上側に位置している、請求項1に記載の電池モジュール。 Of the plurality of batteries, the reference surface of the uppermost battery is defined as the uppermost battery (502) when the reference surface is located at the uppermost end. 2. The battery module according to claim 1, wherein the facing portion that faces in the up-down direction is located above the facing portion that faces in the up-down direction with the reference surface of the lowermost battery. 前記熱拡散部の複数の前記対向部と、複数の前記電池の前記基準面との上下方向の間隔は、互いに同等である、請求項1又は2に記載の電池モジュール。 The battery module according to claim 1 or 2, wherein the plurality of facing portions of the heat diffusion portion and the reference surfaces of the plurality of batteries have the same vertical spacing. 前記熱拡散部は、複数の前記電池のすべてと上下方向に重なるよう形成された基部(32)と、前記基部の上面に配されるとともに、上下方向から見たときの面積が前記基部よりも小さい小面積部(33)と、を有する、請求項1〜3のいずれか一項に記載の電池モジュール。 The heat diffusion portion is arranged on the upper surface of the base portion (32) formed to overlap all of the plurality of batteries in the vertical direction, and has an area when viewed in the vertical direction from that of the base portion. Battery module according to any one of claims 1 to 3, having a small small area (33). 前記熱拡散部は、一部材からなる、請求項1〜3のいずれか一項に記載の電池モジュール。 The battery module according to any one of claims 1 to 3, wherein the heat diffusion portion is made of one member. 前記熱拡散部は、厚み方向を上下方向としつつ上下方向に積層された複数の金属薄板(34)を有し、前記金属薄板は、上下方向に可撓性を有する、請求項1〜3のいずれか一項に記載の電池モジュール。 4. The heat spreader according to claim 1, wherein the heat spreader has a plurality of metal thin plates (34) stacked in a vertical direction with the thickness direction being a vertical direction, and the metal thin plates are flexible in the vertical direction. The battery module according to any one of claims. 複数の前記電池は、上下方向に直交する並び方向に並んで電池構造体(10)を構成しており、前記電池構造体は、並び方向に拘束されている、請求項1〜6のいずれか一項に記載の電池モジュール。 7. The battery structure according to claim 1, wherein the plurality of batteries are arranged in a line direction orthogonal to the vertical direction to form a battery structure (10), and the battery structure is constrained in the line direction. The battery module according to one item.
JP2017006715A 2017-01-18 2017-01-18 Battery module Active JP6717213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017006715A JP6717213B2 (en) 2017-01-18 2017-01-18 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017006715A JP6717213B2 (en) 2017-01-18 2017-01-18 Battery module

Publications (2)

Publication Number Publication Date
JP2018116832A JP2018116832A (en) 2018-07-26
JP6717213B2 true JP6717213B2 (en) 2020-07-01

Family

ID=62985590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017006715A Active JP6717213B2 (en) 2017-01-18 2017-01-18 Battery module

Country Status (1)

Country Link
JP (1) JP6717213B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210153431A (en) * 2020-06-10 2021-12-17 주식회사 엘지에너지솔루션 Battery module and menufacturing method for the same
KR20210153430A (en) 2020-06-10 2021-12-17 주식회사 엘지에너지솔루션 Battery module and menufacturing method for the same
JP2022176532A (en) * 2021-05-17 2022-11-30 トヨタ自動車株式会社 Power storage module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6267571B2 (en) * 2014-04-23 2018-01-24 日立建機株式会社 Cooling structure for work machine and power storage device mounted on the work machine
JP6805606B2 (en) * 2016-07-26 2020-12-23 株式会社豊田自動織機 Battery module and manufacturing method of battery module

Also Published As

Publication number Publication date
JP2018116832A (en) 2018-07-26

Similar Documents

Publication Publication Date Title
US11380948B2 (en) Battery module
CN109802063B (en) Battery pack, battery pack manufacturing method, and intervening member
JP7340778B2 (en) Busbar and battery laminate
JP6717213B2 (en) Battery module
JP6494754B2 (en) Battery module
JP2019046578A (en) Manufacturing method of battery pack
JP2005108693A (en) Battery pack and battery cell
WO2020166182A1 (en) Battery module
US20120288740A1 (en) Battery pack
US20150125719A1 (en) Power storage device and method for radiating heat in power storage device
US20210091404A1 (en) Separator, battery module and battery module production method
JP6866405B2 (en) Battery module, manufacturing method of battery module
JP2015210894A (en) Battery pack module
JP2019046707A (en) Battery module
US11515592B2 (en) Battery module
JP7033735B2 (en) Busbar and battery laminate
WO2013164932A1 (en) Battery apparatus
JP6717212B2 (en) Battery module
JP5585854B2 (en) Thermal conductivity structure of battery pack
JP7127341B2 (en) battery module
JP2013109858A (en) Battery
JP5154706B1 (en) Battery pack and battery module
KR101661869B1 (en) Electrical storage module
WO2021153523A1 (en) Electrical storage module
JP6987720B2 (en) Rechargeable battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200525

R151 Written notification of patent or utility model registration

Ref document number: 6717213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250